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A collection of self-propelled particles with volume exclusion interactions can exhibit the phenom-
enology of a gas-liquid phase separation, known as motility-induced phase separation (MIPS). The
nonequilibrium nature of the system is fundamental to the phase transition; however, it is unclear whether
MIPS at criticality contributes a novel universality class to nonequilibrium physics. We demonstrate here
that this is not the case by showing that a generic critical MIPS belongs to the Ising universality class with
conservative dynamics.
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Active matter is an extreme kind of nonequilibrium
system in that detailed balance is broken at the microscopic
scale [1]. A typical active system can be a collection of
particles that continuously exert mechanical forces on their
surrounding environment, and systems of interacting active
particles can display novel phenomena, ranging from the
emergence of collective motion in two dimensions (2D)
[2–4] when the active particles are aligning, to motility-
induced phase separation (MIPS) when the particles
interact solely via volume exclusion interactions [5–9].
However, even though active matter breaks detailed balance
in a fundamental way, it remains unclear whether the
hydrodynamic, universal behavior of active matter neces-
sarily differs from that of equilibrium systems. Indeed,
the ordered phase of a generic incompressible polar active
fluid in 2D, and in 3D with an easy-plane, belong to the
universality classes of equilibrium smectics in 2D [10] and
the equilibrium sliding columnar phase [11], respectively.
The investigation of universal behavior, besides being of
central interest to physics, allows us to transfer knowledge
of a well-known system to a different system of novel
interest. Here, we do exactly that by demonstrating that the
critical behavior of MIPS belongs to the Ising universality
class with conservative dynamics. We do so using three
approaches: hydrodynamic argument, field-theoretic
description of a microscopic model, and simulation of a
lattice model.
Hydrodynamic argument.—The generic system we are

interested in consists of a collection of self-propelled
particles in a frictional medium (i.e., no momentum
conservation) with volume exclusion interactions (e.g.,
see Fig. 1). As such it may be viewed as a typical
compressible polar active fluid system [2–4,12] with the
alignment interactions switched off. In other words, a
system undergoing MIPS constitutes a subclass of an active
fluid system that is described by the Toner-Tu equations in
the hydrodynamic limit [3,4,13]. Another way to view this
is that since the symmetries underlying MIPS systems are

the same as polar active fluids, the hydrodynamic equa-
tions, which are derived from symmetry consideration
alone, must be the same. We therefore start with the
Toner-Tu equations:

∂tρþ∇ · g ¼ 0; ð1aÞ

∂tg ¼ −ζ∇ρ − κgþ μ∇2gþ f; ð1bÞ

where only terms linear in the mass density field ρ and the
momentum density field g, together with their lowest order
of spatial derivatives, are shown above since these terms
suffice for our discussion. In Eq. (1b), f is a Gaussian noise
with spatiotemporal statistics:

hfðt; rÞi ¼ 0; hfðt; rÞfðt0; r0Þi ¼ 2Dδðt − t0Þδðr − r0Þ; ð2Þ

where D is the noise strength.
Without the alignment interactions, collective motion is

impossible. As a result, the momentum field has to go to
zero in the hydrodynamic limit, implying that the coef-
ficient κ has to be always positive. Therefore, the field g is
not a soft mode, namely, the momentum field is slaved to
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FIG. 1. Active Brownian particles on a planar hexagonal lattice
in our simulation. Particle behavior is restricted to (a) rotational
diffusion, (b) ballistic motion (green arrow), and translation
diffusion (blue arrows), and (c) disallowed translation due to
attempting to move to an occupied lattice site. This minimal
model generically exhibits MIPS.
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the density field. In the hydrodynamic limit, we can hence
ignore the dynamical equation of g and express g as a
function of ρ and its derivatives:

g ¼ −∇½ða1ϕþ a2ϕ2 þ a3ϕ3Þ − ð∇2ðbϕÞÞ þ h:o:t� þ f;

ð3Þ

where ϕðrÞ ¼ ρðrÞ − ρ0 for some constant ρ0, and h.o.t. in
Eq. (3) refers to higher order terms in the expansion of g in
powers of ∇ and ϕ. Note that the negative sign in front of
the square brackets is for reasons of stability, and the noise
term f is as defined in Eq. (2), albeit with the noise strength
rescaled by κ−2.
Substituting this form into Eq. (1a), we have

