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Abstract
Wepropose a new splitting scheme for general reaction–taxis–diffusion systems in one spatial
dimension capable to deal with simultaneous concentrated and diffusive regions as well as
travelling waves and merging phenomena. The splitting scheme is based on a mass transport
strategy for the cell density coupled with classical finite element approximations for the rest
of the system. The built-in mass adaption of the scheme allows for an excellent performance
even with respect to dedicated mesh-adapted AMR schemes in original variables.

Keywords Mass transport schemes · Reaction–aggregation–diffusion systems · Splitting
schemes · Tumor invasion models

1 Introduction

The aim of the present work is to design a numerical scheme capable to deal with concentra-
tions and diffusion phenomena typically arising in one-dimensional taxis–diffusion systems
of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tρ = ∂x
(
Dρ∂xρ − χρ∂x c

) + Rρ(ρ) in (0,∞) × (a, b),

ε∂t c = Dc∂
2
x c + Rc(ρ, c) in (0,∞) × (a, b),

∂xρ(·, r) = ∂x c(·, r) = 0, r ∈ {a, b},
ρ(0, ·) = ρ0 ≥ 0, c(0, ·) = c0 ≥ 0

(1.1)

with Lipschitz continuous source terms Rρ, Rc that satisfy Rρ(0), Rc(ρ, 0) ≥ 0. Here ρ

denotes the density of cells and c the concentration of a chemo-attractant. The initial data ρ0
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and c0 are sufficiently smooth functions. These systems constitute adaptations of the classical
cell migration model by Patlak et al. [21,30]. They have been widely used in the modeling of
biological processes such as cell organization in tissue, immune system dynamics and cancer
growth [2,14,32]. The dynamics of their solutions are quite rich; apart from traveling waves
[24] the aggregation phenomenon studied in [5,17] that leads to blowup in finite time is of
specific interest. One has moreover observed the occurrence of high concentrations that can
emerge in a smooth solution, split, and merge with each other [28]. Nonlinear diffusions or
saturated responses in the chemotactic sensitivity are natural ways to include volume filling
effects into the models, see [6,27]. They usually avoid blow-up in a biologically meaningful
way and lead to interesting phenomena and asymptotic stabilization. Finally, thesemodels are
basic building bricks for a variety of cancer invasion models in the literature [12,18,31–33]
in which the coupling with extracellular matrix, enzymatic activators and other substances
are taken into account. One of the common features in all of these models is the simultaneous
occurrence of regions of high concentrated densitieswith diffuse profiles leading to numerical
difficulties in choosing well-adapted meshes. The numerical approximation of all of these
simultaneous phenomena is particularly challenging.

In [3] a mass transport scheme has been proposed to resolve the modified 1DKeller–Segel
model for the log interaction kernel proposed in [7]. The method satisfies a discrete free
energy dissipation principle by design as it is based on the variational schemes for Fokker–
Planck type equations that has been introduced in [19,22] and applied to Keller–Segel type
models in [3,4]. By considering the problem in transformed variables the method can resolve
areas of high concentrations accurately without any mesh refinement. This approach has
been extended to several dimensions for nonlinear aggregation–diffusion equations and with
different approaches in the discretization in [9,10,20,25] and the references therein.

The aim of this work is to extend the mass transport approach to the general class of
systems (1.1). We will test different scenarios that feature in particular the splitting, traveling
and emerging of concentrations. For the adjustment of the scheme we propose a splitting
method, where we employ the technique from [3] to the Keller–Segel part of the system (i.e.
the first equation of (1.1) with Rc = 0). The remaining system of an ODE and a diffusion
reaction equation will be decoupled and solved by a suitable finite element method. The
advantage of the mass transport approach for the cell densities equations is that the mesh
adapts naturally to the mass distribution, and then coarse meshes in the mass variable can
still lead to good numerical approximations as we will discuss below.

In more details, we split (1.1) into two subsystems. The solution of the full system (1.1)
can then be approximated by appropriately combining short time solution of the subsystems.
We introduce at first the diffusion–advection system given by

⎧
⎪⎪⎨

⎪⎪⎩

∂tρ = ∂x
(
Dρ∂xρ − χρ∂x c

)
in (0,∞) × (a, b),

∂t c = 0 in (0,∞) × (a, b),
∂xρ(·, r) = 0, r ∈ {a, b},
ρ(0, · = ρ I

0 ≥ 0, c(0, ·) = cI0 ≥ 0.

(I)

This system assumes a steady chemo-attractant density c and mass conservation of the cell
density ρ. Second, we consider the reaction–diffusion system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tρ = Rρ(ρ) in (0,∞) × (a, b),

∂t c = Dc∂
2
x c + Rc(ρ, c) in (0,∞) × (a, b),

∂x c(·, r) = 0, r ∈ {a, b},
ρ(0, ·) = ρ I I

0 ≥ 0, c(0, ·) = cI I0 ≥ 0

(II)
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that contains the remaining terms of the system. Initial data ρ I
0 , c

I
0 , ρ

I I
0 and cI I0 are derived

from the original problem (1.1) and intermediate solutions of the splitting scheme as we will
discuss in Sect. 2.3.

In the next step we follow the mass transport algorithm [3] to transform system (I) into
new variables. With this aim, we consider the pseudo inverse cumulative distribution of the
cell density ρ,

V (t, w) = inf

{

y :
∫ y

a
ρ(x, t) dx > w

}

, (1.2)

where 0 ≤ w ≤ m and m referring to the time constant mass of cells

m =
∫ b

a
ρ I
0 (x) dx .

System (I) can now be rewritten, following [11], in the form
⎧
⎪⎪⎨

⎪⎪⎩

∂t V = −Dρ∂w

(
[∂wV ]−1

) + χ∂x c|(x=V (w)) in (0,∞) × (0,m),

∂t c = 0 in (0,∞) × (a, b),
V (·, 0) = a, V (·,m) = b,
V (0, ·) = V I

0 , c(0, ·) = cI ≥ 0,

(I’)

where V I
0 denotes the transformed initial cell density ρ I

0 . The advantage of the proposed
splitting is that the mass of cells does not change over the first step and the cell density is
fixed over the second step.

The details of the full discretization of the proposed splitting scheme will be given in
Sect. 2. In Sect. 3 we discuss the choice of the constraints in the time, spatial and mass
steppings due to the choice of the full discrete schemes. Section 4 is devoted to study in
detail the performance of this splitting scheme in many complex situations ranging from
the simpler Keller–Segel type systems and their small variations to quite more biologically
relevant systems in tumor invasion as discussed above. We will analyze the experimental
convergence and the computational cost of this discretizationwith respect to previous schemes
with mesh-refinement algorithms in original spatial variables. Finally we conclude in Sect. 5.

2 Numerical Method

In what follows, we describe a numerical treatment for both systems (I’) and (II). The inverse
distribution V is given on the time evolving mass space (0,mh(t)), whereas the chemo-
attractant c is given in the Eulerian coordinates in (a, b). This leads to two meshes that the
proposed numerical method employs.

