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SUMMARY

The Cancer Genome Atlas (TCGA) has catalyzed
systematic characterization of diverse genomic
alterations underlying human cancers. At this historic
junction marking the completion of genomic charac-
terization of over 11,000 tumors from 33 cancer
types, we present our current understanding of the
molecular processes governing oncogenesis. We
illustrate our insights into cancer through synthesis
of the findings of the TCGA PanCancer Atlas project
on three facets of oncogenesis: (1) somatic driver
mutations, germline pathogenic variants, and their
interactions in the tumor; (2) the influence of the
tumor genome and epigenome on transcriptome
and proteome; and (3) the relationship between
tumor and the microenvironment, including implica-
tions for drugs targeting driver events and immuno-
therapies. These results will anchor future character-
ization of rare and common tumor types, primary
and relapsed tumors, and cancers across ancestry
groups and will guide the deployment of clinical
genomic sequencing.
Cell 173, 305–320
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INTRODUCTION

In the nearly half century of the ‘‘War on Cancer,’’ prevention and

treatment have progressed significantly, but many forms of the

disease remain incurable. The advent of large-scale DNA

sequencing ushered in new possibilities. Beginning with coding

regions (Sjöblom et al., 2006), sequencing has sparked a revolu-

tion in cancer research. Genomic studies have identified

numerous cancer driver genes (Kandoth et al., 2013; Lawrence

et al., 2014) and germline variants that increase disease suscep-

tibility (Lu et al., 2015). We increasingly understand themolecular

determinants of oncogenesis, including tumor suppressor inac-

tivation and pathway alteration. Significant progress has been

made in identifying driver mutations (Porta-Pardo et al., 2017),

assessing their druggability (Niu et al., 2016), disease subtyping

(Waddell et al., 2015), prognosis (Cancer Genome Atlas

Research Network et al., 2015), and residual disease detection

(Martinez-Lopez et al., 2014).

Gene and protein expression are also key aspects. Studies

have reported new fusions (Klijn et al., 2015), alternatively spliced

transcripts (Oltean and Bates, 2014), expression-based stratifi-

cation (Stricker et al., 2017), and implications of viral infection

(Cao et al., 2016). Proteomic studies have made progress on

subtyping (Lawrence et al., 2015), biomarker identification

(Sogawa et al., 2016), and drug sensitivity and resistance (Ji
, April 5, 2018 ª 2018 The Authors. Published by Elsevier Inc. 305
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et al., 2017). Advancements have also been made in immune

response (Bieging et al., 2014), infiltrate-based subtyping

(Akbani et al., 2015), associations of PD-1/PD-L1 with prognosis

(Danilova et al., 2016), interactions between immune reprogram-

ming and angiogenesis (Tian et al., 2017), and immune cytolytic

activity (Rooney et al., 2015). Each area shows enormous

promise.

The era of the first large genome sequences was called the

‘‘end of the beginning’’ of genomics. It seems fitting to call

the conclusion of The Cancer Genome Atlas (TCGA) the end of

the beginning of cancer genomics. TCGA has systematized

large-scale genomics-based cancer research, with its projects

and data on 11,000 tumors from 33 cancer types having led to

enormous advancements. The TCGA PanCancer Atlas project

has a special focus on the oncogenic processes governing

cancer development and progression, with its ten analysis

working groups (AWGs) presenting their findings. Together we

synthesized findings from consensus somatic mutation calling,

fusion detection, splicing events, aneuploidy, image analysis,

and the immune system in oncogenesis (Figure 1). Here, we

concentrate on three themes: (1) interactions between somatic

drivers and germline pathogenic variants; (2) links across

genomic substrates, i.e., methylome, transcriptome, and prote-

ome; and (3) tumor microenvironment and implications for tar-

geted and immune therapies. We begin each section with an

overview from AWG results and follow with additional analyses

addressing questions not explored in individual AWG papers.

The results of the PanCancer Atlas project will provide a founda-

tion for subsequent phases of deeper, broader, and more

sophisticated work that holds great promise for personalized

cancer care.

RESULTS

Insights into Germline and Somatic Alterations
Previous TCGA studies often concentrated on focal copy-

number alterations rather than chromosomal-level aneuploidy.

The PanCancer Atlas Aneuploidy AWG systematically quantified

aneuploidy (Taylor et al., 2018), correlated its degree with
306 Cell 173, 305–320, April 5, 2018
genomic features, such as TP53 status, mutational load, and

level of lymphocytic infiltrate, and provided experimental

evidence confirming some predictions.

Gene fusions, which can drive overexpression or create fusion

proteins, are another important class of drivers. The Fusion AWG

systematically characterized fusions (Gao et al., 2018), finding

that they are recurrent and disease defining in some neoplasms

(e.g., SS18/SSX1 or SSX2 fusion in synovial sarcoma). In others,

fusion drivers are present in small subsets of tumors (ALK or

ROS1 fusions in lung adenocarcinoma). The accompanying

mutational events and how they differ among cancers provide

functional insights (Gao et al., 2018).

Two other AWGs systematically characterized germline and

somatic variants across 33 cancer types (Table S1) (Huang

et al., 2018; Ellrott et al., 2018). They generated and analyzed

1.5 billion germline (Huang et al., 2018) and �3.6 million somatic

calls (Ellrott et al., 2018), making TCGA PanCancer Atlas the

largest resource for investigating joint variant contributions to

cancer. The germline group highlighted the two-hit hypothesis

through loss of heterozygosity (LOH) and compound heterozy-

gosity, rare copy-number events, and additional evidence

supporting variant pathogenicity. The somatic dataset anchored

a comprehensive analysis using 26 bioinformatic tools, identi-

fying 299 driver genes and over 3,400 oncogenic mutations

(Bailey et al., 2018). Similarly, the PanCancer Atlas Germline

group identified >800 pathogenic or likely pathogenic germline

variants in 99 predisposition genes affecting �8% of all cases

(Huang et al., 2018).

Properties of Oncogenic Germline and Somatic Variants
Here, we used the 299 driver and 99 predisposition genes to

study interactions of germline and somatic events in 9,389 sam-

ples (STARMethods; Table S1). Many predisposition genes play

roles in genome integrity (Figure 2A, green bars; Table S2).

Alterations in these genes represent a higher fraction of germline

variants (63%, 490/769) versus somatic drivers (14%, 8850/

75825, p value = 7e�151 Fisher’s Exact Test), highlighting the

role of genome integrity in cancer predisposition. The remaining

somatic alterations are largely from genes involved in cell cycle,
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Figure 1. Overview of the PanCancer Atlas

Oncogenic Process Group

PanCan Atlas studies use data from multiple

working groups, with relationships shown by gray

edges between associated studies. New connec-

tions described in this study are shown as

orange edges.
epigenetic modifiers, metabolism, oncogenic signaling, and

transcriptional/translational regulation. We surveyed the fre-

quency of cases showing disruptions of genome integrity in

individual cancer types. Of the eight molecular process cate-

gories examined (STAR Methods), genome integrity dominates

both germline and somatic alterations in ovarian serous cystade-

nocarcinoma (OV) due to BRCA1 or BRCA2 predisposition vari-

ants and a high fraction of TP53 mutations. Other cancers are

further skewed with respect to percent of cases carrying muta-

tions involved in genome integrity; i.e., 4% of samples in lung

squamous cell carcinoma (LUSC) have germline compared to

89% somatic (Figure 2B; Table S3).

DNA Damage Response Pathway

Most predisposition genes affecting genome integrity (64%,

23/36) belong to the Core DDR (DNA damage response) genes

(Knijnenburg et al., 2018) (Table S2). Several show high germline

variant counts, including BRCA1, BRCA2, CHEK2, ATM, BRIP1,

PALB2, and PMS2. When considering germline and somatic mu-

tations jointly, the most frequently mutated genes are BRCA1

and BRCA2, together having 854 (571 samples) somatic and

153 (152 samples) germline mutations. We grouped samples

with germline mutations, somatic, or no/low-impact mutations

in these two genes by cancer type to establish associations be-

tween age of onset and somatic mutation load. Patients with

germline BRCA1/2 mutations develop cancer at younger ages

compared to wild-type samples in OV, LUSC, and BRCA (false

discovery rate [FDR] 9.12e�6, 9.23e�3, and 1.15e�2, respec-

tively, t test). Mean age of diagnosis in patients with germline

mutations is 54.4 ± 13.0 years (standard deviation), compared

to 62.3 ± 13.4 years when the mutation is somatic across the

pan-cancer cohort (p value = 2.07e�10, 95%confidence interval

[CI] = (�10.27,�5.57); Figure 3A; Table S4). As expected, germ-

line or somatic variants associate with higher mutation load

across cancer types (Figure 3B), being observed in OV samples

with germline BRCA1/2mutations (FDR 3e�3, t test) and BLCA,

STAD somatic (FDR 5.6e�3, 9.2e�6, t test).
Germline/Somatic-Associated

Microsatellite Instability

Phenotypes

Many samples (250 out of 1,464)with non-

synonymous somatic mutations in DNA

mismatch repair (MMR) genes have high

microsatellite instability (MSI) status (MSI-

sensor score R4; Figure 3C; Table S5)

(Niu et al., 2014). Samples with germline

pathogenic variants in MMR genes (18

out of 60) also have high MSI status.

