
Partition and Propagate: an Error Derivation Algorithm

for the Design of Approximate Circuits

Ilaria Scarabottolo1, Giovanni Ansaloni1, Laura Pozzi1, and George A. Constantinides2

1Faculty of Informatics, Università della Svizzera Italiana, Lugano, Switzerland
2Electrical and Electronic Engineering, Imperial College, London, United Kingdom

Abstract

Inexact hardware design techniques have become popular in error-tolerant systems,

where energy efficiency is a primary concern. Several techniques aim to identify circuit

portions that can be discarded under an error constraint, but research on systematic meth-

ods to determine such error is still at an early stage. We herein illustrate a generic, scalable

algorithm that determines the influence of each circuit gate on the final output. The algo-

rithm first partitions the graph representing the circuit, then determines the error prop-

agation model of the resulting subgraphs. When applied to existing approximate design

frameworks, our solution improves their efficiency and result quality.

1 Introduction

The pervasive diffusion of resource-constrained embedded and portable systems is challenging traditional

methodologies for the design of digital systems. In particular, Approximate Computing applied at circuit

level is gaining increasing research interest, as it can lead to high-performance implementations coupled with

reduced area and energy cost.

A promising approach to designing approximate hardware is logic simplification, which may tune the

Boolean function implemented by a circuit to obtain an inexact equivalent [11], or it may focus on the

pruning of gate-level netlists, identifying circuit portions that, if neglected [7, 6] or substituted [10], entail

only small errors at the outputs.

For all these approximation techniques to be effective, an accurate notion of the error induced at the

output by a given transformation is paramount. Our contribution falls in this field, addressing the challenge

of quantifying the maximum error observed in a generic combinatorial circuit output, when some of the circuit

logic gates are simplified. We propose a novel algorithm to identify a bound on such error, which improves

on the state of the art by providing accuracy similar to that obtained through exact error computation, at

a fraction of the runtime.

We achieve this goal by partitioning the original circuit into subcircuits and deriving an error-propagation

model to label each gate with the maximum error induced by its removal.

As this partitioning step guarantees that we only rely on simulation for (small) subcircuits, our strategy

has a remarkable positive impact on the quality of result and on the run-time required for inexact logic

simplification.

Summing up, the main contributions of this work are:

1

Partition and Propagate: an Error Derivation Algorithm for the Design of Approximate Circuits

• We present a circuit decomposition algorithm to quantify the error induced by inexact logic simplifi-

cation, able to bypass the non-scalable complexity of exact error computation.

• We show that the obtained errors are orders-of-magnitude less conservative than those derived by

maximum error estimation techniques available in the state of the art.

• We showcase the performance enhancement that our error estimation method can induce in state-

of-the-art gate-level simplification frameworks. Our method enables up to 39% further reduction of

EDAP (energy, delay and area product) for the inexact circuits derived by the GLP method [7], when

guided by our error model.

2 Related Work

Approximate Computing as a design paradigm has been attracting a large number of research efforts. While

approximation can be exploited at various levels of the hardware/software stack, circuit-level AC methodolo-

gies are most related to our contribution. These techniques aim to derive inexact gate-level netlists starting

from their exact counterparts; inexact circuits can then be combined to efficiently realise complex function-

alities [1]. Some notable efforts in inexact circuit research focus on manually designing specific arithmetic

units, such as adders [13] or multipliers [5], while others adopt a more generic approach, enabling the sim-

plification of any combinatorial circuit [11, 7, 6, 9, 10, 2, 4]. In order for these techniques to be effective,

accurate error estimation is needed to understand the effect that each proposed transformation can induce

at the circuit output (for example, which node to be selected for iterative node-removal [7, 14], or which net

to be substituted and simplified [10]).

Among the state of the art in error estimation methods to guide the above approximation techniques,

several works [9, 12, 7, 2] present a framework where errors are derived through Monte Carlo sampling of

possible inputs, and expressed as statistical measures.

The method we propose focuses instead on finding a bound for the maximum error, which is a stronger

requirement that can be of primary concern in some critical applications. The state of the art in proposing

a bound for maximum error — as opposed to average error estimation — consists in two categories: one

of tractable complexity but producing conservative quality bounds, and one delivering exact values but

exhibiting intractable complexity.