First, we discretize the normalized mass domain (0, 1), on which the pseudo inverse
distribution V resides by the mesh

0 = w0 < w1 < · · · < wM = 1, w j = jhw, j = 0, . . . , M

with length M ∈ N and width hw = 1/M that corresponds to the width �w(t) = mh(t)hw

in the time evolving mass domain (0,mh(t)). We denote the point values of V by Vj (t) =
V (mh(t)w j , t) for j = 0, . . . , M and introduce the linear spline inw connecting the discrete
values that we denote by Vh(t,mh(t)w). Here we have used the discrete mass of the cells

mh(t) =
∫ b

a
ρh(t, x) dx,
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where ρh is a discrete representation of the cell density to be defined later on.
A second mesh partitions the physical space (a, b) for the chemo-attractant density c into

a = x0 < x1 < · · · < xN = b, xk = a + k�x, k = 0, . . . , N . (2.1)

The chemo-attractant mesh is thus of length N and width �x = (b − a)/N . We employ a
linear finite element representation for the chemo-attractant density c. Therefore let {φk, k =
1, . . . , N − 1} be the basis of piecewise linear hat functions on the grid (2.1) satisfying
homogeneous Neumann boundary conditions. By using the basis functions we can define the
approximate chemo-attractant density as

ch(x, t) =
N∑

k=1

ci (t)φi (x).

For the construction of the splitting method we define solution operators for both sys-
tems (I’) and (II). To this end we design T to be a numerical solution operator of system
(I’) in the following sense: if (Vh(t̃), ch(t̃),mh(t̃)) is a numerical solution at t = t̃ then
T�t (Vh(t̃), ch(t̃),mh(t̃)) is a numerical solution of system (I’) at time t = t̃ + �t . In the
same manner, we define also a solution operator S for system (II).

The discretization in transformed variables was proved to be beneficial for the numerical
treatment of aggregating quantities, see e.g., [3,9]. We assume that the cell density is affected
by aggregation phenomena while the chemo-attractant develops relatively smooth density
profiles and can be efficiently treated by a standard finite element method. In principle it may
be possible tomake use of the pseudo inverse distribution also for the chemo-attractant c. This
would however lead to a newmesh on a corresponding mass space. Due to the different types
of equations for cell density and chemo-attractant concentration the meshes will be different
and additional transformations to the physical grid would be needed increasing hence the
interpolating errors and the computational costs. For these reasons we have decided to use
the standard physical grid.

2.1 The Solution Operator T for System (I’)

For a discretization of the system (I’) we need to evaluate the derivative of the chemo-
attractant concentration in the state variable V . To efficiently obtain a representation of ch
in C1(a, b) we use an interpolation of the discrete chemo-attractant concentration by cubic
splines. Note that applying the upwind scheme to the piecewise linear discretization lead to
an unstable method in our tests.

Let (Vh(t), ch(t),mh(t)) be given initial data. By ĉh we denote the cubic spline over the
data points (xk, ch(t, xk)) for k = 1, . . . , N that satisfies the boundary conditions ∂x ĉh(a) =
∂x ĉh(b) = 0. We use this spline for the approximation of the advection term. Concerning
the time integration we split the taxis and diffusion terms and treat the stiff diffusion terms
implicitly. In this way we allow for both large time steps and stability of the scheme. We
apply in particular the two stage implicit–explicit midpoint scheme (see e.g. [29]) that reads
in our case

− 2
Ṽ j (t) − Vj (t)

�t
= Dρ

Ṽ j+1(t) − Ṽ j (t)
− Dρ

Ṽ j (t) − Ṽ j−1(t)
− χ∂x ĉh(Vj (t)), (2.2a)

−T�t V j (t) − Vj (t)

�t
= Dρ

Ṽ j+1(t) − Ṽ j (t)
− Dρ

Ṽ j (t) − Ṽ j−1(t)
− χ∂x ĉh(Ṽ j (t)) (2.2b)

123
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both for j = 0, . . . , M . We have approximated the diffusion terms above by a central
difference formula as in [3]. At the boundary we impose Neumann boundary conditions, i.e.

1

ṼM+1(t) − ṼM (t)
= 1

Ṽ0(t) − Ṽ−1(t)
= 0 .

The intermediate stage Ṽ j (t) is given by a nonlinear implicit equation (2.2a) and we use the
Newton’s method for its computation. For the computation of the taxis terms in (2.2a) and
(2.2b) we evaluate the afore determined spline ĉh .

The chemo-attractant density as well as the mass of the cells are not affected by system
(I’), hence we define the numerical operator accordingly by

T�t ch(t) = ch(t), T�tmh(t) = mh(t).

Note that if instead of linear diffusion, i.e. Dρ constant, we have a power-law nonlinear
diffusion Dρ(ρ) = Dρργ−1, γ > 1, modelling cell volume size effects as in [6,27], we
obtain a similar approximation

−2
Ṽ j (t) − Vj (t)

�t
= D̃(t)

(Ṽ j+1(t) − Ṽ j (t))γ
− D̃(t)

(Ṽ j (t) − Ṽ j−1(t))γ
− χ∂x ĉh(Vj (t)),

(2.3a)

−T�t V j (t) − Vj (t)

�t
= D̃(t)

(Ṽ j+1(t) − Ṽ j (t))γ
− D̃(t)

(Ṽ j (t) − Ṽ j−1(t))γ
− χ∂x ĉh(Ṽ j (t))

(2.3b)

with D̃(t) = Dργ −1�w(t)γ−1, j = 0, . . . , M and similar boundary conditions as above.
Remember that the continuous function T�t Vh(t) is built as the linear interpolant of the values
T�t V j (t) for j = 0, . . . , M , and thus we can define the reconstructed density T�tρh(t) by
its own definition

T�tρh(t) =
(

∂T�t Vh(t)

∂w

)−1

(2.4)

as long as the sequence Vj (t) is strictly increasing.

2.2 The Solution Operator S for System (II)

In the splitting method that we propose we will apply the reaction–diffusion operator S
starting with the data (T�t Vh(t), T�t ch(t), T�tmh(t)) obtained from a previous evaluation
of the operator T . For simplicity we will describe the numerical operator S for general initial
data (Vh(t), ch(t),mh(t)).

System (II) is formulated for physical concentrations of cells. To provide adequate initial
data using the given approximations (Vh(t), ch(t),mh(t)) we transform the discrete pseudo
inverse distribution Vh(t) on (0,mh(t)) to a finite volume representation of ρ(t, ·) on (a, b).
Since the approximate density ρh satisfies

∫ Vj (t)

Vj−1(t)
ρh(t, x) dx = �w(t),

123
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for all j = 1, . . . , M by construction (2.4), we can introduce the cell averages and the
piecewise constant function ρh in the following way

ρ j (t) = �w(t)

Vj (t) − Vj−1(t)
, j = 1, . . . , M, ρh(t, x) =

M∑

j=1

ρ j (t)χ(Vj−1(t),Vj (t))(x).

This approximation of the cell density resides on physical space (a, b). Note though that the
cell averages are given on a non-uniform grid which differs from the grid for the chemo-
attractant density c given in (2.1).

Now, we are in the position to write down the scheme for system (II). Again we split
diffusion from reaction and apply the implicit–explicit midpoint scheme and obtain

ρ̃ j (t) = ρ j (t) + �t

2
Rρ(ρ j (t)), j = 1, . . . , M, (2.5a)

2ε
c̃k(t) − ck(t)

�t

∫ b

a
φkφl dx = −c̃k(t)Dc

∫ b

a

∂φk

∂x

∂φl

∂x
dx

+
∫ b

a
Rc(ρh(t), ch(t))φl dx, k, l = 1, . . . , N − 1,

(2.5b)

S�tρ j (t) = ρ j (t) + �t

2
Rρ(ρ̃ j (t)), j = 1, . . . , M, (2.5c)

ε
S�t ck(t) − ck(t)

�t

∫ b

a
φkφl dx = −c̃k(t)Dc

∫ b

a

∂φk

∂x

∂φl

∂x
dx

+
∫ b

a
Rc(ρ̃h(t), c̃h(t))φl dx, k, l = 1, . . . , N − 1.