∂tϕ ¼ ∇2
δH
δϕ

þ h:o:tþ∇ · f; ð4Þ

where H¼ða1=2Þϕ2þða2=3Þϕ3þða3=4Þϕ4þðb=2Þð∇ϕÞ2
is the familiar Landau-Ginzburg Hamiltonian while h.o.t.
in Eq. (4) again refers to higher order terms omitted, which
include nonequilibrium terms such as ∇4ϕ2 [14] and
∇ · ½∇ϕð∇2ϕÞ� [15]. We note that although the resulting
EOM is similar to the active modelB introduced in Ref. [14],
our approach is completely different—our EOM arises from
premises based explicitly on symmetry consideration alone.
Practically, our method inevitably leads to the presence of
the ∇2ϕ2 term in the EOM due to the absence of Ising
symmetry (ϕ ↦ −ϕ). Such a term is absent in the active
model B. We also note that there is an extensive literature on
asymmetric fluid criticality [16–20] and the significance of
the higher order odd terms which result from it. It is well
established that the presence of such terms will not effect the
universality class of the critical transition.
Now, the phenomenology of MIPS indicates that the

system can be placed at the critical point by tuning two
model parameters, e.g., by tuning the density and the noise
strength (Fig. 2). Given this constraint, the only possibility
to achieve criticality (i.e., having a divergent correlation
length in the system) corresponds to tuning a1 and a2 to
zero in H. Around this critical point, the standard renorm-
alization group method demonstrates that all higher order
terms in Eq. (4) are irrelevant [21,22]. In particular, the
dynamical equation (4) is exactly the dynamics of the Ising
model with conservative dynamics (model B) [23]. The
scaling behavior of MIPS at criticality is thus characterized
by three exponents: two static and one dynamic. Our
hydrodynamic argument applies in any spatial dimension.
To verify this conclusion, we will from now on focus on
MIPS in 2D, and first look at a field-theoretic formulation
of a specific lattice model in 2D to see how the system can
be fine-tuned to exhibit critical behavior. We will then
demonstrate with simulation results that critical exponents
of MIPS show good agreement with our prediction (Fig. 3).
We note that in an interesting development, independently

and concurrently to our work, it has also been concluded
[24] that Ising behavior is generically possible. However,
the authors also speculate that different, nonequilibrium
strong coupling behavior is possible, based on generalizing
the perturbative RG analysis beyond the controlled regime.
We do not see evidence of such a regime in our simulation
results.
Field-theoretic description of a microscopic model.—

There have been several notable attempts [33–37]—
especially useful in the study of the collective dynamics
of bacteria [34,35]—to model clustering and phase sepa-
ration in active systems on lattice. Here, we consider an
active particle model on a 2D hexagonal lattice similar to
the one recently introduced in Ref. [38], except here the
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FIG. 2. Phase behavior. (a) The phase diagram resulting from
Monte Carlo simulations of the lattice model (Fig. 1) shows the
well-mixed region at high rotational noise (σ) and the phase
separated region at low noise. Snapshots of the system configu-
ration at the well-mixed region, critical point (estimated to be at
ρc ≈ 0.522, σ ≈ 0.305 [25]), and phase separated region are
shown in (b), (c), and (d), respectively. The system shown has
72 × 216 sites.
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occupancy of the lattice site is bounded by a constant M.
Specifically, we consider a collection of six distinct types of
active particles, each type has a specific orientation θi and
will only jump to the neighboring site along the direction
θi, with a certain rate that depends on the occupancy of the
target site. In addition, the type of a particle will convert,
with rate σ, to a different type in the neighboring orienta-
tions, which corresponds to the rotational noise of the
particle. Enumerating the lattice by the set of vectors R,
and the type (orientation) of the active particle by i, we
now denote the number of particles of type i on the lattice
site R by Aθi

R.
Using the field-theoretic formalism developed in

Ref. [39], the action that describes the model is

S ¼
Z

dt
X
R

�X
i

½Âθi
R∂tA

θi
R ð5aÞ

−γðM − NRþeθi
ÞAθi

Rðe
Â
θi
Rþeθi

−Âθi
R − 1Þ� ð5bÞ

−
X
hi;ji

σAθi
RðeÂ

θj
R −Âθi

R − 1Þ
�
; ð5cÞ

where eθ ≡ dðcos θx̂þ sin θŷ) is a vector pointing along
the direction θ with its norm being the lattice spacing d, Âθi

R

are the conjugate fields of Aθi
R, andNR ¼ P

j A
θj
R is the total

number of particles on site R. Specifically, Eq. (5) corre-
sponds to the jumping event with rate γðM − NRþeθi

Þ,
which means that the rate of jumping into a lattice
decreases with the occupancy of that target lattice and
becomes zero if the lattice site has alreadyM particles. This
models the volume exclusion interactions between the
particles. Equation (5c) corresponds to the interconversion
between the particle types and hi; ji denotes the pairs of

orientations that are nearest neighbors to each other in
angular space.
By first taking the discrete spacing of the lattice to zero

