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Abstract

Starting from symmetry considerations, we derive the generic hydrodynamic equation of non-
equilibrium XY spin systems with N-atic symmetry under weak fluctuations. Through a systematic
treatment we demonstrate that, in two dimensions, these systems exhibit two types of scaling
behaviours. For N = 1, they have long-range order and are described by the flocking phase of dry
polar active fluids. For all other values of N, the systems exhibit quasi long-range order, as in the
equilibrium XY model at low temperature.

Like the classification of chemical elements in the periodic table, categorising dynamical systems by their distinct
scaling behaviours is of fundamental importance in physics. In such a categorisation, symmetries and
conservation laws play the role of proton number in the periodic table. For equilibrium systems, symmetries
constrain the form of the Hamiltonian [1]; while for non-equilibrium systems, symmetries directly constrain the
form of the equations of motion, which in general can not be derived from a Hamiltonian. Therefore, imposing a
set of symmetries on non-equilibrium systems can be less restrictive than doing so on equilibrium systems. As a
result, phenomena impossible in equilibrium can occur under non-equilibrium conditions.

One example of the above is the breaking of a global continuous symmetry in two dimensions. In thermal
systems such a phenomenon is forbidden by the Mermin—Wagner—Hohenberg theorem [2, 3]. However, this
type of symmetry breaking was shown to occur in non-equilibrium models inspired by flocking of animals [4].
In particular, the global rotational symmetry of a self-propelled XY model can be broken in two dimensions. The
resulting ordered phase, hereafter referred to as the flocking phase, exhibits long-range order that belongs to a
universality class first described by Toner and Tu [5, 6]. But despite this celebrated example, the emergence of
novel universal behaviour due to non-equilibrium dynamics is not the norm [7, 8]. For example, the ordered
phase of an incompressible polar active fluid in two dimensions belongs to the universality class of equilibrium
planar smectics [7]. Hence, it remains unclear how important the equilibrium constraints are with regards to the
universal behaviour of a system.

To shed further light on this question, we study a class of planar non-equilibrium XY spin systems (see
[9-12] for the Ising-type) on which we impose the N-atic symmetry. The N-atic symmetry is a discrete symmetry
by which a rotation of the spin’s direction by an angle 27w/ Nleaves the system invariant (see figure 1). Familiar
examples of N-atic systems are nematic liquid crystals (N = 2) [13], and hexatic systems (N = 6) in two
dimensional fluids [14, 15] and polymerised membranes [16, 17]. More exotic N-atic symmetries, such as the
tetratic symmetry (N = 4), have also been studied theoretically [18]. Here, we characterise the scaling behaviour
of this class of systems in two dimensions in the limit of weak fluctuations. We focus on planar systems because it
is where the Mermin—Wagner—Hohenberg theorem is broken by the non-equilibrium dynamics of active fluids
[5, 6]. We will show that these systems are described by only two distinct types of hydrodynamic behaviours: for
the polar case (N = 1), the non-equilibrium system belongs to the aforementioned flocking phase [4—6]; while
for all other cases (N > 2), the system exhibits only quasi-long range order similar to the equilibrium XY model
in two dimensions [19].
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Figure 1. Schematic representation of the N-atic symmetry. In this microscopic depiction the arrows represent the N-atic spins for
N = 1,2, 3,and 4. The thick blue arrow represents the local direction of the field n.

1. Equations of motion from symmetry

We consider a generic dissipative system with a single hydrodynamic vector field n(r). To ease exposition, we
will first elucidate the general form of the equation of motion, and then focus on the planar case with N-atic
symmetry. We assume that the spins tend to align so that in the weak fluctuation limit, the system is ‘almost
ordered’. The corresponding microscopic picture amounts to picking suitable spin directions (blue arrows in
figure 1), the vector field n(r) then corresponds to the mesoscopic average orientation of these chosen spins. We
further assume that amplitude fluctuations in n are negligible, which amounts to the norm of n being a
constant, which we set to one. In other words, we assume that under weak fluctuations, the system’s scaling
behaviour is dominated by the phase, but not amplitude, fluctuations.

Given the above, the generic equation of motion is of the form

o = F(n, Vn, ...) — An + f, (1)

where F is a function of the field n and its spatial derivatives, f is a noise term, and A is a deterministic Lagrange
multiplier that imposes [n| = 1. In order to preserve the norm of n, the noise must not have a component along
the local direction of the field. We thus have f, = P; fj, with Pj = ; — n;n;japrojection operator and &; the
noise source (hereafter roman subindices denote vector components, and repeated indices are summed over).
Since we focus here on the long-time and large distance limits, we expect the coarse-grained noise term to
become spatially and temporally delta-function like, and its distribution (as long as the variance of the
microscopic noise distribution does not diverge) to become Gaussian due to the central limit theorem.
Therefore, we assume the noise &; to be Gaussian and uncorrelated, and is characterised by

<§i(r’ t)> =0, (2[1)
(&(x, t)gj(r’, ) = 206;;6*(r — ¥)é(t — 1), (2b)

with A the noise strength, which as aforementioned we assume to be small.

