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Abstract
The study of muscle and contractility is an unusual scientific endeavour since it has from the start been focussed on one 
problem—What makes muscle work?—and yet has needed a vast range of different approaches and techniques to study it. 
Its uniqueness lies in the fundamental fascination of a large scale molecular machine that converts chemical energy into 
mechanical energy at ambient temperature and with high efficiency that is also controlled by an exquisitely intricate yet 
utterly reliable regulatory system and is an essential component of animal life. The investigation of muscle is as innovative 
as any other field of research. As soon as one approach appears to be played out another comes along. It is instructive to 
consider this as a series of waves of novel and heightened activity starting in the 1950s. The thesis of this article is that we 
are approaching the fourth wave with the recent rise of interest in small molecules as research tools and possible therapies 
for muscle diseases.
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Introduction

The study of muscle and contractility is an unusual scientific 
endeavour since it has from the start been focussed on one 
problem—What makes muscle work?—and yet has needed a 
vast range of different approaches and techniques to study it. 
Its uniqueness lies in the fundamental fascination of a large 
scale molecular machine that converts chemical energy into 
mechanical energy at ambient temperature and with high 
efficiency that is also controlled by an exquisitely intricate 
yet utterly reliable regulatory system and is an essential com-
ponent of animal life. The focused nature of muscle research 
has given rise to a community of muscle scientists that have 
stuck together for over half a century. The European Muscle 
Society and its conferences are a prime example of this.

The investigation of muscle is as innovative as any other 
field of research. As soon as one approach appears to be 
played out another comes along. It is instructive to consider 
this as a series of waves of novel and heightened activity. 

The thesis of this article is that we are approaching the 
fourth wave with the recent rise of interest of small mol-
ecules as research tools and possible therapies for muscle 
diseases.

The fundamentals of muscle biochemistry were laid 
down by the 1940s. Actin and myosin were identified as 
the contractile proteins and ATP hydrolysis by myosin was 
shown to be the fuel for contractility. These are admirably 
summarised in the book “Chemistry of Muscle contraction” 
(Szent-Gyorgyi 1951) published by Albert Szent-Gyorgyi in 
1951, based on the work of the Medical Institute of Szeged, 
a facsimile of which was presented to attendees at the last 
European Muscle Society conference in Budapest (Keller-
meyer 2018). At this time no one knew how these proteins 
could work to produce muscle contraction.

The first wave of modern muscle research was the struc-
tural and mechanical investigations of the 50s and 60s that 
established the structures of thick and thin filaments, the 
sliding filament mechanism and the role of myosin cross-
bridges. The key investigators were Andrew Huxley, who 
inferred the sliding filament mechanism from light micros-
copy studies and later inferred the role of crossbridges as 
independent force-generating units from mechanical studies, 
especially the length-tension relationship (Huxley 1957a; 
Huxley and Niedergerke 1954) and Hugh Huxley (no rela-
tion). Huxley’s pioneering electron microscope studies, 
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along with Jean Hanson and others directly visualised thick 
and thin filaments, the sliding filament mechanism and later 
on, the existence of myosin crossbridges, detectable in rigor 
but not relaxed muscle (Huxley and Hanson 1954; Huxley 
1957b; Reedy et al. 1965). By the early 60s we had a good 
idea of how the muscle molecular motor was assembled into 
the contractile apparatus, but we could only guess at how it 
worked in the absence of mechanistic studies.