Belonging to the first category, a strategy [7] which we refer to as sum labelling models the influence

of a gate as the sum of the influence of all its direct children gates. In practice, however, the influence

of a gate removal can be considerably less than this conservative estimation, and our experimental results

show that orders of magnitude can separate it from the actual error. On the other end of the spectrum, and

belonging to the second category, is exact error computation. This can be performed employing whole-circuit

simulation, as in [6], or using SAT solvers, as in [12]; however, the complexity of these methods is exponential

in the number of circuit inputs, and therefore necessarily becomes intractable at some point.

The present work, called Partition and Propagate (P&P), overcomes the intractability of exact error

computation, by partitioning the circuit and employing simulation only on small subcircuits, and at the

same time strongly improves on the accuracy obtained by tractable strategies such as sum labelling [7], as

demonstrated by experimental results.

3 Methodology

In the following sections, we formally state the problem we address; then, we describe the stages of our

workflow (also depicted in Figure 1), namely graph partitioning, derivation of the propagation matrices,

2

Partition and Propagate: an Error Derivation Algorithm for the Design of Approximate Circuits

[…] […]

[…]
[…]

[…]

11 12

13

14not yet known

known

Figure 1: The proposed P&P methodology. A graph representing a gate-level netlist is processed; error

weights at this point are known only at the outputs (bit-significance). The graph is then partitioned (1), and

propagation matrices are derived (2); they express the relation between output and input weights. External

edges weights are then derived by propagation through subgraphs (3), and finally subgraph simulation

determines weights for internal nodes (4).

propagation and subgraph simulation for internal nodes.

3.1 Problem Formulation

A combinatorial circuit can be represented as a Direct Acyclic Graph G(N,E), where each node ni ∈ N

represents a single output Boolean gate and each edge e(ni, nj) ∈ E represents a connection between nodes

such that the output of ni is used by nj .

The purpose of this work is to label the graph with weights w(ni) for each gate ni ∈ N . The weight of

an edge is equal to that of its destination node: w(e(ni, nj)) = w(nj) for all e ∈ E.

Weights represent the influence of a node on the circuit output, in terms of a bound on the maximum

difference from the exact result that can be observed if ni is removed from the circuit and its output is set

to a constant value.

The result of a circuit computation is captured by function

f : Bn → Z (1)

mapping the Boolean vector of the circuit primary outputs into an integer, corresponding to bit-significance

weighting for arithmetic circuits.

Given a graph G(N,E) representing the exact circuit, and given graph Gi(N\{ni}, E\{e(u, v) | u =

ni ∨ v = ni}) representing the approximate one, obtained by removing node ni, for all k = 1..2|I| possible

input combinations the two circuits will generate the Boolean vectors ok and ok
i of their primary outputs.

The exact weight of ni is, then, their maximum difference:

w(ni) = max
k
|f(ok)− f(ok

i)| (2)

3

Partition and Propagate: an Error Derivation Algorithm for the Design of Approximate Circuits

3.2 Graph partitioning

The strategy we adopt to obtain a scalable framework to derive such weights is to partition the graph into

smaller subgraphs that can be separately simulated. We define a partition function

p : G(N,E) 7→ S (3)

where S is a set of subgraphs s(Ns, Es), Ns ⊆ N, Es ⊆ E. Each ni ∈ N is assigned to exactly one

subgraph s(Ns, Es) ∈ S, and
⋃

s Ns = N . All edges {e(ni, nj) ∈ E | ni ∈ Ns ∧ nj ∈ Ns} belong to Es.

Figure 1 (step 1) shows an example of a generic graph G partitioned into five subgraphs. We define external

edges {e(u, v) | u ∈ Ni∧v ∈ Nj , i 6= j} those linking two different subgraphs. A subgraph p(Np, Ep) is parent

of subgraph q(Nq, Eq) if there exists at least one external edge {e(u, v) | u ∈ Np ∧ v ∈ Nq}.
We explain in Section 3.6 the algorithm we propose for partitioning. For now, we assume a partition has

already been performed.