(2.5d)

The integrals of the form
∫ b
a Rc(ρh(t), ch(t))φl dx are dependent on Vh(t). For their compu-

tation we use the trapezoidal rule together with an indicator function to identify the position
of a particular point x ∈ [a, b] on the grid corresponding to the cell density ρh . The reaction
update in the cell density ch alters the mass of the cells over the interval 	. Thus we update
mh(t) by

S�tmh(t) =
M∑

j=1

S�tρ j (t)(Vj (t) − Vj−1(t)).

To be able to apply the advection–diffusion operator after the reaction–diffusion update we
transform S�tρh(t) to its inverse distribution representation S�t V j (t). Therefore, we use the
formula

∫ S�t V j (t)

S�t V j−1(t)

M∑

j=1

S�tρ j (t) χ(Vj−1(t),Vj (t))(x) dx = S�tmh(t)hw, j = 1, . . . , M . (2.6)

As long as S�t V j (t) is monotonically increasing in j , identity (2.6) allows for an efficient
update of the inverse distribution Vh .

123
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2.3 The SplittingMethod

To approximate the full system (1.1) we propose the classical Strang splitting method
[34] employing both numerical operators defined above. For given non-negative and suf-
ficiently smooth initial conditions ρ0 and c0 of system (1.1) we deduce discrete initial data
(Vh(0), ch(0),mh(0)). To compute a discrete representation Vh(0) of the normalized con-
centration ρ0/mh(0) we integrate as in (2.6).

Then we define the fully discrete Strang splitting scheme for system (1.1) iteratively by

(
Vh

(
tn+1), ch

(
tn+1),mh

(
tn+1)) = T�tn/2S�tn T�tn/2

(
Vh

(
tn

)
, ch

(
tn

)
,mh

(
tn

))
, n = 0, 1, 2, . . . ,

(2.7)
where 0 = t0 < tn = ∑n

i=1 �t i is a discretization of the time axis. In this way we alternate
between applying the diffusion–taxis and the diffusion–reaction operator. The symmetrical
structure leads to the second order splitting error.

To optimize the efficiency we adapt the time increment �t in each time step. Since the
discretization of system (I) is more sensitive to instabilities that are caused by large time
increments �t than the discretization of the diffusion–reaction system, we start the method
in each time stepwith the numerical operator T in whichwe determine�tn .Wewill elaborate
on the stability of the scheme in Sect. 3.

The scheme (2.7) is not limited to the case of a single pair of a cell and an chemo-attractant.
An extension to multiple attractants [i.e. a replacement of χρ∇c by a sum χ1ρ∇c1 + · · · +
χnρ∇cn in (1.1)] is straightforward. The case of multiple cell densities coupled through the
taxis terms, such as in the model discussed in [32], can be treated as well. Note though that
each cell species brings along another non-uniformmesh on the domain (a, b)which requires
further projections in the numerical operator S.

3 Monotonicity Preservation of the Diffusion–Taxis Operator

As demonstrated in [13] unphysical negative values that arise in the numerical solutions of the
Keller–Segel type systems can cause instabilities and wrong behavior of the scheme. Hence,
the so called positivity preserving finite volumes schemes for these kind of models have been
developed, e.g. in [13]. A non-negative density ρ implies a monotonously increasing pseudo
inverse distribution V by its definition (1.2). If a method operates on inverse distributions
it should in turn preserve the discrete monotonicity of V . This monotonicity preserving
property of such schemes was studied in the case of filtration and convolution–diffusion
equations in [15,16]. In more details, We call a method monotonicity preserving if from
Vj (t) − Vj−1(t) > 0 for all 0 < j ≤ M follows that also Vj (t + �t) − Vj−1(t + �t) > 0
for all 0 < j ≤ M .

In the rest of this section we focus on a simplified problem that motivates a way to
adapt the time increment �t in such a way, that non-monotone solutions and thus possible
related instabilities are avoided. We consider in particular system (I’), in which we allow
for generalized diffusion Dρ(ρ) = Dρργ−1, γ ≥ 1, and assume a steady chemo-attractant
c ∈ C1(a, b). For the numerical resolution we apply a forward Euler scheme of the form

Vj (t+�t) = Vj (t)+�t χ∂x c(Vj (t))−�t

[
D̃(t)

(Vj+1(t) − Vj (t))γ
− D̃(t)

(Vj (t) − Vj−1(t))γ

]

,

(3.1)
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for the discrete inverse distribution as defined in Sect. 2. This scheme can be understood as
an explicit first-order version of the advection–diffusion operator introduced in the previous
section. In this setting we can follow the lines of [15,16] and derive a bound on�t that makes
the scheme (3.1) monotonicity preserving:

Lemma 3.1 Scheme (3.1) is monotonicity preserving, if for θ ∈ (0, 1) fixed both CFL condi-
tions

�tn <
θ

2 Dρ �wγ−1 min
0≤ j<M

(Vj+1(tn) − Vj (tn))(Vj (tn) − Vj−1(tn))

maxk= j−1, j (Vk+1(tn) − Vk(tn))−(γ−1)
, (3.2a)

�tn <
1 − θ

χ
min

0≤ j<M

(Vj+1(tn) − Vj (tn))
∣
∣∂x c(Vj+1(tn)) − ∂x c(Vj (tn))

∣
∣

(3.2b)

are satisfied.

Proof We consider a single time step in the scheme (3.1) and drop the superscript n. For
brevity we will use the notation �Vj+1/2 = Vj+1 − Vj . We assume the monotonicity of the
discrete inverse distribution at the time instance t and compute for an arbitrary 0 ≤ j < M
the difference

�Vj+1/2(t + �t) = �Vj+1/2(t) + �t χ
(
∂x c(Vj+1(t)) − ∂x c(Vj (t))

)

− �t Dρ

�w

[
(�w)γ

γ (�Vj+3/2(t))γ
− (�w)γ

γ (�Vj+1/2(t))γ

]

+ �t Dρ

�w

[
(�w)γ

γ (�Vj+1/2(t))γ
− (�w)γ

γ (�Vj−1/2(t))γ

]

.

By applying the mean value theorem to the function f (x) = xγ /γ we find two function
evaluations of its derivative, denoted as κ j and κ j+1, such that we obtain

�Vj+1/2(t + �t) = �Vj+1/2(t) + �t χ
(
∂x c(Vj+1(t)) − ∂x c(Vj (t))

)

− �t Dρ κ j+1

[
1

�Vj+3/2(t)
− 1

�Vj+1/2(t)

]

+ �t Dρ κ j

[
1

�Vj+1/2(t)
− 1

�Vj−1/2(t)

]

.

Note that by the non-negativity of �Vj+1/2 both κ j and κ j+1 are non-negative. In the next
step, we define L j+1/2 = (∂x c(Vj+1(t)) − ∂x c(Vj (t)))/(Vj+1(t) − Vj (t)) and rewrite

�Vj+1/2(t + �t)

= �Vj+1/2(t)

(

1 + �t χL j+1/2 − �t Dρ κ j+1

�Vj+3/2(t) �Vj+1/2(t)
− �t Dρ κ j

�Vj+1/2(t)�Vj−1/2(t)

)

+ �t Dρ κ j+1

�Vj+3/2(t) �Vj+1/2(t)
�Vj+3/2(t) + �t Dρ κ j

�Vj+1/2(t)�Vj−1/2(t)
�Vj−1/2(t).

