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Abstract

The development of ductile damage, that occurs beyond the point of necking

in a tensile test, can be difficult to quantify. An experimental methodology

has been developed to accurately characterise the post-necking deformation re-

sponse of a material through continuous monitoring of the specimen’s shape

up until rupture. By studying the evolution of the neck geometry, the cor-

rect values of the local stress and strain have been determined in samples of

grade 304L stainless steel and C110 copper. Notched bar specimens of vari-

ous notch acuities were examined enabling the effects of stress triaxiality on

ductile fracture to be determined. The methodology developed has provided a

robust framework for macroscopic measurements of ductile damage during the

necking process. To characterise the material degradation process, the elastic

modulus reduction method was employed on hourglass-shaped specimens of the

same materials. Stiffness degradation was measured using a small gauge exten-

someter during uninterrupted tensile tests with partial elastic unloadings. A

metallographic study was conducted on progressively damaged specimens in or-

der to validate the macroscopic damage measurements. A new non-linear ductile
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damage accumulation law has been developed and calibrated, which provides

an advanced representation of the experimental results, and a significant im-

provement compared to linear accumulation models frequently employed. This

realistic modelling approach considers the degradation of the material when it

has undergone severe plastic deformation, and provides a more accurate rep-

resentation of the near failure behaviour by considering the effects of stress

triaxiality. The methodology provides accurate data for damage model devel-

opment and calibration, to improve the predictions of remnant life from ductile

damage in engineering components.
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1. Introduction

The ability to characterise very high strain deformation behaviour, and to

quantify and predict ductile damage accumulation in a material is important for

many engineering applications. For example, automotive industry designs its

vehicles so that their bodywork plastically deforms, absorbing the energy of an5

impact. Components manufactured using metal forming experience very high

plastic deformation, whilst avoiding failure by ductile damage. Hence models

to describe the ductile damage accumulation to very high strains are required.

Modern experimental and simulation techniques are capable of representing se-

vere plasticity and material degradation, however, most constitutive laws em-10

ployed in these models are obtained by conventional instrumentation, assuming

uniform deformation through the sample, and thus limited to the stress-strain

values at the point of strain localisation by necking.

The final stages of localised plastic deformation in the form of a neck in duc-

tile isotropic materials were studied on round specimens by Bridgman (1964),15

who derived relationships between the geometry of the neck and the stresses and

strains generated. These local stresses and strains represent the actual plastic

behaviour of the material compared to a classical uniform tensile test approx-

imation. With modern high resolution cameras, it is now possible to measure
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and track accurately the curvature of the material in the necked region. High20

resolution imagining of the neck geometry combined with Bridgman (1964) the-

ory, or a similar necking approximation, makes it possible to derive the stresses

and strains in the centre of the neck, and hence the hardening behaviour to

high strains. Rosa et al. (2003) performed studies on the neck development

of metallic materials investigating alternative methods of neck characterisation25

without the need of geometry monitoring. Mirone (2004) further developed that

approach proposing a material-independent necking model which required only

the experimental true stress-strain curve and the neck onset strain to calculate

the equivalent stress and equivalent strain. This analytical approach could be

used as an alternative to the Bridgman model without the need of experimen-30

tal profile curvature measurements. Other alternative approaches to consider

the necking behaviour include the use of the virtual fields method to calculate

post-necking hardening proposed by Kim et al. (2013); or the inverse methods

based on Finite Element Model Updating (FEMU) (e.g. Kajberg and Lind-

kvist (2004); Koc and Stok (2004)). This technique consists of deducing the35

parameters of the model from its experimentally obtained solution. In the case

of material necking, stain fields in the specimen surface can be measured using

Digital Image Correlation (DIC), and finite elements simulations can be solved

iteratively updating the model until the difference between the measured and

estimated strain fields is minimised (Kajberg and Lindkvist (2004)).40

Focusing on the methods that use the experimental measurement of the

sample’s profile, such as the Bridgman approach, several techniques have been

proposed to record the shape of the specimen: G’Sell et al. (1992) used cameras

to record the necking in polymers while Gerbig et al. (2016) opted for using

Digital Image Correlation. Rittel et al. (2014) used high-speed cameras in Split45