Notably, 16 of these 18 samples have

both predisposition germline variants
and somatic mutations in MMR genes (Table S2), representing a

population with potentially higher neoantigen load and response

to checkpoint-blockade therapy. Indeed, samples with MSIsen-

sor scores R4 had higher expression of immune-response

marker genes (GZMA,PRF1,GZMK, andGZMH) in the three can-

cer types with enoughMSI high samples: colon adenocarcinoma

and rectum adenocarcinoma (COADREAD), stomach adenocar-

cinoma (STAD), and uterine corpus endometrial carcinoma

(UCEC) (two-sample Kolmogorov-Smirnov p < 0.01; Figure 3D).

This highlights the influence of mutations and MMR genes and

the MSI phenotype in the immune response against tumors.

Finally, usingMoonlightwe foundseveral pathways that arediffer-

entially expressed depending on whether the mutations affecting

BRCA1 and/or BRCA2 are somatic or germline (Figures 3E, 3F,

and S1). For example, BRCA samples with somatic mutations in

BRCA1/2 downregulate genes involved in antigen processing

and leukocyte cytotoxicity,whereasBRCAsampleswith germline

BRCA1/2 mutations downregulate genes involved in mitochon-

drial respiratory chain complex and metabolic pathways. The

impact of BRCA1/2mutations may depend on both their somatic

or germline status and the tissue of origin.

Somatic-Somatic Interactions
Interactions among somatic driver genes, ranging from sequen-

tial dynamics to interactions of pathway and synthetic lethality,

hold potential for therapeutic exploitation. We used the MC3

somatic mutation (Ellrott et al., 2018) dataset and the driver

gene list (Bailey et al., 2018) to identify pairs of drivers that are

mutually exclusive or tend to co-occur (STAR Methods). We

found an extensive network of interactions (Cochran-Mantel-

Haenszel test FDR < 0.1; Figure 4A; Table S6). TP53 is the prime

hub, co-occurring with IDH1, ATRX, PPP2R1A, RB1, and

CDKN2A and mutually exclusive of PIK3CA, HRAS, CTNNB1,

ARID1A, and FGFR3. As expected, driver genes and mutations

that act via certain pathways/mechanisms show strong exclusiv-

ity, a primary example being BRAF and HRAS/NRAS/KRAS, all
Cell 173, 305–320, April 5, 2018 307
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of which affect the Ras signaling pathway. Other examples are

pairs of homologous genes, such as IDH1/IDH2 and GNAQ/

GNA11, and interacting genes, such as PIK3CA and PIK3R1.

These patterns held across virtually all 33 tumor types, indicating

discovery of a key oncogenic relationship. We also observed

exclusivity in specific tissues (Figure 4B), for example BRAF,

NRAS, and HRAS in thyroid carcinoma (THCA) and GNAQ and

GNA11 in uveal melanoma.

At a larger scale, some cancer types require cooperation

between gene networks. For example, in UCEC, there are two

mutually exclusive networks, the first consisting of TP53 and

PPP2R1A (and occasionally PTEN) and the second CTNNB1,

PTEN, and CTCF. This is consistent with previous descriptions

of UCEC subtypes, with TP53-driven endometrial tumors having

a copy-number high phenotype and PTEN-driven endometrial

tumors being copy-number low or hypermutated (either via

MSI and/or POLE). Finally, we observed cancer-specific so-

matic-somatic interactions. For instance, TP53 and KRAS are

mutually exclusive in COAD, READ, and LUAD (Table S6) but

significantly co-occur in PAAD (Table S6). These observations

highlight the importance of investigating both at the pan-cancer

level and by tissue of origin (Park and Lehner, 2015).

Insights into Interactions at -omics Levels
The tumor genome and transcriptome interact at multiple levels.

For example, 1%–2% of genome mutations have detectable

effects on splicing, with potential to alter the transcriptome and

biochemical pathways (Wang and Cooper, 2007). Locally,

cis-mutations can disrupt or activate splicing factor binding sites

or splice sites. The Splicing AWG analyzed 8,656 TCGA tumors,

finding that 1,964 mostly missense and synonymous mutations

create novel splice junctions (Table S1) (Jayasinghe et al.,

2018). They also produce neoantigens, often accompanied by

an elevated immune response. Mutations in splice-governing

genes result in large-scale abnormal splicing, providing potential

biomarkers and therapeutic targets (Dvinge et al., 2016) and

acting as proto-oncogenes or tumor suppressors (Yoshida

et al., 2011). The Spliceosome Pathway AWG surveyed

33 tumor types for somatic mutations of over 400 splicing factor

genes, identifying 119 genes with likely driver mutations (Seiler

et al., 2018). They confirmed aberrant splicing of frequently

mutated genes, suggesting that splicing de-regulation in cancer

is broader than previously reported.

Integrating profiles from individual molecular platforms can

provide insights into the molecular state of tumors and identify

samples with shared regulation (sample clusters) acrossmultiple

assays. A recent analysis (Hoadley et al., 2018) performed

clustering of individual platforms and subsequent clustering of

cluster assignments (COCA) (Hoadley et al., 2014) on clusters

derived from aneuploidy levels (10 clusters; 10,522 samples),
Figure 2. Sequence-Level Evaluation of Samples with Pathogenic Ger

(A) Circos plot for each predisposition cancer gene.Width of each slice is proportio

middle indicates total number of somatic mutations for each sample. Links des

mutations and are green if one of the genes is from the Fanconi anemia pathway

(B) Somatic and germline driver genes grouped into eight molecular process c

number of samples as the denominator. Cancers are sorted by increasing germl

For a complete list of the TCGAcancer type abbreviations, please see https://gdc.c
mRNA (25 clusters with at least 40 samples; 10,165 samples),

miRNA (microRNA) (15 clusters; 10,170 samples), DNA methyl-

ation (25; 10,814), and reverse phase protein array (RPPA)

(10; 7,858). They also performed integrative molecular subtyping

with the iCluster method (Shen et al., 2009) in a joint analysis of

aneuploidy, DNA methylation, mRNA, and miRNA levels across

9,759 tumor samples, identifying 28 iClusters. Consistent with

previous multiplatform analyses (Hoadley et al., 2014), samples

cluster primarily by tissue of origin.

Cis- and Trans- Effects of Driver Mutations and
Mutation Types
We analyzed the impact of somatic mutations in the cis-expres-

sion of driver genes. We grouped samples for each gene

according to whether they contained frameshift or nonsense

mutations (group I), missense (group II), or no mutations

(group III). This analysis shows clear upregulation of cancer driver

genes affected by missense mutations and downregulation of

those affected by nonsense or frameshift mutations (Figures 4C

and 4D; Table S7), consistent with previous findings (Hu et al.,

2017; Alvarez et al., 2016). We observed reduced expression for

tumor suppressors, such as ATRX, BRCA1, NF1, and RB1, and

elevated expression of oncogenes, like EGFR and KIT (FDR <

0.1; Figure 4E). We highlight the top 15 genes showing significant

expressiondifferences between at least twoof the three groups in

at least one cancer type (Figures 4F, 4G, and S2). In most cases,

the frameshift/nonsensegrouphadsignificantly lowermRNA than

the others, consistent with the hypothesis that they induce

nonsense-mediated decay (NMD) (Lindeboom et al., 2016). The

exception isGATA3 in breast cancer, where samples with frame-

shift or nonsense mutations have higher mRNA levels (FDR =

4.54e�18Welch’s test; Figure 4G), likely becauseGATA3 frame-

shift mutations can have gain-of-function, oncogenic effect (Mair

et al., 2016). In cases suchasCASP8, sampleswithmissensemu-

tations also overexpress the driver gene (FDR < 0.1; Figure 4G).