Finally we estimate by the monotonicity at time instance t

�Vj+1/2(t + �t)

≥ �Vj+1/2(t)

(

1 − �t χ |L j+1/2| − �t Dρ κ j+1

�Vj+3/2(t) �Vj+1/2(t)
− �t Dρ κ j

�Vj+1/2(t)�Vj−1/2(t)

)

.

(3.3)

By using the conditions (3.2a) and (3.2b), the non-negativity of the right hand side in (3.3)
follows. This implies the monotonicity-preserving property of the scheme (3.1). ��
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For our splitting method (2.7) we assume that we avoid time step restrictions due to the
diffusion terms by our implicit treatment and take a closer look on the condition (3.2b)
(θ = 0). The point values of the inverse distribution Vj (t) for 0 ≤ j ≤ M coincide with
the mesh cell interfaces of the non-uniform mesh corresponding to the cell densities ρh(t).
Thus the quantity L j+1/2 in the proof of Lemma 3.1 can be understood as a finite difference
formula for the second derivative of the chemo-attractant density c. In effect, the above CFL
condition (3.2b) motivates to choose the time increment �tn according to

�tn ∝
(

χ sup
{x∈I }

|∂2x c(x)|
)−1

. (3.4)

For our numerical experiments with the more complex scheme (2.7) we have accordingly
computed the time increments by

�tn = CFL min

{

min
0≤ j<M

(Vj+1(tn) − Vj (tn))

χ
∣
∣∂x ĉh(Vj+1(tn)) − ∂x ĉh(Vj (tn))

∣
∣
, K�w

}

(3.5)

for constants CFL, K > 0. The additional bound proportional to �w is used to balance the
temporal and the spatial errors. Therefore the constant K needs to be adapted to the individual
test. We useCFL = 0.49 and K = 100 in our numerical experiments if not otherwise stated.
Using this condition we have not observed any non-monotone numerical solutions and no
instabilities have occurred.

4 Numerical Experiments

In this section we apply our newly developedmass transport method to several models arising
in biomedical applications that bring along merging, emerging, and traveling concentrations
phenomena. In particular, we consider the classical Keller–Segel model both elliptic and
parabolic. We study also a simple as well as a detailed cancer invasion model. The latter
takes the role of the serine protease urokinase-type plasminogen activator into account. The
numerical study of such systems constitutes a challenge due to the complex behavior that the
solutions exhibit. Numerical experiments presented below demonstrate the robustness and
reliability of our newly developed mass transport finite element method.

4.1 A Parabolic–Elliptic Keller–Segel Model with Logistic Growth

In the first test case we consider themodifiedKeller–Segel model from [7] with added logistic
growth which reads

⎧
⎪⎨

⎪⎩

∂tρ = ∂x (∂xρ − χρ∂x c) + μρ(1 − ρ) in (0,∞) × R,

c(·, x) = − 1
π

∫

R
log(|x − y|)ρ(·, y) dy in (0,∞) × R,

ρ(0, ·) = ρ0 ≥ 0.

(4.1)

Note that the adaptation of system (4.8) to 2D with μ = 0 is equivalent to the simplified
Keller–Segel model from [17], where the chemo-attractant c is determined by a Poisson
equation. The logistic term accounts for additional cell growth that is locally limited by
resources and space. Global existence of solutions to the parabolic–parabolic model with
logistic growth in 2D was shown in [26]. Except for the logistic source term this model
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has been numerically investigated by the mass transport scheme employing only inverse
distributions in [3].

Since the chemo-attractant density c is given by a convolution term, we do not need to use
a finite element approximation. Instead we proceed as in [3] and expand the diffusion taxis
operator by

− 2
Ṽ j (t) − Vj (t)

�t
= 1

Ṽ j+1(t) − Ṽ j (t)
− 1

Ṽ j (t) − Ṽ j−1(t)

+ χ �w(t)

π
lim
ε→0

∑

i :|Ṽ j (t)−Ṽi (t)|≥ε

1

Ṽ j (t) − Ṽi (t)
, (4.2a)

−T�t V j (t) − Vj (t)

�t
= 1

Ṽ j+1(t) − Ṽ j (t)
− 1

Ṽ j (t) − Ṽ j−1(t)

+ χ �w(t)

π
lim
ε→0

∑

i :|Ṽ j (t)−Ṽi (t)|≥ε

1

Ṽ j (t) − Ṽi (t)
. (4.2b)

In the corresponding computations we use a fixed ε = 10−6. While computing (4.2a) we
control the convergence of the Newton method by comparing subsequent iterates. If the
iteration fails to converge, we abort the computation assuming blowup of the numerical
solution. The second operator S in this setting accounts only for the logistic growth term. In
the numerical simulations we use a grid with only M = 50 points.

In Experiment 1 we use the parameters Dρ = 1, χ = 2.5π and the initial datum

V0(w) = w − 0.5
4
√

(w + 0.01) (1.01 − w)
. (4.3)

This experiment has been studied in the caseμ = 0 in [3], where blowup in final time around
t = 0.33 has been obtained numerically.We confirm the same phenomenon using the splitting
method, see Fig. 1. The time increment adapted due to (3.5) monotonically decreased during
the simulation and blowup was indicated when �t ≈ 3 × 10−7.

When conducting the same experiment with altered μ = 0.2 (Experiment 2), no blowup
occurs, as can be seen in Fig. 2. The aggregation stops and reverses since the logistic term
attracts the cell concentration to a lower density. The total mass of the cells decreases after
the aggregation stops and increases again after around t = 1.5. No blowup could be observed
even for later times, instead the numerical solution seems to converge to a stationary state.
The CFL condition given by (3.4) has caused an increase of the time increment over the
computation time.

4.2 Nonlinear Diffusion and Chemotaxis Models

Our method can also resolve models that include generalized diffusion and migration terms
as we will demonstrate in this section. To this end we consider at first the model

⎧
⎪⎨

⎪⎩

∂tρ = ∂x
(
ργ−1∂xρ − χρ∂x c

)
in (0,∞) × R,

c(·, x) = − 1
π

∫

R
log(|x − y|)ρ(·, y) dy in (0,∞) × R,

ρ(0, ·) = ρ0 ≥ 0

(4.4)
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Fig. 1 Experiment 1: Cell concentration, inverse cumulative function and time step adaptation in the parabolic
elliptic Keller–Segel model, Experiment 4.3.1 in [3]. The cell concentration blows up. The numerical cell
concentration has attained a maximum of approximately 176

with exponent γ > 1. In the case χ = 0 the first equation in (4.4) is known as the porous
media equation modeling the gas flow through a porous interface. We refer to [35] for an
introduction to the subject.

Similar as in (4.2), the scheme to resolve (4.4) corresponds to (2.3a)–(2.3b) where the
chemo-attractant gradient is computed as

− ∂x ĉh(Vj (t)) = �w(t)

π
lim
ε→0

∑

i :|Vj (t)−Vi (t)|≥ε

1

Vj (t) − Vi (t)
, (4.5)

where again in the computations we have taken ε = 10−6 to be constant.
In Experiment 3 and Experiment 4 we have tested our scheme using the initial condition

(4.3) and the chemo-sensitivity χ = 2.5π . Figure 3 exhibits the results from the numerical
simulation for the exponents γ = 2 and γ = 1.5. In both cases the nonlinear diffusion
prevents the blowup that would occur for γ = 1 and the numerical solution converges to a
stationary state.

