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Notation 
at  slope of concrete tension softening curve 

b0 length of control perimeter (with rounded corners) at a distance of the half of the 

average flexural effective depth from the column face 

b0,3d  effective (reduced) control perimeter length by limiting the longer side to 3d 

bc  factor for biaxial compressive interaction 

cmax  longer dimension of a rectangular column 

cmin  shorter dimension of a rectangular column 

d  average flexural effective depth of the slab 

dg  maximum aggregate size 

dg0  reference aggregate size equal to 16 mm 

ddg  parameter representing the crack average roughness 

Δdi  relative displacement at joint nodes at current step (i) 

e eccentricity of the resultant shear force with respect to the centroid of the basic 

control perimeter 

Ec  concrete elastic modulus 

fc’   concrete compressive strength 

ft  concrete tensile strength 

𝐺𝑆𝑅 ratio of applied gravity force to the punching capacity of a reference slab tested under 

concentric loading 

k  empirical coefficient to calculate nominal one-way shear resistance 

𝑘𝑑𝑒𝑔   descending stiffness of joint element 

𝑘𝑖   joint tangent stiffness at current step (i) 

𝑘𝑖𝑛𝑐   initial ascending stiffness of joint element 

𝑘𝑟𝑒𝑑   stiffness reduction factor for joint elements 

ls  spacing between adjacent joint elements 

L slab span between column centrelines 

n  number of joint elements around full control perimeter 

nnef  number of joint elements outside the effective control perimeter for punching 

Ptest  measured failure load from experimental test 

Pu  predicted failure load 

rc  normalised residual compressive strength 

sc  normalised initial compressive strength 

t  slab thickness 



2 
 

v  concrete Poisson’s ratio 

𝑣𝑐  nominal one-way shear resistance per unit length 

𝑣𝑐_𝑚𝑖𝑛  minimum one-way shear resistance per unit length 

𝑉1_𝑤𝑎𝑦  one-way shear capacity assigned to joint elements outside effective control perimeter 

Vcap  shear resistance of individual joint element 

VCSCT(ψx-ψy) modified punching load capacity for non-axis-symmetrical condition 

Vi  joint shear force at current step (i) 

Vi-1  joint shear force at previous step (i-1) 

Vpp  post-punching resistance of joint element 

VR   punching load capacity 

β  ratio of maximum to average shear stress along the control perimeter 

βs  shear retention factor for shell elements 

δ  vertical joint separation to calculate notional spring length 

  equivalent shear strain to calculate notional spring length 

γs  normalised shear softening relative to direct tensile softening 

ft0                                 strain at which softening branch of concrete tensile stress reduces to zero 

𝜀𝑠  strain at longitudinal reinforcement bars 

𝜀𝑠𝑦  yield strain of reinforcement bars 

εxc, εyc   concrete crack strains 

ρtop  top flexural reinforcement ratio 

ρx  top flexural reinforcement ratio parallel to x-axis 

ρy  top flexural reinforcement ratio parallel to y-axis 

σn compressive membrane stress 

σxt, σyt, τxyt biaxial stresses in concrete  

ϕs  factor scaling direct tensile stresses for shear interaction 

𝜓  slab rotation 

𝜓𝑠  slab rotation for individual sector element 

𝜓′ refined slab rotation under pre-stressing 

𝜓𝑖−1  monitored slab rotation at previous step (i-1) 

ψ 

Abstract 

Failures of isolated slab-column connections can be classified as either flexural or punching. Flexural 

failure is typically preceded by large deformation, owing to flexural reinforcement yield, unlike 

punching failure which occurs suddenly with little if any warning. This paper proposes a novel 

numerical strategy for modelling punching failure in which nonlinear joint elements are combined 

with nonlinear reinforced concrete (RC) shell elements. The joint elements are employed to model 

punching failure which limits force transfer from slabs to supporting columns. The shear resistance of 

individual joint element is calculated using the critical shear crack theory (CSCT) which relates shear 

resistance to slab rotation. Unlike other similar models reported in the literature, the joint strength is 

continually updated throughout the analysis as the slab rotation changes. The approach is presented 

for slabs without shear reinforcement but could be easily extended to include shear reinforcement. 

The adequacy of the proposed methodology is verified using experimental test data from isolated 

internal RC slab-column connections tested to failure under various loading arrangements and slab 

edge boundary conditions. Comparisons are also made with the predictions of nonlinear finite element 

analysis using 3-D solid elements, where the proposed methodology is shown to compare favourably 



3 
 

whilst requiring significantly less computation time. Additionally, the proposed methodology enables 

simple calculation of the relative contributions of flexure, torsion and eccentric shear to moment 

transfer between slab and column. This information is pertinent to the development of improved 

codified design methods for calculating the critical design shear stress at eccentrically loaded 

columns. 

1 Introduction 

Punching failure is still the subject of considerable research. Most codified design provisions for 

punching shear including ACI 318-14 [1] and EC2 [2] are empirically derived using data from tests 

on isolated slab-column connections which are unrepresentative of continuous flat slabs. The 

conservative nature of this approach is highlighted in a recent study by Einpaul et al. [3] which found 

that flexural continuity and compressive membrane action increase punching strength but reduce 

deformation capacity compared with conventional isolated test specimens. 

Punching failure of flat slabs is more realistically simulated using 3-D solid elements capable of 

capturing the complex triaxial stress state around the column. This approach has the downside of 

being computationally expensive. Flexural behaviour is more efficiently modelled using classical 

nonlinear 2-D shell elements which need modification to model out-of-plane shear failure. Previous 

studies employing these two numerical approaches are briefly reviewed below along with their 

advantages and disadvantages. 

Classical shell elements typically consider concrete nonlinearity only for in-plane biaxial stress with 

out-of-plane shear response modelled as linearly elastic. This enables realistic representation of 

flexural response but not punching failure. Attempts at modifying classical shell elements to capture 

punching failure can be classified into two main approaches. The first approach modifies the shell 

element formulation to account for transverse shear effects as done by Polak [4] who developed a 

layered-shell element, based on the modified compression field theory (MCFT) [5], for modelling the 

interaction between flexure and transverse shear. A constant transverse strain distribution is adopted 

through the thickness of the slab and the shear modulus is assumed to decrease as a function of 

principal tensile strain. The occurrence of punching failure is characterised by the out-of-plane shear 

stiffness approaching zero. Although the model can predict punching failure reasonably well, the 

results are very sensitive to the assumed cracked shear modulus [4]. Overly large values of cracked 

shear modulus lead to punching capacity being overestimated and in the limit to flexural rather than 

shear failure. 

A recent study by Hrynyk and Vecchio [6] extended the model of Polak [4] by employing the 

disturbed stress field model (DSFM) of Vecchio [7]. The main difference between the MCFT and the 

DSFM is that the latter considers discrete slip on crack surfaces in the formulation of strain 

compatibility. Another modification to [4] is the adoption of a parabolic strain variation through the 
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plate thickness. This leads to better predictions of out-of-plane shear capacity for shear-critical 

elements, especially for members without out-of-plane shear reinforcement. Both models [4,6] have 

the drawback of not explicitly modelling post-punching behaviour which controls the global failure of 

flat slab systems with multiple slab-column connections. 

In the second shell element modelling approach, punching shear failure is modelled with additional 

beam or joint elements which are positioned around the punching control perimeter. This technique 

was successfully employed by Keyvani et al. [8] to investigate the progressive collapse of laterally-

restrained flat slab systems. Connector elements were used around the punching control perimeter to 

model the separation of the slab from the column at punching failure. The connectors comprised three 

dimensional Cartesian-Cardan connector elements with six degrees of freedom. The out-of-plane 

shear resistance of the connectors was calculated using the critical shear crack theory (CSCT) of 

Muttoni [9]. The post-punching capacity was modelled explicitly with additional connector elements 

which were used to connect the tensile and integrity reinforcement bars to the slab on either side of 

the critical shear crack. The connector strength was determined using the model of Mirzaei [10]. 