We used Moonlight to identify gene programs that are differ-

entially expressed in each of the two mutated conditions when

compared against non-mutated samples (Figure 4H; Method

Details). Remarkably, several genes seem to affect different

transcriptional programs, depending on the type of mutation

affecting them. Following on the GATA3 mutations in BRCA,

samples with frameshift/nonsense mutations associate with

downregulated genes related to microtubule dynamics or orga-

nization of cytoskeleton, an effect not seen in those with

missense mutations. Similar effects also happen with CDH1 in

BRCA: samples with nonsense and frameshift mutations asso-

ciate with upregulated genes involved in leukocyte migration

but not in samples with missense CDH1 mutations. The tissue

of origin seems to also influence the transcriptional effects. For

example, lower grade glioma (LGG) samples with any kind of
mline Mutations

nal to germline-variant frequency. The outermost tier shows age at onset, while

ignate one sample that has multiple pathogenic or likely pathogenic germline

.

ategories. On the x axis, germline and somatic proportions are plotted using

ine contribution.

ancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations.
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TP53 mutations associate with downregulated expression of

leukocytemigration genes, but the expression of these genes re-

mains unaltered in LIHC or BRCA samples with TP53 mutations

(Figure 4H). Overall, associations of driver mutations and the

transcriptome of the cancer cell seem to be affected by both

the original cell type and the type of driver gene mutation.

Impacts of Genome Mutations on Transcriptomic
Activities
Driver mutations often affect the expression of interacting genes

and genes in the same pathway. We investigated this phenome-

non by integrating protein interaction, transcriptomic, and

mutation information using OncoIMPACT (Figure 5A). To reveal

key deregulated oncogenic processes occurring in each cancer

type, we calculated the fraction of patients for which an onco-

genic process was associated with a driver mutation (Figure 5B).

With few exceptions (e.g., KIRC), general tumorigenic pro-

cesses, such as cell proliferation, death, signaling, and motility,

are frequently deregulated across cancer types. These pro-

cesses are mostly deregulated by TP53, PTEN, KRAS, and

PIK3CA. Processes were more frequently deregulated in some

cancers (e.g., head and neck squamous cell carcinoma

[HNSC], skin cutaneous melanoma [SKCM], and breast invasive

carcinoma [BRCA]). We also observed associations between

oncogenic process and cancer types, e.g., Calcium signaling

pathway deregulation and uveal melanoma (UVM), with frequent

activating mutations in GNA11 and GNAQ that are upstream

members of the Calcium signaling pathway (Moore et al., 2016)

and frequent deregulation of the Notch signaling pathway in

bladder urothelial carcinoma (BLCA) due to inactivating driver

mutations in this pathway (Rampias et al., 2014).

We also observed known pairs of significantly mutually exclu-

sive mutated genes such as TP53 and PIK3CA (Kandoth et al.,

2013) and KRAS and BRAF (Loes et al., 2016) in cell death and

MAPK signaling processes (Figure 5C; permutation test,

p value < 10�5), suggesting that a single driver suffices to perturb

these processes and that mutations in multiple drivers are

functionally interchangeable in certain contexts. In heteroge-

neous tumors, this functional redundancy might serve as an

important source of drug resistance and metastatic clones.

Interactions between Different Molecular Layers
Having established the connections between driver events and

the transcriptome, we investigated the relationship between
Figure 3. Evaluation of BRCA1/BRCA2, DDR, and MSI Genes Using So

(A) Samples with BRCA1 or BRCA2mutations are grouped by cancer type and st

per sample (left) and age at onset (right). Outlier samples are plotted as points.

(B) Box-plots for samples having mutations in DNA damage response genes gro

(C) Violin plots of MSIsensor scores with samples grouped based on mutation sta

in red.

(D) Gene-expression differences for cytokine activators for three cancer types. Bl

stars highlight significant differences between groups.

(E) Moonlight workflow shows how samples were stratified based on germline

integrated across pathways with genes that are labeled as differentially express

patterns.

(F) Normalized scores from gene set enrichment analysis for germline and som

cancer types. Only the first 50 characters of each pathway are shown (additiona

(A, B, and D) Boxplots indicate median MSI score with 25th and 75th percentile h
driver genes and the methylomic, transcriptomic, and proteomic

profiles of tumors (Figure 6A). We used the clustering data from

the Cell of origin AWG (Hoadley et al., 2018) to search for cluster

combinations enriched in driver events (Figure 6B), identifying 40

genes associated with multiplatform clusters: TP53, KRAS, and

PIK3CA mutations were enriched in ten or more multiplatform

clusters, and ARID1A, BRAF, CTNNB1, KMT2D, PTEN, and

APC mutations were significantly enriched in four or more clus-

ters (Tables S8 and S9).

Interestingly, we found similar multiplatform clusters that differ

in their associated genes. One notable case is comprised of LGG

and glioblastomamultiforme (GBM) samples, which are predom-

inantly covered by mRNA cluster 1 and RPPA cluster C1 but

which differ markedly in their methylome profiles. IDH1-driven

LGGs are in methylation cluster 1, where 330 of the 351 samples

carried IDH1mutations, while EGFR-driven LGG and GBM are in

methylation cluster 16 (Figure 6C). Another example is that APC-

and KRAS-driven COAD/READ tumors are strongly enriched in

mRNA cluster 15 and RPPA cluster C8 but separate in methyl-

ation clusters 10 and 11. Similar circumstances are observed

for PIK3CA-driven BRCA tumors, which are enriched in mRNA

and proteome clusters 23 and C6, respectively, but which can

belong to methylation clusters 24 or 6 (Table S9).

Notably, we also found instances where specific driver genes

differentiate among cluster combinations. For example, UCEC

samples belong mostly to multiplatform clusters 4/18/C3 and

23/18/C3, which again differ only in methylation profile

(Table S9). The first multi-cluster is enriched in ARID1A, PTEN,

CTNNB1, and PIK3CAmutations and has fewer TP53mutations.

The second cluster is conversely dominated by TP53 and

PPP2R1A mutations, indicating that differences in driver preva-

lences can be reflected in the methylation profile (Table S9).

While multiplatform clusters are largely driven by tissue of origin

(Figure 6D), theymay also be affected by themutations that drive

tumor growth.

Insights into Interactions in the Tumor
Microenvironment
A third frontier involves interactions between cancer cells and

the tumor microenvironment (TME), comprising stromal cells

and the immune infiltrate. Results from the Immune Response

Working Group (IRWG) (Thorsson et al., 2018) indicate that the

TME can be characterized as belonging to one of six immune

subtypes, namely wound healing (C1), IFN-g dominant (C2),
matic and Germline Variation

ratified by somatic, germline, or wild-type status. Box-plots highlight mutations

uped by cancer.

tus of MSI genes. Samples with MLH1 promoter methylations status are shown

ack dots are samples with predisposition germline mutation in MSI genes. Red

versus wild-type (condition 1) and somatic versus wild-type (condition 2) and

ed. These were then compared using dynamic recognition analysis to identify

atic mutations in BRCA1 and/or BRCA2 only, as conditions of OV and BRCA

l information in Figure S1).

inges and whiskers that extend to 1.5 3 IQR.

Cell 173, 305–320, April 5, 2018 311



A B

C DD E

F G

H

(legend on next page)

312 Cell 173, 305–320, April 5, 2018



inflammatory (C3), lymphocyte depleted (C4), immunologically

quiet (C5), and TGF-b dominant (C6) (Tables S8 and S10).

While immune signatures can infer levels of lymphocytic

infiltrates in tumors, they provide no information on spatial distri-

bution of the lymphocytes. The Imagine Analysis Working Group

exploited high-resolution imaging of hematoxylin and eosin

(H&E) to estimate tumor-associated lymphocyte densities and

infiltration patterns across all samples from 13 of the 33 TCGA tu-

mor types (Saltz et al., 2018). These data revealed relationships

between degree of lymphocytic infiltrates measured by gene

expression and feature extraction from imaging data using ma-

chine learning. Further correlations were made with cancer mo-

lecular subtypes, oncogenic events, and outcome, highlighting

the power of the underutilized image resources of the TCGA.

Impact of Driver Mutations on the Immune
Communication Network
Here, we further study the relationship between specific driver

events, composition of the immune infiltrate, and the signaling

network among different cell types within distinct immune

subtypes. The networks identified for each immune subtype

(STARMethods)might be relevant to identifying synergistic inter-

ventions between targeted drugs and immunotherapies.

BRAF-driven tumors have a higher proportion of CD8 T cells

than NRAS-driven tumors (ANOVA p < 2e�5 in both cases)

(Figure 7A; Table S11) in the C3 immune subtype. Elevated

CD8Tcell proportion, considered an important effector of check-

point inhibition (Ji et al., 2012), correlates with better outcomes.

We also identified a signaling loop involving CD8 T cells, CD274

(PD-L1), andPCDC1 (PD-1) (MethodDetails) in C3, where target-

ingBRAF and PD-L1might have synergistic effects. The analysis

also reveals an interesting network within the C5 subtype. Sam-

ples having mutations in ATRX or TP53 have higher presence of

macrophages and lower of CD8 (ANOVAp<2e�8 in both cases).

Interestingly, these macrophages secrete HMGB1, which pro-

motes proliferation and metastasis in glioma (Bassi et al., 2008),

a prominent cancer type in C5.