Another model that we consider here has been proposed in [27]. In this work the authors
endowed the Keller–Segel model with a volume filling mechanism. For this purpose they
reconsidered the derivation of the model from a random walk and added a function q(ρ)

describing the probability that a cell finds sufficient space to jump to a particular position.
We adopt here the probability function q(ρ) = 1−ργ that models the volume filling together
with enhanced diffusion for γ > 1 and reduced diffusion for γ < 1 [27]. Independent of
the choice of γ > 1, the model does not allow for cell migration to a position where the
maximal density ρ = 1 has already been reached. The corresponding model for the cell
density includes nonlinear diffusion and advection terms and reads

∂tρ = ∂x
(
Dρ(1 + (γ − 1)ργ )∂xρ − χ(1 − ργ )ρ∂x c

)
in (0,∞) × R. (4.6)
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Fig. 2 Experiment 2: Cell concentration, inverse cumulative function, and mass for the parabolic elliptic
Keller–Segel model with added logistic growth (4.1). The additional reaction term has prevented blowup

For the numerical experiments with the volume filling model (4.6) we have adapted the
update steps (2.3a) and (2.3b) in the diffusion–advection operator by

− 2
Ṽ j (t) − Vj (t)

�t
= 1

Ṽ j+1(t) − Ṽ j (t)
− 1

(Ṽ j (t) − Ṽ j−1(t))

+ (γ − 1)D̃(t)

(Ṽ j+1(t) − Ṽ j (t))γ
− (γ − 1)D̃(t)

(Ṽ j (t) − Ṽ j−1(t))γ

−χ

[

1 −
(

2�w

Vj+1(t) − Vj−1(t)

)γ ]

∂x ĉh(Vj (t)), (4.7a)

−T�t V j (t) − Vj (t)

�t
= 1

Ṽ j+1(t) − Ṽ j (t)
− 1

(Ṽ j (t) − Ṽ j−1(t))

+ (γ − 1)D̃(t)

(Ṽ j+1(t) − Ṽ j (t))γ
− (γ − 1)D̃(t)

(Ṽ j (t) − Ṽ j−1(t))γ

−χ

[

1 −
(

2�w

Vj+1(t) − Vj−1(t)

)γ ]

∂x ĉh(Ṽ j (t)), (4.7b)
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Fig. 3 Experiments 3 and 4: Cell concentration and inverse cumulative function for the nonlinear diffusion
model (4.4), initial condition (4.3), χ = 2.5π and γ = 2 (top row), γ = 1.5 (bottom row). For both chosen
values of m the numerical solution converges to a steady state. We have used M = 500 points

where we set 2�w
Vj+1(t)−Vj−1(t)

= 0 for j = 1 and j = M to account for the boundary
conditions.

In Fig. 4 we present simulation results with the parabolic–elliptic model (4.4) where
we have replaced the original evolution equation of the cell density by the volume filling
approach (4.6). Again we have used the initial condition (4.3) and the chemo-sensitivity
parameter χ = 2.5π . We have conducted simulations for γ = 2 (Experiment 5) and γ = 0.5
(Experiment 6). The computed cell densities do not exceed a density of one in both cases and
no blowup occurs. Instead the cells evolve quickly to a bounded spatial profile from which
they slowly diffuse afterwards. The parameter choice γ = 2 leads to a larger maximal cell
density throughout the computation when compared to the case γ = 0.5.

4.3 The Parabolic–Parabolic Keller–Segel Model

In this section we apply our scheme to the well known parabolic–parabolic Keller–Segel
model which reads
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Fig. 4 Experiments 5 and 6: Cell concentration, inverse cumulative function for model (4.6) with chemo-
attractant given by a convolution as in (4.1). Results are shown for γ = 2 (top row) and γ = 0.5 (bottom
row). We have used M = 50 points in the numerical computation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tρ = ∂x
(
Dρ∂xρ − χρ∂x c

)
, in (0,∞) × (a, b),

∂t c = Dc∂
2
x c + αρ − βc, in (0,∞) × (a, b),

∂xρ(·, r) = ∂x c(·, r) = 0, r ∈ {a, b},
ρ(0, ·) = ρ0 ≥ 0, c(0, ·) = c0 ≥ 0.

(4.8)

As opposed to (4.1) this system features an additional parabolic equation to be treated by the
splitting method. To demonstrate the phenomena that the scheme can resolve, we consider
two test cases with distinct initial chemo-attractant densities that control the cell movement.
In both tests we adopt the initial datum (4.3) for the inverse distribution V .

In Experiment 7 we use system (4.8) to reproduce peak movement. To this end we use the
parameters Dρ = 0.1, Dc = 0.01, χ = 2.5, α = 0.5, β = 1 and the domain 	 = (a, b)
with boundaries chosen a = V0(0) ≈ −1.58, b = V0(1) ≈ 1.58. As initial chemo-attractant
concentration we use the logistic function

c0(x) = 1

1 + e−5 x
, x ∈ 	.
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Fig. 5 Experiment 7: Cell concentration, inverse cumulative function, and chemo-attractant density in space
and time for the parabolic–parabolic KS model (4.8). The movement and aggregation is accurately resolved
using M = 45 grid points

For the simulation we employ meshes with M = N = 45 points and the CFL condition
(3.5).

Figure 5 presents the cell dynamics, showing their movement to the right side of the
domain. As the cells produce the chemical with density c, a negative gradient is created that
leads to an aggregation of the cells which counteracts the movement. We point out that both
the migration and the growth are well resolved by the splitting scheme.

In Experiment 8we reproduce peak splitting and use the parameters Dρ = Dc = 0.1, χ =
5, α = β = 1 as well as the computational domain (a, b) with boundaries chosen as in
Experiment 7. The initial chemo-attractant density though is replaced by the function

c0(x) = 1 − e−20 x2 , x ∈ (a, b).

Figure 6 shows the computational results when using again 45 points on both the mass space
mesh and the finite element mesh. The cells move out of the center of the domain on which
the most part of the attracting chemical is already consumed. The symmetrical movement to
both sides leads to a splitting of the initial concentration into two peaks. The discretization
grid for the cells on the density level concentrates its grid points on the locations of both
peaks and adapts to the solution over time.

In the setting of the present experimentwe study the convergence of the introduced splitting
scheme experimentally. For a fixed instance in time and given M , let V h

i , i = 1, . . . , M − 1
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Fig. 6 Experiment 8: Cell concentration, inverse cumulative function, and chemo-attractant density in space
and time for the parabolic–parabolic Keller–Segel model (4.8). At the final time we show the approximated
cell averages of the density ρ at their respective position on the grid (top). The grid for the cell density adapts
to the two splitting peaks

denote a numerical solution corresponding to the mesh discretization parameter M . Then we
define the approximate L1 finite difference error by

EV
M = 1

M

M−1∑

j=1

∣
∣
∣V h

j − V h/2
2 j

∣
∣
∣ , (4.9)

where we have used a numerical solution on a finer mesh with 2M points, V h/2
j , j =

1, . . . , 2M − 1, as the reference solution. The experimental order of convergence (EOC) for
the discretization error in Vh can now be defined by

EOCV (M) = log2
(
EV
M

) − log2
(
EV
M/2

)
(4.10)

for any even integer M . Similarly, we define the EOC for the cell densities on their non-
uniform mesh. To this end let ρh

i , i = 1, . . . , M denote the finite volume representation
corresponding to V h

i , i = 1, . . . , M −1 and let Eρ(M) denote the discrete L1 error using as

reference ρref
i , i = 1, . . . , 2M the finite volume representation of V h/2

j , j = 1, . . . , 2M−1.