3.3 Derivation of the propagation matrix

After graph G(N,E) has been partitioned, each subgraph is analysed to determine how the weights of its

inputs can be derived as a function of those of its outputs.

Each subgraph has a set of inputs Is = {e(u, v) | u /∈ Ns, v ∈ Ns} and a set of outputs Os = {e(u, v) | u ∈
Ns, v /∈ Ns}. Weights of the inputs are obtained as functions of output weights by observing the subgraph

truth table. An example is provided in Figure 2, where a subgraph of two inputs, edges a1 and b (the two

edges coming from node B are actually indistinguishable, as they correspond to the same bit value, and

hence are referred to as a single one), and two outputs, C, D is depicted; weights of the two outputs are

labelled wC and wD.

In particular, Figure 2b illustrates how wb is obtained: a pairwise comparison is performed between

input tuples that differ only for the value of bit b. If the integer value of the output vector f(o) is strictly

monotonically increasing with subgraph output bits C and D, then wb is set to the maximum recorded

difference maxk |f(ok
b=1) − f(ok

b=0)| over the k = 1..2Is−1 comparisons (2, in this basic example), and it is

expressed as a linear combination of the output weights (in the example, we assume |wC − wD| is greater

than wD).

We can safely set wb to the difference of output bits weights because the strict monotonicity of f(o)

guarantees that errors at the subgraph output will propagate in the same way (i.e. with the same polarity)

to the graph primary outputs. If, on the contrary, f(o) is not monotonically increasing with bits C or D, the

direction of each of these bit variations could be reverted in lower computations and, hence, we are forced to

set the input weight to the sum of all flipped output bit weights. In the example, this would result in weight

wb being set to wC +wD. Note that a single non-monotonic subgraph in the path to the primary outputs is

sufficient for potential error underestimation; therefore, information on non-monotonicity must be retained

for upper subgraphs.

The same process is repeated for input a1, and the results are stored in a propagation matrix Ms(|Is|, |Os|),
where the i-th row contains the coefficients (0, 1 or -1) of the linear combination of the output weights for

input i. Weights of the subgraph inputs can then be calculated as:[
wa1

wb

]
= M

[
wC

wD

]
(4)

Propagation matrices are derived for each subgraph, then used to propagate subgraph output weights to

their inputs.

4

Partition and Propagate: an Error Derivation Algorithm for the Design of Approximate Circuits

(a)

b2

C D

wC wD

xor not

ornot

A B

a2
a1 b1

(b)

M (2,2) = 1
1

-1
-1

wC wD

wb

w a1

s

a1 b C D
0 0
0 1
1 0
1 1

1 1
0 1
0 1
1 0

f (ob=0) = wC+wD
1

f (ob=1) = wD
1

f (ob=0) = wD
2

f (ob=1) = wC
2

k=
1

k=
2

w = max | f (ob=1) - f (ob=0)| b
k k

k

= max (wC , |wC – wD|)

Figure 2: Propagation matrix derivation for an example subgraph. The figure reports its truth table, and

differences are computed for wb. The process is repeated twice (once for each distinguishable input) to obtain

the complete matrix.

3.4 Propagation

The missing step at this point is to propagate weights from the inputs of generic subgraphs to the outputs

of their parent subgraph(s). For example, looking again at Figure 2, weights of nodes A and B must now be

derived from weights of edges a1, a2 and b.

For a generic subgraph output, either all its children belong to the same subgraph (as for node B of

Figure 2), or children nodes are distributed in different subgraphs (as for node A). Derivation for the first

case is trivial: wB is equal to wb. However, if a node has children belonging to different subgraphs, its weight

must conservatively be computed as the sum of the corresponding external edges weights (wa1 +wa2 for wA

in the example), since we cannot resort to a single truth table to compute a less conservative weight.

3.5 Subgraph simulation for internal nodes

Once external edges and subgraph outputs are labelled, we populate each subgraph with internal node

weights. In this phase, we do employ exhaustive simulation, as in [6], but applied to each subgraph separately,

where the crucial difference is that their number of inputs |Is| is much smaller than that of the whole circuit

|I|. A SAT-solver based exact weight derivation could also be used in this step, leading to the same conclusion:

the number of inputs of subgraphs is now limited, and hence the problem becomes tractable.