Although the model produces accurate predictions of both pre- and post-peak behaviour, the punching 

shear resistance of the connector elements needs to be determined prior to the global analysis without 

consideration of the slab kinematics during loading. This procedure can be inaccurate for continuous 

slabs where inwards movement of the line of radial contraflexure, subsequent to reinforcement 

yielding at supports, can increase punching resistance [3]. 

Recently, Liu et al. [11,12] used a similar procedure, but with two beam connector elements per 

column side, to study the progressive collapse of flat slab buildings. The beam element used six 

uncoupled degrees of freedom to simulate flexure, torsion, shear, and axial components within the 

critical punching region. Simarly to [8], this study used the CSCT failure criterion but no post-

punching resistance is assumed. On failure, the connector beams immediately separate from the slab 

on the side where punching failure initiates. This neglects the benefit of shear redistribution of the 

type identified by Sagaseta et al. [13] which can significantly enhance the punching resistance 

particularly when loading or geometry is non-axis-symmetrical. Furthermore, when used to assess 

global behaviour, the shear capacity and failure rotation of each connector element was pre-

determined from the intersection of the CSCT failure criterion with the load rotation response of a 

concentrically loaded isolated specimen with radius equal to the line of elastic contraflexure. As 

acknowledged by Liu et al. [11,12], this treatment neglects the increase in punching resistance which 

occurs as the line of contraflexure moves in towards the column, producing a stiffer response, as the 

slab is loaded beyond cracking and yielding. 

Solid finite elements have been used for modelling punching failure since the early 1980s. One of the 

earliest studies was that of Yamazaki and Hawkins [14] who used elastic 3D-solid elements as well as 

nonlinear plate bending elements to study moment transfer at internal slab-column connections. The 

study showed that nonlinear plate bending analyses can provide reasonably accurate estimates of the 
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distribution of shear, moment, and torsion acting on “finite areas of a connection transferring moment 

between a slab and a column”.  

Recently, Genikomsou and Polak [15] carried out a comprehensive finite element investigation of 

punching shear employing 3-D solid elements in ABAQUS. The study examined interior and exterior 

slab-column connections under both static and reversed-cyclic loading. Concrete was modelled using 

a concrete damage plasticity model in compression and the fictitious crack model of Hillerborg et al. 

[16] in tension. Genikomsou and Polak showed that the accuracy of the finite element predictions was 

most influenced by the choice of dilation angle and damage parameters. They showed that 3-D finite 

element analysis is capable of producing accurate predictions of punching capacity, deflection and 

crack patterns. A recent study by Shu et al. [17] shows that finite element analysis with 3-D solid 

element can also be used to provide detailed information on the shear stress distribution along the 

control perimeter as well as radial and tangential strain in the concrete surface near supports. The 

study showed that finite element modelling with 3-D solid elements is capable of producing accurate 

and, more importantly, consistent results for the punching resistance of slabs with various geometries, 

reinforcement arrangements, support types, and loading arrangements. Similar conclusions have been 

reached by others [18-20]. 

This work presents a novel numerical methodology for using joint elements to simulate punching 

shear failure in RC slabs modelled with nonlinear layered shell elements. Only slabs without shear 

reinforcement are considered here, but the procedure will be extended in a future article to include 

shear reinforcement. The failure criterion of the CSCT [9] is used to determine the shear resistance of 

individual joint elements due to its accuracy and robustness. The joint elements incorporate a novel 

procedure for monitoring the slab rotation at user defined positions throughout the analysis. This 

allows the joint strength calculated with the CSCT to be continually updated throughout the analysis 

as the slab rotation changes, thereby avoiding the need to pre-define the punching resistance of 

connector elements as done in previous studies [8, 11, 12]. The proposed approach explicitly 

considers the influence on shear failure of shear redistribution, membrane action, cracking and 

reinforcement yielding. Additionally, post-punching resistance is modelled explicitly making it 

possible to simulate progression of failure in global building models. The procedure is shown to be 

capable of accurately simulating punching shear failure of isolated internal RC slab-column 

connections tested to failure under various loading arrangements and slab edge boundary conditions. 

2 Proposed numerical methodology 

2.1 General overview 

The proposed approach simulates punching failure using joint elements positioned around a 

rectangular control perimeter, located at d/2 from the column face (where d is the slab effective 

depth). Local joint failure occurs when the joint shear force reaches the joint shear resistance 
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calculated with the CSCT. After initial failure, the joint strength is assumed to soften in accordance 

with the CSCT allowing additional load to be redistributed to adjacent slab sectors as proposed by 

Sagaseta et al. [13]. The post-peak punching resistance is calculated with the mechanical model of 

Fernandez Ruiz et al. [21]. The proposed modelling strategy is computationally efficient making it 

suitable for global analysis of structures. In addition, analysis of the internal joint forces also gives 

valuable insights into shear redistribution and the contribution of eccentric shear to moment transfer 

between slab and column. 

2.2 RC layered-shell formulation and material parameters 

The proposed joint model is implemented in the nonlinear structural analysis program ADAPTIC [22] 

within which the slab is modelled using a layered-shell element based on the conventional Reissner-

Mindlin hypothesis. Full details of the shell element formulation and concrete material modelling are 

given elsewhere by Izzuddin et al. [23] so only a brief description is given here. The following 

assumptions are made in the shell element formulation: 

1. Plane sections remain plane after deformation, but not necessarily normal to the element mid-

surface; 

2. Out-of-plane stresses are negligible; 

3. Concrete cover depth is uniform; 

4. Steel reinforcement is modelled as an equivalent uniform thickness plate acting uniaxially along a 

specified direction; 

5. Only in-plane reinforcement is considered; 

6. Perfect bond is assumed between concrete and reinforcement. 

 

A layered approach is used to account for the nonlinear variation of material stress. Each shell 

element is discretised into a specific number of layers through its thickness. An initial sensitivity 

study in which 10, 15 and 20 layers were adopted through the shell thickness showed that 10 layers is 

sufficient to capture the slab load-rotation response accurately. Thus, in this study, all reported 

analyses were carried out using 10 layers through the slab thickness. Both geometric and material 

nonlinearity are considered within the shell element formulation. Geometric nonlinearity is allowed 

for by using the corotational formulation proposed by Izzuddin [22, 24]. The concrete material model 

considers the influence of both tensile cracking and compressive nonlinearity, including softening 

effects. Nonlinearity is limited to the biaxial planar stress with out-of-plane behaviour assumed to be 

linear elastic. A correction factor of 5/6 is applied to relate out-of-plane shear strains to out-of-plane 

shear stresses on account of the actual shear stress distribution being closer to parabolic than uniform 

as assumed [23]. A fixed crack model is used in which the crack direction is determined by the 

principal stress direction at the moment of crack initiation. A shear retention factor (βs) is used to 
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reduce the in plane shear stiffness after cracking occurs. Under compression, concrete material 

nonlinearity is modelled using an evolving plastic interaction surface in the biaxial plane. Tensile 

softening of concrete is modelled by means of a separate strength envelope for the biaxial stresses 

(𝜎𝑥𝑡, 𝜎𝑦𝑡 , 𝜏𝑥𝑦𝑡) which is expressed as a function of crack strains (𝜀𝑥𝑐 , 𝜀𝑦𝑐). The slope of the tension 

softening curve at defines the crack strain at which the tensile stress reduces to zero and hence the 

level of tension stiffening. Reinforcement is modelled with equivalent uniaxial plates of uniform 

thickness assuming perfect bond and a bilinear stress strain curve with minimal strain hardening.  

2.3 Constitutive behaviour of joint element 

The 6-degree of freedom 3D joint element jel3 [22, 25] is used to simulate punching shear failure. 