The second wave of muscle research was the rise of the 
biochemists. Myosin is an ATPase that also moves and 
creates force. Our understanding of how this works was 
advanced by the kinetic studies pioneered in the labs of Ed 
Taylor, David Trentham and Evan Eisenberg (Bagshaw et al. 
1974; Bagshaw and Trentham 1973; Bagshaw and Trentham 
1974; Eisenberg and Moos 1968; Lymn and Taylor 1971).
This was complemented by analysis of mechanical tran-
sients, notably by Huxley and Simmons (Huxley and Sim-
mons 1971). Very soon the idea of the crossbridge cyle, 
uniting enzymic and structural pathways was established and 
became the bedrock of all subsequent studies on muscle con-
tractility. At the same time the question of muscle regulation 
was also tackled.  Ca2+ was established as the controlling fac-
tor of the contractile apparatus and troponin and tropomyo-
sin were isolated and their mode of action was determined 
(Bremel and Weber 1972; Ebashi and Endo 1968; Lehman 
2017). Later on smooth muscle myosin regulation by phos-
phorylation (Bremel 1974; Sobieszek and Small 1976) and 
PKA phosphorylation of TnI in cardiac muscle (England 
1976; Ray and England 1976; Solaro et al. 1976) were added 
to the knowledge base, the protein were sequenced and the 
structure of g-actin (Kabsch et al. 1990), Myosin S-1 (Ray-
ment et al. 1993a, b), tropomyosin and troponin C (Caspar 
et al. 1969; Herzberg and James 1985) was determined by 
X-ray crystallography. Many novel techniques were tried to 
improve upon our understanding of mechanism: Electron 
Spin Resonance, Fluorescence polarisation, ATP analogues 
etc. However, by the early 80s there was a feeling that mus-
cle studies had gone as far as they could. This was changed 
by the genetic revolution.

The third wave of muscle research was kicked off by 
advances in molecular biology. This allowed the proteins 
of muscle to all be sequenced rapidly for the first time. Bac-
terial expression and genetic manipulation enabled many 
of the proteins of muscle (but not actin or myosin) to be 
produced in quantity and purity not previously possible and 
the introduction of site directed mutagenesis enabled struc-
ture–function analysis for many of the key components of 
muscle. Later on the introduction of transgenic technology 
enabled these mutations to be incorporated into a living 
organism (mouse, drosophila) for physiological study. How-
ever, the greatest boost to muscle research was the discovery 
of mutations in contractile proteins that caused human dis-
eases (Geisterfer-Lowrance et al. 1990; Nowak et al. 1999; 

Seidman and Seidman 2001). This quickly changed muscle 
research from a largely academic study to a clinically rele-
vant field of endeavour with the accompanying expansion of 
interest by a wider range of researchers and of funding, thus 
making muscle research a larger and more active research 
topic.

A great deal of research has gone into working out how 
mutations in the contractile machinery can cause inherited 
diseases, notably Hypertrophic cardiomyopathy, dilated car-
diomyopathy and congenital skeletal muscle myopathies. 
These studies have energised basic studies of muscle struc-
ture and biochemistry to a level well beyond that achieved 
previously. The focus has switched from the basic mecha-
nisms of muscle contraction towards the subtle modulation 
of contractility by second messengers that modulate phos-
phorylation of muscle proteins and the effects of disease-
related mutations that are generally quite limited (Marston 
2016, 2018, 2011; Hershberger et al. 2013; Force et al. 2010; 
Chang and Potter 2005; Seidman and Seidman 2001; Spu-
dich 2014). This in turn has needed new techniques capable 
of studying these subtle changes, that often involve intrinsi-
cally disordered parts of regulatory proteins (Hwang et al. 
2014; Zamora et al. 2016).

The exposure of basic scientists to the translational poten-
tial of their work has introduced a growing field of study 
of small molecules that could modulate contractility in a 
therapeutically useful way. This is now a significant field of 
study: at the Alpbach Muscle and Motors meeting in 2016, 
1/104 abstracts were devoted to small molecules whilst at the 
2019 Alpbach meeting it had grown to 13/86. Both the 2018 
European Muscle Conference and the 2019 Alpbach meeting 
held sessions devoted to small molecules for the first time. 
Thus it is my hypothesis that this will be the next wave of 
innovative research, which I have termed, the fourth wave.

The impetus of the fourth wave is to find small molecules 
that have potential for reversing the abnormalities of the con-
tractile apparatus associated with muscle diseases, primar-
ily in skeletal and cardiac muscle. At the same time these 
studies have provided new insights into muscle regulatory 
mechanisms.

In general, muscle disease can be classified as hypocon-
tractile or hypercontractile (gain-of-function). Hypocontrac-
tile disease include congenital skeletal muscle myopathies 
which are generally due to mutations (nemaline myopa-
thy, congenital fibre-type disproportion etc.) and failing 
heart. Heart failure is actually the term for a large group 
of unrelated defects in which the heart does not produce 
enough work to sustain normal contraction or does not have 
sufficient reserve to respond to stimulus in exercise. It is 
unlikely that any single agent could be found that can cor-
rect all forms of heart failure but a significant fraction of 
heart failure (for instance, dilated cardiomyopathy) is caused 
by specific mutations and in many cases the mechanism has 
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been defined (Marston 2011; Memo et al. 2013; Messer and 
Marston 2014). In these cases, a target for small molecule 
action could be defined. Currently most research is being 
directed towards myosin activators,  Ca2+-sensitisers and 
recouplers.