Hopkinson Tensile Bar experiments to observe the necking of metals in dynamic

conditions and Vaz-Romero et al. (2016) followed a similar approach to investi-

gate the effect of multiaxiality in dynamic necks development. The expanding

ring experiment is an alternative technique that can be used to quantify necking

at even higher strain-rates (ε̇ ∼ 10−4s−1), Zhang and Ravi-Chandar (2006).50
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The methodology proposed here makes use of Bridgman’s approach but in-

troduces a simplified method of neck profile measurement that requires just a

single DSLR camera (Digital Single-Lens Reflex), and uses an automated im-

age processing algorithm for neck extraction; therefore, it provides an effective

and economical method to accurately characterise the necking phenomenon ex-55

perimentally. The results obtained can be used to calibrate popular plasticity

models such as Ramberg-Osgood (Ramberg and Osgood (1943)) and Johnson-

Cook (Johnson and Cook (1983)), in addition to more complex models such

as the mechanical threshold stress (MTS) model, which is based on dislocation

theory (Mecking and Kocks (1981)), or the Bai and Wierzbicki (2008) model,60

which accounts for the effect of hydrostatic pressure and deviatoric stress.

The ability to characterise the shape of the neck allows the effects of stress

triaxiality on the fracture behaviour of the material to be determined. Tensile

tests on notched bars of different notched acuities are generally employed (see

e.g. Bai and Wierzbicki (2008); Brünig et al. (2008)), to determine stress tri-65

axiality effects on ductility. Stress triaxiality changes during the deformation

process, however, when calibrating fracture models, the tensile ductility is asso-

ciated with a single stress triaxiality ratio, which is effectively assumed constant

during the test. In the past, the initial or final value of stress triaxiality was

used for that purpose (Johnson and Cook (1985)). In more recent studies, the70

full history of the stress state obtained from finite elements simulations has

generally been considered, e.g. Bai and Wierzbicki (2008). Considerable efforts

have been made recently in an attempt to design ductile fracture experiments

that produce locally proportional loading histories. In the methodology pro-

posed here, the evolution of stress triaxiality along the test can be obtained75

experimentally. This is achieved by tracing the geometry of the neck, enabling

the influence of stress state on ductility to be characterised, and enhancing the

accuracy of ductile fracture models. Another parameter that is known to affect

ductility of metals is Lode angle, which is related to the second and third in-

variants of the deviatoric stress tensor, and represents the type of loading that80

the material is undergoing (tension, compression, shear or a combination e.g.
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mixed-mode loading). A wide variety of specimen geometries and experimental

configurations have been proposed in order to study different combinations of

stress triaxiality and Lode angle, e.g. cruciform and butterfly specimens, which

were firstly proposed by Mohr and Henn (2007), and later used by other au-85

thors such as Xue and Wierzbicki (2008). However, the research presented here

is focused on the study of stress triaxiality effects and Lode angle effects have

not been analysed, therefore, only stress states similar to the ones studied can

be represented at present by the methodology discussed in this paper.

Ductile damage accumulation rate, a measure of the plastic degradation90

of the material with plastic strain, has proven difficult to determine experi-

mentally (Lemaitre and Dufailly (1987), Alves (2001)). Hence, very often a

linear accumulation of damage rate is assumed. Various techniques have previ-

ously been proposed to calculate damage accumulation, all based on measuring

a macroscopic mechanical property that is considered to be directly related to95

damage. The indirect methods include elastic modulus reduction measurements

(Lemaitre and Dufailly (1987); Bonora et al. (2011)), hardness measurements

(Oliver and Pharr (2004); Guelorget et al. (2007)), micro-structure analysis

(Lemaitre and Dufailly (1987)), response to ultrasonic waves (Boccaccini and

Boccaccini (1997); Kumar et al. (2010)), X-Ray micro-tomography (Cao et al.100

(2014)) and electric potential drop (Zhang et al. (2014)). In this work, an

advanced stiffness reduction technique has been developed to measure dam-

age. This features the use of a small extensometer, which combined with the

aforementioned necking correction technique provides a fast and effective tech-

nique for damage quantification. The results obtained using this technique have105