The form of the generic ‘force’ F is determined by symmetry considerations alone. In this work, in addition
to the N-atic symmetry, we assume the usual temporal, translational, rotational, and chiral symmetries in the
system (see, e.g. section 3.1 in [20]). Moreover, we assume that the dimensionality of the field n and of the
embedding space r are the same. This equality allows them to couple to each other, in the sense that the dot
product between the field n and the gradient operator V is allowed.

We now expand F in terms of powers of spatial derivative V, up to and including quadratic power in V.
Since F is a vectorial quantity and |n| = 1, F contains only terms of up to cubic order in n. Schematically, the
equation of motion can be written as:

Om =Y A(VVn) + > B(nVn) + > C(nVnVn) + Y DmnVVn) — An + f, A3)

where A, B, Cand D are tensors of order four, four, six and six, respectively. In practice, the constraints of
rotational symmetry and fixed norm result in simple forms for these tensors. In the appendix we go through the
straightforward calculation to demonstrate that the resulting equation of motion is

omn; = alc‘?]jni + a28ijnj + bnjajn,- + clnj(ajni)(c’)knk) + cznj(ajnk)(akni)
+ ¢snj(Oni) (Oimg) + dimgn;Oyny + dynjniOyn; + f;, 4)

wherea, (withu = 1,2),b, ¢, (withv = 1,2,3)and d,, (withw = 1, 2) are model-specific coefficients that
characterise the system. We emphasise that, despite the simplicity of our derivation, equation (4) is completely
generic. In particular, it includes non-equilibrium terms such as r;9;n;, which is absent from the equilibrium XY
model since it cannot be obtained from performing a functional derivative on any functionals of n”.

3 . . . . . . P
The term n;n;0;n; is the only term in a functional that could potentially contribute the advective term n;0;n;. However, 6 (n;n;0jn;) /6n;
will result solely in the term 7;(0;n;), which can be absorbed in the Lagrange multiplier, and so the advective term remains absent.
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So far our treatment is valid for any dimension, and it has not incorporated the N-atic symmetry. Imposing
the N-atic symmetry on planar systems requires that the dynamics remains invariant when n is rotated around
the axis perpendicular to the plane by discrete angles o5y = 27/N (for N = 1,2, ...). Referring then to
equation (1), this symmetry amounts to the constraint

ReF(n, Vn, ...) = F(R¥%n, VR%n, ...), (5)
where
v _ [ cosy siny
RY= (—sim/J cosw) ©

is the two dimensional rotation matrix. To linear order, the symmetry operation expressed by equation (5) is
trivial. However, at the order shown by equation (4), it results in relationships that constrain the possible values
of its coefficients. These relationships will depend on the value of N. We now discuss the distinct cases.

2.N = 1and the flocking phase

For the case N = 1, the symmetry operation is trivial, and equation (4) remains unchanged. Since the remaining
symmetries are identical to those assumed in the flocking inspired theory of Toner and Tu, we can expect that
the universal behaviour of our spin system is the same as that of the flocking phase [5, 6]. To show that this is
indeed the case we briefly summarise the dynamic renormalisation group analysis of [5, 6].

First, without loss of generality, we assume that (n) o X. Since we are interested in the limit of weak
fluctuations, we expand n as

n = cosf% + sinfy ~ (1 — 02/2)% + 0y + O9?), (7)

where the scalar field 6 (r) is the angular deviation of n from its mean value. Expressing then equation (4) in
terms of 0 to order O(6?) we obtain (see appendix):

0,0 = 10,0 + 20,0 + 3000 + 0,000 + ,00,0 + 2(as — )00 + 1, )

wheren = &, (to the lowest order in §), and o, (with u = 1,2, 3) and $are independent parameters related to
the original coefficients of equation (4). Note that 0,6/ and 60,0 are both derived from the non-equilibrium term
n;0;n;, and the fact that their coefficients are identical follows from rotational symmetry.