Each jel3 element consists of two coincident nodes (nodes 1 and 2 in Figure 1). The element accounts 

for geometric nonlinearities and incorporates independent nonlinear force-displacement relationships 

for each DOF (uncoupled behaviour). This implies that the local tangent stiffness is always a diagonal 

matrix, with the diagonal terms corresponding to the force-displacement curve of the corresponding 

degree of freedom. As shown in Figure 1(a), two additional nodes (depicted nodes 3 and 4), which 

can be either structural or non-structural, are used as references for the local axes. The local x axis is 

initially defined by a vector connecting nodes 1 and 3 while the local y-axis lies in a plane defined by 

the local x-axis and node 4. At each load step, the orientation of the local axes is updated using the 

increments in global rotations at node 1 as shown in Figure 1(b). Deformation of the joint element is 

represented by separation of nodes 1 and 2, in term of local translational and rotational displacements 

(see Figure 1(b)). In this study, node 3 is positioned at the slab rotation monitoring point and node 4 

is positioned on the column chord above the slab. The relative slab-column rotation, which is needed 

in the CSCT, is obtained from the difference in rotation of nodes 3 and 4. In this work, all local DOFs, 

except out-of-plane translation are modelled as fully rigid. 

Joint elements are uniformly spaced around the control perimeter as shown schematically in Figure 

2(a). Each joint element has a sector element associated with it. The location at which rotations are 

monitored is chosen by the analyst. For best fit with experimental observations, sector rotations are 

monitored in this paper at a radius of 0.2L from the column centreline (where L is the slab span 

between column centrelines) as recommended by Soares and Vollum [20] who showed that the 

rotation remains almost constant over a significant distance from the column. However, in general, the 

monitoring point should be positioned where the relative slab-column rotation is a maximum. It is 

necessary to monitor rotations remote from the joint because the deflected shape obtained with shell 

elements is more rounded adjacent to the column than observed in laboratory tests [20, 26]. In a 

continuous slab, the radius of 0.2L corresponds to the line of radial contraflexure under axisymmetric 

loading. In isolated internal slab-column test specimens, the radius of 0.2L was taken as half the slab 
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width. In accordance with the CSCT failure criterion [9], the mean punching shear resistance of each 

joint element 𝑉𝑐𝑎𝑝 is calculated as follows in terms of its sector rotation 𝜓𝑠: 

 

𝑉𝑐𝑎𝑝 =
𝑉𝑅

𝑛
=

0.75𝑏0,3𝑑  . 𝑑 . √𝑓𝑐′

𝑛 (1 + 15 
𝜓𝑠 . 𝑑

𝑑𝑔0 + 𝑑𝑔
)

                                                                                                     (1) 

 

where VR is the punching resistance of an axisymmetric slab with uniform rotation ψs, d is the average 

slab effective depth and b0,3d is an effective control perimeter with rounded corners at d/2 from the 

column face. The length of the straight segments of b0,3d is limited to a maximum of 3d for each side 

of the column. n is the number of joint elements around b0,3d , fc′ is the concrete compressive strength, 

dg is the maximum aggregate size, and dg0 is a reference aggregate size equal to 16mm. 

For the idealised axisymmetric slab shown in Figure 2(a), the resulting failure load is the same as 

given by the CSCT but this is a special case since in general neither the rotation nor shear force 

distribution are uniform around the control perimeter. Three phases of behaviour are considered for 

the out-of-plane DOF as described below and shown in Figure 2(b). It should be noted that the joint 

shear force is related to the vertical sliding displacement of the joint (between node 1 and 2) in Stages 

I and III but to the slab rotation, via the joint shear resistance, in Stage II.  

 

 

Figure 1. Configuration and local force components for joint element (jel3): (a) before and 

(b) after joint deformation 

 

 Stage I (ascending branch – initial phase) 

Although the joint element used here is of zero-length, it is still necessary to assume a notional spring 

length in order to derive the out of plane displacement stiffness parameter. For this purpose, the 

(a) (b) 
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notional joint length is assumed equal to the slab thickness giving rise to an equivalent shear strain of 

 = /t where  is the vertical joint separation and t is the slab thickness. Initially, the joint element is 

assumed to behave linearly with out of plane displacement stiffness (𝑘𝑖𝑛𝑐) formulated as: 

 

𝑘𝑖𝑛𝑐 = 𝑘𝑟𝑒𝑑 .
𝐸𝑐

2(1+𝑣)
. 𝑙𝑠     (𝑁/𝑚𝑚)                                                                                           (2) 

 

where v is Poisson’s ratio for concrete which is taken as 0.2, Ec is concrete elastic modulus, 𝑘𝑟𝑒𝑑 is a 

joint stiffness reduction factor and ls is the spacing between adjacent joint elements. 

Calibration studies (see Section 3.5) showed that a suitable value for the joint stiffness reduction 

factor 𝑘𝑟𝑒𝑑 in Equation 2 is 0.1 as used in the shell element for reduction of in-plane shear stiffness 

after cracking. Taking 𝑘𝑟𝑒𝑑 = 0.1, which was used in all the presented analyses, makes the joint 

elements sufficiently stiff to prevent unrealistic slab vertical separation before global punching failure 

is triggered. Increasing 𝑘𝑟𝑒𝑑 above 0.1 can overestimate the proportion of unbalanced moment 

resisted by eccentric shear thereby causing premature punching failure as shown in Section 3.5.  Each 

joint behaves linearly until its load rotation response first intersects the CSCT failure criterion. 

Subsequently, the joint response is described by Stage II. 

 

 Stage II (softening branch – redistribution phase) 

After initial failure, the joint shear force equals the joint shear resistance calculated with the CSCT 

using the monitored slab rotation. This results in shear force being redistributed from failing joint 

elements to joint elements yet to fail. In Stage II, the individual joint shear resistance at load step i is 

calculated according to the CSCT failure criterion. Thus, the post-peak joint relative vertical 

displacement depends on the slab rotation at the monitoring point and is independent of the column 

penetration (joint vertical separation). Consequently, the column penetration is determined internally 

within ADAPTIC as a function of the joint forces.    

 

 Stage III (post-punching branch – global failure phase) 

Subsequent to failure of all joints, the vertical joint separation increases significantly since it is no 

longer restrained by joints yet to fail. In this study, Stage III was triggered by a relative joint 

deformation of 1 mm in the global-z direction. The choice of 1 mm is somewhat arbitrary but has no 

influence on the Stage III residual post-peak punching capacity of isolated slab column specimens. 

The choice of triggering displacement may play a more important role in the modelling of complete 

floor systems where delaying failure at one connection directly affects the behaviour of adjacent slab-

column connections. However, this is the subject of ongoing research, outside the scope of this paper, 

in which a rational basis is being developed for the selection of the displacement at which Stage III is 

triggered. The Stage III joint resistance reduces linearly with slope 𝑘𝑑𝑒𝑔 (Stage III-a) until the post-
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peak resistance is reached after which the resistance remains constant. The choice of 𝑘𝑑𝑒𝑔 is discussed 

in Section 3.3.4. The post-peak resistance (Vpp) is predetermined using the mechanical model of 

Fernandez Ruiz et al. [21] which accounts for the contributions of the top and bottom (integrity) 

reinforcement crossing the punching cone while limiting the maximum strength to the concrete pull-

out strength. 

 

 
 

Figure 2. (a) Illustration of the proposed methodology; (b) Joint constitutive relationship 

for out-of-plane DOF. 

 

The flowchart in Figure 3 illustrates the solution procedure used to determine joint shear resistance 

and connection punching failure in ADAPTIC. 

 

(a) 

(b) 
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Figure 3. Algorithm of the joint model implemented in ADAPTIC. 

 

2.4 3-D solid modelling with ATENA  

For comparison with the proposed shell model, 3-D modelling was also carried out with the finite 

element code ATENA [27]. In ATENA, a fully rotating smeared crack approach was used in 

conjunction with concrete material model CC3DNonLinCementitious2 which combines constitutive 

models for tensile (fracture) and compressive (plastic) behaviour. The Rankine tensile failure criterion 

was used with exponential softening. Plasticity for concrete in compression is controlled by the 

Menetrey-Willam failure surface [28]. The hardening part of the compressive response is expressed in 

terms of strain, while the softening part is expressed in terms of displacement to introduce mesh 

objectivity into the finite element solution. The shape of the compressive softening response is based 

on the work of Van Mier [29]. After concrete cracks, the compressive strength in the direction parallel 

to the cracks is reduced similarly to the MCFT [5]. However, in ATENA, this relationship is 
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described by Gauss’s function which allows the user to flexibly adjust the effect. Linear order (8-

noded) brick elements were used to model the slabs. Calibration studies showed that the out-of-plane 

shear behaviour of the slabs could be captured accurately using 10 brick elements through the slab 

thickness. Perfect bond was assumed between reinforcement and concrete. Table 1 summarises the 

material parameters and loading procedure used in the all the analyses. Parameters A1 to A3 are 

default values calculated internally within ATENA in terms of the concrete compressive strength. No 

attempts were made to improve the results of individual analyses.   