The hypercontractile muscle diseases are nearly all due 
to mutations. In skeletal muscle gain-of-function mutations 
are associated with distal arthrogryposis or the more extreme 
‘stiff child’ syndrome (Jain et al. 2012; Donkervoort et al. 
2015; Memo and Marston 2013; Robinson et al. 2007). In 
cardiac muscle hypertrophic cardiomyopathy is the classic 
gain-of-function syndrome and this is an attractive target 
for potential small molecule treatments (Spudich 2014). 
Current research focuses on  Ca2+-desensitisers and myosin 
inhibitors.

Ca2+‑sensitisers

The  Ca2+-sensitising drugs that act upon troponin are the 
classic muscle activators that have been studied in heart 
muscle for decades.

Bepridil, Levosimedan and EMD57033 have been exten-
sively studied for their ability to increase  Ca2+-affinity for 
cardiac troponin C and increase  Ca2+-sensitivity of regu-
lated thin filaments in many assay systems. They have also 
been investigated in structural assays by NMR in particu-
lar (Hwang and Sykes 2015; Robertson et al. 2010). As 
potential muscle activators to treat heart failure—cardiot-
onics—they have been notably unsuccessful and are only 
prescribed for acute support of the heart post operatively 
or in toxic shock in a hospital setting. The reasons for 
this are related to their basic biochemical properties. As 
a class many  Ca2+-sensitisers are not specific enough and 
have significant phosphodiesterase inhibiting activity as 
well as  Ca2+-sensitising activity, which can have deleteri-
ous side effects. A compound, currently in development, 
AMG 594, appears to be a cardiac-specific  Ca2+-sensitiser 
without any off target action and may thus be a safer drug 
than current compounds (Cytokinetics 2019). However, 
there are additional problems inherent in the concept of 
 Ca2+-sensitisation. In many aspects sensitisers like bepri-
dil and EMD57033 mimic the effect of HCM mutations: 
they blunt or abolish the modulation of  Ca2+-sensitivity by 
phosphorylation of TnI in response to adrenergic stimulation 
(Papadaki et al. 2015) and they enhance the probability of 
arrhythmia (Baudenbacher et al. 2008; Huke and Knollmann 
2010; Rowlands et al. 2017). Clinical experience has shown 
that although these compounds can boost cardiac output 
and patent wellbeing in the short term, they do not address 
the underlying defect in the failing heart. Chronic treatment 
leads to a worsening of symptoms and increased mortality.

Recently a series of  Ca2+-sensitisers specific to fast skele-
tal muscle have been developed as potential treatment of var-
ious congenital myopathies. Since skeletal muscle can regen-
erate, unlike cardiac, it is thought that muscle activation will 
promote muscle growth. Interestingly these compounds have 
been found to have potential in myopathies that are neural in 
origin as well as those due to skeletal muscle defects. There 
are reports that CK-2066260, CK-2017357 (now called 
Tirasemtiv) and CK-2127107 (now called Reldesemtiv) are 
fast skeletal muscle specific  Ca2+-sensitisers (Collibee et al. 
2018; Hwee et al. 2017; Hwee et al. 2015) and that they can 
alleviate the symptoms of nebulin-related nemaline myopa-
thy (de Winter et al. 2013), Amyotrophic lateral sclerosis 
(Hwee et al. 2014) and spinal muscular atrophy. These small 
molecules may be of great research interest in understanding 
the mechanisms of muscle growth and atrophy.