(d → 0), and then the angular space to the continuum limit,
we argue in Ref. [25] that the action can be approximated as

S ¼
Z

dtd2rdθðψ̂θ½∂tψθ þ êθ ·∇r½γðρM − ρÞψθ� − σ∂2
θψθ�

− σψθð∂θψ̂θÞ2Þ; ð6Þ

where êθ is now a normalized unit vector, ψθðrÞ ∝ Aθ
R=d

2

is the density of particles with orientation θ at r ¼ R,
ψ̂θðrÞ ¼ Âθ

R, ρðrÞ ¼ ð2πÞ−1 R dθψθðrÞ is the particle den-
sity at position r, and ρM ∝ M=d2 is the maximal density
allowed.
Since the action is now quadratic in ψ̂ θ, we can rewrite

the dynamics of this field-theoretic model as a Langevin
equation

∂tψθ þ êθ ·∇r½γðρM − ρÞψθ� ¼ σ∂2
θψθ þ ξθ; ð7Þ

where ξθ are noise terms with statistics:

hξθðr; tÞi ¼ 0

hξθðr; tÞξθ0 ðr0; t0Þi ¼ 2σ∂2
θ½ψθδðθ − θ0Þδðt − t0Þδ2ðr − r0Þ�:

ð8Þ

The set of EOM Eq. (7) constitutes an infinite number of
field equations (one for each θ). To reduce these into the
hydrodynamic equations of the form (1), we consider the
Fourier expansion of ψ with respect to θ [40]:

ψθðrÞ ¼ α0ðrÞþ 2
X
n≥1

½αnðrÞcosðnθÞþ βnðrÞ sinðnθÞ�: ð9Þ
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FIG. 3. Static and dynamic exponents estimation from our lattice model simulations. (a) Susceptibility χL at criticality as a function of
system size L. (b) The Binder cumulant at criticality ð∂τU4Þτ≃0, where τ is the dimensionless distance to the critical noise, as a function
of L. (c) The average coarsening length scale lðtÞ at criticality (circles) and deep within the phase-separated regime (triangles), as
determined by the first intercept of the pair correlation function with the x axis, vs time t as measured by the number of particle sweeps.
The red lines show the exact results from the 2D Ising model with conservative dynamics: (a) γ=ν ¼ 7=4, (b) ν ¼ 1, and (c) z ¼ 15=4.
While the dashed blue line in (c) shows the Lifshitz-Slyozov z ¼ 3 scaling. In each plot error bars are smaller than the size of the data
points. See Ref. [25] for details on simulation procedures and error estimation.
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In particular, α0 ¼ ρ, αn ¼ α−n, and βn ¼ −β−n. In
Ref. [25], we show that in the Fourier transformed space,
all modes are massive except for ρ, which is consistent with
our previous hydrodynamic argument. Here, we aim to
demonstrate how the coefficients in the hydrodynamic
equations can in principle be fine-tuned; we will thus
simplify the EOM by setting βn to zero for all n (hence
spatial variation is only possible along the x axis), and αn to
zero for all n > 1. Note that this kind reduction has been
shown to be useful in the study of polar active fluids at the
onset of collective motion [40–43].
Going through this reduction procedure [25], we arrive at

∂tρþ
πγ

2
∂x½ðρM − ρÞα1� ¼ 0 ð10aÞ

∂tα1 þ
πγ

2
∂x½ðρM − ρÞρ� ¼ −σα1; ð10bÞ

where we have also ignored the fluctuating term in α1,
which we will discuss later.
Solving for α1 by setting the temporal derivative of α1 to

zero (since it is a fast mode), we have

∂tρþ ∂x

�
−
π2γ2

4σ
ðρM − ρÞ∂x½ðρM − ρÞρ�

�
¼ 0: ð11Þ

The expression inside the curly brackets corresponds to
the x component of g in Eq. (3). Note that at this level of
truncation, the above model equation is similar to other
models [15,44]. However, we will show in Ref. [25] how
our field-theoretic model leads to other nonequilibrium
terms [e.g., ∇4ϕ2 and ∇ · ½ð∇ϕÞð∇2ϕÞ� in Eq. (4)] when
higher order modes are incorporated.
Expressing ρ as ρ0 þ ϕ for some constant ρ0 in Eq. (11),