been validated by observation of voids density from microstructural images of

material that had undergone different levels of plastic deformation. An alter-

native approach to investigate damage accumulation rate would be to induce

non-proportional paths during testing, and tune the adopted damage model

according to the differences in terms of strain to fracture observed.110

An aim of this study is to prove that damage accumulation is highly non-

linear for most materials, as previously presented by Bonora et al. (2011). Dif-
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ferent approaches exist to represent ductile damage and there are different opin-

ions about its effect on material behaviour. Micro-mechanical models such as

GNT (Gurson-Needleman-Tvergaard) (Needleman and Tvergaard (1984)) rep-115

resent the actual processes of void nucleation, growth and coalescence involved

in ductile damage. Continuum damage mechanics models like Bonora (1997)

consider damage through its effects on macroscopic properties. These two ap-

proaches introduce a coupled modelling of damage, and include elastic and/or

plastic softening of the material with ductile damage. Phenomenological models120

such as Johnson and Cook (1985) and Bai and Wierzbicki (2008) fit the frac-

ture strain conditions to analytical expressions and generally assume a linear

damage accumulation with no effect of damage on the elasto-plastic behaviour.

A new, non-linear damage accumulation law is proposed here, which is based

on the model proposed by Cortese et al. (2016) for non-proportional loading125

conditions, and also takes concepts from the continuum damage mechanics the-

ory. This model can be used in simulations to calculate the level of material

degradation, and can be coupled with the elasto-plastic calculations for a more

realistic material representation. This new modelling approach has been care-

fully validated with appropriate experimentation.130

2. Methodology

The materials and specimen geometries employed in this work are described

below. The experimental methodologies developed for plasticity and damage

assessment are also presented and the material models analysed. All the exper-

iments discussed have been performed in quasi-static (ε̇ ∼ 10−3 s−1) and room135

temperature conditions (T ∼ 20 ◦C).

2.1. Materials

The behaviours of two different materials have been investigated, one an

austenitic 304L stainless steel with low carbon (max. 0.03%) and minimum

18% chromium and 8% nickel contents; the other C110 copper, an alloy with140
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>99.90% copper content and oxygen generally below 0.04%. These materials

have been selected due to their appreciable ductility and the availability of

published work for comparison purposes.

2.2. Specimens

The test specimens were manufactured from rods in the as-drawn condition.145

Three different specimen geometries were used in this investigation: smooth

round bars, notched round bars and hourglass shaped round bars. An image of

the types of specimens tested is presented in Figure 1 and a summary of the

dimensions of all the samples can be found in Table 1.

For plasticity and necking characterisation a conventional round bar speci-150

men (RB) of 6 mm diameter and 30 mm gauge length as employed, as shown in

Figure 2 (Test No. 1 in Table 1). For damage monitoring experiments, hourglass

shaped specimens (HGR) were used (Figure 3, Test No. 2 in Table 1). The re-

gion of interest in these specimens is a central gauge region of uniform diameter

6 mm and length 6 mm, where damage will be concentrated. Above and below155

this region of interest the sample is tapered presenting a gradual narrowing,

in order to avoid stress concentrations. The equal stress and deformation be-

haviour of RB and HGR specimens in their gauge section was verified with FE

simulations. Similar geometries were used in the past for damage monitoring

(Alves et al. (2000)) and necking analysis (Gerbig et al. (2016)).160

Lastly, in order to study the effect of stress triaxiality on fracture strain,

round notched bar specimens (RNB) with different notch acuities were used.