Table 1. Summary of material parameters and loading procedure for NLFEA in ATENA. 

No. Parameter Value/Reference 

 Concrete constitutive model  

A1 Concrete elastic modulus fib Model Code 1990 recommendation [30] 

A2 Fracture energy fib Model Code 2010 [31] 

A3 Concrete tensile strength fib Model Code 2010 [31] 

A4 Smeared crack model Fully-rotating crack 

A5  Critical compressive displacement 0.5 mm 

A6 Limit of compressive strength reduction due to cracking 

(MCFT)  

0.8fc’ 

A7 Eccentricity (defining the shape of the failure surface) 0.52 

A8 Volume dilatation plastic factor 0 

 Reinforcement bar model  

B1 Stress-strain relationship Bilinear 

B2 Bond-slip model Perfect bond 

 Loading procedure and convergence criteria  

C1 Loading procedure Static (force-controlled) 

C2 Iteration method  Arc-length method 

C5 Convergence criteria for displacement, residual, and 

absolute residual error 

1% 

C6 Convergence criteria for energy error 0.1% 

 Mesh properties  

D1 Number of finite elements through the slab thickness 10 

D2 Mesh element for concrete slab 8-noded hexahedral (linear) 

D3 Mesh element for loading apparatus 4-noded tetrahedral (linear) 

D4 Mesh element for reinforcement bar 2-noded truss element (embedded) 

 

3 Verification of joint model 

3.1 Calibration of material parameters and mesh discretisation for shell model 

The material input parameters for the shell model and mesh discretisation were derived in an initial 

study in which joint elements were omitted. The study developed a modelling procedure capable of 

capturing the load-deformation response accurately from first load to flexural failure as required for 

accurate implementation of the CSCT. The following internal slab-column tests were modelled in the 

initial calibration without joint elements: 

1) 3 axisymmetric tests: two from Sagaseta et al. [13] and one from Guandalini et al. [32]; 

2) 2 non-axisymmetric tests from [13]; 

3) 4 slabs loaded with constant eccentricity and increasing shear force from Hawkins et al. [33]; 
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4) 5 slabs loaded with constant shear force and increasing eccentricity from Drakatos et al. [34]. 

Taking advantage of symmetry, one quarter of the slab was modelled in cases 1) and 2) and half of the 

slab in cases 3) and 4). Quadrilateral elements with linear order (4 nodes) were used for all models as 

shown in Figure 4(a). Each shell element was discretised into 10 layers through the slab thickness 

with each layer containing 2 × 2 Gauss points. The mesh discretisation varied between the specimens, 

but was sufficiently fine in all cases (around 50-100 mm mesh size) in order to allow for the 

subsequent insertion of a minimum of three joint elements along each half side of the control 

perimeter as indicated in Figure 4(b) which also shows the nodes where slab rotations were 

monitored. Point loads were applied to the node closest to the centre of load application in the test. 

Static analysis was used to simulate the actual test protocol. Initially, force-control was used with 

Newton-Raphson method but at later loading stages this was changed to displacement-control with 

Arc-length method in order to capture the post-peak response. The preliminary studies showed that 

the load-rotation response of the considered slabs is well captured using the ADAPTIC material input 

properties summarised in Table 2. Default compressive concrete properties for con11 (A4, A6, A8 

and A9 in Table 1) are taken from Elghazouli and Izzuddin [35]. Property A5 was taken as 0.4 

compared with 0.2 in [35] but parametric studies show the results to be insensitive to this change. The 

shear retention factor s was taken as 0.1 which is in the commonly suggested range [36] but the 

results are insensitive to this choice. For consistency with the 3-D nonlinear finite element modelling 

with ATENA [27] (see Section 2.4 and Table 1), the concrete elastic modulus (Ec) was calculated in 

accordance with fib Model Code 1990 [30] while the concrete tensile strength (ft) was calculated in 

accordance with fib Model Code 2010 [31]. As suggested by Vollum and Tay [37], the concrete 

tensile strength was reduced to 0.5ft in ADAPTIC with the softening slope at chosen to reduce the 

tensile stress linearly to 0 at a strain of ft0 = 0.001. This combination of parameters was chosen [37] 

to give a best fit to deflections calculated with EC2 [2]. It results in good estimates of measured 

deformations as shown in Figure 5 for slab PT22 from Sagaseta et al. [13] as well throughout the 

paper in the presented load-rotation plots. Figure 5 illustrates the sensitivity of the calculated 

deflection to a) the adopted concrete tensile strength for ft0 = 0.001 and b) varying ft0 with adopted 

tensile strength of 0.5ft. Linearly reducing the tensile stress resisted by cracked concrete to zero at a 

strain of ft0 = 0.001 avoids increasing flexural resistance, due to residual tensile stress at cracks as 

indicated in Figure 5(b). The same modelling parameters were used in the verification of the FE 

model with joint elements. 
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Figure 4. Plan view of mesh discretisation and boundary conditions for typical slab 

modelled in ADAPTIC: (a) pure shell element model; (b) proposed model 

combining shell and joint elements. 

 

Table 2. Calibrated material parameters for shell element from preliminary study. 

 

No. Parameter Value/Reference 

 Concrete constitutive model  

A1 Smeared crack model Fixed crack 

A2 Poisson’s ratio 0.2 

A3  Tensile softening slope (at) ft / 0.001 

A4 Normalised initial compressive strength (sc) 0.4 

A5 Normalised residual compressive strength (rc) 0.4 

A6 Factor for biaxial compressive interaction (bc) 0.6 

A7 Elastic shear retention factor (βs) 0.1 

A8 Factor scaling direct tensile stresses for shear 

interaction (ϕs) 

0.4 

A9 Normalised shear softening relative to direct tensile 

softening (γs) 

0.0 

 Reinforcement bar model  

B1 Stress-strain relationship Bilinear 

B2 Ratio of post-yield / elastic stiffness 0.00001 (elasto-plastic) 

B3 Bond-slip model Perfect bond 

 

(a) (b) 
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Figure 5. Influence on deflection of slab PT22 [13] of: (a) concrete tensile strength with 

limiting strain of 0.001; (b) influence of limiting strain for concrete tensile 

strength of 0.5ft. 

 

3.2 Assessment of joint model using test data 

The proposed modelling procedure was verified by modelling isolated punching shear tests from the 

literature with the following loading and boundary conditions: 

1) Axisymmetric 

a) Influence of flexural reinforcement ratio: 5 slabs 

b) Influence of size effect: 5 slabs 

c) Influence of in-plane compressive forces: 6 slabs 

d) Post-punching behaviour: 4 slabs 

2) Non -axisymmetric 

a) Non-symmetric reinforcement or loading configuration: 5 slabs 

b) Elongated column: 6 slabs 

3) Eccentrically loaded 

a) Constant eccentricity; increasing shear force: 11 slabs 

b) Increasing eccentricity; constant shear force: 5 slabs 

 

(a

) 

(b

) 



16 
 

Each series of tests is discussed separately in Sections 3.3 to 3.5 which include representative 

measured and predicted load-deformation plots. Detailed results for all the analysed slabs are 

presented in Table 3 which is discussed in Section 3.6. 