Driver mutations in KRAS/NRAS/HRAS and BRAF V600 are

among the most frequently predicted neoantigens in cancer

(Thorsson et al., 2018) and could thus, as presented peptides,

be directly steering immune response. Additionally, driver-gene

mutations may impact the transcriptional regulation that guides
Figure 4. Interactions between Somatic Driver Events

(A) Mutual exclusivity and co-occurrence of driver events. Nodes sized according

mutually exclusive (OR < 1) and blue for co-occurrence (OR > 1).

(B) Tissue-specific interactions of driver events. Waterfall plots showwhether eac

(gray). Each plot is flanked with a color corresponding to genes in (A).

(C) Landscape of cis-expression changes shown for three mutation types, with F

(D) Distribution of t values for gene-expression analyses, with FDR < 0.1 conside

(E) Cis-effects of mutations in expression of driver genes. Gray violin plot depicts

Red boxes show expression of samples with any mutations in that gene; blue

represents a sample and is red if there is a copy-number alteration of the gene.

(F) Same information as in (E), but separating samples according to frameshift an

the top-15 t values when comparing between the missense and no-mutation gro

(G) Same as in (F), but genes selected by top-15 t values between nonsense/fra

(H)Moonlight scores for groups ofmutations in driver genes in specific cancer type

colored red or blue if Moonlight Z-score is positive (overexpression of the biolog

(E–G) Boxplots indicate median MSI score with 25th and 75th percentile hinges a
immune response. For example, IDH1-driven gliomas associate

with lower levels of STAT1, which can decrease levels of immune

infiltrate by ultimately decreasing the secretion of CXCL10, a crit-

ical chemokine for T cell trafficking in brain (Kohanbash et al.,

2017). Also, models of transcriptional networks (Thorsson et al.,

2018) implicate Ras family members and other driver genes in

transcriptional control of genes affecting TME composition.

Mutation Burden and Immune Fraction
Another way in which somatic mutations interact with the im-

mune system is through neoantigens presented on class I or II

major histocompatibility complex (MHC) proteins, which can

activate immune cells. This has been studied by various

PanCancer Atlas groups, describing splice-creating mutations

and fusion events creating immunogenic neoantigens (Jaya-

singhe et al., 2018; Gao et al., 2018) and neoantigens based

on the derived HLA type and their predicted binding affinity

(Thorsson et al., 2018).

Using neoantigen predictions and immune infiltrate composi-

tion,we investigatedassociationsbetweennumbersofpresented

neoantigens and relative proportion of immune cells comprising

immune subtypes (Table S12). These associations differ by

immune subtype (Figure 7B). C2 has the greatest overall immune

activity. Here, the CD8 T cell fraction increases with neoantigen

load (FDR < 1e�15; Figure 7C), suggesting that CD8 T cells may

respond to neoantigen burden. CD4 T cell fraction and neutrophil

fraction increase in relation to neoantigen burden in C3, perhaps

reflective of the overall balanced immune response and good

prognosis of C3 tumors (FDR < 1e�25; Figure 7C). Macrophages

have greater infiltration with neoantigen burden in C5, which con-

tains many gliomas and for which TAMs (tumor-associated mac-

rophages) support tumor growth (FDR < 5e�3; Figure 7C).

DISCUSSION

This study summarizes and expands the findings of the TCGA

PanCancer Atlas project investigating oncogenic processes.

The germline genome has far-ranging, pathway-dependent

influences on the somatic landscape, often promoting somatic

mutations. Interactions between driver genes and the transcrip-

tome are context dependent, as is the impact of driver mutations

in both cis- and trans-expression. Some oncogenic processes
to degree and edges colored according to odds ratio of pairs of drivers: red for

h patient has clonal (dark purple), sub-clonal (light purple), or no driver mutation

DR < 0.1 considered significant.

red significant.

expression in all samples of driver gene in the tissue marked below each plot.

boxes show expression for samples with no mutation in that gene. Each dot

d nonsense (green) versus missense mutations (orange). Selected genes show

ups (FDR < 0.1).

meshift and no-mutations groups.

s (y axis) and genes annotated with several gene ontology terms (x axis). Boxes

ical function) or negative (downregulation), respectively. See also Figure S2.

nd whiskers that extend to 1.5 3 IQR.
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Figure 5. Relationships between Oncogenic Processes and Driver Genes

(A) Identifying processes deregulated by driver-gene modules using OncoIMPACT. Pathways associated with each module were identified using enrichment

analysis (Method Details).

(B) Relationships among oncogenic processes, cancer types, and driver genes. Left: Heatmap shows fraction of samples with deregulated processes associated

with sample-specific driver mutations. The three most frequently mutated driver genes are shown with each cancer type. Right: Graph of associations between

processes and top three genes predicted to be responsible for their deregulation. Gray cells represent non-significant fraction of patients (binomial test, p value

Bonferroni corrected > 0.05). Edge widths represent relative fraction of samples with deregulated processes associated to each driver gene.

(C) Oncoprint of mutational profile of the fivemostmutated genes associated with deregulation of three biological processes. Left: Different samples harbor driver

genes in a mutually exclusive manner, suggesting many samples have only one process driver gene. Right: Number of samples having driver gene mutated.

p values are computed using R-exclusivity test (Method Details).
that tend to be deregulated in few cancer types, such as cell

adhesion, are more related to specific genes rather than to

prominent drivers. Findings also suggest that networks involving

driver mutations, cell types, and cytokines might be used as

blueprints for combining two or more immunomodulatory thera-

pies (Tian et al., 2017) in selected tumors.

In summary, this work illuminates the complex milieu of

oncogenic processes by integrating an enormous corpus of

data obtained over the course of TCGA into organized themes.

In effect, biomedical science is now graduating from studying

the tumor in isolation to assessing it within its larger environ-

mental context. The findings described here suggest drastic
314 Cell 173, 305–320, April 5, 2018
changes in clinical practice and drug development. For example,

molecular treatments will increasingly be developed with ‘‘multi-

omics.’’ This strategy is being used to create small molecule

inhibitors for druggable mutations (Drilon et al., 2017), mutation

signatures (Davies et al., 2017), gene expression (Li et al.,

2017), immunotherapeutic agents (Le et al., 2017), and vaccines

(Ott et al., 2017). Bioinformatic systems will help efficiently

design optimized treatment plans lurking within large

combinatorial spaces with respect to dosage, efficacy, side ef-

fects, etc.

As we look to the future, there are many questions. For

example, we are only beginning to realize that oncogenic
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Figure 6. Complexities of Multidimensional Molecular Evaluation

(A) Clustering analysis was performed using three substrates: methylation, mRNA, and RPPA. Samples divided into 24 methylation clusters, 41 mRNA, and

10 RPPA clusters. Links show each tumor was given a unique cluster combination identifier.

(B) Gene-enrichment analysis for each cluster assignment is displayed as a volcano plot. Dashed square is enlarged in an inset. Overlapping dots show number

of samples in the cluster assignment (dark blue) and the number of samples with a given mutation superimposed (light blue), jointly indicating the mutated

proportion in that cluster.

(C) The 21 most gene-enriched cluster identities, with breakdown by tissue-type proportion and most frequently mutated gene from that cluster identity.

Sample size for each identity appears in bar plot.

(D) The 58 cluster identities havingR20 samples. Pie chart illustrates fraction of uniform clusters, where 90%of sampleswithin a cluster are froma single cancer type.
mutations, such as BRAF V600E, frequently occur in healthy

people (Martincorena et al., 2015). Could some somatic muta-

tions be tolerated in normal development? If so, how does

this impact our understanding of oncogenic mutations? TCGA

data come mostly from primary tumors, yet patients usually

succumb to metastases; can we find the alterations that drive

this process? The next leaps to be taken by the Cancer

Moonshot Initiative and Human Tumor Atlas Network (HTAN)

will involve pre-cancer, primary, and metastatic tumors

associated with treatment sensitivity or resistance and will

advance the multidimensional mapping of human cancers

over time for informing future cancer research and clinical

decision-making.
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Figure 7. Statistical Associations and Predicted Interactions within the Tumor Microenvironment

(A) Networks of driver-gene events in distinct cancer-immune subtypes C1–C6 shown in each subpanel. Lines between events and immune cells are green if

correlation between immune cell in samples with the driver event is positive and red if negative. Lines between cell types, ligands, and receptors denote

interaction pairs known to occur in other contexts and for which there are concordant values across multiple tumor samples in the subtype.

(B) Heatmap shows Spearman correlation between number of predicted neoantigens in each sample of each immune subtype and proportion of different types of

immune cells. Colored outline boxes are detailed in the next panel.