Equation 1 can be derived from Bridgman’s theory (Bridgman, 1964) and pro-

vides the initial value of stress triaxiality in the minimum cross section of the

sample as a function of the geometry of the notch:165

η =
σH
σ̄

=
1

3
+ ln

(
1 +

a

ρ

)
(1)

where η is the stress triaxiality, σH the hydrostatic stress, σ̄ the equivalent

von Mises stress, a the cross-sectional radius in the notch and ρ the radius

of curvature of the notch. Different notch geometries were tested to represent
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various states of stress triaxiality (Tests No. 3-8 in Table 1), an example of

which is shown in Figure 4.170

2.3. Experimental procedure for plasticity modelling

A conventional tensile test is usually performed to determine the elastoplastic

behaviour of materials using an extensometer to measure elongation and a load

cell to obtain load. The true stress - strain performance of the material can then

be derived from these measurements assuming uniform deformation behaviour175

using Equations 2 and 3:

εT = ln (1 + εe) (2)

σT = σe(1 + εe) (3)

where σe and εe are the engineering stress and strain, and σT and εT the true

stress and strain. The values obtained following this procedure are only valid

while the material deforms uniformly, but the behaviour stops being uniform180

once localisation starts.

The experimental setup employed for the post-necking behaviour measure-

ments during tensile tests can be seen in Figure 5, which includes a DSLR camera

and a light source on each side of the sample. The camera used was a Nikon

D7000 with 16.2 megapixel DX-format CMOS image sensor. The camera was185

carefully focused using a flat sheet located at the mid thickness position where

the specimen was later placed, ensuring focus at the mid-plane of the specimen.

By using a relatively large aperture (f/2), low exposure time (1/1000), low ISO

(100), a focal length of 200 mm and an approximate distance to the sample

of 600 mm the depth of field obtained was 0.5 mm, which is very narrow but190

assures that a sharp representation of the specimen’s profile is obtained. The

camera setup must not be moved after it has been calibrated, since with the

narrow depth of field used small changes in the distance to the sample would

lead to unacceptably blurry specimen edges in the images.

Additional lighting enables settings on the camera to be used that optimise195

the sharpness of the image, sacrificing its brightness. They also increase the
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contrast between the specimen and the background making it easier to determine

accurately the external profiles from the images. The specimen was painted

white to improve contrast, as well as to avoid reflections from the metallic

surface. The experiments are best performed soon after the samples have been200

painted so that the paint is still slightly wet, such that it is more likely to remain

attached to the surface of the specimen. Generally, the tests were performed

1-2 hours after the specimens had been painted.

For profile sample extraction an image thresholding method was used. With

this setup, the transition between the dark background of the image and the205

light region of the sample presents only 2-3 pixels of thickness with varying

shades of grey, as observed in Figure 6. The equivalent size of each pixel can

be obtained by comparing the actual diameter of the sample with the number

of pixels across the specimen before the test, and in the case represented the

side of each pixel measures 7.8 µm. If 3 pixels of dimensional uncertainty are210

considered for the thresholding method, the error of the profile measurement

would be ≤ 23.4 µm, which can also be taken as the accuracy of the method.

The tests were conducted under quasi-static conditions (ε̇ ∼ 10−3 s−1) in a

conventional 250 kN tensile Instron machine. Images were recorded at a rate of

0.5 fps. This resulted in an average of 370 images taken along the stainless steel215

tests and 140 images along the copper tests, approximately 110 of which images

corresponded to the necking region for both materials. An automated script was

created to extract the specimen external profiles of each picture after having

applied the threshold to the image. From the profiles, the minimum cross-

sectional radius (a) and the fitted osculating circles radii (ρ) can be determined,220

as observed in Figure 7.

