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Abstract  

 
A targeted high-throughput sequencing (HTS) panel test for clinical diagnostics 

requires careful consideration of the inclusion of appropriate diagnostic-grade genes, the 

ability to detect multiple types of genomic variation with high levels of analytic sensitivity 

and reproducibility, and variant interpretation by a multi-disciplinary team (MDT) in the 

context of the clinical phenotype. We have sequenced 2,396 index patients using the 

ThromboGenomics HTS panel test of diagnostic-grade genes known to harbour variants 

associated with rare bleeding, thrombotic or platelet disorders (BTPD). The molecular 

diagnostic rate was determined by the clinical phenotype, with an overall rate of 49.2% 

for all thrombotic, coagulation, platelet count and function disorder patients and a rate of 

3.2% for patients with unexplained bleeding disorders characterized by normal 

hemostasis test results. The MDT classified 745 unique variants, including copy number 

and intronic variants, as Pathogenic, Likely Pathogenic or Variants of Uncertain 

Significance. Half (50.9%) of these variants are novel and 41 unique variants were 

identified in 7 genes recently found to be implicated in BTPD. Inspection of canonical 

hemostasis pathways identified 29 patients with evidence of oligogenic inheritance. A 

molecular diagnosis has been reported for 894 index patients providing evidence that 

introducing an HTS genetic test is a valuable addition to laboratory diagnostics in patients 

with a high likelihood of having an inherited BTPD.  
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Introduction 

 

Inherited bleeding, thrombotic and platelet disorders (BTPD) are a heterogeneous 

group of rare disorders caused by DNA variants in a large number of loci. The most 

common bleeding disorders are von Willebrand Disease, affecting up to 0.01% of the 

population, and Hemophilia A and B, which together affect 0.01% of males.1 There are 

no accurate estimates of the prevalence of the remaining rare inherited bleeding 

disorders, although registry data suggest the prevalence being <0.001%.2 Venous 

thrombosis has an overall annual incidence of less than 1 in 1,000, but it is rare in the 

pediatric population, with rates of approximately 1 in 100,000, indicative of possible 

environmental and lifestyle effects in adult patients.3 To obtain a conclusive molecular 

diagnosis requires attendance at multiple outpatient consultations for a large portion of 

patients with an assumed diagnosis of a rare inherited BTPD.  

 

The genetic architecture of inherited BTPDs is well determined, but new genes 

continue to be identified. To date there are close to 100 diagnostic-grade genes (hereafter 

TIER1 genes) associated with coagulation, thrombotic and platelet disorders. Since 

validation of the ThromboGenomics HTS test4, 33 TIER1 genes, including recently 

discovered BTPD genes, have been added to the HTS test, increasing the clinical utility. 

Others have reported on similar gene panel tests or used whole exome sequencing to 

identify DNA variants causing inherited BTPDs5-10. Most studies used patients with 

uniform clinical phenotypes, but all on relatively small numbers of patients (<160 index 

patients), preventing firm conclusions about the clinical utility of such tests. The diagnostic 

rates obtained in these studies cannot be compared as all focused on different sets of 

genes (with a subset of TIER1 genes, and also inclusion of ‘research’ genes), used 

different patient inclusion criteria and variant classification was not standardized as is now 

recommended.11 

 

Here we report on the results obtained with the ThromboGenomics HTS test for 

2,396 index patients categorized into five classes of disorders based on the appended 

human phenotype ontology (HPO) terms12 and referral information; thrombotic, platelet 
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count, platelet function, coagulation and unexplained bleeding. Variant interpretation, by 

a multi-disciplinary team (MDT), determined the contribution of variants in TIER1 genes 

to the observed phenotypes thereby providing insights in the clinical utility of HTS testing 

for different categories of patients. We also comment on the standardization of variant 

interpretation and how the reporting of a conclusive molecular diagnosis has immediately 

impacted on clinical management. Finally, due to the large number of patients tested, we 

are able to highlight the clinical importance of detecting copy number and deep intronic 

variants and possible oligogenic inheritance.  

 

Methods  

 
Patients 

The 2,396 index patients were either referrals for the ThromboGenomics test or 

patients who joined the PANE and VIBB studies (Supplemental Table 1). Clinical and 

laboratory phenotypes were recorded using HPO terms as described.4,13 Further details 

of the study participants, including institutional review board or research ethics committee 

information are in the Supplemental Information. 