(C) In subtypes C1 and C2, proportion of CD8 T cells increases with burden of predicted neoantigens (left two plots). Correlation between number of neoantigens

and Neutrophils in samples of C3 subtype (top right) and between number of neoantigens and fraction of macrophages in the TME in samples with C5 immune

response (bottom right).
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(lding@wustl.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

For this research we used data collected by The Cancer Genome Atlas. Under the direction of the National Cancer Institute (NCI) and

the National Human Genome Research Institute (NHGRI), TCGA collected both tumor and non-tumor biospecimens frommore than

10,000 human samples with informed consent under that authorization of local Institutional Review Boards (https://cancergenome.

nih.gov/abouttcga/policies/informedconsent). These steps ensured that patients were exposed to no unnecessary risks and that the

resulting research is legal, ethical, and well designed. Mutation and clinical data (including age and sex) used for this manuscript are

deposited by the GDC (https://gdc.cancer.gov/about-data/publications/pancanatlas).

METHOD DETAILS

Germline variant calling
TCGA sequence information was obtained from the database of Genotypes and Phenotypes (dbGaP). Data from paired tumor and

germline samples were independently aligned to human reference GRCh37-lite using BWA (Li and Durbin, 2009) v0.5.9 and de-dupli-

cated using Picard 1.29. GenomeVIP (Mashl et al., 2017) was used to orchestrate germline calling using the following tools. Germline

single nucleotide variants (SNVs) were identified using Varscan (Koboldt et al., 2012) version 2.3.8 (default parameters, except

where –min-var-freq 0.10,–p value 0.10,–min-coverage 3,–strand-filter 1) operating on an mpileup stream produced by samtools

(Li et al., 2009) version 1.2 (default parameters, except where -q 1 -Q 13) and GATK (McKenna et al., 2010) version 3.5 using the

haplotype caller in single-sample mode with duplicate or unmapped reads removed and calls with quality threshold of 10 retained.
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Germline indels were identified using Varscan and GATK, both as configured as above, along with Pindel (Ye et al., 2016) version

0.2.5b8. We specified an insert size of 500 whenever this information was not present in the BAM header. Variants were limited to

coding regions of full length transcripts obtained from Ensembl release 70 plus two additional base pairs flanking each exon that

cover splice donor/acceptor sites. The union of GATK and VarScan SNVs was processed through our in-house false-positive filter

(Kanchi et al., 2014). We included indels called by at least two out of the three callers (GATK, Varscan, Pindel) and high-confidence,

Pindel-unique calls (at least 30x coverage and 20% VAF). The combined indels set was again processed through our false-positive

filter (default parameters, except where-min-homopolymer 10–min-var-freq 0.2–min-var-count = 6). The entire process is described

in more detail in (Huang et al., 2018). For germline and somatic variant comparision we restricted our data to the overlap of samples

with at least onemutations in theMC3MAF after restricting variants as outlied below. This overlap removed one gene from the germ-

line predisposition list (CYLD).

Somatic variant calling
A publicly available MAF file (syn7824274, https://gdc.cancer.gov/about-data/publications/mc3-2017) was compiled by the TCGA

MC3 Working Group and annotated with filter flags to highlight potential artifacts and discrepancies (Ellrott et al., 2018). A host of

possible artifacts were flagged, including strand-bias, contamination, Oxo-guanine artifacts, and low normal read depth. If amutation

escaped flagging and was called by 2 or more variant calling tools, it was labeled a ‘PASS’. We restricted analysis to PASS calls,

except for samples from OV and LAML, which were early entrants in TCGA that were whole genome amplified (WGA). Of the 412

OV and 141 LAML samples in our dataset, 347 (84%) and 141 (100%), respectively, had artificial variants induced by WGA. In order

to maintain sample sizes and uniformity in mutation calling, we did not filter mutations containing only ‘wga’ filter tags from these two

cancer types. Seven bioinformatic tools were applied, five for Single Nucleotide Variants (SNV) and three for short Insertion Deletion

(INDEL) events, with Varscan 2 providing both types of analysis. This list is comprised of MuTect (Cibulskis et al., 2013), VarScan2

(Koboldt et al., 2012), Indelocator (Chapman et al., 2011), Pindel (Ye et al., 2016), SomaticSniper (Larson et al., 2012), RADIA (Raden-

baugh et al., 2014), andMuSE (Fan et al., 2016). The final call set was filtered to identify cohort level artifacts andwas subject to exten-

sive variant, subject, and cohort level QC. In total, 22,485,627 putative variants were identified and 2,907,335 high confidence mu-

tations were retained after filtering.

Association testing between biological processes and germline or somatic BRCA1/2 mutations
Additionally, Moonlight (Colaprico et al., 2018) analysis was considered to incorporate multiple molecular levels to identify differen-

tially expressed genes in the context of biological pathways (Figures 3 and S1). For this analysis samples with germline predisposition

variants in the BRCA1 and/or BRCA2 were considered for OV and BRCA. Similarly if a sample harbored somatic missense, frame-

shift, nonsense, splice site, or in-frame inBRCA1 orBRCA2, that samplewas aggregated into the somatic group. If a sample had both

germline and somatic mutations, it was not considered for this comparison. A full table of GSEA results is publically available at

https://github.com/ibsquare/MoonlightOP ‘‘Moonlight_GSEA_NES_results_Rebut_v3.’’

Germline and somatic gene assignment to pathway analysis
Assignment of genes to specific pathways was performed to provide a landscape of frequently mutated biological processes across

33 cancer types. Primarily geneswere classified into 24 unique categories which combined the drivers and essentiality working group

classification supplemented by Kegg pathway designations provided by Moonlight. These pathways included: apoptosis, cell cycle,

chromatin SWI/SNF complex, chromatin histone modifiers, chromatin other, epigenetics DNA modifiers, genome integrity, histone

modification, immune signaling, MAPK signaling, metabolism, NFKB signaling, NOTCH signaling, other, other signaling, PI3K

signaling, protein homeostasis/ubiquitination, RNA abundance, RTK signaling, splicing, TGFB signaling, TOR signaling, Transcrip-

tion factor, and Wnt/B-catenin signaling. This was then further reduced to the 8 molecular processes shown on Figure 2. Of note,

one germline predisposition gene was missing from the Circos figure (Krzywinski et al., 2009), CYLD due to missing somatic data

for a single sample.

In order to calculate the prominent molecular process in each tumor type, a single process was assigned to each sample. This was

calculated as follows. If a sample did not carry a predisposing germline variant ormissense/frameshift mutation in a driver gene then it

was merely added to the denominator of that cancer type. Otherwise, if a sample carried a mutations in a germline and/or somatic

driver gene, each driver mutation was compared to the ranked order molecular processes based on the cancer type as a whole. For

example, if the topmolecular processes, by frequency, for LGGwere rankedmetabolism, genome integrity, and oncogenic signaling,

and a sample only carried mutations in both a metabolic gene and a genome integrity gene, then that sample would be classified for

the highest rank of that particular cancer.

Detection of gene programs differentially expressed in samples with indels or nonsense mutations and missense
mutations
Cancer Genome Atlas (TCGA) cohort were available in Genomic Data Commons (GDC) Data Portal and were used in this study in

September 2017. We focused on these 16 cancer types because the top 15 cases of cancer-gene combinations for two groups

(30 combinations in total) from the frameshift / missense from the significant cis-expression associations RNA-seq raw counts of

7668 cases as legacy archive, and using the reference of hg19 were downloaded, normalized and filtered using the R/Bioconductor
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package TCGAbiolinks version 2.5.9 (Colaprico et al., 2015) usingGDCprepare for tumor types (level 3, and platform ‘‘IlluminaHiSeq_

RNASeqV2’’) using data.type as ‘‘Gene expression quantification’’ and file.type as ‘‘results.’’ This allowed us to extract the raw signal

for expression of a gene for each case following the TCGA pipeline used to create Level 3 expression data from RNA Sequence data

that usesMapSplice (Wang et al., 2010) to do the alignment and RSEM to perform the quantificiation (Li and Dewey, 2011). Integrative

analysis using mutation, clinical and gene expression were performed following our recent TCGA’s workflow (Silva et al., 2016).

For this study we used TCGAbiolinks version 2.7.6 andMoonlightR Version 1.2.0 in October 2017 with the following parameters: (i)

for Differential Phenotype Analysis (DPA) we filtered out differentially expressed genes with fdr.cut = 0.01 and logFC.cut = 1, (ii) for

Functional Enrichment Analysis (FEA) we considered significantly enriched biological processes (BP) by each signature of DEGs with

a Fisher Test FDR less than 0.01, (iii) for Gene regulatory network (GRN) the pairwisemutual information was computed using entropy

estimates from k-nearest (k = 3) neighbor distances filtering out non-significant interactions using a permutation test (nboot = 100,

nGenesPerm = 1000), (iv) Upstream Regulator Analysis (URA) was performed considering the output of previous steps with nCores =

64. Hierarchical cluster analysis using a complete linkagemethod to finds similar cluster of biols was applied to generate the heatmap

(Figure 4H) sorted by each cancer type. A full list of Moonlight significance scores are pubically available at https://github.com/

ibsquare/MoonlightOP ‘‘Moonlight_FrameShift_Missense_SupplementalData.’’