The theory derived by Bridgman (1964) can be used to obtain the true stress

- true strain behaviour in the central point of the necked cross-section of the

specimen. That is the location of interest for the present research, since the

maximum value of stress triaxiality and ductile damage appears there during225

the localisation process, and being the aim to characterise damage, the most

demanding conditions that first lead to fracture should be analysed. By mon-
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itoring the minimum radius of the sample the average axial strain in the neck

can be obtained using Equation 4 and the average axial stress with Equation 5:

ε̄ ≈ εzz,av = 2 ln
(a0

a

)
(4)

230

σzz,av =
Load

πa2
(5)

where εzz,av and σzz,av represent the average strain and stress across the cross-

section in the specimen axial direction, ε̄ the equivalent strain, a0 the initial

cross-sectional radius and a the current cross-sectional radius. Bridgman model

considers the assumptions that axial strain is uniform in the neck cross-section,

and that proportional loading conditions take place. Under those assumptions,235

the radial and tangential strains are equal and double the magnitude of axial

strain, therefore, the expression of Equation 4 corresponds also to the equivalent

strain. The effect produced by the real distribution of variable strain in the

cross-section was studied by Rosa et al. (2003) and Mirone (2004), but for this

work, the level of accuracy provided by Bridgman’s work has been considered240

acceptable.

Whilst axial strain varies very little across the neck even beyond necking,

axial stress presents a radial variation that has to be taken into account. The

material deforms uniformly before necking, and therefore, stress is also uniform.

However, when necking starts the stress distribution has to be corrected and245

the axial stress at any radial position of the cross-section can be obtained using

Equation 6:

σzz =
σzz,av(

1 + 2ρ
a

)
ln
(

1 + a
2ρ

) (1 + ln

(
a2 + 2aρ+ r2

2aρ

))
(6)

where σzz is the axial stress, σzz,av the average axial stress, a the neck cross-

sectional radius, ρ the neck radius of curvature and r the radial distance from

the axis of the specimen. If the radial position studied is exactly the centre of the250

cross-section, the maximum axial stress is obtained. The expression obtained for

the equivalent stress in the neck (σ̄) following Bridgman approach is presented

in Equation 7. Equivalent stress only depends on the geometry of the neck (a
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and ρ) and the average axial stress, and it is the parameter that has been used

to represent the material, along with the equivalent strain of Equation 4.255

σ̄ =
σzz,av(

1 + 2ρ
a

)
ln
(

1 + a
2ρ

) (7)

Round bar specimens (Figure 2) were used to obtain the equivalent stress -

equivalent strain behaviour of the materials using the imaging method described

above. The same sample geometry was also used to obtain the true stress - true

strain of the material using a 6 mm gauge length extensometer and the classical

processing method (Equations 2 and 3), in order to compare both techniques.260

Additional tests were performed on hourglass round specimens (Figure 3), in

which strain was measured using both techniques (the imaging and the exten-

someter). By doing this, calibration curves for the necking effect correction were

produced. These curves associate each measurement of engineering strain and

stress obtained from the extensometer and load cell to the value of equivalent265

strain and equivalent stress obtained from the neck geometry at that particular

instant of the test. The calibration curves obtained are presented in Figure 8

for strains and stresses of stainless steel 304L and copper C110. As expected,

the correction curves are lines of slope value ∼ 1 before necking, since both

methods yield the same results. When the neck develops, the slope increases in270

all the curves due to the localisation of stress and strain that is not captured

by the traditional approach. While the increasing slope is easily observed for

strains, a backwards or boomerang effect appears in the stress curves. Engineer-

ing stress starts decreasing passed the UTS, however, the real equivalent stress

keeps increasing. The point of highest abscissa of these curves corresponds to275

the UTS point, after which localisation occurs with either equivalent stress in-

creasing further up to failure (stainless steel, Figure 8c), or increasing and then

decreasing back to zero, due to the material degradation (copper, Figure 8d).