Ca2+‑desensitisers and recouplers

There is a small group of small molecules that act on tro-
ponin to reduce  Ca2+-sensitivity; these would have potential 
in the treatment of hypercontractile diseases such as HCM 
(Spudich, 2014; Semsarian et al. 2002; Tadano et al. 2010). 
The most widely investigated small molecule is epigallocat-
echin-3-gallate (EGCG) (Papadaki et al. 2015; Tadano et al. 
2010) but desensitisation can also be observed in vitro using 
Nebivolol, W-7, epicatechin gallate (ECG) and Silybin A 
(Frampton and Orchard 1992; Sheehan et al. 2018; Stücker 
et al. 2017; Zeitz et al. 2000). Interestingly EGCG and 
Nebivolol have been shown to be cardiac specific and so pre-
sumably interact with the unique phosphorylation depend-
ent modulation of  Ca2+ sensitivity. Moreover EGCG was 
shown to restore cardiac output in isolated working hearts 
by improving diastolic dysfunction caused by increased 
myofilament  Ca2+ sensitivity in a mouse model of hyper-
trophic cardiomyopathy, thus demonstrating the principle 
that  Ca2+ desensitisation has potential for treatment of HCM. 
Although current desensitisers are interesting research mol-
ecules, with the exception of Nebivolol they have numerous 
known off target effects that would render them useless as 
treatments for cardiac disease (Ingólfsson et al. 2014).

Uncoupling is a common abnormality in cardiac troponin 
that is closely related to abnormal  Ca2+-sensitivity. In many 
cases of DCM and both inherited and non-mutation linked 
HCM it has been found that myofilament  Ca2+-sensitivity 
is independent of the level of troponin I phosphorylation, 
leading to a blunted response to adrenergic stimulation 
and loss of cardiac reserve (Memo et  al. 2013; Messer 
et al. 2016; Messer et al. 2017; Messer and Marston 2014; 
Vikhorev et al. 2014, Biesiadecki et al. 2007; Dvornikov 
et al. 2016; Wilkinson et al. 2015). Remarkably a num-
ber of small molecules have been shown to restore the 
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phosphorylation-dependent  Ca2+ sensitivity shift of uncou-
pled HCM and DCM mutant troponin and tropomyosin to 
normal (Papadaki et al. 2015; Sheehan et al. 2018). Recou-
plers found to date have a range of chemical structures that 
include EGCG (in addition to its desensitising property), 
Silybin B, resveratrol, pterostilbene and novobiocin. This is 
an area where structure–function relationships can pinpoint 
the key molecular requirements and where these functional 
probes could shed important light on the mechanism of 
the phosphorylation-dependent  Ca2+-sensitivity shift. The 
combination of desensitisation with recoupling activity, as 
shown by EGCG is in principle an ideal functional profile 
for the treatment of HCM.

Myosin activators and inhibitors

There is currently much interest in small molecules that 
are specific cardiac muscle myosin activators or inhibitors. 
Omecamtiv Mecarbil is a myosin activator that is now in 
phase 3 clinical trials as a treatment for heart failure and 
Mavacamten is a myosin inhibitor that has just started phase 
2 trials as a treatment for HCM. Both these molecules were 
found using high throughput screening protocols that have 
not been published in the scientific press, however since 
the compounds have become available for researchers their 
investigation has given new insights into muscle regulation 
in the thick filament.

Omecamtiv Mecarbil was developed on the princi-
ple that a specific cardiac myosin activator would avoid 
many of the disadvantages of  Ca2+-sensitisers including 
increased heart rate, increased oxygen demand, decreased 
efficiency and enhanced probability of arrhythmias (Malik 
et al. 2011; Malik and Morgan 2011; Teerlink et al. 2011). 
It increases twitch tension magnitude and lifetime and thus 
increases work output without compromising efficiency. 
The mechanism of action is particularly interesting. In 
early studies the key effect was proposed to be a 4-fold 
acceleration of the phosphate release step of the cross-
bridge cycle which was proposed to increase the pro-
portion of the crossbridge cycle in the force generating 
states, i.e. an increased duty cycle. A number of basic 
observations are at variance with such a direct interpreta-
tion, notably that Omecamtiv Mecarbil actually inhibits 
actin filament movement in the in vitro motility assay and 
increases  Ca2+-sensitivity. (Liu et al. 2015; Swenson et al. 
2017). Moreveover, the effect of Omecamtiv Mecarbil is 
biphasic with inhibition of force production in skinned 
fibres above 1 µM (Nagy et al. 2015). Woody et al’s study 
has solved the problem by demonstrating an indirect 
mechanism (Woody et al. 2018). Optical trap measure-
ments showed that Omecamtiv Mecarbil reduced the size 
of the crossbridge stroke from 5 nm to zero at 10 µM. This 