 

ThromboGenomics referrals for diagnostic testing of inherited BTPDs 

Samples with clinical and laboratory phenotype information from 1,608 index patients with 

a known or suspected diagnosis of inherited BTPD, according to criteria described 

(Supplemental Information),4 were recruited by clinicians in 72 UK and 46 non-UK 

hospitals (Supplemental Figure 1).  

 

PANE: Preoperative screening for mild bleeding risk  

A total of 212 patients, identified through preoperative assessment of bleeding risk at 

Maastricht University Medical Centre, were recruited and underwent a full hematological 

assessment including extensive laboratory testing for hemostasis parameters 

(Supplemental Table 2).14,15 
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VIBB: Vienna Bleeding Biobank   

A total of 599 patients referred to the Hematology and Hemostaseology specialist tertiary 

referral centre in Vienna for assessment of a mild to moderate bleeding disorder were 

recruited and subjected to a full hematological assessment, including extensive laboratory 

testing for hemostasis parameters (Supplemental Table 2).16 

 

ThromboGenomics HTS test   

The ThromboGenomics HTS test sample preparation and sequencing protocols 

are as described with minor modifications (Supplemental Information).4 The content of 

the test has been reversioned twice since first described to include additional (mostly 

recently discovered) TIER1 genes. ThromboGenomics version 2 (TG.V2) and version 3 

(TG.V3) include 80 and 96 genes, respectively (Supplemental Table 3). TIER1 genes are 

curated and approved by the Scientific and Standardization Committee on Genomics in 

Thrombosis and Hemostasis (SSC-GinTH) of the International Society on Thrombosis 

and Haemostasis (ISTH) (https://www.isth.org/page/GinTH_GeneLists). For TG.V3, 

probes for 10,000 common single nucleotide variants (SNVs) were included to estimate 

relatedness and ancestry. Automated bioinformatics analysis pipeline methods, including 

variant calling, are described in the Supplemental Information. 

 

Variant prioritisation and interpretation 

Variants were annotated and prioritized for interpretation using the analytical 

process as reported4 based on the predicted effect in the curated transcript, presence in 

the Human Gene Mutation Database17 or in a curated set of known pathogenic variants 

(Supplemental Information) and the minor allele frequency (MAF) in the Exome 

Aggregation Consortium (ExAC) and Genome Aggregation (gnomAD) databases.18 On a 

patient-by-patient basis, DNA variants passing filtering were prioritized and interpreted by 

a MDT in the context of the appended HPO terms, clinical information and family history. 

Reported variants were characterized as Pathogenic, Likely Pathogenic and Variants of 

Uncertain Significance alongside a decision of the likely contribution of each variant to 

the patients phenotype. The MDT made use of Congenica's diagnostic decision support 

platform SapientiaTM (Cambridge, UK) to support the review process and record findings 
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in the form of research reports for return to referring clinicians. For all samples sequenced 

using TG.V2, variant interpretation was performed according to guidelines agreed by the 

members of the ThromboGenomics MDT (criteria in Supplemental Table 4 and details of 

MDT process in Supplemental Information). In 2017, the UK Association of Clinical 

Genomic Science published best practice guidelines for variant interpretation based on 

the earlier reported American College of Medical Genetics and Genomics (ACMG) 

guidelines.11 Sapienta software implemented ACMG guidelines from release 1.7 (January 

2018), allowing rapid variant interpretation following these guidelines. This updated 

system was applied for variant interpretation of all samples sequenced using TG.V3. 

Table 1 summarizes the main differences in panel content, methods, analysis and 

interpretation used for TG.V2 and TG.V3. 

 

Results 

 

Patient inclusion criteria and phenotypes 

A total of 2,396 index patients and 156 samples from relatives and carriers were 

tested using the ThromboGenomics HTS test (Supplemental Table 1). The largest group 

of 1,608 index patients and 18 referrals for hemophilia carrier status were referred by 

specialist tertiary centres for diagnostic testing. To better appreciate the clinical utility of 

the HTS test we also included 193 and 595 index patients from the PANE and VIBB 

single-centre studies.  