3.6 Partitioning criteria

Different partition choices for a given graph G will impact two aspects: the accuracy of the obtained weights

on one side, and the feasibility of subgraph simulation on the other.

Figure 3 depicts two extreme partitions: at one end, each gate corresponds to one subgraph. This leads

to a feasible partition (each subgraph has a limited number of inputs – namely two, at most, for up to

two-inputs gates – and hence can be simulated) but will be the worst in terms of resulting weight accuracy,

because it corresponds to resorting to the sum labelling algorithm. In fact, with this partition, all gate

5

Partition and Propagate: an Error Derivation Algorithm for the Design of Approximate Circuits

(b)(a)

C
or

re
sp

on
ds

 to
 s

um
 la

be
lli

ng

C
or

re
sp

on
ds

 to

w
ho

le
-c

ir
cu

it
 s

im
ul

at
io

n

Figure 3: Two end-of-the-spectrum partitions: a) each gate corresponds to one subgraph, b) the whole

circuit corresponds to a single subgraph.

fanouts are external edges and the propagation step (Section 3.4) is conservatively forced to adopt sum

labelling for all of them, when deriving weights of subgraph outputs.

At the other extreme, the whole circuit corresponds to a single subgraph. This will lead to the best

partition in terms of resulting weight accuracy (all children of the same gate belong to the same sugraph, and

hence get subsumed in a single propagation matrix), but will be generally infeasible, because it corresponds

to whole-circuit simulation.

To find a suitable partition trading off these concerns, we consider two main aspects. First, feasibility :

the number of inputs |Is| for each subgraph s has to be small, in order to allow simulation of all the 2|Is|

possible input combinations.

Secondly, as illustrated in Section 3.4, it is advantageous that all children of any given node belong to the

same subgraph, so that gate fanouts are included into the same subcircuit simulation and sum labelling em-

ployment is unnecessary. Hence, for each n′, n′′ children of the same node:

∀N ′, N ′′ ∈ N. n′ ∈ N ′ ∧ n′′ ∈ N ′′ ⇒ N ′ = N ′′. (5)

Note that state-of-the-art graph partitioning approaches for logic synthesis (such as, for example, KL-

cuts [3]), do not consider the condition expressed in Equation 5 above, and hence are not suitable for this

problem; therefore, we propose and implement a different algorithm. The partitioning algorithm we propose

labels graph nodes with subgraph IDs, by first assigning the same subgraph ID to all children of the same

node, iteratively merging subsets with same ID to 1) honour the condition for all nodes, and 2) guarantee an

acyclic partition. In a second traverse, we merge together subgraphs for which |Is+t| ≤ max{|Is|, |It|}, i.e.,

the number of inputs of the resulting subgraph does not increase with respect to the largest one among its

components. This is done to reduce the number of propagation matrices to be derived, without increasing

the computational cost for any of them.

This algorithm creates a first phase partition, which is exemplified in Figure 4a. However, a partition

thus created does not guarantee feasibility, because not all subgraphs necessarily will have a limited number

of inputs (the feasible number of inputs is set to 3 for the simple example in the figure, and an infeasible

subgraph exists at the top-left). Hence, to recover the feasibility property, we adopt the simple strategy of

further partitioning exactly those subgraphs that are infeasible using the one-node-one-subgraph extreme

partition scheme, as exemplified in Figure 4b (the percentage of nodes ending up in infeasible subgraphs

after first phase is presented in our experimental section).

6

Partition and Propagate: an Error Derivation Algorithm for the Design of Approximate Circuits

(b)(a)

in
fe
as
ib
le

fe
as
ib
le

i0i1i2i3i4i5i6

o0o1o2o3o4o5o6

i7i8i9 i0i1i2i3i4i5i6

o0o1o2o3o4o5o6

i7i8i9

Figure 4: a) A first phase partition with one infeasible subgraph (top-left), b) A second phase feasible

partition, with the infeasible subgraph further partitioned into single-gate subgraphs.

Thus, this two-stage partitioning strategy generates 1) a feasible partition, where 2) a high number of

node fanouts are included in the same subgraph, and hence are subsumed in a single propagation matrix.