3.3 Category 1: Axisymmetric 

3.3.1 1a) Influence of flexural reinforcement ratio 

The following five internal slab-column specimens, having three different reinforcement ratios, were 

modelled: 

a) PG-5 from Guandalini et al. [32] with 0.33% flexural reinforcement ratio (ρtop);  

b) PT22 from Sagaseta et al. [13] and PG19 from Clement et al. [38] both with reinforcement ratio 

around 0.80%;  

c) PT31 from [13] and PG20 from [38] both with reinforcement ratio around 1.50%  

All five slabs had similar geometry and test setup. The slabs, which measured 3000 mm × 3000 mm × 

250 mm, were centrally supported on a 260 mm square steel plate and loaded concentrically at eight 

points positioned at a radius of 1500 mm from the slab centre. Figure 6 shows load-rotation responses 

for the selected slabs obtained with the proposed methodology, ATENA and experimentally. In 

addition, the mean CSCT failure criterion [9] is also shown for comparison. The CSCT failure load is 

given by the intersection of the load rotation and resistance curves. Figure 6 shows that the proposed 

approach gives conservative estimates of punching resistance which are almost identical to those 

obtained graphically from the intersection of the calculated load rotation response and the CSCT 

failure criterion. Figure 6(a) compares the measured and predicted responses of PG-5 where 

“punching failure occurred with large plastic deformations at the onset of the yield-line mechanism” 

[32]. The figure demonstrates that the proposed model is able to simulate punching failure when it 

occurs subsequent to yielding of flexural reinforcement as in lightly reinforced slabs. The shapes of 

the experimentally observed post-peak load rotation responses shown in Figures 6(b) and 6(c) are not 

considered significant. In both cases, punching failure was brittle with the post-peak response 

dependent on the adopted loading protocol. The snap back response obtained with the proposed joint 

method is a result of the adopted displacement-control with Arc-length iteration solution procedure. In 

the analysis, the post-peak rotation reduces as a result of the slab unloading while the vertical 

displacement increases due to joint separation. For these slabs, the ATENA predictions are especially 

accurate and better than the CSCT predictions. 
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Figure 6. Load-rotation response and failure point of selected slabs with flexural 

reinforcement ratio of: (a) 0.33%; (b) 0.84%; and (c) 1.48%. 

3.3.2 1b) Influence of size effect 

The capability of the joint model to simulate the so called “size effect” was verified by modelling the 

following five half, normal and double size test specimens of Guandalini et al. [32]: 

a) Half-size (1500 mm × 1500 mm × 125 mm): PG-6 and PG-7 

b) Normal-size (3000 mm × 3000 mm × 250 mm): PG-1 and PG-11 

c) Double-size (6000 mm × 6000 mm × 500 mm): PG-3 

The test setup for this series was the same as described in Section 3.3.1. Figure 7 shows, for the 

selected slabs, experimental and predicted slab edge deflections at loading points. The proposed joint 

model is seen to broadly capture the experimental load-deflection response and failure load for all 

three slab sizes. This is to be expected, since the CSCT failure criterion takes into account the so 

called “size effect” implicitly within its formulation. The presented ATENA predictions are also 

reasonable. 

(a) (b) (c) 
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Figure 7. Load versus slab edge deflecton of selected slabs with slab thickness of: (a) 125 

mm; (b) 250 mm; and (c) 500 mm. 

3.3.3 1c) Influence of in-plane compressive forces 

The ability of the joint model to simulate the influence of in-plane compressive force was investigated 

by modelling three pairs of punching specimens tested by Clement et al. [38]. Two different 

mechanisms of punching shear enhancement occur in slabs with compressive in-plane forces as 

discussed by Clement et al. [38]. The first results from the decrease of slab rotation caused by in plane 

axial force. This is directly accounted for in the ADAPTIC analysis through the axial-bending 

interaction of the shell element formulation. The second mode of shear enhancement results from the 

increased depth of the flexural compression zone due to pre-stressing. This factor can be considered 

by enhancing the resistance provided by the CSCT failure criterion. In the FE analysis, this was done 

by using the reduced rotation proposed by Clement el al. [38] (𝜓′) instead of the actual monitored 

slab rotation (𝜓) when calculating the joint shear resistance. The slabs in each pair were reinforced 

with 0.75% and 1.50% hogging reinforcement. The average in-plane compressive stress was varied as 

follows: 

a) PC9 and PC10 with edge compressive stress of around 1.25 MPa 

b) PC5 and PC6 with edge compressive stress of around 2.50 MPa 

c) PC7 and PC8 with edge compressive stress of around 5.0 MPa 

The slab geometry and test setup of these slabs were the same as described in Section 3.3.1 apart from 

the pre-stressing force which was introduced at slab edges before the gravity load was applied. For 

this test series only, the input rotation to the CSCT failure criterion was refined as follows in 

accordance with the suggestion of Clement et al. [38]: 

(a) (b) (c) 
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𝜓′ = 𝜓 + 45 (
𝜎𝑛

𝐸𝑐
) ≥ 0                                                                                                         (3) 

where σn is the applied average compressive membrane stress (- sign for compression). 

The refined rotation 𝜓′ accounts for the depth reduction of the cracked zone due to pre-

stressing which also reduces the crack width for a given rotation [38]. No modification is 

required to the load-rotation response since the shell element formulation itself accounts for 

the interaction between bending and compression actions. The load-rotation response of 

selected slabs with various edge compressive stress acquired with the proposed approach is 

plotted in Figure 8 along with the original [9] and refined [38] CSCT failure criteria. The 

joint model gives good estimates of the failure load, even though the predicted load-rotation 

response is overly stiff. The explanation for this is provided by Clement et al. [38] who write 

“For the test setup of series N, however, a second order moment appears due to the deflection 

of the slab (the external prestressing being thus applied with an eccentricity)”. Furthermore, 

according [38], “This particular effect can nevertheless be neglected in the investigated tests 

and will not be considered in the following (differences in the failure load are lower than 3% 

for test series N)”. The difference in the measured and predicted initial responses arises 

because the prestressing force was assumed to act at the slab centre in the ADAPTIC analyses 

(i.e. no eccentricity). It is unclear why the overall predicted response is stiffer than observed 

but as shown in Figure 8 the overestimate of stiffness has relatively little effect on the failure 

load given by the CSCT which occurs at the intersection of the load rotation and resistance 

curves.    

 

 

Figure 8. Load-rotation response and failure point of selected slabs subject to in-plane 

compressive stresses of: (a) 1.32 MPa; (b) 2.53 MPa; and (c) 5.00 MPa. 

 

(a) (b) (c) 
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Figure 8 also shows that the use of 𝜓′ in the CSCT failure criterion results in better predictions of the 

measured failure load than use of the actual rotation 𝜓. These analyses illustrate the capability of the 

proposed shell element formulation to simulate complex loading combinations and accommodate 

refinements to the failure criterion. 

3.3.4 1d) Post-punching behaviour 

The post-punching capability of the joint model was examined by modelling the following four 

punching specimens of Fernandez Ruiz et al. [21]: 

a) PM3 and PM4 with only top flexural reinforcement bars (no integrity reinforcement) 

b) PM9 with 4-D8 integrity reinforcement bars 

c) PM10 with 4-D10 integrity reinforcement bars 

These slabs were selected since they were part of an investigation into post-punching resistance. All 

the slabs measured 1500 × 1500 × 125 mm. The slabs were centrally loaded through a stiff steel plate 

measuring 130 × 130 mm and supported at a radius of 747 mm on eight steel plates which allowed 

sliding and rotation. Figure 9 shows that the proposed approach captures the failure load and peak 

residual load capacity with reasonable accuracy. The tangent stiffness 𝑘𝑑𝑒𝑔 in Stage III (see Figure 2) 

was selected as -500 N/mm, with joint spacing of 25 mm, to match the observed load deflection 

response after punching (see Figure 9). Further research is required to generalise the calculation of 

𝑘𝑑𝑒𝑔 but it does not affect the minimum post-peak resistance which was calculated using the model of 

Fernandez Ruiz et al. [21]. However, the choice of 𝑘𝑑𝑒𝑔 could affect the progression of failure in 

structures with multiple slab-column connections. 

A more sophisticated resistance model is needed to capture the observed variation of post-peak 

resistance with displacement. 
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Figure 9. Load versus slab central deflection of selected slabs reinforced with: (a) only top 

reinforcement (no integrity bars); (b) 4-D8 integrity bars; and (c) 4-D10 

integrity bars. 