This L1 error is computed by projecting the reference solution to the coarser non-uniform
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Table 1 Mesh convergence in Experiment 8 up to T = 0.01 with respect to the discretization parameter M

M/M ref Error EV
M EOCV Error Eρ

M EOCρ

20/40 7.231e−04 1.360e−02

40/80 7.427e−05 3.283 1.719e−03 2.984

80/160 1.416e−05 2.391 2.768e−04 2.635

160/320 4.698e−06 1.592 7.085e−05 1.966

320/640 1.615e−06 1.541 2.591e−05 1.451

We have adapted the number of points on the finite element mesh by N = M . The EOCs approach two in the
inverse distributions and in the corresponding densities. Yet, for large M the EOC drops which is probably
due to limitations by the finite element mesh

grid corresponding to the cell densities ρh
i , i = 1, . . . , M . Then we define for even integers

M analog to (4.10)

EOCρ(M) = log2
(
Eρ
M

)
− log2

(
Eρ
M/2

)
.

In Table 1 we show the errors and the EOCs computed at the final time T = 0.01 and
with constant time increment �t = 10−4 when doubling the mesh resolution on the mass
space mesh iteratively. We have coupled the resolution of the finite element mesh to the
number of points for the inverse distribution by using N = M . We can clearly see that the
method converges as the mesh size is refined. The EOCs indicate a convergence order of two
in both, the inverse distributions and the densities. However, we see that the EOC decreases
as the grids becomes very fine. We suppose that this is caused by the finite element mesh
that is only uniformly but not locally refined: as M increases the number of mesh cells on
the non-uniform finite volume mesh for the cell densities aggregates around the positions
of the peaks. Throughout the computation the finite element solution ch must in turn be
interpolated in many points in a small physical area which leads to a loss of accuracy as the
number maxi |{ j : xi ≤ Vj ≤ xi+1}| increases. Nevertheless, Table 1 demonstrates that the
method has provided accurate numerical results using only a few mesh points.

4.4 A Cancer Invasion System

In the next test case we address a model of cancer invasion of the extracellular matrix (ECM),
the first step in cancer metastasis. The macroscopic modeling of this process commonly uses
an Keller–Segel approach that models the densities of the cancer cells, the concentration of
the extracellular fibers on which cancer cells adhere and move, and the density of an enzyme
of the matrix metallopreteinases (MMPs) family that is produced by the cancer cells and is
responsible for the degradation of the ECM.

There is a wide variety of cancer invasion models in the literature, see e.g. [12,18,31–33].
In order to test our scheme we employ a simple test case based on the pioneering model [2]
augmented with a proliferation term in the cancer cell density equation which reads
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Fig. 7 Experiment 9: Cell concentration, inverse cumulative function, tissue and MMP density for the cancer
invasion model (4.11) using only N = M = 45 mesh points. At the final time we show the approximated
cell averages of the tumor density ρ at their respective position on the grid (top left). A high concentration of
tumor cells emerges and invades the tissue. The grid for the tumor density omits the part of the tissue that is
not yet invaded

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tρ = ∂x
(
Dρ∂xρ − χρ∂xv

) + μρ(1 − ρ) in (0,∞) × (a, b),

∂tv = −δvm in (0,∞) × (a, b),

∂tm = Dm∂2xm + αρ − βm in (0,∞) × (a, b)

∂xρ(·, r) = ∂xm(·, r) = 0, r ∈ {a, b},
ρ(0, ·) = ρ0 ≥ 0, v(0, ·) = v0, m(0, ·) = m0.

(4.11)

In this model the cancer cells with density ρ move using their motility apparatus with a
preferred direction towards higher concentrations of the ECM with concentration denoted
by v. This is the haptotaxis phenomenon. Being a network in a static equilibrium the ECM
does not translocate. The MMPs however, whose density we denote by m, diffuse freely in
the extracellular environment. Additionally, the cancer cells proliferate towards a preferred
density ρ = 1 and they produce MMPs with a constant rate. The MMPs attach to the ECM
which they dissolve upon contact.
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Fig. 8 Experiment 9: Adaptation of the time increment during the simulation using (3.4) and CFL = 1/6.
Only few time steps have been required and the magnitude of step sizes does not vary significantly over time

In Experiment 9we consider system (4.11) on the computational domain (0, 1)with initial
conditions

ρ0(x) = e−x2/ε, v0(x) = 1 − 0.5 e−x2/ε, m0(x) = 0.5 e−x2/ε, (4.12)

where we use ε = 10−2. Moreover we employ the parameter values Dc = 2 · 10−4, χ =
5 · 10−3, μ = 0.2, Da = 10−3, δ = 10, α = 0.1, and β = 0. We apply the splitting
scheme (2.7) using meshes of M = N = 45 points and the CFL condition (3.4).

In our method we discretize both the ECM density v and theMMP concentrationm on the
same finite element basis. The corresponding approximations are updated in the reaction–
diffusion operator of the splitting method. The interpolations are only needed with respect
to the ECM density v. We resolve the migration of the cancer cells in transformed variables
with the advection–diffusion operator and the cell proliferation in original variables with the
reaction–diffusion operator.

Experiment 9 simulates the propagation of cancer cells into the ECM on the right side
of the computational domain. To account for the corresponding temporal expansion of the
support of the cancer cell density c we have adapted the treatment of the right boundary.
In more details, we have neglected the discrete cancer cell density entry adjacent to the
right boundary in the proliferation update (2.5), i.e. S�tρM (t) = ρM (t). Though we have
not excluded the corresponding boundary entry in the cumulative function, VM−1, from the
diffusion and haptotaxis updates of the scheme.

We present the according numerical results in Fig. 7. Apart from the propagation of the
cells into the tissue, we observe a build up of cancer cells at the leading front of the tumor.
Degradation of the tissue and MMP production are also visible. Throughout the computation
the not invaded part of the tissue is resolved by a single grid cell in the cancer cell density. In
Fig. 8 we moreover demonstrate, that our chosen CFL condition (3.4) has lead to large time
increments with only minor variations over time. This is a completely different behavior as
in the blowup case, compare Fig. 1.

In this experiment we have studied the convergence of the scheme experimentally. Along
with the errors in space, we have also computed the errors in time by the formula

EV
�t = 1

M

M−1∑

j=1

∣
∣
∣V h, �t

j − V h, 2�t
j

∣
∣
∣ , (4.13)

where V h, �t
i , i = 1, . . . , M − 1 denotes a numerical solution computed on M mesh points

with constant time increment �t . For the computation of the temporal errors we have con-
sidered a fine spatial resolution with M = N = 600 mesh cells. The corresponding EOC
is given by EOCt = log2(E

V
�t ) − log2(E

V
2�t ). The spatial errors and EOCs are computed

according to (4.9) and (4.10) with constant time increment �t = 2 × 10−4 and coupled
N = M . Both, temporal and spatial errors have been computed at the final time T = 1.
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Table 2 Experimental convergence in time (left) and in space (right) in Experiment 9 at T = 1

�t/�t ref Error EV
�t EOCt M/M ref Error EV

M EOCV

0.1/0.05 2.244e−04 10/20 7.867e−03

0.05/0.025 4.728e−05 2.247 20/40 1.919e−03 2.035

0.025/0.0125 1.107e−05 2.094 40/80 4.475e−04 2.100

0.0125/0.00625 2.766e−06 2.001 80/160 1.514e−04 1.563

In all computations we have set N = M . The EOCs indicate a convergence of second order in time and space

In Table 2 we present the computed errors and EOCs in Experiment 9. We see that the
method converges as either the mesh size or the time increment is refined. The EOCs in time
and space range around two which confirms our expected second order. As in Experiment 8
the EOC decreases slowly as the mesh is refined to very high resolutions. We point out that
previous numerical tests which did not employ our proposed boundary treatment have yield
only a spatial EOC of one.