3.7 Time complexity analysis

For the sake of readability, in this section we will refer to the cardinality of a set with the name of the set

itself.

For a graph with N nodes, partition p is obtained through a first graph traverse, of cost N , for children

subgraph ID assignment. The resulting partition is then explored to guarantee that, if there exist subgraphs

leading to cycles, these are merged in a single one. This step has worst case complexity O(S + nEE), where

S is the number of resulting subgraphs before further partitioning due to infeasibility, and nEE the number

of external edges. After the second subgraph-merging traverse of cost S, infeasible subgraphs are split into

single-gate subgraphs in another linear step. Therefore, partitioning has complexity O(N + S + nEE).

Propagation, then, implies subgraph simulation for all subgraph inputs, and for all internal gates. Time

complexity of this phase strongly depends on the partition: for the extreme partition of Figure 3b, it

would be O(N2I), while for that of Figure 3a only O(4N) = O(N), since all gates have 2 inputs and,

hence, 4 possible input patterns. For generic partitions, the time complexity is O(
∑S

s=1 Ns2
Is). Since we

bound Is to a threshold TI , the exponential term can be expressed as a constant C = 2TI , leading to

O(C
∑S

s=1 Ns) = O(CN) = O(N).

In conclusion, the overall time complexity of the proposed algorithm is O(N+S+nEE), which depends on

the chosen partition parameters but is still remarkably lower than approaches that resort to simulation of all

inputs or SAT-solver based exact weight derivation. In our experiments, C is set to 210, while the number of

input combination for processed circuits ranges between 216 and 264. A widespread alternative to exhaustive

simulation is Monte Carlo selection of a subset of possible input patterns; the resulting simulation has then a

complexity of O(MN), given M the cardinality of such subset. However, to obtain accurate estimations, M

must be considerably larger than C (for example, 217 in [9], 220 in [2] and more than 222 in [7]). Moreover,

our method provides a bound for maximum error, while MC only provides an approximation of maximum

error.

7

Partition and Propagate: an Error Derivation Algorithm for the Design of Approximate Circuits

Figure 5: Comparison of the gate weights computed using sum labelling [7], Partition and Propagate and,

for circuits with lower input number, whole-circuit simulation [6].

4 Experimental Evaluation

4.1 Partition and Propagate performance

We assessed the performance of our methodology on a diverse set of benchmark circuits, specified in the

VHDL language. Their characteristics are described in Table 1, along with the critical path constraints

employed in their synthesis. We used Synopsys Design Compiler as a synthesis tool, targeting a 40nm

technology library, while SIS [8] was used to carry out the simulation of subcircuits, as well as exact error

computation for circuits with up to 16 inputs. Benchmarks were first synthesised to netlists only comprising

inverters and 2-inputs NAND and NOR gates; then, these netlists were fed to our tool P&P to compute

gate weights. Our framework can process netlists composed by any set of logic gates; nonetheless, the use

of larger, compound, gates may adversely impact flexibility, because, as weights are assigned on a per-gate

bases, it would force simplification frameworks to monolithically discard or retain large circuit portions.

Our strategy allows one to trade-off the accuracy of weights and computational effort by tuning, during

Table 1: Benchmark netlists.

Benchmark
of

gates

I/O

bitwidth

critical

path (ns)

8-bit adder 115 16/9 0.5

8-bit absolute difference 245 16/9 0.1

32-bit adder 475 64/33 2.0

16-bit butterfly 485 32/33 2.0

8-bit multiplier 685 16/16 2.0

8-bit binomial squared 946 16/18 5.0

8

Partition and Propagate: an Error Derivation Algorithm for the Design of Approximate Circuits

Table 2: Influence of threshold TI on resulting partitions, in terms of number of resulting subgraphs, infeasible

subgraph ratio, and average distance from exact weights (when available).

TI

8-bit adder 8-bit abs. diff. 32-bit adder 16-bit butterfly 8-bit multiplier 8-bit bin. sq.

n.

sg.

inf.

%

avg

dist.

n.

sg.

inf.

%

avg

dist.

n.

sg.

inf.

%

avg

dist.

n.

sg.

inf.