The calibration curves have later been used to account for the necking effects

in the damage monitoring experiments.280

11



2.4. Experimental procedure for ductile damage modelling

Two different experiments were performed in order to characterise ductile

damage, one focused on the quantification of the material degradation when

plastic strain is progressively applied, and the other on the ductile fracture

strain at various states of stress triaxiality.285

To determine the effect of stress triaxiality on fracture plastic strain, ten-

sile tests on round notched bar specimens with different notch geometries were

performed (Figure 4 represents a notch of 5 mm minimum diameter and 3 mm

notch radius of curvature). The same equipment and room temperature condi-

tions were used for these tests. The imaging technique described for plasticity290

assessment was also used to monitor the notch throughout the test. This has

been especially useful, since it allows the evolution of the stress triaxiality in the

centre of the notch to be calculated using the notch’s geometrical parameters

and Equation 1. The initial triaxiality of the specimen can be obtained from

its initial geometry and Equation 1, however, this value varies along the test295

when the geometry of the notch changes, and the assumption of constant triax-

iality would lead to inaccurate material modelling. From the stress triaxiality

history, the average value at the centre of the neck was calculated as presented

in Equation 8:

ηav =
1

ε̄f

∫ ε̄f

0

η(ε̄)dε̄ (8)

where ηav is the average stress triaxiality, η(ε̄) the stress triaxiality history, ε̄300

the equivalent strain and ε̄f the fracture equivalent strain. This average value

has later been used for the calibration of models. Generally, fracture strain is

obtained by measuring the diameter of the fractured specimen and comparing

it with its initial value by means of Equation 4. For validation purposes the

final diameter was also measured using a shadowgraph.305

To measure the degradation that ductile damage produces in the material,

the stiffness reduction method was employed. This technique consists of a tensile

test which, instead of running continuously up to fracture, is partially unloaded

at different plastic strain stages, and reloaded subsequently. This process is

12



exemplified in Figure 9. From the slope of each of the unloading cycles the310

damaged or effective elastic modulus (Ẽ) can be obtained, and from it, an

estimation of damage expressed following the continuum damage mechanics

definition:

D = 1− Ẽ

E
(9)

where D is ductile damage, E the initial elastic modulus and Ẽ the effective or

deteriorated elastic modulus.315

A 250 kN tensile Instron machine was used, in which the successive loading

and unloading program was specified so that the test run in a continuous manner

in quasi-static conditions (ε̇ ∼ 10−3 s−1). The hourglass shaped specimens

were used for these tests (Figure 3). To measure strain in the gauge region

for later damage calculation, an extensometer of 6 mm gauge length and a320

maximum engineering strain measurement capability of 100% was used. In

previous studies strain gauges were mainly used for accurate elastic modulus

measurement (Bonora (1997); Lemaitre and Dufailly (1987); Alves et al. (2000)).

Nevertheless, strain gauges are not able to measure more than 10% plastic strain

before failing, and therefore, several test interruptions and gauge replacements325

were required, losing the origin of strain measurement and introducing great

inaccuracy in the process. The alternative method used in this research can

be performed in a continuous manner reducing considerably the test duration,

the specimens preparation complexity and the potential imprecision of strain

gauge replacement. Although strain gauges could potentially lead to a better330

approximation of the local strain values due to their smaller size, they cannot

be attached accurately to an already necked geometry, which is the region of

highest interest. The extensometer used in this research was smaller than those

used in previous investigations (Bonora et al. (2011)), and while it still provides

an averaged strain measurement in the necked region, a closer approximation335

to the more local measurement of a strain gauge was pursued. Another method

to measure strain based on Digital Image Correlation instead of extensometer

was initially considered, since it could potentially have led to an even better
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approximation of the local strains in the neck, nevertheless, the method was

discarded due to the higher scatter in the strains measured at such small scale340

(Sancho et al. (2016)).

The measurements obtained from the extensometer was used to create curves

of stress vs. average strain in the gauge length, as shown in Figure 10, which

represents an unloading and reloading cycle. The measured values of stress and

strain were corrected with the curves presented in Figure 8 to account for the345

effects of necking. The unloading measurements were used to calculate elastic

modulus, as suggested by Lemaitre and Chaboche (1990). The top and bottom

20% data of each unload cycle were omitted due to the non-linearities in the

extremes and a fit was made to the linear region to determine the effective

elastic modulus. By comparing this effective modulus with the initial value,350

ductile damage can be calculated using Equation 9.