 

 

3.4 Category 2: Non-axisymmetric 

3.4.1 2a) Non symmetric reinforcement and loading arrangement 

The ability of the proposed approach to model non-axis-symmetric slabs was investigated by 

modelling all five of the slabs tested by Sagaseta et al. [13]. The slabs were either non-symmetrically 

reinforced or subjected to one-way bending as described below: 

a) PT21 and PT32 had around 1.50% and 0.75% reinforcement ratio in x- and y- axis (ρx and ρy) 

respectively subjected to two-way loading 

b) PT23 and PT33 had around 0.75% and 0.30% reinforcement ratio in x- and y- axis respectively 

subjected to two-way loading 

c) PT34 had 0.75% symmetric reinforcement subjected to one-way loading 

The slab and central support plate dimensions were the same as described in Section 3.3.1. The test 

set up was also the same except for slab PT34 where point loads were applied only on two opposite 

edges (parallel to the x-axis) to simulate one-way loading. An objective of reproducing this test series 

was to verify the capability of the proposed methodology to capture the additional punching strength 

provided by shear redistribution around the control perimeter [13]. Figure 10 shows the comparison 

between the measured response and the predictions of the proposed methodology, 3-D solid elements, 

the CSCT and the so-called VCSCT(ψx-ψy) modification to the CSCT [13] (labelled as “modified CSCT 

(a) (b) (c) 
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method”) which takes into account shear redistribution. Rotations in Figure 10 are shown about both 

the x and y axes. 

 

 
Figure 10. Load-rotation response and failure point of selected slabs with: (a), (b) two-way 

bending with different ρx and ρy; (c) one-way bending with symmetric 

reinforcement arrangement. 

 

Figure 10 shows that the predictions of the joint model are in good agreement with those of the 

modified CSCT method of Sagaseta et al. [13]. The strength predictions of the joint model, the CSCT 

and the modified CSCT are similar for specimens PT32 and PT33 indicating that the influence of 

shear redistribution is minimal for these specimens. This is not the case for specimen PT34 in Figure 

10(c) where both the joint model and modified CSCT yield higher values of strength than the CSCT 

due to shear redistribution. The predictions of the joint model also compare favourably with those of 

the 3-D ATENA model, which implicitly considers shear redistribution. 

3.4.2 2b) Elongated column 

The influence of column aspect ratio was investigated by modelling six slabs with ratio of longer to 

shorter column side (cmax/cmin) varying between 3 and 5. Details of the column aspect ratio and loading 

arrangement are given below: 

a) AM01 and AM02 of Sagaseta et al. [39] with cmax/cmin = 3 and one-way loading applied on the slab 

edges parallel to the shorter column side  

b) AM04 from [38] with cmax/cmin = 3 and two-way loading  

c) L3c, L4c, and L5c of Olivera et al. [40] with cmax/cmin = 3, 4 and 5 respectively and two-way loading  

 

Slabs AM01, AM02 and AM04 of Sagaseta et al. [39] measured 3000 mm × 3000 mm × 250 mm and 

were centrally supported on a rectangular column measuring 780 mm × 260 mm. The loading 

arrangement was as described in Section 3.3.1. Slabs L3c, L4c, and L5c of Olivera et al. [40] 

(a) (b) (c) 
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measured 2280 mm × 1680 mm × 130 mm and were centrally supported on a rectangular column with 

shorter column side cmin equal to 120 mm in all tests. The slabs of Olivera et al. were symmetrically 

loaded through beams located close to the slab edges. 

Joint elements were initially positioned around the full control perimeter of elongated columns but 

this was found to overestimate shear resistance (see Figure 11) as found by Sagaseta et al. [39]. 

Consideration was given to reducing the length of the control perimeter as done in MC2010 (see 

Figure 12(a)) but this was deemed unrealistic for slabs spanning one-way onto very elongated 

supports. Consequently, a minimum shear resistance was attributed to the straight lengths of the 

control perimeter neglected by MC2010 (𝑉1_𝑤𝑎𝑦). In this study, the nominal one-way shear resistance 

per unit length is calculated using the following formulation of Cavagnis et al. [41] which is 

consistent with the CSCT: 

 

𝑣𝑐 =
𝑘. 𝑑. √𝑓𝑐

′

√𝜀𝑠.
𝑑

𝑑𝑑𝑔

                                                                                   (4)  

 

where k = 0.019 is an empirical coefficient [41], εs is the longitudinal reinforcement strain, and ddg is 

the crack average roughness calculated as follows: 

 

𝑑𝑑𝑔 = min (40 𝑚𝑚, 16 + 𝑑𝑔) for 𝑓𝑐
′ ≤ 60 𝑀𝑃𝑎                                                  (5𝑎) 

𝑑𝑑𝑔 = min (40 𝑚𝑚, 16 + 𝑑𝑔 ∗ (
60

𝑓𝑐
′ )

2
) for 𝑓𝑐

′ > 60 𝑀𝑃𝑎                                   (5𝑏) 

where dg refers to the maximum aggregate size. 

 

Conservatively, the nominal one-way shear resistance used in the joint model is taken as that at first 

yielding of flexural reinforcement. The resulting joint shear resistance along the straight lengths of the 

control perimeter neglected by MC2010 [31] is given by: 

 

𝑉1_𝑤𝑎𝑦 =
𝑣𝑐_𝑚𝑖𝑛. (𝑏0 − 𝑏0,3𝑑)

𝑛𝑛𝑒𝑓
                                                                                         (6) 

 

b0 is the length of a basic control perimeter with rounded corners at d/2 from the column face, 𝑣𝑐_𝑚𝑖𝑛 

is the shear resistance per unit length given by equation (4) with strain 𝜀𝑠 equal to the reinforcement 

yield strain 𝜀𝑠𝑦 and nnef  is total number of joint located within the length depicted 𝑉1_𝑤𝑎𝑦 in Figure 

12(b). 
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Figure 11. Load-rotation response and failure point of slabs supported on elongated 

columns with ratio of longer to shorter side (cmax/cmin) ranging between 3 and 5: 

(a) AM01; (b) AM02; (c) AM04 from Sagaseta et al. [39] and (d) L3c; (e) L4c; (f) 

L5c from Oliveira et al. [40]. 

 
Figure 11 compares the resulting load-rotation responses for the weak-axis of selected slabs with 

experimental data, where available, or otherwise 3-D NLFEA with ATENA. Measured failure loads 

are shown along with the predictions of Sagaseta et al. [13] obtained using the VCSCT(ψx-ψy) method 

(depicted “modified CSCT method”). The latter method accounts for the increase in shear resistance 

arising from shear redistribution along the effective control perimeter of MC2010 shown in Figure 

12(a). All three methods give excellent strength predictions as shown in Figure 11. However, the 

proposed method has the advantage of being much more computationally efficient than 3D analysis 

with ATENA. Beneficially, the proposed joint model requires no post-processing to determine the 

intersection of load-rotation and resistance-rotation curves as done in the CSCT [9] and VCSCT(ψx-ψy) 

(a) (b) (c) 

(d) (e) (f) 
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[13]. This makes the proposed method suitable for the global analysis of punching shear failure in 

slabs with multiple columns.  

 

 

Figure 12. Estimation of effective control perimeter length for slabs supported on 

rectangular column: a) MC2010; b) proposed. 

 

3.5 Category 3: Eccentric loading 

Assessment with the CSCT is complex for eccentric loading since both the slab rotation and shear 

stress distribution vary non-uniformly around the control perimeter. Recently, Drakatos et al. [42] 

have proposed an analytical method for finding the moment-rotation response and failure point of 

eccentrically loaded slabs. The procedure involves integrating shear forces, and shear resistances 

calculated in terms of slab sector rotations, around the control perimeter. Under monotonic loading 

failure is assumed to occur when the total shear force acting on the sector elements in the hogging half 

of the slab equals their resultant shear resistance. This assumption was implemented in the proposed 

joint model by installing an additional joint element at the junction between the slab and column as 

shown in Figure 13. This “central” joint is needed to limit unbalanced moment transfer to the column. 