 

Based on the clinical and laboratory phenotypes of all patients, a total of 7,341 

HPO terms were appended. HPO terms and clinical information were used to categorize 

all patients into five broad disease classes; thrombotic (n=284), platelet count (n=335), 

platelet function (n=430), coagulation (n=728) and unexplained bleeding (n=619) (Figure 

1A). The ThromboGenomics referrals included patients of all five classes, while the 

majority of the PANE (80.3%) and VIBB (59.5%) patients are classed as unexplained 

bleeding. 

Most of the patients categorized to the thrombotic class were referred because of 

reduced Protein C or Protein S levels as indicated by the HPO term ‘Abnormality of the 
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protein C anticoagulation pathway’ (Figure 1B). Patients with platelet count disorders 

were generally referred due to (macro)thrombocytopenia. Platelet function abnormalities 

were diverse, including defects in aggregation, reduced platelet membrane protein 

expression (particularly GPIb/IX/V and GPIIb/IIIa) and reduced granule secretion. 

Coagulation defects included patients with reduced VWF levels or abnormal coagulation 

parameters of the intrinsic, extrinsic and common pathways. HPO terms coding abnormal 

phenotypes outside the blood system were appended to 41 (1.7%) of patients. These 

terms related to eyes (ocular albinism), hearing (deafness), skeletal (abnormal radius, 

joint disorders) and kidney (functional insufficiency). Across the three study groups 619 

patients with bleeding symptoms and normal hemostasis test results were classed as 

unexplained bleeding (Figure 1B). Over half (51.2%) of the patients in this class were 

characterized by the presence of both spontaneous and trauma-related bleeding 

symptoms, a similar distribution as found for the coagulation and platelet function disease 

class (Supplemental Figure 2). Chronic mild thrombocytopenia is generally not 

accompanied by spontaneous bleeding.19 However, 65.1% of the patients in the platelet 

count class presented with spontaneous bleeding, strongly suggesting an enrichment of 

‘thrombocytopenia with bleeding’ patients. 

 

Performance of the ThromboGenomics HTS test 

The previously reported validation of the ThromboGenomics HTS test (TG.V1) 

used 296 samples from patients, with and without previously known disease causing 

variants, sequenced for 63 TIER1 genes.4 Here we sequenced 1,333 and 1,063 index 

patient samples with the TG.V2 and TG.V3 tests targeting 80 and 96 TIER1 genes, with 

a region of interest of 0.222 Mb and 0.275 Mb respectively (Table 1). Since validation, the 

analysis method for calling SNVs and short (<50 base pair (bp)) insertion/deletions 

(indels) has undergone minor modifications; however, the detection of CNVs has been 

substantially improved.20 In short, sequencing read depth is computed over 500 bp 

elements, to improve the sensitivity for the detection of shorter CNVs, and an optimized 

reference set of data obtained from 10 samples has been generated, using genetically 

unrelated individuals (Supplemental Information). Despite the increase of the region of 

interest and increased multiplexing of samples, the read coverage has remained high, 
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with 99.99% and 99.98% of the region of interest with a read depth exceeding 30x for 

TG.V2 and TG.V3 tests, respectively. For each sample, an average of 146.7 and 190.9 

SNVs, 9.4 and 11.2 indels and 0.20 and 0.21 CNVs were identified by the TG.V2 and 

TG.V3 tests, respectively. The proportions of variant types identified did not differ 

between test versions (Supplemental Figure 3). For all samples, an average 4.5 variants 

were prioritized for interpretation by the MDT (Supplemental Table 1).    

 

Diagnostic rates and validation of recently discovered TIER1 genes  

Prioritized variants were reviewed by the MDT in the context of the disease 

incidence, variant frequency, assigned HPO terms and family history. Variants were 

reported with pathogenicity and the contribution to the patients phenotype (full or partial). 