4.5 The uPAModel

In the last series of experiments we apply our scheme to a detailed tumor invasion system
derived in [12]. This model focuses on the enzymatic urokinase plasminogen activator (uPA)
system which is known to play an essential role in the context of cancer progression and
metastasis. The uPA is an extracellular serine protease which is responsible for the activation
of the protease plasmin. This activation occurs mainly if uPA is bound to its uPA receptors
(uPAR) on the cancer cell membrane. The receptor bound uPA enhances the affinity of uPAR
to theECMconstituent vitronectin [36] and integrins. Thus, the uPA/uPAR-complex regulates
indirectly also the vitronectin-integrin interactions. Both proteases plasmin and uPA catalyze
the degradation of vitronectin and other ECM components. Another actor in the system is
the plasminogen activator inhibitor type 1 (PAI-1) which is produced by the tumor cells and
limits the activation of plasmin to prevent tissue damage and to maintain homeostasis.

The considered model complements system (4.11) by chemotactic movement of the cells
due to uPA and PAI-1, remodeling of the ECM modeled by a logistic term and the dynamics
of the uPA systemmodeled in terms of mass-action kinetics.We refer to [12] for more details.
The full model reads

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ = ∂x
(
Dρ∂xρ −χuρ∂xu − χpρ∂x p − χvρ∂xv

) + μ1ρ(1 − ρ) in (0,∞) × (a, b),

∂tv = −δvm + φ21up − φ22vp + μ2v(1 − v) in (0,∞) × (a, b),

∂t u = Du∂
2
x u − φ31up − φ33ρu + α3ρ in (0,∞) × (a, b),

∂t p = Dp∂
2
x p − φ41up − φ42vp + α4m in (0,∞) × (a, b),

∂tm = Dm∂2x m + φ52vp + φ53ρu − α5m in (0,∞) × (a, b),

∂xρ(·, r) = ∂xu(·, r) = ∂x p(·, r) = ∂xm(·, r) = 0, r ∈ {a, b},
ρ(0, ·) = ρ0, v(0, ·) = v0, u(0, ·) = u0 p(0, ·) = p0, m(0, ·) = m0,

(4.14)
where the cancer cell concentration is represented by ρ, the ECM by the density of its
constituent vitronectin v, and uPA, PAI-1, and plasmin densities are denoted by u, p, and m.
We assume non-negative initial data.
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Weconsider a numerical experiment thatwe have studied in [23] by a finite volumemethod
(Experiment 10). It employs the parameters from [1] given by

Dc = 3.5 × 10−4, χu = 3.05 × 10−2, μ1 = 0.25,

Du = 2.5 × 10−3, χp = 3.75 × 10−2, μ2 = 0.15,

Dp = 3.5 × 10−3, χv = 2.85 × 10−2, δ = 8.15,

Dm = 4.91 × 10−3, φ21 = 0.75, φ22 = 0.55,

φ31 = 0.75, φ33 = 0.3, φ41 = 0.75,

φ42 = 0.55, φ52 = 0.11, φ53 = 0.75,

α3 = 0.215, α4 = 0.5, α5 = 0.5,

and the computational domain I = (0, 10) with the initial date

c0(x) = e−x2/ε, v0(x) = 1 − 1
2e

−x2/ε, u0(x) = 1
2e

−x2/ε,

p0(x) = 1
20e

−x2/ε, m0(x) = 0, ε = 5 × 10−3.

As done to treat model (4.11) we use a single finite element basis to discretize the
concentrations of the ECM, the uPA, the PAI-1, and the plasmin. The cubic spline in the
advection–diffusion operator interpolates the linear combination χvv + χuu + χp p. Similar
as in the models (4.8) and (4.11) the scheme approximates the cell proliferation in Eulerian
coordinates but diffusion and advection of the cancer cells in transformed variables. We have
used the same boundary treatment as in Sect. 4.4.

In Fig. 9 we present the simulation results obtained by our scheme with mesh parameters
M = N = 400. The method is capable to approximate accurately the dynamics that we have
obtained in [23] including the emergence and movement of multiple steep peeks. The present
simulation clearly demonstrates the robustness of the newly developed scheme to simulate
complex taxis–diffusion systems arising in cell biology.

To investigate the dynamics of such a cancer invasion system in the case that the cell
migration is restricted by the occupied extracellular space we have endowed model (4.14)
with the volumefilling approach (4.6). Inmore detailswehave replaced the evolution equation
for the tumor cell density in (4.14) by

∂tρ = ∂x
(
Dρ(1 + (γ − 1)ργ )∂xρ − (1 − ργ )(χuρ∂x u + χpρ∂x p + χvρ∂xv)

) + μ1ρ(1 − ρ)

(4.15)

and used otherwise the same setting as above. For the simulations the scheme has been
adapted in a similar way as in (4.7a).

In Figs. 10 and 11 we show the simulation results for the exponents chosen γ = 2 and
γ = 0.5, where we have used M = N = 400 mesh points in the computation. Contrary
to the simulations without volume filling, the cancer cells do not exhibit the rich dynamics,
i.e. the formation of multiple clusters. Instead a single concentration of tumor cells invades
the ECM and leaves a homogeneous distribution of tumor cells of maximal density ρ = 1
behind. Reducing the diffusivity of the cells by decreasing the exponent γ results in a slower
invasion of the tissue and to a lower concentration at the invading front of tumor cells. This
can be seen when comparing Experiment 11 in Fig. 10 (γ = 2) and Experiment 12 in Fig. 11
(γ = 0.5).
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Fig. 9 Experiment 10: Cancer cell concentration, inverse cumulative function, ECM, uPA, PAI-1 and plasmin
density in space and time in model (4.14) computed by the new scheme. The dynamics, particularly the steep
peaks in the cancer cell density, are well resolved by the scheme. We have used M = N = 400 grid points on
both meshes in the numerical simulation

4.6 Efficiency Tests

In this section we study how the new method compares in efficiency to more conventional
numerical methods. For this purpuse we consider the Finite Volume/Finite Difference from
[23] for both uniform and adaptive meshes. In particular we have chosen a second order
method with implicit–explicit Strang operator splitting. Moreover, we take adaptive mesh
refinement into account. The method we use employs the gradient monitor function to deter-
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Fig. 10 Experiment 11: Cancer cell concentration, inverse cumulative function, ECM, uPA, PAI-1 and plasmin
density in space and time in model (4.14) with volume filling (4.15) and exponent γ = 2. We have used
M = N = 400 grid points on both meshes in the numerical simulation

mine themesh-cells to be either refined or coarsened.1 For brevity,wewill refer to the adaptive
method as AMR and to the uniformmethod as FVFD. The newmass-transport/finite element
method will be denoted by MTFE.