The central joint is coupled with the punching joint located on the axis of the applied unbalanced 

moment (see Figure 13). Failure of the central joint, and hence global connection failure, is triggered 

by initial failure of the monitored joint element on the axis of applied unbalanced moment. 

 

(a) (b) 
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Figure 13. Illustration of additional central joint to trigger punching failure under 

eccentric load cases. 

3.5.1 3a) Constant eccentricity with increasing shear force 

This scenario arises under gravity loading in non-symmetric bays of flat slab buildings and can be 

simulated in the laboratory by applying vertical load at a fixed eccentricity. In total, 11 slabs tested by 

Hawkins et al. [33] were modelled. The eccentricity was either 130 mm (L) or 577 mm (H). The slabs 

were grouped into three series as described below: 

1) Series A with practical slab dimension (thickness = 153 mm): 4 slabs 

2) Series B with thinner slab dimension (thickness = 114 mm): 4 slabs 

3) Series C with higher concrete strength (around 60 MPa): 3 slabs 

All the slabs measured 2100 mm square on plan and were centrally supported by a 305 mm square 

column. Unequal vertical forces were applied at 610 mm intervals around the perimeter of the slab to 

introduce an unbalanced moment at the slab-column connection. The lower end of column was 

horizontally restrained and a jacking force was applied to the top end of the column to counter balance 

the uneven load on the slab. Only punching resistance is assessed here since the experimental relative 

slab column rotation is unknown. Figure 14 compares the measured slab strengths with the 

predictions of the proposed methodology, Drakatos et al. [42] and solid element modelling with 

ATENA. Also shown in Figure 14 is the sensitivity of the predicted failure load to the joint stiffness 

reduction factor 𝑘𝑟𝑒𝑑. Table 3 shows that the adopted value of 𝑘𝑟𝑒𝑑  = 0.1 gives good predictions of 

the measured failure load for a wide range of specimens with both fixed and varying eccentricity.   

 

Central joint 

“Ordinary” punching joint 

Column 

Unbalanced moment 

Axis of applied unbalanced moment 

Coupled joint to monitor 
the failure of hogging half 
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Figure 13. Load versus slab edge deflection response and failure point of selected slabs of 

Hawkins et al. [33] in: (a) Series A with e = 577 mm; (b) Series B with e = 130 

mm; and (c) Series C with e = 577 mm. 

 

Fig. 14 shows that the model of Drakatos et al. [42] is reasonably accurate. However, the proposed 

joint model gives better strength predictions due to its more accurate assessment of the proportion of 

unbalanced moment carried through eccentric shear. Only slab 14AH was modelled using ATENA. 

The predicted failure load obtained with the proposed approach and ATENA are similar but the 

former is closer to the experimental result. 

3.5.2 3b) Increasing eccentricity with constant shear force 

In this series, slabs were loaded with constant shear force at increasing eccentricity until punching 

failure occurred. The verification considered five monotonically loaded specimens (PD3; PD4; PD5; 

PD10; PD12) tested by Drakatos et al. [34]. Tested variables were the gravity shear ratio (GSR) and 

the top flexural reinforcement ratio (ρtop). In this assessment, GSR is defined as the ratio of applied 

gravity force to the measured punching capacity of a reference slab tested under concentric loading. 

The slabs of Drakatos et al. measured 3000 mm × 3000 mm × 250 mm and were centrally supported 

on a 390 mm square steel plate which was clamped to prevent rotation. The gravity load was applied 

first, followed by increasing unbalanced moment up to failure. Figure 15 shows the test setup, mesh 

configuration, and boundary conditions adopted in the NLFEA modelling using ATENA as well as 

ADAPTIC. The distance between the equal and opposite vertical forces applied to the steel arms 

represents the slab span between column centrelines as well as the distance between points of 

contraflexure in adjacent spans under lateral loading. 

 

(a) (b) (c) 
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Figure 15. (a) Test setup and boundary conditions; (b) 3-D solid model in ATENA; (c) 

Proposed model in ADAPTIC. 

 

Figure 16 shows experimental and predicted moment-rotation responses for selected slabs. The 

accuracy of the joint model is seen to be comparable with that obtained using the analytical model of 

Drakatos et al. [42] and ATENA. Figure 17 compares deformed shapes obtained with the joint model 

and ATENA for specimen PD4. In the propoed model, failure of the joints in the hogging half of the 

slab eventually leads to complete collapse through loss of unbalanced moment carrying capacity in 

the central joint (see Figure 13). The observed crack pattern is also shown for comparison with the 3-

D solid element results. Figure 17 shows that separation of joint elements in the the hogging half of 

the shell model (around the control perimeter) corresponds to the formation of diagonal cracks in the 

3-D solid element model. 
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Figure 16. Moment versus slab-column connection rotation and failure point of slabs with: 

(a) GSR = 0.80 and ρtop = 0.80%; (b) GSR = 0.38 and ρtop = 0.80%; and (c) GSR = 

0.72 and ρtop = 1.60%. 

 

 
Figure 17. Deformed shape and crack pattern at failure of specimen PD4 (crack pattern 

from experimental test is adapted from Drakatos et al., 2016). 

3.6 Discussion 

Table 3 shows ratios of measured to predicted punching resistance (Ptest/Pu) for all the slabs 

considered in Sections 3.3 to 3.5. Results are given for the proposed joint model, the CSCT 

implemented as described in the footnotes to the table and ATENA where available. The mean value 

of Ptest/Pu is very close to 1.0 for both methods which also have similar coefficients of variation of 

around 10%. Table 3 confirms that all three of the proposed joint model, the CSCT and ATENA 

(a) (b) (c) 
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accurately capture the failure load of isolated slab-column connections subjected to a wide range of 

loading and boundary conditions.  

 

Table 3. Summary of predictions of the proposed methodology, ATENA and CSCT 

(original or refined) method 

 

No 
Category-

series 
Series identity Slab Source 

Measured / Predicted Punching Resistance 

Refined CSCT 

method 

Proposed 

methodology 
ATENA 

1 

1a 

Flexural 

reinforcement 

ratio 

PG-5 
Guandalini et 

al. [32] 
1.209 1.138 0.953 

2 PT22 Sagaseta et al. 

[13] 

1.250 1.059 0.934 

3 PT31 1.250 1.112 0.990 

4 PG19 Clement et al. 

[38] 

1.170 0.988 - 

5 PG20 1.050 1.002 - 

6 

1b Size effect 

PG-6 

Guandalini et 

al. [32] 

1.030 0.943 - 

7 PG-7 1.223 1.089 0.910 

8 PG-1 1.216 1.113 - 

9 PG-11 1.119 0.926 1.008 

10 PG-3 1.245 1.027 - 

11 

1c 

In-plane 

compressive 

forces 

PC5 

Clement et al. 

[38] 

1.010 1.243 - 

12 PC6 1.060 1.040 - 

13 PC7 1.180 1.199 - 

14 PC8 1.060 1.086 - 

15 PC9 1.110 1.184 - 

16 PC10 1.060 1.124 - 

17 

1d Post-punching 

PM3 

Fernandez 

Ruiz et al. 

[21] 

1.060 1.060 - 

18 PM4 1.029 1.029 - 

19 PM9 0.909 0.909 - 

20 PM10 0.932 0.932 - 

21 

2a 

Non-

symmetric 

reinforcement 

or loading 

PT21 

Sagaseta et al. 

[13] 

0.960 0.924 - 

22 PT23 0.970 0.889 - 

23 PT32 1.200 1.168 1.152 

24 PT33 0.932 0.952 0.957 

25 PT34 1.000 0.944 - 

26 

2b 
Elongated 

column 

AM01 
Sagaseta et al. 