Variants for recessive BTPDs were reported if present in the homozygous or compound 

heterozygous states. Variants of Uncertain Significance were reported if the MDT 

predicted a future Likely Pathogenic status with additional evidence from cosegregation 

and functional studies. Screening of 2,396 index patients resulted in an overall molecular 

diagnostic rate of 37.3% by reporting a total of 1,031 variants in 894 index patients (Figure 

2A, Supplemental Table 5). Most reported variants (81.9%) were rare (<0.01%) or absent 

in gnomAD (Supplemental Figure 4). There was a marked difference in diagnostic yield 

between the five classes; thrombotic, 48.9%; platelet count 47.8%; platelet function 

26.1%; coagulation disorders 63.6% and unexplained bleeding 3.2% (Figure 2A). For 

patients with thrombotic and coagulation disorders, 68.7% and 70.6% of reported variants 

were known variants that had previously been associated with disease, while for the 

patients with platelet count and function disorders this proportion was lower; 44.4% and 

28.4% respectively (Figure 2B). We reason that this difference reflects the fact that 

cataloging of pathogenic variants for coagulation disorders (especially von Willebrand 

disease and Hemophilia A and B) began over three decades ago, whilst the majority of 

TIER1 genes for platelet disorders have only been identified over the past decade. Of the 

335 patients within the platelet count class, 29 were referred under a working diagnosis 

of ‘immune thrombocytopenia refractory to treatment’. In 7 of these patients, variants were 

reported in genes known to be associated with thrombocytopenia (ANKRD26, ETV6, 

ITGA2B, TUBB1). 
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The implementation of the criteria of the ACMG guidelines, instead of our ‘in-

house’ criteria (Supplemental Table 4), impacted on variant interpretation for patients 

tested using TG.V3. On comparing the ThromboGenomics cohort samples sequenced 

and analyzed using either TG.V2 or TG.V3 (PANE and VIBB samples were sequenced 

using only TG.V2 and TG.V3 respectively), there was minimal difference in the total 

number of reported variants for each of the five classes of patients (Supplemental Figure 

5A). However, for all disease classes, an interpretation shift from Likely Pathogenic to 

Variant of Uncertain Significance was noted (Supplemental Figure 5B). This change in 

variant interpretation was mainly explained by novel missense variants (Supplemental 

Figure 6). For patients tested using TG.V2, variants that were not known as disease 

associated were often deemed as Likely Pathogenic by the MDT. On introduction of the 

ACMG guidelines, these novel missense variants did not reach the threshold for 

designation as Likely Pathogenic and thus were labeled as Variants of Uncertain 

Significance. Prior to submission, all variants have been reanalyzed according to ACMG 

guidelines, using the latest versions of variant databases, including the 

ThromboGenomics database, and results from co-segregation studies (Supplementary 

Table 5, column ‘Reinterpretation 2019’).  

 

The genes with reported variants in index patients are ranked in Figure 3. For the 

thrombotic, platelet count and coagulation disease classes, a quarter of patients had 

variants reported in just one gene, PROS1, MYH9 and VWF, respectively. The fourth 

quarter of patients for each disease class had reported variants in at least 6 genes. All 

reported variants per patient are summarized in Supplemental Table 5 and have been 

submitted to the ClinVar database.21        

 

Since TG.V1, 17 TIER1 genes associated with BTPD have been included in TG.V2 

and a further 16 more TIER1 genes in TG.V3. In addition to introducing known and 

recently discovered genes, those with new modes of inheritance were added 

(Supplemental Table 3). Diagnostic reports for 41 patients have been issued with variants 

in one of the 19 recently discovered TIER1 genes or by applying a new mode of 

inheritance. 
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Copy number variation, deep intronic variants and oligogenic findings. 

The analytical pipeline for the identification of CNVs has been modified with 

improved quality scoring and visualization tools. Overall, CNVs were reported in 40 

patients, predicted to affect single exons (n=11), multiple exons (n=15) or whole genes 

(n=14) (Supplemental Table 5). Manual inspection of reads revealed the presence of 

complex CNVs, including an inversion with breakpoints in introns 26 and 27 of DIAPH1 

resulting in an in-frame deletion of exon 26, and an inversion flanked by two deletions 

within F8 causing severe hemophilia A (Supplemental Figure 7).22  

 

Aside from the core dinucleotide splice sites at the 5’ and 3’ of introns, the lack of 

reliable prediction tools makes it difficult to determine the likely functional consequences 

of potential splicing altering variants. Outside the SnpEff annotated splice regions (8 bp), 

intronic variants were only prioritized if previously associated with disease. A deep intronic 

homozygous ITGA2B variant identified in one index patient with Glanzmann 

Thrombasthenia was validated using platelet RNA expression studies confirming 

alternative splicing and the absence of normal ITGA2B transcript (Supplemental Figure 

8). These functional data, together with co-segregation analysis in the pedigree of the 

index patient, resulted in a reclassification of this ITGA2B variant from Variant of 

Uncertain Significance to Likely Pathogenic. 