Next, we eliminate the term o, 0,60 by going to the ‘moving’ frame: x — x + a,t. Ofthe three
nonlinearities in equation (8), the o, term is one order smaller in spatial derivatives than the other two, and is
hence the more relevant nonlinearity. We will thus ignore the other two nonlinearities for now, and justify their
irrelevance self-consistently a posteriori. With their omission, we arrive at the reduced equation of motion:

0,0 = 10y)0 + 300 + ;00,0 + 1. 9
We now perform the following rescalings in equation (9):
yrely , x—e¥x , t—e¥t , 0 X0, (10)

where ¢ is the rescaling parameter, (is the anisotropic exponent, zis the dynamic exponent, and x is commonly
known as the ‘roughness’ exponent [21]. Since the only nonlinear term in (9) is of the form (v, /2) 9,62, which
involves a spatial derivative with respect to y, the resulting Feymann diagram cannot lead to a renormalisation of
a3 nor of the noise strength A because neither involves a derivative with respect to y. In addition, «, itself cannot
be renormalized because equation (9) is invariant under the ‘pseudo-Galilean’ transformation:  — 6 + © and
¥y +— ¥ + o, Ot for any arbitrary constant ©. As a result, the flow equations for these coefficients are:

%%ﬂzz—zg (11a)
dlna,

=z—14+x 11b
a7 z X (11b)
dglfA =z—-2x—(— L (11¢)

Note that «; does get renormalized by loop diagrams. However, determining the fixed point of the above three
equations already provide enough constraints to fix the three scaling exponents:

3 6 1
=2, z=2, x=—— 12
=3 50 XT3 (12)
These are the exact exponents that describe the scaling behaviour of the flocking phase in two dimensions [5, 6].
Since x < 0, {A(0, t)O(r, t)) ~ r?X goes to zero atlarge r = |r|. Therefore, a true ordered phase exists for our
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system because in the large rlimit, (n(0, ) - n(r, t)) ~ constant+ (0 (0, #)0(r, t)) under weak fluctuations,
which remains greater than zero as r goes to infinity. Using these exponents we can now verify that the other two
nonlinearities in equation (8) are indeed irrelevant.

We note that the flocking phase characterised by the above exponents is known to describe the scaling
behaviour of Malthusian flocks in two dimensions [22], and of incompressible active fluids in dimensions higher
than two [23]. We have now shown that it also describes the behaviour of planar spin systems out of equilibrium.
However, whether the flocking phase further describes the behaviour of compressible flocks, which it was
originally devised to do [5], remains unsettled [24].

3.N = 2 and quasi-long range order

When N = 2 equation (5) reduces to F(n, Vn, ...) = —F(—n, —Vn, ...),whichindicates that n behavesasa
nematic [13]. In this case only odd powers of the field can be present in equation (1), and so b = 0in (4), which
implies o, = 0in (8) (see appendix). Compared to the polar case, N = 1, the relevant nonlinearity is now absent
and the universal behaviour of the system is therefore dictated by the other two nonlinearities in (8): 9,000

and 00,,0.

Interestingly, an analysis of equation (8) for the case &, = 0 has already been carried in [25] in the context of
active nematics adsorbed on a substrate. A one-loop dynamic renormalisation group analysis indicated that the
two nonlinearities in (8) are in fact marginally irrelevant. Therefore, for N = 2 the hydrodynamic behaviour of
our system is characterised by the linear theory that is analogous to the linear theory of the equilibrium XY
model, and thus admits only quasi-long-ranged order. We note that in the system studied in [25], the dynamics
of the director field n, besides the imposed active motility, is based on a Landau-de Gennes free energy. In
contrast, the system considered here is only constrained by symmetries, and as such, our derivation of
equation (8) is arguably more general.

4. Generalisation for N > 2

The long-range behaviour of all the remaining cases (N > 2) can be analysed simultaneously ina
straightforward manner. First, we note that all linear terms in n will be present, as they all trivially satisfy the
symmetry condition in equation (5). Next, we study how the symmetry condition affects the term bn;0;n; in
equation (4). To do so, we note that the corresponding right-hand side term of equation (5) is transformed as

njc“)jrzi — Rf,fnkaj(Rﬁan) = RﬁNRf]é‘Tnk(ajnl), (13)
while the corresponding left-hand side term is transformed as
njc?jni — R:;(Nnj(ajnk) = RﬁNéﬂnj(amk). (14)

Because there are no other terms with the same order of derivative in equation (4), to satisfy the N-atic symmetry
these two terms have to match. Therefore, equations (13) and (14) have to be equal for all values of n, which
requires that the two order four tensors R?;N Rﬁf and RﬁN 6kj are identical. In other words, RZN = i, and the
term r;0;n; can only be presentif N = 1, and must be absent otherwise.

Finally, we note that the above argument can not be applied to the ¢, and d,, terms separately, as the
symmetry condition will generally result in relations among these coefficients that depend on the value of ¢y,
[26]. However, as we have seen in the N = 2 case, even if these terms are present, they will be marginally
irrelevant. Asaresult, for N > 2, the spin systems again admit only quasi-long-ranged order.