We usedMoonlight (Colaprico et al., 2018) to find pathways and biological processes that show differences in the expression levels

of their genes based on the presence and type of mutations in driver genes. We had three groups: WT, missense and frameshift/

nonsense. Samples with both types of mutations, missense and frameshift/nonsense were excluded from this analysis.

Identification of biological processes associated with cancer driver genes
OncoIMPACT (Bertrand et al., 2015) integrates genomic and transcriptomic profiles using a gene interaction network model to

discern patient-specific drivers based on their ‘‘phenotypic’’ effect. We used this tool to predict patient-specific modules of deregu-

lated genes associated with mutational driver genes. Modules are constructed by: 1) identifying phenotype genes defined as signif-

icantly deregulated genes associated with a driver mutation (deregulated in R 5% of patients, permutation test, FDR < 0.1) for a

particular cancer type, 2) aggregating patient specific modules by linking driver genes to the phenotypes genes using the protein

interaction network. For each cancer type, deregulated genes of a patient were identified by calculating the log2 fold-change

between the patient gene expression value and the cancer type median gene expression value. After obtaining the gene modules

predicted by OncoIMPACT based on patients’ transcriptomic and mutational profiles (SNV, indels and CNA), we selected, for

each patient, the largest module containing at least one driver gene from the PanCancer Atlas oncogenic process working group

cancer driver genes list. Genes affected by a focal amplification/deletion were filtered out from the modules, as their change in

expression may be associated with the copy number change. Biological processes associated with each module were identified

by using enrichment analysis on MSigDB’s GO_BP and KEGG_PATHWAY gene lists (Fisher exact test, FDR < 0.05). Patient-specific

predictions were then combined at the cancer type level to obtain the fraction of patients for which an oncogenic process was asso-

ciated with a driver mutation. To control for Type 1 errors introduced by the FDR threshold (0.05 of the predictions are expected to be

false positive), we performed a binomial test for each fraction reported (expected frequency 0.05) and filtered out any fraction with a

Bonferroni corrected p values > 0.05. The total number of samples used in this analysis was 6,224 (samples from DLBC and CHOL

were excluded due to their small module sizes).

Additionally, we tested if the five most frequently mutated driver genes were significantly mutually exclusive in each oncogenic

process using the R-exclusivity test (Leiserson et al., 2016). For each oncogenic process, we constructed a mutation matrix where

rows are driver genes and columns are samples. We then counted the number of samples harboring mutually exclusive driver mu-

tations and performed a permutation test by maintaining frequencies of all five driver genes. The reported p value is based on

the number of permuted matrices (100,000) showing higher numbers of samples harboring mutually exclusive driver mutations.

The full table of results from this anlayis can be located at https://github.com/CSB5/OncoIMPACT/blob/development/TCGA_

PAN_CAN_ANALYSIS/gene_list_driver.csv.

Integration for cell of origin clusters with mutations
Sample and cluster information was provided in the private communication with the cell-of-origin group for 3 additional molecular

levels, methylation, mRNA, and reverse phase protein array (RPPA). These sets had varying samples sizes based on data quality

and availability (Table S8). These 3 level identifiers were concatenated to create a new cluster identifcaiton number that was utilized

for down stream analysis and investigation. From the data provided we identifed 166 samples with a single sample in the classifier.

Samples with missense, indel, or splice site mutations (considered drivers for this analysis) in any of the 299 genes identifed by the

PanCancer Atlas drivers group were merged in by sample and a gene enrichement analysis was performed comparing clusters sizes

(by sample) to the number of samples with a driver mutation. FDR% 0.05 was considered significant. We also determined what frac-

tion of the cluster ids originate from a single tissue of origin. To address this, we implented a simple heuristic to estmate cluster ho-

mogeneity.We define cluster homogeneity as those clusters withR 20 samples that haveR 90%of the samples from a single cancer

type (Figure 6D). 58/414 cluster have 20 or more samples, of which, 69% are homogeneous (40/58), however there are a number of

clusters that capture more universal molecular patterns and are shared across cancer types.
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The cell-to-cell communication network
A network of documented ligand-receptor, cell-receptor, and cell-ligand pairs was retrieved from the FANTOM5 resource at (http://

fantom.gsc.riken.jp/5/suppl/Ramilowski_et_al_2015/). Because CIBERSORT cell types are more granular than immune cells in

FANTOM5, CIBERSORT abundance estimates were aggregated by summing to yield estimates for FANTOM5 immune cell abun-

dances, as defined above. This network was augmented with additional known interactions of immumodulators, and only ligand-re-

ceptor edges that contained at least one cell or one immune modulator were retained, yielding a ‘scaffold’ of possible interactions.

From the scaffold of possible interactions, interactions were identified that could be playing a role within the TME in each subtype

as follows. Cellular fractions were binned into tertiles (low, medium, high), as were gene expression values for ligands and receptors,

yielding ternary values for all ‘nodes’ in the network. The binning was performed over all TCGA samples. In subsequent processing,

nodes and edges were treated uniformly in processing, without regard to type (cell, ligand, receptor). From the scaffold, interactions

predicted to take place in the TME were identified first by a criterion for the nodes to be included (‘present’ in the network), then by a

criterion for inclusion of edges. For nodes, if at least 66% of samples within a subtype map to mid or high value bins, the node is

entered into the subtype-network. An edge present in the scaffold network between any two nodes is then evaluated for inclusion.

A contingency table is populated for the ternary values of the two nodes, over all samples in the subtype, and a concordance versus

discordance ratio (‘‘concordance score’’) is calculated for the edge in terms of the values of ((high,high)+(low,low))/((low,high)+(high,

low)). Edges were retained with concordance score > 2.9, set based on evaluation of quantile distributions (Table S11). Additional

details in (Thorsson et al., 2018).

QUANTIFICATION AND STATISTICAL ANALYSIS

Comparison of clinical and mutational impact of somatic and germline BRCA1 and BRCA2 variants
We grouped samples according to whether they had BRCA1 and/or BRCA2 germline, somatic or no mutations. We then compared

the number of somaticmutations (Ellrott et al., 2018) in each group using a t test.We also used the clinical data (https://www.synapse.

org/#!Synapse:syn4983466.1) to compare the age at onset of each group using also a Welch’s two sample t test compared to wild

type. Samples with both, germline and somatic BRCA1/2 mutations were included in both categories. These results are reported in

Table S4 and distiguishable with the column header AnalysisGrouping (Figure 3A).

Comparison of clinical and mutational impact of somatic and germline DDR pathway alterations
We grouped samples according to whether they had germline, somatic or no mutations in the core DDR pathway (Figure 3B). This

pathway consists of 80 genes according to genes from the Pathways DDR AWG (Table S2). The number of mutations was compared

using Welch’s two sample t test compared to wild type. Samples with both, germline and somatic in DDR genes mutations were

included in both categories. These results are reported in Table S4 and distiguishable with the column header AnalysisGrouping.

Comparison of clinical and mutational impact of somatic and germline MSI pathway alterations
We grouped the samples as in Figure 3C, but using the MSI pathway definition instead, which consists of 33 genes (Table S2). We

usedMSIsensor (Niu et al., 2014) to determine theMSI score of each sample and compared the scores in each group using aWelch’s

two sample t test compared to wild type (Table S3). In addition to stratifiying our analysis by mutation status in MSI and germline

predisposition genes, promoter methylation status for MLH1 was appended to UCEC, COAD, and STAD and was obtained from

MIRMRR (Foltz et al., 2017).

Correlation between MSI scores and expression of immune-related genes
We grouped samples according to whether they had high or lowMSI scores (MSIsensor scoreR 4 andMSIsensor score < 4 respec-

tively). Then we compared the log2 expression of immune-related genes (GZMA, PRF1,GZMK andGZMH) in both groups using both

Student’s t test and a two sample Kolmogorov–Smirnov test (KS-test). We limited our analysis to those cancer types because there

were sufficient number of MSIhigh samples: UCEC, STAD and COADREAD. We used the KS-test significance of p value < 0.01 for

(Figure 2D). All groups indicated as significnat also showed significance using the t test except when comparingGZMH abundence in

UCEC (t test p value = 0.49; KS-test pvalue = 0.003).