we find

a1 ¼
π2γ2

4σ
ðρM − ρ0ÞðρM − 2ρ0Þ; ð12aÞ

a2 ¼
π2γ2

4σ

4ρ0 − 3ρM
2

: ð12bÞ

As aforementioned, the system exhibits Ising critical
behavior when both a1 and a2 are zero. By tuning ρ0,
we can either set a1 to zero (when ρ0 ¼ ρM=2), or a2 to zero
(when ρ0 ¼ 3ρM=4), but seemingly not both. However, we
have not yet incorporated the noise term into the analysis.
Indeed, by analyzing the hydrodynamic equation (4) using
diagrammatic methods around the critical point, one finds
that fluctuation-induced renormalization of the coefficients
generically increases a1 while decreases a2 [25]. In other
words, the fluctuation strength can in principle be fine-
tuned so that both a1 and a2 are zero. In particular, for this
microscopic model, the critical density ρc is bounded below
by ρM=2 and above by 3ρM=4. Wewill see that this bound is

also satisfied by our simulated system [Fig. 2(a)], which we
will turn to now.
Simulation of a lattice model.—Going beyond our

analytical arguments, we will now present simulation
results in support of our conclusion. We employ a similar
microscopic model as in our field-theoretic formulation
(with maximal occupancyM ¼ 1), except that we allow the
particles to diffuse, with a low probability, in addition to the
active movement. Data analysis is adapted from Ref. [45].
Note that based on simulation results in continuum space
for the static critical exponents, the authors in Ref. [45]
arrived at a different conclusion from us. We speculate that
the discrepancy arises because their results are not yet in the
scaling regime, potentially due to the limited sizes used in
the study. Here, by focusing on a lattice model, we can
perform simulations on larger systems and achieve better
statistics, enabling us to find good agreement between our
analytical predictions and the simulation results for both the
static exponents as well as the dynamic exponent (Fig. 3).
In our system, N polar particles move on an elongated

hexagonal lattice of size 2L × 6L lattice sites subject to
periodic boundary conditions. The system evolves via an
iterative Monte Carlo style update scheme in which
particles are selected at random and we measure time t
in particle sweeps. Specifically, at each time step two
stochastic processes per particle are attempted: (i) to imple-
ment rotational fluctuations of a particle, a Gaussian
random variable with standard deviation σ is drawn and
rounded to the nearest integer n, the particle’s direction is
then rotated by n × 60°; (ii) to implement translation, the
particle will attempt to move in a direction prescribed by its
orientation with probability 24=30 (active motion), and in a
randomly chosen direction otherwise (diffusive motion).
Steric interactions are implemented by disallowing any
movement into an occupied site.
Using the sampling method described in Ref. [25] we

construct the phase diagram shown in Fig. 2. We then use
the Binder cumulant U4 to locate the asymptotic critical
noise strength.
Based on our previous analytical arguments, three

independent critical exponents will characterize fully the
universal behavior of critical MIPS. Focusing first on the
static critical exponents, we use the standard finite-size
scaling relations [46]: χL ∼ Lγ=ν and j∂U4=∂τj ∼ L1=ν,
where τ is the dimensionless distance to the critical noise
and χL is the finite-size sub-box susceptibility:

χL ¼ hN2iL − hNiL2
hNiL

: ð13Þ

In the above, h:iL denotes an average taken over a finite
system size L. The results of this analysis are shown in
Figs. 3(a) and 3(b), which show good agreement with the
analytical results for the two-dimensional Ising universality
class (red lines).
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To estimate the dynamic exponent z for critical MIPS,
we adapt a method presented in Ref. [47]: we seed 300
simulation runs from a completely disordered initial state
and calculate the characteristic coarsening length lðtÞ of
the system for the first 400 000 particle sweeps. We define
lðtÞ as the length scale at which the correlation function
first becomes negative. Again, we see a good agreement
between the data and the Ising result [Fig. 3(c)]. To further
ascertain the validity of our simulation method, we repeat
this procedure deep within the phase separated regime,
where due to the emergence of the Gibbs-Thomson relation
at the interface [48,49], we expect that the coarsening
dynamics of MIPS at the late stage follows the equilibrium
Lifshitz-Slyozov scaling law (z ¼ 3), which is indeed the
case [Fig. 3(c)].
Conclusion.—We have demonstrated that the critical

behavior of MIPS belongs generically to the equilibrium
Ising universality class with conservative dynamics. Our
hydrodynamic approach is based solely upon consideration
of symmetry and conservation law. Therefore, our
conclusion applies to all models consistent with these
premises. In particular, since neither the mechanism of
self-propulsion nor the particularity of the noise can effect
the symmetry of the system, a broad class of dry active
matter models displaying critical MIPS will belong to the
Ising universality class. We also note that novel critical
behavior in active matter is indeed possible [50] and it
remains an interesting question to see what universality
classes unique to active matter await discovery.
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