accounts for the inhibitory action of Omecamtiv Mecar-
bil since attached non-moving crossbridges would act 
as a brake. Since Omecamtiv Mecarbil prolongs myosin 
attachment duration, both in steady state assays and in 
the optical trap, crossbridges with Omecamtiv Mecarbil 
bound also act as cooperative activators of the thin fila-
ment by the well known mechanism (Bremel et al. 1972; 
Lehrer and Geeves 1998). This accounts for the activat-
ing effect of Omecamtiv Mecarbil and also the enhanced 
 Ca2+-sensitivity. Thus the effect of Omecamtiv Mecarbil 
is ultimately on the recruitment of crossbridges rather than 
the dynamics of the crossbridge cycle.

Another mechanism for modulating thick filament activ-
ity has recently been found based on the interacting heads 
motif of myosin. Current thinking about the actin–myosin 
interaction is that the thick filament exists in two states; 
these have for a long time been described as ordered (SRX) 
and disordered (DRX) thick filament states and their tran-
sition appeared to be regulated by phosphorylation. The 
“ordered” state corresponds to a structure in which the myo-
sin heads, instead of pointing away from the thick filament 
towards actin are folded backwards and inwards to form 
the compact interacting heads motif close to the thick fila-
ment shaft in a position where interaction with actin is not 
possible, referred to as the interacting heads motif (IHM) 
(Trivedi et al. 2017). The presence of this ‘super-relaxed’ 
(SRX) state in striated muscle including human cardiac mus-
cle has now been demonstrated, using single ATP turnover 
kinetics of relaxed skinned muscle which shows a fast and 
a slow process with  t1/2 of 14.3 and 224 secs respectively in 
human cardiac muscle. In normal cardiac muscle the propor-
tion of heads in the “super-relaxed state” was 27.6 ± 0.7% 
(McNamara et al. 2014; McNamara et al. 2017). It has been 
established that HCM mutations in thick filament proteins 
often affect the super-relaxed state. The effects of destabi-
lising the SRX would be incomplete relaxation and more 
myosin heads available leading to hypercontractility—the 
key abnormalities of HCM. The higher proportion of myosin 
heads would also act upon the thin filament cooperatively to 
promote the open state, which would cause an increase in the 
apparent  Ca2+-sensitivity of muscle activation as observed. 
DCM causing mutations may conversely stabilise the SRX, 
thus SRX has become a target for small molecules that can 
inhibit or activate myosin (Trivedi et al. 2017).

A study by Cooke et al. found that piperine was able to 
destabilise the SRX in skeletal muscle and it was proposed 
that this could be a treatment for obesity and diabetes, since 
it would increase muscle energy expenditure at rest (Nogara 
et al. 2016). Recently it was shown that Mavacamten acts by 
stabilising the SRX in cardiac muscle, thus accounting for its 
effectiveness as an antagonist to the effects of HCM muta-
tions (Anderson et al. 2018). Blebbistatin and its analogues 
have long been used as myosin inhibitors in vitro and these 
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have now also been shown to work via stabilising the SRX 
(Wilson et al. 2014; Kampourakis et al. 2017).

Conclusions

As research into small molecules that act on contractile pro-
teins gathers pace a pattern is beginning to emerge. Few, if 
any, of the small molecules so far studied act directly on 
the crossbridge cycle but they do interfere with modula-
tion of contractility by  Ca2+ and troponin/tropomyosin, the 
DRX–SRX equilibrium and on phosphorylation mechanisms 
(see Fig. 1). Overall these small molecules seem to work by 
controlling the recruitment of actin sites or myosin heads 
that undergo the full contractile cycle rather than affecting 
the crossbridge cycle itself (Spudich 2014).

In conclusion, this fourth wave of muscle research prom-
ises exciting discoveries and a new impetus to the field of 
muscle research. Already studies with small molecules 
have clarified several aspects of muscle regulation and their 
use as probes of mechanisms has great potential. Basic 
research goes hand-in-hand with the corresponding poten-
tial of specific small molecules to modify and correct the 

abnormalities of contractility in muscle diseases and thus 
be of therapeutic value. The new disciplines of combina-
tional synthetic chemistry, computational chemistry and 
high throughput assays are now being harnessed to muscle 
research. The scene is set for a new wave of experiments and 
insight into how muscle works.
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