Mutation mutual exclusivity and co-occurrence analysis
We performed a mutually exclusivity/co-occurring mutation analysis of samples between all official pairs (258/299) of consensus

driver genes from (Bailey et al., 2018), which included splice site mutations, but excluded non-coding and silent mutations. The anal-

ysis was run at the gene level. We used a two-sided exact Cochran-Mantel-Haenszel test (mantelhaen.test R function) to identify

significant patterns for each individual cancer type and for the PanCancer set as a whole, with multiple test correction of FDR <

0.1. The covariate stratum for this test usedmutation burden and the identity of the cancer type for the PanCancer analysis. Mutation

burdenwas dichotomized at a 500mutations threshold based on an even split of theminimumhypermutated sample threshold (1,000

mutations per sample). This was intended to control for spurious co-occurrence inferences induced by samples with very high mu-

tation burden. Odds ratios of greater or less than one indicate tendencies toward co-occurrence andmutual exclusivity, respectively.

Note that in the tissue-specific analyses, this amounts to the tables being 2x2x2 (Gene1 / Gene2 / Mutation burden) whereas in the
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Pancan analysis they are 2x2x66 (Gene1 / Gene2 /Tissue + mutation burden). We corrected for multiple hypotheses using the Ben-

jamini-Hochberg FDR method, reporting all gene pairs having a FDR < 0.1.

Association testing between different types of mutations and biological processes
We conducted this analysis on the extended consensus driver list of 299 genes, grouping the associated samples for each cancer

type into three categories; (i) samples having only frameshift indels or nonsense mutations (FSN), (ii) those having only missense mu-

tations (MIS), and (iii) those having no mutations (WT). Samples with both types of mutations, missense and frameshift/nonsense,

were not included in this analysis. For each combination of cancer type and gene, we compiled subsets of samples for these three

categories. Any cancer-gene combination not having at least five samples in each of the three categories was excluded for lack

of power.

RNA-Seq gene expression data were obtained for each sample category for the above cancer-gene combinations. All RSEM value

sets were transformed into normal distributions with Box-Cox transformations, after which Z-Scores were calculated. For a given

cancer type, gene, and respective subsets of samples (distinguished bymutation category), Welch’s t-Test was performed to assess

the significance of the difference of expression distributions between the test subset and the subset of wild-type samples from the

same cancer type and gene. Here, the t-statistic is

t =
X1 � X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
1

N1

+
S2
2

N2

s

where, Xi, Si, and Ni are the respective sample mean, standard d
eviation, and tally of the ith distribution. Welch’s test is especially

appropriate, since we do not always find equal variances or sample numbers between the distributions. The t-scores and degrees

of freedom generated by the t test were used to perform a two-tailed significance test against the t-distributions. The distribution of

t-scores and their corresponding significance status is depicted in Figure 4. The results from this analysis are reported in Table S7,

and seperated by Mutated (any non-silent mutation) and ‘‘Frame_Shift_And_Nonsense’’ or ‘‘Missense_Only’’ under the column

header ‘‘AnalysisGrouping.’’ These two groups (‘‘Mutated’’ and ‘‘Frame_Shift_And_Nonsense’’/ ‘‘Missense_Only’’) were tested inde-

pendent of each other. Additionally, we have included results by expanding our analysis to all non-silent mutations and show the top

results in Figure S2.

Correlation between driver events and immune cell types
We focused our analysis on the set of 299 driver genes and > 3400 driver mutations from (Bailey et al., 2018). We considered that a

sample had a driver event if it carried a frameshift or truncating mutation, or a missense mutation detected by at least 2 different sig-

nals of oncogenicity (Bailey et al., 2018). In order to reduce the issues related to multiple-testing we analyzed only driver events pre-

sent in 10 or more samples. We considered both individual driver mutations and entire driver genes that met these criteria.

Then, for each of the six immune subtypes (Thorsson et al., 2018) we checked for a correlation between the presence of the driver

event and the quantity of different immune cells in the tumor microenvironment. The quantification of immune cells is described in

‘‘Immune Fraction Estimates’’ below. Then, we used domainXplorer to identify driver events that correlate with the presence of

different immune cell types (Porta-Pardo and Godzik, 2016). Briefly, domainXplorer uses a linear correlation model that accounts

for different variables that might bias the results, such as the tissue of origin or the number of mutations in the tumor sample. The

model is:

CF = b0 + b1T+ b2N+ b3D
where CF is the cell fraction of each sample, T is the tissue of orig
in for each sample, N the total number of mutations in the sample

andD is a binary variable showing whether the sample has a certain driver event or not. To correct for multiple testing, the Benjamini-

Hochberg method was applied to p values of the D factor from the ANOVA test of each driver event (Table S11).

DATA AND SOFTWARE AVAILABILITY

Germline predisposition variant list
The list of germline variants was obtained fromHuang et al. (2018). While the details on how to obtain the final 1,461 germline variants

are explained in detail in the manuscript, in brief the group first selected for cancer-relevant pathogenic variants, based on whether

they were found in the curated cancer variant database or in the curated cancer predisposition gene list, and their associated ClinVar

trait. This resulted in 1,678 variants for manual review using the Integrative Genomics Viewer (IGV). For candidate germline variants

having the same genomic change as somatic mutations, we further filtered for the germline variants that may have originated from

contaminated adjacent normal samples by eliminating variants called from adjacent normal, the VAF in normal < 30%, and co-local-

izing with any known somatic mutation.
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Driver gene list
The list of driver genes was obtained from Bailey et al. (2018). The details about how this list was created are further detailed

in that manuscript, but in brief, the Driver AWG combined the predictions of 8 different tools comprising algorithms based on

mutation frequency (MuSiC2[Dees et al., 2012] and MutSig2CV [Lawrence et al., 2014]), features (20/20 [Tokheim et al.,

2016], CompositeDriver [https://github.com/khuranalab/CompositeDriver] and OncodriveFML[Mularoni et al., 2016]), clustering

(OncodriveCLUST [Tamborero et al., 2013]), and externally defined regions (e-Driver [Porta-Pardo and Godzik, 2014] and

ActiveDriver [Reimand and Bader, 2013]).

The preliminary total of 2,101 potential driver genes was identified by taking the union of genes predicted by the eight driver-gene

discovery tools. They refined this list by calculating, for each gene predicted in each cancer type, a consensus score that compen-

sated for outlier results and correlation among tools. The consensus score was defined as a weighted sum of the number of tools that

predicted the gene to be a driver in each cancer type (see Gene DiscoveryWeighting Strategy). They required aminimum of two tools

to agree, where both could not be outliers (score R 1.5).

To maximize the coverage of the analysis and ensure the accuracy of the final list, they reviewed previous findings in 31 individual

cancer types and PanCancer-12 from TCGA. For cancer types not yet having a TCGA publication, they consulted with the relevant

analysis working groups (LIHC, TGCT, UVM, SARC, PAAD, and THYM). They included in the final consensus list all those genes that

were previously described as drivers by experts in the cancer-specific analysis of TCGA datasets and that were also identified by at

least one of the eight algorithms, even if they did not meet the consensus score threshold (R1.5). Then, to limit false positives in the

expanded list, they applied linear discriminant analysis, removing 45 genes from the consensus they detected as likely false positives.

Finally, given the limitations of a systematic approach, they additionally manually rescued 41 genes based on supportive evidence

from the following sources: hypermutator phenotype related genes (since they excluded hypermutated samples in our systematic

discovery), established cancer genes from LAML because of low quality variant calling originating from tumor contamination of

the normal samples, genes supported by omic network tools: OncoIMPACT (Bertrand et al., 2015) and DriverNet (Bashashati

et al., 2012). Addition of genes to the final list was subjected to expert manual curation.

Cell of origin transcript data
The PanCancer Atlas Cell Origin manuscript provided us with cluster data for 3 additional substrates: methylation, mRNA, and RPPA

(Table S9). This overview supports the notion that cancers should be classified by their molecular characteristics and can effectly

identify molecular subgroup patterns. Methylation data used unsupervised clustering of 10,814 tumors usingWard’s method to clus-

ter the distance matrix computed with the Jaccard index. This resulted in 25 number of clusters. Unsupervised consensus clustering

using Consensus Cluster Plus (Wilkerson and Hayes, 2010) was performed on RSEM (mRNA normalized expression) for 10,165

smamples and 15,363 genes and resulted in 43 clusters (25 with at least 40 samples). And finally, reverse phase protein arrays

(RPPA) was also clustered using Pearson’s correlation coefficient as the distance metric andWard’s method as the linkage function,

which resulted in 10 clusters.

Expression and copy number data
Gene expression and copy number information for each sample were retrieved from the Genomic Data Commons unless indicated

otherwise in specific sections of STAR Methods.