%

avg

dist.

n.

sg.

inf.

%

avg

dist.

n.

sg.

inf.

%

avg

dist.

10 7 0.0 0.00e0 17 0.0 1.43e2 31 0.0 - 15 0.0 - 190 9.6 2.34e5 8 0.0 4.36e3

5 7 0.0 0.00e0 135 44.1 2.26e3 31 0.0 - 15 0.0 - 190 9.6 2.34e5 272 16.1 1.27e7

2 63 44.3 3.47e2 163 55.6 2.69e3 231 36.3 - 430 78.9 - 340 30.4 6.58e5 648 57.0 3.79e9

Table 3: Average EDAP ratio of GLP-pruned circuits guided by either sum [7] or P&P labelling.

Benchmark
average EDAP ratio

GLP + sum [7] GLP + P&P

8-bit adder 0.503 0.394

8-bit absolute difference 0.574 0.443

32-bit adder 0.510 0.333

16-bit butterfly 0.507 0.507

8-bit multiplier 0.885 0.877

8-bit binomial squared 0.939 0.553

the partitioning phase, threshold TI , the maximum number of inputs allowed in a subgraph. Showcasing

the impact of this parameter, Table 2 reports the number of obtained subgraphs, the infeasible subgraph

ratio (i.e., the number of gates assigned to infeasible subgraphs over the total number of gates), and the

average distance from exact weight, for TI = 10, TI = 5 and TI = 2. As can be expected, lower thresholds

result in more and smaller subgraphs, and consequently in more conservative weights, as more subgraphs

are split into one-node-one-subgraph partitions. A value of TI = 10 obtains high quality weights, while the

resulting computation time remains within seconds to minutes, and it is the value that we choose for all

further experiments reported in this section.

In Figure 5 we compare the performance of P&P, in terms of maximum error estimation accuracy, with

state of the art methods: sum labelling [7], a conservative and low-complexity strategy, and exact error

computation, which has exponential complexity and can be obtained by whole-circuit simulation [6] or by a

SAT formulation [12]. It can be seen that P&P retrieves much less conservative gate weights with respect to

sum labelling (for example, seven orders of magnitude less for gate with ID 200 in the 8-bit binomial squared).

P&P weights in fact approach – or even coincide with – those obtained with exact error computation.

Because of its low computational complexity, P&P runtime is very short. For example, to label all gates

of the 32-bit adder it took only 18 seconds, while SAT-solver exact error computation of [12] takes 8 minutes

for a circuit with similar gate count (≈ 400), and a Monte Carlo simulation with 1 million inputs as in [2]

takes 11 seconds for each design point, which would result in more than an hour to label all circuit gates.

In conclusion, P&P combines graceful scaling with accurate error estimation.

4.2 Performance of approximate circuits

The improved accuracy in gate weights achieved by P&P has a significantly positive impact on the subsequent

simplification of inexact circuits. To explore this effect, we reimplemented the approximation strategy

proposed in [7], called Gate Level Pruning (GLP), which iteratively selects gates to be removed until the error

constraint is violated, starting from gates of lower weight. These pruned netlists were then re-synthesised,

using the entire set of library gates, to retrieve their Energy Delay Area Product (EDAP) that we use in

Figure 6 as a figure of merit.

9

Partition and Propagate: an Error Derivation Algorithm for the Design of Approximate Circuits

Figure 6: EDAP (Energy-Delay-Area Product) gains for all benchmarks.

Figure 6 illustrates that P&P algorithm leads to high-performance approximate circuits, resulting in large

EDAP gains for small error thresholds. As an example, for the case of the 8-bit binomial squared benchmark,

an EDAP improvement of 50% was achieved for an error magnitude of slightly less than 1%, where error

magnitude is a measure of absolute error, expressed as a percentage of the maximum circuit output.

Further showing the benefit of our error derivation methodology, Table 3 reports the average EDAP ratio

obtained for each benchmark when GLP is guided by sum labelling, as actually done in [7], and when it is

guided by P&P labelling instead. P&P generally induces large further reductions in obtained EDAP values,

of up to 39% for the 8-bit binomial squared case, and of 14% on average.