 

Of the 894 index patients where variants were reported, 772 had a single reported 

variant while 122 had at least two reported variants. Most patients with two variants have 

a recessive disease, but for 29 patients the reported variants were in two or more genes. 

For most of these examples, the variants identified were within first or second order 

interactors in the known canonical hemostasis pathways (Supplemental Table 6). For the 

thrombotic and coagulation classes, we identified 11 (3.9%) and 13 (1.8%) patients with 

oligogenic variants, respectively (Figure 4).  

 

Incidental findings 

By sequencing a large number of patients for the TIER1 genes underlying known 

BTPDs, we expected to observe incidental secondary findings. In four females, not 
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referred for hemophilia carrier testing or known to have reduced factor levels, we 

identified carriership of Likely Pathogenic variants in F8 or F9. In addition, in two patients 

we identified a heterozygous deletion of the RBM8A gene. A heterozygous RBM8A loss-

of function variant (generally a deletion), if accompanied by a low frequency non-coding 

regulatory variant on the alternate allele, results in thrombocytopenia with absent radius 

syndrome.23 These incidental secondary findings were reported to the referring clinician 

as they are actionable with respect to family planning. In contrast, sex chromosome 

aneuploidy, identified in three patients, was not reported in line with local best practice 

guidelines. 

 

Discussion 

 

We evaluated the performance of a targeted HTS panel test for TIER1 genes in 

over 2,500 subjects drawn from three distinct groups; (1) patients with a high likelihood 

of having an inherited BTPD, (2) patients undergoing an extended preoperative 

assessment for bleeding risk and (3) patients with a bleeding disorder of unknown etiology 

referred to a tertiary referral centre. Using HPO coding of clinical and laboratory 

phenotypes alongside clinical information, patients were assigned to one of five diseases 

classes; thrombotic, platelet count, platelet function, coagulation or unexplained bleeding. 

DNA samples were sequenced with the ThromboGenomics HTS test and prioritized 

variants reviewed and classified by an MDT and reported to referring clinicians. The 

resulting data were used to assess the effectiveness of the HTS test, analytical pipeline 

and MDT variant interpretation in generating a conclusive molecular diagnosis. For 1,777 

patients of the thrombotic, coagulation and platelet count or function disease class, 

variants were reported for half (49.2%). In contrast, variants were reported for 3.2% of the 

619 index unexplained bleeding patients with normal hemostasis test results. Overall, 

20.1% of reported variants were Variants of Uncertain Significance that require additional 

evidence including estimation of variant odds ratios using the results from large 

genotyped cohort studies, functional testing and cosegregation analysis. These data 

illustrate the diagnostic yield obtained when applying the ThromboGenomics test for 

patients with a high likelihood of having an inherited BTPD.  
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Screening patients with the TG.V2 and TG.V3 HTS test presented several 

improvements compared to the TG.V1 test. Adding more TIER1 genes on TG.V2 and 

TG.V3 supported the molecular diagnosis of 41 patients and important genotype-

phenotype association were observed for recently discovered BTPD genes such as 

DIAPH122, ETV624, GFI1B25, GNE26,27 and RASGRP228 or for the alternative mode of 

inheritance recently reported for GP1BB.29 In comparison to TG.V1, the detection of 

CNVs was optimized, resulting in the detection of CNVs in 40 patients, including 

previously unobserved deletions in 13 genes, indicating CNVs as an important variant 

class for all categories of BTPDs. In addition, 2 novel duplications, 1 novel inversion and 

a complex CNV were also reported. Nevertheless, the optimized ExomeDepth method is 

sensitive to variable read depths, has a minimum resolution and cannot detect inversions 

or predict the location of duplicated regions. The introduction of a split-read or read-pair 

CNV calling method, alongside the ExomeDepth analysis method, may further improve 

CNV detection in the future.  