Cancer Immune Subtypes
To characterize the commonality and diversity of intratumoral immune states, we scored 160 published immune expression signa-

tures on all available TCGA PanCancerAtlas tumor samples and performed cluster analysis to identify similarity modules of multiple

immune signature sets. The 160 immune expression signatures were selected based on extensive literature search, utilizing diverse

resources considered to be reliable and comprehensive based on expert opinions of immuno-oncologists. 83 signatures were

derived in the context of immune response studies in cancer and the remaining 77 are of general validity for immunity. TCGA

RNA-seq values from the PanCancer Atlas normalized gene expression matrix were scored for each of the 160 identified gene

expression signatures using single-sample gene set enrichment (ssGSEA) analysis, using the R package GSVA. Clusters of similar

signature scores were identified by weighted gene correlation network analysis (WGCNA) (Langfelder and Horvath, 2008). Based on

the WGCNA analysis, five immuno-oncology-related immune expression signatures: activation of macrophages/monocytes (Beck

et al., 2009), overall lymphocyte infiltration (dominated by T and B cells) (Calabrò et al., 2009), TGF-b response (Teschendorff

et al., 2010), IFN-g response (Wolf et al., 2014), and wound healing (Chang et al., 2004), robustly reproduced co-clustering of the im-

mune signature sets, and were selected to perform cluster analysis of all cancer types, with the exception of hematologic neoplasias

(acute myeloid leukemia, LAML; diffuse large B cell lymphoma, DLBC; and thymoma, THYM). Clustering of tumor samples scored on

these five signatures was performed using model based clustering, using the mclust R package (Scrucca et al., 2016), with the num-

ber of clusters, K, determined by maximization of Bayesian Information Criterion (BIC). Maximal BIC was found with a six cluster so-

lution, and the six resulting clusters C1-C6 (with 2416, 2591, 2397, 1157, 385 and 180 cases, respectively) were characterized by a

distinct distribution of scores over the five representative signatures, and effectively categorized each TCGA sample as belonging to

one of six cancer ‘‘immune subtypes,’’ namely Wound Healing (C1), IFN-g Dominant (C2), Inflammatory (C3), Lymphocyte Depleted

(C4), Immunologically Quiet (C5), or TGF-b Dominant (C6). Additional details in (Thorsson et al., 2018; Tables S11 and S12) .
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FANTOM5 network
A network of documented ligand-receptor, cell-receptor, and cell-ligand pairs was retrieved from the FANTOM5 resource at (http://

fantom.gsc.riken.jp/5/suppl/Ramilowski_et_al_2015/).

Immune cellular fraction estimates
The relative fraction of 22 immune cell types within the leukocyte compartment were estimated by applying CIBERSORT (Newman

et al., 2015) to TCGA RNASeq data (Table S12). As several key immune genes used in the signatures are absent from TCGA GAF

(Generic Annotation File) Version 3.0, we applied CIBERSORT to a re-quantification of the TCGA data using Kallisto and the Gencode

GTF, which includes the missing genes. A version of the entire TCGA RNA-seq data normalized to Gencode with Kallisto was

computed on the ISB Cancer Genomics Cloud by Steve Piccolo’s group at BYU (https://osf.io/gqrz9/wiki/home/) (Tatlow and

Piccolo, 2016). In this study, the 22 CIBERSORT values were aggregated into 9 overall cell types as follows

Mast.cells = Mast.cells.resting + Mast.cells.activated,

Dendritic.cells = Dendritic.cells.resting + Dendritic.cells.activated,

Macrophage = Macrophages.M0 + Macrophages.M1 + Macrophages.M2, NK.cells = NK.cells.resting+NK.cells.activated,

B.cells = B.cells.naive + B.cells.memory,

T.cells.CD4 = T.cells.CD4.naive+T.cells.CD4.memory.resting+T.cells.CD4.memory.activated

Neutrophils = Neutrophils,

Eosinophils = Eosinophils,

T.cells.CD8 = T.cells.CD8

Additional details in (Thorsson et al., 2018), where this particular combination is referred to as ‘‘Aggregate 2.’’

HLA typing and Predicting mutant peptide-MHC binding (neoantigens [pMHCs]) from SNVs
HLA class I typing of samples (raw RNA-Seq from 8872 samples and aligned reads from 715 samples) was performed on the Seven

Bridges Cancer Genomics Cloud using a Common Workflow Language (CWL) description of the OptiType tool (version 1.2) (Szolek

et al., 2014). The alignedRNA-Seq samples were first converted to raw sequences using a CWLdescription of the Picard SamtoFastq

tool (version 1.140). The reads from each rawRNA-Seq sample were first aligned to the HLA class I database using aCWLdescription

of the yara aligner (version 0.9.9) (Siragusa et al., 2013) with its error rate parameter set to 3%. Next, the CWL description of OptiType

was used to compute the HLA class I types for the sample. Potential neoantigenic peptides were identified using NetMHCpan v3.0

(Nielsen and Andreatta, 2016), based on HLA types. For each sample, all pairs of MHC and minimal mutant peptide were input into

NetMHCpan v3.0 using default settings. NetMHCpan will automatically extract all 8-11-mer peptides from a minimal peptide

sequence and predict binding for each peptide-MHC pair. After computation, the results were parsed to only retain peptides which

included the mutated position. Peptides containing amino acid mutations were identified as potential antigens on the basis of a pre-

dicted binding to autologous MHC (IC50 < 500 nM) and detectable gene expression meeting an empirically determined threshold

of 1.6 transcripts-per-million (TPM). This threshold was selected in order to divide the bimodal distribution in the expression data.

Additional details in (Thorsson et al., 2018)

CIBERSORT
CIBERSORT (cell-type identification by estimating relative subsets of RNA transcripts, Newman et. al., 2015) uses a set of 22 immune

cell reference profiles to derive a base (signature) matrix which can be applied to mixed samples to determine relative proportions of

immune cells. It can be accessed at https://cibersort.stanford.edu.

Moonlight
Moonlight (Colaprico et al., 2018) is a new methodology available as R bioconductor package, (https://bioconductor.org/packages/

release/bioc/html/MoonlightR.html, DOI: 10.18129/B9.bioc.MoonlightR) that does not only identify driver genes playing a dual role

(e.g., tumor suppressor genes (TSGs) in one cancer type and oncogenes (OCGs) in another), but also helps in elucidating the bio-

logical processes underlying their specific roles.

For this study we used MoonlightR Version 1.2.0 in July 2017 with the following parameters: (i) for DPA we filtered out differentially

expressed genes with fdr.cut = 0.01 and logFC.cut = 1, (ii) for FEA we considered significantly enriched biological processes by each

signature of DEGs with a Fisher Test FDR less than 0.01, (iii) for GRN the pairwise mutual information was computed using entropy

estimates from k-nearest (k = 3) neighbor distances filtering out non-significant interactions using a permutation test (nboot = 100,

nGenesPerm = 1000), (iv) URAwas performed considering the output of previous steps with nCores = 64, (v) First we retrieved a list of

validated OCGs and TSGs from the Catalogue of somatic mutations in cancer (COSMIC). The list consists of 84 OCGs, 55 TSGs, 17

dual role genes and 439 genes without validated role. Second PRA was performed considering the URA output as input for the

random forest learning approach together with the list of known OCGs and TSGs (COSMIC) used to construct the training set

and using a permutation test with nrand = 1000 for obtaining p values filtered by FDR = 0.01.
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domainXplorer
This pipeline identifies events that show statistically significant correlations with the presence of immune cells in the tumor microen-

vironment (Porta-Pardo and Godzik, 2016). It accounts for several potentially confounding factors, such as the presence of neo-an-

tigens. It can be accessed at https://github.com/eduardporta/domainXplorer.

OncoIMPACT
Integrates genomic and transcriptomic profiles using a gene interaction network model to discern patient-specific drivers based on

their ‘‘phenotypic’’ effect. It can be accessed at https://github.com/CSB5/OncoIMPACT.

ABSOLUTE
We used ABSOLUTE (Carter et al., 2012) calls to infer whether each mutation was clonal or sub-clonal. ABSOLUTE optimizes/solves

a mixture model for the observed allelic fraction for each mutation (i.e., the mutated reads could have arisen from 1 copy, 2 copies,

3 copies, etc. or from a subclonal population). We defined ‘clonal’ as all mutations that were predicted only as clonal by ABSOLUTE

(n = 910,138 out of a total 1,451,623 mutations, 62%). It can be accessed at http://software.broadinstitute.org/cancer/software/

genepattern/modules/docs/ABSOLUTE.
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Figure S1. Moonlight Analysis of Enriched Pathways for Samples with Germline or Somatic Mutations in BRCA1 or BRCA2, Related to

Figure 3

Shown here are the extended set of pathways not shown in Figure 3.



Figure S2. Alternative Grouping for Cis-expression Differences, Related to Figure 4

(A and B) For Figure 4, only missense mutations and frameshift indels were considered. The top 15 t values using an extended definition of missensemutations to

include in-frame indels (A). Frameshift/nonsense mutations, here, include splice-site mutations (B).
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