5. Conclusion and outlook

We have considered a generic non-equilibrium XY spin system in two dimensions with N-atic symmetry and
characterised its scaling behaviour under weak fluctuations for all N. Specifically, for the N = 1 case, the system
belongs to the flocking phase, first described in the context of dry polar active fluids [5, 6]; and for all subsequent
values of N, the system exhibits quasi-long-ranged order similar to the equilibrium XY model at low
temperature. In other words, as far as universality is concerned, the non-equilibrium nature of the system is only
manifested for N = 1. We however stress that this conclusion applies only in the weak fluctuation limit of the
systems considered, and there are in fact diverse emergent behaviour in active systems (e.g. in active nematic
systems) that exhibit phenomena not seen in equilibrium systems.

Our work is closely related to non-equilibrium theories of fluids. The key parallel is that in both classes of
systems the spatial dimension and the field dimension coincide. This allows for the contraction of the indices of
spatial derivatives with those of the field, giving rise to a richer mathematical structure in equation (4). Looking
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ahead, it would be interesting to consider the scaling behaviour of other non-equilibrium spin systems, such as
the Potts model, where some of the components are coupled to the spatial dimensions. Another promising
direction would be to study how the non-equilibrium dynamics would affect the shape of the systems if the spins
are coupled to the metric tensor of the underlying space [17, 18]. More generally, our work shows that for alarge
class of spin systems (N > 2), breaking the equilibrium constraints does not result in novel universal behaviour.
Therefore, a fundamental open question is: what are the underlying conditions for the emergence of novel
phases out of equilibrium, as in the polar (N = 1) case?
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Appendix: Derivation of the general equation of motion

As discussed in the main text, the deterministic component of the equation of motion of n, with the constraint
[n| = 1,and up to terms of order O(V?), is:

dm =Y A(VVn) + > BVn) + Y C(nVnVn) + > DnnVVn) — An, (15)

where A, B, Cand D are tensors of order four, four, six and six, respectively; and A is a Lagrange multiplier that
enforces the constraint on the norm of n.

We now write down all possible terms corresponding to each of these sums, with the corresponding small
letters a,, b,, c,,, and d,. We use index notation, so that n is denoted by #;, Vis denoted by 0;, and repeated indices
are summed over:

A: {8j8jni, &-Bjnj}

0
B: {(niOnj, _mém; , non;}
C: {n;(0;n;)(Orny), ni(Oim) (Ojny),  ni(0;ny) (Oknj), n;(Oin))(Okmy),  nj(0jmp) (Ori),
0

0 C6
mOm)@m), Qe m@e ) @t

0 0 0 Cs
@O @O @) @t )
ay a
D!W, ning0;0;n, W ,  mnj0i0jng,  ning0;0knj,  njng0;0kn;}

(16)
where the null terms cancel because of the constraint n? = 1. This constraint also makes several terms equal.
After taking all the cancellations and equalities into account, we have

8ﬂ’l,‘ = — /\ﬂi + a4 (9]‘]‘1’11' + az&-jnj + bln,-é‘]-nj + bz 1’1]' (9]'1’1,' + qn,—(&‘jn]-) (8k1’lk)

+ ani(0jm) (Om) + 31 (O;m)(Oknj) + canj(On;) (Oxny) + csn;(Oimp) (Orni)

+ conj(Ojm) (Oimp) + dinimOjime + damgnOymi + dsnimOpn; + danjmOyn,. (17)
This equation can be simplified further, by noting that all terms ox#; can be directly absorbed in the Lagrange
multiplier that enforces the norm constraint. Finally, the norm-preserving equation of motion of n becomes

O = ai0yn; + aOyn; + byn;jOin; + cyn;j(9in;) (Orny) + csn;(9;my) (Oxn;)
+ cnj(0jm) (Oing) + dymnjOyimy + danjniOpni, (18)

which, after relabelling the indices of the coefficients, is exactly the deterministic component of equation (4) in
the main text.

To arrive at equation (8) in the main text, we expand n as cos 0% + sin 0y ~ (1 — 02/2)% + 0y and focus
on the y-component to get

0,0 = 10y)0 + ;0,0 + 3050 + 310,000 + (3,00,0 + (3000, (19)
where the coefficients relate to the those in equation (18) by oy = a; + @y, ap = by, s = a1 + d,

Bi=ci+ ¢s+ ¢ — ay — dy, By = by, B3 = 2(dy — ay). Note in particular that the following relations are
satisfied: i, = B,and 35 = 2(a3 — ay).
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