5 Conclusions

This work presents a novel algorithm for gate-level error determination, which identifies the maximum error

observed on the output when a gate is removed from a combinatorial circuit. Our approach overcomes the

main limitations of previous methods for quantifying such errors, by adopting a divide-and-conquer strategy

that results in a generic and scalable algorithm. When applied to AC design methods, the proposed algorithm

upgrades their awareness of error-propagation, resulting in higher result quality.

Future work will focus on investigating a larger spectrum of partitioning criteria, as well as on the

adaptation of our method to probabilistic error measures.

References

[1] J. Castro-God́ınez, S. Esser, M. Shafique, S. Pagani, and J. Henkel. Compiler-Driven error analysis

for designing approximate accelerators. In Proceedings of the Design, Automation and Test in Europe

Conference and Exhibition, pages 1–6, Mar 2018.

10

Partition and Propagate: an Error Derivation Algorithm for the Design of Approximate Circuits

[2] S. Hashemi, H. Tann, and S. Reda. BLASYS: Approximate Logic Synthesis Using Boolean Matrix

Factorization. In Proceedings of the 55th Design Automation Conference, pages 55:1–55:6, Jun 2018.

[3] O. Martinello, F. S. Marques, R. P. Ribas, and A. I. Reis. Kl-cuts: A new approach for logic syn-

thesis targeting multiple output blocks. In Proceedings of the Design, Automation and Test in Europe

Conference and Exhibition, pages 777–782, Sep 2010.

[4] J. Miao, A. Gerstlauer, and M. Orshansky. Approximate logic synthesis under general error magnitude

and frequency constraints. In Proceedings of the International Conference on Computer Aided Design,

pages 779–786, Nov 2013.

[5] S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, and J. Henkel. Architectural-space exploration

of approximate multipliers. In Proceedings of the International Conference on Computer Aided Design,

pages 1–8, Nov. 2016.

[6] I. Scarabottolo, G. Ansaloni, and L. Pozzi. Circuit Carving: A methodology for the design of ap-

proximate hardware. In Proceedings of the Design, Automation and Test in Europe Conference and

Exhibition, pages 545–550, Mar 2018.

[7] J. Schlachter, V. Camus, K. V. Palem, and C. Enz. Design and applications of approximate circuits by

gate-level pruning. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(5):1694–

1702, Feb. 2017.

[8] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan,

R. K. Brayton, and A. Sangiovanni-Vincentelli. SIS: A system for sequential circuit synthesis. 1992.

[9] S. Su, Y. Wu, and W. Qian. Efficient batch statistical error estimation for iterative multi-level approx-

imate logic synthesis. In Proceedings of the 55th Design Automation Conference, pages 54:1–54:6, Jun

2018.

[10] S. Venkataramani, K. Roy, and A. Raghunathan. Substitute-and-simplify: A unified design paradigm

for approximate and quality configurable circuits. In Proceedings of the Design, Automation and Test

in Europe Conference and Exhibition, pages 1367–1372, Mar. 2013.

[11] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghunathan. SALSA: systematic logic

synthesis of approximate circuits. In Proceedings of the 49th Design Automation Conference, pages

796–801, June 2012.

[12] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan. Macaco: Modeling and analysis of circuits

for approximate computing. In Proceedings of the International Conference on Computer Aided Design,

pages 667–673, Nov 2011.

[13] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu. On reconfiguration-oriented approximate adder design

and its application. In Proceedings of the International Conference on Computer Aided Design, pages

48–54, Nov. 2013.

[14] Z. Zhang, Y. He, J. He, X. Yi, Q. Li, and B. Zhang. Optimal Slope Ranking: An Approximate

Computing Approach for Circuit Pruning. In Proceedings of the 2018 IEEE International Symposium

on Circuits and Systems, pages 1–4, May 2018.

11

View publication statsView publication stats

https://www.researchgate.net/publication/333203535

	Introduction
	Related Work
	Methodology
	Problem Formulation
	Graph partitioning
	Derivation of the propagation matrix
	Propagation
	Subgraph simulation for internal nodes
	Partitioning criteria
	Time complexity analysis

	Experimental Evaluation
	Partition and Propagate performance
	Performance of approximate circuits

	Conclusions