 

Previously, Sanger sequencing of most BTPD genes was performed with primer 

sets flanking intron/exon boundaries and therefore, the frequency of non-coding or silent 

variants, aside from those disrupting the immediate splice site (<+/- 8 bp from the exon 

boundary), that are associated with BTPDs is unknown. With the use of HTS, deep 

intronic variants have been identified and apparent silent variants in BTPD genes have 

been shown to alter splicing.30-33 Variants disrupting transcription regulatory motifs 

located in gene promoters and enhancer regions have also been associated with BTPDs, 

and with the recent mapping of endothelial and blood cell specific enhancers, it is likely 

that more variants located in these regions will be identified as associated with disease 

in the near future.34-36 Nevertheless, due to the challenges in interpretation of non-coding 

variants we have only targeted and prioritized intronic and regulatory variants if previously 

associated with disease. Therefore, a research analysis of novel deep intronic, silent and 

likely regulatory variants detected is required, and such studies are best performed using 

whole genome sequencing data from well characterized patient cohorts. 
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 A diagnostic HTS platform requires careful selection of diagnostic-grade TIER1 

genes. The decision to include a gene to the BTPD TIER1 list is made by the GinTH SSC 

of the ISTH. The designation of genes for diagnostic reporting involved the review of 

associated literature to evaluate if a gene is associated with disease in more than three 

independent pedigrees with convincing cosegregation data or in less than three 

pedigrees, but with strong functional evidence (mouse models or cell/protein studies) in 

addition to cosegregation data. In the future, this task will also be coordinated by the NIH 

supported Hemostasis/Thrombosis Clinical Domain Working Group in close partnership 

with the ISTH and ASH expert working groups.37  

 

Our results indicate that when screening large number of patients with a HTS test, 

half (50.1%) of unique reported variants are novel and following ACMG guidelines for 

TG.V3, the majority (76.1%) of novel unique missense variants were reported as Variants 

of Uncertain Significance (Supplemental Figure 6). International initiatives for sharing of 

sequence data generated for BTPD patients and the sequencing of the genomes or 

exomes of large prospective population cohorts, like the UK Biobank, the Million Veteran 

Program and the 100,000 Genomes Project will lead to statistically robust approaches for 

the functional labelling of DNA variants, including the Variants of Uncertain Significance 

reported in this study. 38-40 

 

These data provide evidence of how a molecular diagnosis influences the clinical 

management and counselling of patients and their close relatives. In 30 patients, variants 

were reported in the ANKRD26, ETV6 and RUNX1 genes leading to counseling and 

follow up due to the increased risk of hematological malignancies. These findings are 

associated with an important ethical debate regarding predictive testing in these genes41. 

It is therefore advisable to inform clinicians and patients about the presence of genes 

associated with malignancies in a panel and to provide the possibility of an opt out choice. 

As for whole genome or exome sequencing clinical testing strategies, virtual subpanels 

can be used to independently analyze genes only associated with bleeding, thrombotic 

or platelet disorders (with and without inclusion of leukemic risk genes). In 7 patients with 

treatment refractory immune thrombocytopenia evidence was obtained of rare germline 
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variants likely causing their condition. In six of these cases, the identification of a Variant 

of Uncertain Significance has prompted follow-up studies in the probands and their 

relatives to obtain additional evidence for pathogenicity. Finally, in 24 patients with 

thrombotic or coagulation disorders, we reported variants in two or more TIER1 genes. 

We postulate that defects in hemostasis are due to the disruption of two interacting 

proteins in the known canonical pathways. These results of a large single study, further 

extend the reports of possible oligogenic architecture for thrombotic and coagulation. 

Together these justify further functional and genetic follow-up studies to provide patients 

with a molecular diagnosis and better estimates of risk to offspring. 

 

We report the results of the largest gene panel sequencing study of patients with 

suspected inherited BTPDs. We included 619 index patients with an unexplained bleeding 

disorder characterized by normal hemostasis test results, and as per our hypothesis, we 

observed a low diagnostic rate for this group. It is possible that unknown genes are 

responsible or that the propensity of bleeding in these patients is the result of the 

aggregation of a large number of small effects emanating from common variants at 

hundreds of loci which are modifying the overall effectiveness of the hemostasis system. 

Estimation of polygenic risk scores has recently been reported for several common 

diseases such as coronary artery disease, type 2 diabetes and breast cancer42-45.  