For our comparisonwe revisit Experiment 10, consider the set S = {40, 80, 160, 320, 640,
1280} and run the MTFE method for M ∈ S, the FVFD method for N = 6k for any k ∈ S,
and the AMR method for N0 ∈ S with N0 denoting the number of cells on the lowest level.

1 In more details we have used the refinement and coarsening threshold values θref = 10, θcoars = 2.5, a
single refinement and coarsening operation per time step nref = ncoars = 1 and a maximal refinement level
of lmax = 2, cf [23].
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Fig. 11 Experiment 12: Cancer cell concentration, inverse cumulative function, ECM, uPA, PAI-1 and plasmin
density in space and time in model (4.14) with volume filling (4.15) and exponent γ = 0.5. We have used
M = N = 400 grid points on both meshes in the numerical simulation

We couple the two meshes in the MTFE scheme by setting N = M . We do not consider finer
resolutions due to restrictions by the uniform reference solution in the error computations for
theMTFE scheme. For comparison reasonswe let N denote the average number of cells in the
AMRmethod. In addition, all three methods employ the same Courant numberCFL = 0.49
and all numerical solutions are computed on the domain 	 = (0, 5).

We compute the numerical solutions of the considered experiment at the time instance
t = 23 that features two steep peaks in the cancer cell concentration. In this process we
measure the CPU time that is needed for the corresponding simulations and compute the error
of the approximation at the final time. For the error computation we have used a reference
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Fig. 12 Experiment 10: Relation between CPU time and error (left) and between the (average) number of
cells and the error (right) for the FVFD, AMR, and MTFE scheme. The new MTFE method is most efficient
in terms of error per CPU time, its relation between the error and the average number of cells is similar as in
the FVFD scheme

Fig. 13 Experiment 8: Relation between CPU time and error for the FVFD, AMR, and MTFE scheme. In this
test the mesh refinement of the AMR method does not improve the efficiency compared to the uniform FVFD
scheme. The new MTFE method performs similarly efficient as the FVFD scheme

solution that employs a uniform mesh with cell size h = 1.25 × 10−5 in the relevant part
of the domain.2 The discrete L1 error is then computed with respect to the densities using a
suitable projection of the reference solution. Note that the following test results are dependent
on our (non-reference) implementation of the numerical methods.

We show the results of our comparison in Fig. 12. Here we present the relation between
the error and the computation time and the relation between the error and the average number
of cells for all three methods. We see that for all tested methods the error decreases as either
the cell number or the CPU time increases. Figure 12 (left) exhibits an advantage of the new
MTFE method over the other schemes in efficiency for most of the conducted simulations.
This can be seen as the MTFE method achieves in most cases lower errors than the FVFD
or the AMR scheme using the same CPU time. As the runtime increases the MTFE method
approaches the efficiency of theAMRmethodwith the newmethod being at a slight advantage
over the mesh refinement method. Clearly, the AMR and the MTFE scheme both outperform
the FVFD method for sufficiently large CPU times.

Figure 12 (right) shows that the AMR method achieves the lowest errors when compared
with simulations by the FVFD and MTFE scheme employing the same average number of
cells. The error of the MTFE scheme has a similar dependence on the number of cells as the
error of the FVFD scheme.We conjecture thus that the better efficiency of theMTFE scheme
in terms of CPU time seen in Fig. 12 (left) is probably caused by the CFL condition in the
MTFE scheme allowing for larger time steps compared to the FVFD method.

To demonstrate the efficiency of the new method in simpler problems we have conducted
a similar comparison in case of Experiment 8, where the parabolic–parabolic Keller–Segel

2 We have computed a uniform solution in (0, 2) with our uniform method using N = 160,000 mesh cells.
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model is used. For this experiment we have chosen K = 1 in condition (3.5) to balance spatial
and temporal errors of the MTFE scheme. Using otherwise the same configurations as above
we have computed numerical solutions of all three methods at time instance t = 0.02. In
Fig. 13 we show the relation between computational time and numerical error, employing
a reference solution on 400,000 uniform mesh cells for the error computation. Since the
simulation is realized in short computational time the overhead of the mesh administration
in the AMRmethods outweighs the error reduction compared to the FVFD scheme. Thus the
uniformscheme ismore efficient in termsof the error perCPU time in all tested configurations.
Moreover, we can clearly recognize that the MTFE scheme is slightly more efficient than the
FVFD scheme. The advantage in efficiency of the new scheme is more significant for more
complex problems that feature dynamically merging and emerging concentrations such as in
Experiment 10.

5 Conclusion

In this paper we have proposed a new splitting scheme for one-dimensional reaction–taxis–
diffusion systems related to the Keller–Segel model. The solutions of these systems are well
known for having concentrated and diffusive regions simultaneously. In addition, traveling
waves and merging phenomena typically occur.

Our splitting has separated a part of the model which is mass conservative in the cell
density from the rest of the system. The latter has been approximated by a classical linear
finite element method, whereas the approximation of the conservative part has been based
on the mass transport strategy. More precisely, we have first transformed the cell density
to the corresponding pseudo inverse cumulative distribution. Then we have discretized the
transformed system by the finite difference method and used a cubic spline to account for the
chemo-attractant whose evolution is described in the rest subsystem. The splitting method is
described in Sect. 2. In Lemma 3.1 we have studied the stability of the explicit mass transport
method for the conservative part in which we allowed for general nonlinear diffusion. The
obtained result has been used to derive a time-step restriction for our scheme.

In Sect. 4 we have presented a series of numerical experiments demonstrating the robust-
ness and reliability of the scheme. In particular, we have used the new method to resolve the
Keller–Segel model in the parabolic–elliptic and in the parabolic–parabolic form numeri-
cally. We have applied our scheme also to augmentations of these systems by reaction terms,
nonlinear diffusion and a volume filling approach. The method has resolved the movement,
splitting and aggregation phenomena accurately. We have verified the mesh convergence of
the scheme in both time and space in an application to a simple tumor invasion system in
Sect. 4.4. The obtained experimental order of convergence has ranged around two spatially
and temporally.Moreover, we have applied the scheme to the uPA-tumor invasionmodel from
[12] in Sect. 4.5. The proposed hybrid mass transport finite element scheme has been capa-
ble to resolve its complex dynamics featuring multiple peaks in the cancer cell concentration
without using a fine spatial discretization. By the help of our newmethod we could also study
a combination of the uPA model with the volume filling approach from [27]. In addition, we
have compared the efficiency of the hybrid mass transport finite element method with a finite
volume scheme with adaptive mesh refinement from [23]. The hybrid mass transport finite
element method has not only outperformed the uniform finite volume scheme but it has also
delivered slightly better results than the finite volume scheme equipped with adaptive mesh
refinement.

123



Journal of Scientific Computing

Generalizing the present method to higher space dimensions is a challenging problem
due to the interpolation between the different meshes in the mass and physical variables.
However, one can employ multidimensional adaptations of the mass transport scheme for
evolution equations that we use in our splitting. Such adaptations have been proposed in [8–
10] and while pseudo inverse distributions are used in the 1D case, evolving diffeomorphisms
are used in higher dimensions. However, we note that the application of these methods is
delicate and associated with high computational costs [3,8] and it is an open question if their
application in a splitting scheme can lead to similar efficiency due to the interpolation errors
as we have seen in 1D in case of the present method.
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