[13] 

0.960 0.935 - 

27 AM02 0.960 0.947 - 

28 AM04 1.090 0.964 - 

29 L3c 
Oliveira et al. 

[40] 

0.880 0.935 0.875 

30 L4c 0.920 0.913 0.934 

31 L5c 0.930 0.923 0.957 

32 

3a 

Monotonic 

constant 

eccentricity 

9.6AH 

Hawkins et 

al. [33] 

0.969 0.995 - 

33 14AH 0.908 0.963 0.830 

34 9.6AL 0.911 0.883 - 

35 14AL 0.998 0.991 - 
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36 9.5BH 0.918 0.975 - 

37 
14.2B

H 
0.912 0.959 - 

38 9.5BL 0.985 0.889 - 

39 
14.2B

L 
1.152 0.966 - 

40 9.6CH 0.864 0.988 - 

41 14CH 0.918 0.978 - 

42 14CL 0.965 0.962 - 

43 

3b 

Monotonic 

increasing 

eccentricity 

PD4 

Drakatos et 

al. [34] 

1.026 0.939 0.985 

44 PD5 0.979 1.161 0.919 

45 PD3 0.938 1.070 0.975 

46 PD12 0.914 0.815 0.872 

47 PD10 0.855 0.847 1.004 

    

Mean 1.025 1.002 0.953 

    

Standard 

deviation 
0.114 0.097 0.071 

    

CoV (%) 11.07% 9.69% 7.40% 

 

Notes: 

† indicates refined CSCT method considering the reduction of cracked effective depth due to 

the presence of compressive membrane forces proposed by [38] 

* presents the measured to predicted post-punching resistance calculated based on the 

mechanical model of [21] 

§ indicates refined CSCT method considering shear redistribution of non-axis-symmetric slabs 

proposed by [13] 

• indicates refined CSCT method for the case of slabs subject to eccentric loading condition 

proposed by [42] 

 

4 Discussion of local joint response 

Besides excellent accuracy, the proposed methodology allows investigation of joint forces along the 

control perimeter. This provides enhanced understanding of load transfer between the slab and 

column which is pertinent to the development of improved codified design methods. 

4.1 Shear forces variation along the control perimeter 

The verification analyses show that the proposed methodology models shear redistribution of the type 

identified by Sagaseta et al. [13] in which failure of the first joint element leads to shear force being 

redistributed to adjacent joint elements under increasing load. Figure 18 shows joint shear forces at 

four different loads for specimen PT34, which was subject to one-way bending. Forces are shown in 

Figure 18(a) and Figure 18(b) respectively for joints positioned along control perimeter sides 

perpendicular and parallel to the bending axis. Joint positions are shown in Figure 18(c). Shear forces 

in joints oriented along the bending-axis (see Figure 18(b)) only increased slightly between 0.75Pu 
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and 0.95Pu (where Pu is the calculated failure load). Subsequently, the forces in these joints softened 

as the load was increased from 0.95Pu to failure. This softening was accompanied by an increase in 

joint shear forces along the non-bending-axis in the three joints closest to the slab centreline (with 

ordinates of 0 mm; 50 mm; and 100 mm) (see Figure 18(a)). Global connection failure occurred 

when these three joints failed almost simultaneously at the joint shear forces depicted by asterisks in 

Figure 18(a).  

 
Figure 18. Prediction of local joint forces along: (a) non-bending axis; (b) bending axis of 

specimen PT34 and (c) slab plan view showing the position of joint elements 

along the control perimeter. 

(Notes: positive sign indicates downward shear force) 
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Joint elements at 
non-bending-axis 

Joint 
elements at 

bending-axis 
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4.2 Joint properties for slabs supported on elongated-columns 

As shown in Figure 12(a), MC2010 limits the total straight length of the control perimeter on each 

side of the column to a maximum of 3d.  In the proposed joint model, the shear resistance of the 

straight lengths discounted by MC2010 are modelled using joint elements having the nominal one-

way shear resistance defined in Section 3.4.2. Figure 19 illustrates the effect of introducing one-way 

shear joints on the variation in joint shear force around the control perimeter for specimen L5c with 

cmax/cmin of 5. The joint location is shown in Figure 19(a) while Figure 19(b) shows joint shear forces 

at four different load stages. At 0.75Pu, the joint shear force distribution is almost uniform along the 

shorter side of the control perimeter with joint shear force equal to the peak resistance. Between 

0.75Pu and failure, the joint shear forces on the short side decrease by around 20% due to softening. 

The shear force distribution is much less even along the long side of the control perimeter (see Figure 

19(c)) with negative (upward) forces occurring in joints with one-way shear resistance between 0.50Pu 

and 0.75 Pu. Force is transferred to the long sides of the control perimeter as the joints soften on the 

short side. Global shear failure was triggered by failure of the joint positioned at the centre of the long 

column side. 
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Figure 19. (a) Implementation of joint element with minimum one-way shear resistance and 

variation of joint local forces at: (b) shorter and (c) longer side of the control 

perimeter of specimen L5c. 

(Notes: positive sign indicates downward shear force) 

4.3 Contribution of individual lateral load resisting mechanisms 

For slabs subject to increasing eccentricity, unbalanced moment due to lateral loading is resisted by 

flexure, eccentric shear, and torsion. In design, it is necessary to account for the increase in shear 

stress due to moment transfer. For example, in the case of square columns, ACI 318-14 [1] assumes 

that 40% of the unbalanced moment is resisted by eccentric shear. In reality, the internal force 

distribution is more complex and still the subject of research [17, 20, 26, 42]. The proposed joint 

model is a convenient tool for studying this problem. By extracting internal forces from each joint 

element, the contribution of each lateral resisting mechanism can be quantified in terms of slab-

column connection rotation as shown in Figure 20 for specimens PD4 and PD10 of Drakatos et al. 

[34]. 

 

 

Line of symmetry 

Line of symmetry Slab free edges 

Loading point 

Joint with minimum one-way 
shear resistance 

Ordinary “punching” joint 

(a) (c) 

(b) 
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Figure 20. Contribution of each resisting mechanism as a function of slab-column 

connection rotation of slab: (a) PD4 and (b) PD10 till the peak unbalanced 

moment. 

 Notes: slab-column connection rotation reported in x-axis is not scaled linearly 

 

Figure 20 shows that the proportion of unbalanced moment carried by eccentric shear is initially 

around 30 – 40% for both specimens which is comparable to the estimation of ACI 318-14 [1]. For 

both specimens, the contribution of eccentric shear to unbalanced moment reduces when failure of the 

joints on the hogging side causes shear to be redistributed to the side faces. The reduction in the 

eccentric shear contribution is offset by a simultaneous increase in the torsional (side-face) 

contribution. At punching failure, the proportion of unbalanced moment resisted by eccentric shear is 

5-10% less than initially.  

5 Conclusion 

This paper presents a novel numerical methodology for modelling punching shear failure in flat slabs 

using joint elements connected to shell elements. The procedure is implemented in the finite element 

code ADAPTIC [22]. Joint elements are distributed uniformly along a rectangular control perimeter 

located at 0.5d from the column face and connect the shell elements inside and outside of the control 

perimeter. In order to detect the occurrence of punching, the CSCT failure criterion [9] is 

implemented within the formulation of the joint element. Each joint is associated with a radial sector 

of the slab. The joint shear resistance is calculated at each load step in terms of its sector rotation 

relative to the column. This allows joint failure to be detected without the need to pre-determine joint 

shear capacity as done in previous studies [8, 11, 12]. In the proposed model, failure of the first joint 

element does not generally trigger global failure since additional load is subsequently transferred to 

other joint elements, hence simulating shear redistribution. 

In order to verify the proposed methodology, a total of 47 punching tests from the literature were 

analysed. The tests were grouped into three main test categories namely: 1) axis-symmetric; 2) non-

axis-symmetric; and 3) eccentric. Analysis shows that the proposed methodology is capable of 

(a) (b) 
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accurately capturing both the load-rotation response and the failure point. Shear redistribution, which 

increases the calculated punching capacity of slabs in categories 2) and 3), was reproduced 

appropriately. Results obtained using the joint model predictions are comparable to those obtained 

using the refined CSCT method of Sagaseta et al. [13] demonstrating that the joint model works as 

intended. The accuracy of the proposed joint model is also comparable with the presented 3-D solid 

element modelling with ATENA which is much more computationally intensive. The computational 

efficiency of the proposed methodology makes it suitable for the assessment of global building 

behaviour. Furthermore, analysis of joint shear forces also provides novel insights into shear 

redistribution and lateral load resisting mechanisms at a local perspective.   
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