 

In patients with a known or suspected disease etiology, a molecular diagnosis was 

not discovered in half (50.8%) of patients. Future versions of the ThromboGenomics 

panel will include additional genes as they are identified and designated TIER1 status. 

However, this is unlikely to significantly increase the diagnostic rate as hundreds of genes 

are predicted to be currently unknown. Others have shown that reanalysis of negative 

clinical exome sequencing data at 1-3 years increased the diagnostic rate by 10% due to 

new evidence for gene causality and candidate variants not available during the initial 

analysis.46 Such evidences have emerged due to the curation of disease variants, by 

ClinVar and the Human Gene Mutation Database, and the availability of large exome and 

genome sequencing datasets (ExAC and gnomAD). To further increase diagnostic rates 

in the future, the sequencing of many more individuals, through large consortium projects, 
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will provide more accurate estimates of the rareness of potential pathogenic variants,47 

alongside the development of novel genotype-phenotype algorithms,48 studies of gene-

environment interactions and the building of polygenic risk scores.  

 

In conclusion the ThromboGenomics test is a valuable addition to the diagnostic 

algorithm for patients with a high likelihood of having an inherited BTPD. The results 

provide clinicians with a molecular diagnosis for approximately half of patients allowing 

for more precise prognostication and management of disease and, with cascade testing, 

better informed counselling of patients and their close relatives. 

 

 

Data availability 

Variants and pathogenicity (Reinterpretation 2019) have been deposited in ClinVar. 
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Table 1 
The ThromboGenomics TG.V2 and TG.V3 high throughput sequencing test content, 
experimental methods, analysis methods and variant interpretation guidelines.  
 

 TG.V2 TG.V3 

Panel content 

19 Coagulation genes 
8 Thrombotic genes 
53 Platelet genes 
HGMD Pro 2015.2 variants 
 

21 Coagulation genes 
9 Thrombotic genes 
66 Platelet genes 
HGMD Pro 2016.4 variants 
10,000 SNVs  

Region of interest  0.222 Mb 0.275 Mb 

Methods 
DNA fragmentation – 220 bp  
Multiplex – 48 samples 

DNA fragmentation – 350 bp 
Multiplex – 96 samples 

Known variants  
HGMD_PRO_2017.2  
 

HGMD_PRO_2017.4  
Curated known variants 

Variant interpretation 
MDT criteria  
(Supplemental Table 4) 

ACMG guidelines10 
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Figure 1  
Classification of patients using clinical and laboratory phenotypes. 
(A) Classification of 2,396 index patients from the ThromboGenomics, VIBB and PANE 
cohorts into one of five disease classes; thrombotic, platelet count, platelet function, 
coagulation and unexplained bleeding. 
(B) Representative HPO codes for patients characterized in each of the five disease 
classes. 
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Figure 2 
Diagnostic yield and proportion of novel variants by disease class. 
(A) Diagnostic yield of reported variants for 2,396 index patients for each of the five 
disease classes; thrombotic, platelet count, platelet function, coagulation and 
unexplained bleeding. For patients with more than one reported variant, the most 
pathogenic variant was used in this analysis (n = number of index patients). 
(B) Proportion of reported variants that were novel or known for patients in each disease 
class (n = number of variants). 
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Figure 3 
Gene ranking according to the number of reports per disease class. 
For each disease class, genes were ranked according to number of times they were 
reported. Dashed lines represents, from top to bottom, the 25, 50 and 75 quantiles.  
Recently discovered genes and changes of mode of inheritance are in blue. 
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Figure 4 
Oligogenic variants in patients with thrombotic (red) and coagulation (blue) 
disorders. 
From outside to inside, track 1: amino acid numbering for thrombotic (red) and 
coagulation (blue) genes; lighter shade denote untranslated regions of the 3’ of the F2 
gene and the 5’ of the PROS1 gene; track 2: amino acid  conservation scores; track 3: 
variant frequency in gnomAD (minor allele frequency normalized scale to 1/106); track 4: 
disease causing (red) and questionable disease causing (orange) Human Gene Mutation 
Database variants; track 5 and arcs: reported variants in the 11 thrombotic (red) and 13 
coagulation (blue) patients with the arcs representing oligogenic findings. 

 
 