As previously mentioned, the effects of cross-section reduction and necking

on stress and strain have been taken into account. This has been done by

interpolating the raw data obtained from the extensometer and load cell with

the calibration curves of Figure 8 obtained from the plasticity tests, which relate355

measured engineering values with equivalent corrected values.

2.5. Plasticity and damage models

The experimental results obtained were used to calibrate the quasi-static

and room temperature part of Johnson-Cook plastic and damage model (John-

son and Cook (1983, 1985)) with the new damage accumulation law proposed.360

Due to the quasi-static strain-rate and constant temperature of the experiments

considered in this work, the models reduce to a power-law expression for plastic

behaviour and an exponential expression for ductile damage, each of them with

3 parameters to be calibrated. Alternative models such as a classical power law

for the plastic behaviour representation, and an exponential Rice and Tracey365

like model for the ductile fracture (each with only 2 parameters) could also

be used. However, in this case the simplified versions of Johnson-Cook model

were selected, as the work has been extended to different strain-rates and tem-
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peratures (Sancho et al. (2018)). The hardening law is defined by Equation 10,

where the first term represents the isotropic plastic strain hardening, the second370

term the strain-rate hardening and the third term the temperature softening:

σ̄ =
[
A+Bε̄npl

] [
1 + C ln

(
˙̄εpl
˙̄ε0

)][
1−

(
T − Tref
Tm − Tref

)m]
(10)

where σ̄ represents the von Mises equivalent stress, ε̄pl the equivalent plastic

strain, ˙̄εpl the equivalent plastic strain-rate, ˙̄ε0 the reference strain-rate, T the

temperature, Tm the melting temperature, Tref the reference temperature and

A, B, n, C and m the model parameters. Some authors use the room tempera-375

ture as Tref and others use the lowest temperature studied, hence care must be

taken to keep consistent its definition.

To represent the ductile fracture point of the hardening curve, Johnson and

Cook (1985) model has been used. The expression of fracture equivalent strain

is similar to that of the flow rule with a term representing the effect of stress380

triaxiality on fracture, a second term the effect of strain-rate and a third term

the effect of temperature:

ε̄pl,f = [D1 +D2 exp (D3η)]

[
1 +D4 ln

(
˙̄εpl
˙̄ε0

)][
1 +D5

(
T − Tref
Tm − Tref

)]
(11)

where ε̄pl,f represents the fracture equivalent plastic strain, η the stress triaxial-

ity, D1, D2, D3, D4 and D5 the damage model parameters, and the strain-rates

and temperatures have the same meaning as those in Equation 10.385

In the original Johnson-Cook damage model a basic linear damage accumu-

lation of the following form was presented:

D =

∫ ε̄pl

0

dε̄pl
ε̄pl,f

(12)

Fracture was considered to occur when the accumulated damage reached a crit-

ical value of D = 1, i.e. when ε̄pl = ε̄pl,f .

After analysing the damage accumulation experimental results it has been390

concluded that this linear approximation does not represent the real behaviour

of the studied materials and a different accumulation law has been proposed. It

is based on Cortese et al. (2016) damage accumulation model that was derived
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for ductile damage by making a direct parallelism with the high cycle fatigue

damage law proposed by Palmgren (1924), but including also a non-linear power395

law for damage accumulation. For this work, Cortese model has been modified

so that some concepts of continuum damage mechanics, such as critical damage

(Dcr) and threshold plastic strain (εth), also appear in the equation:

D = Dcr

(
ε̄pl − εth
ε̄pl,f − εth

) m

(ε̄pl,f)
q

(13)

It includes an exponent which depends on the stress state through the fracture

equivalent plastic strain (ε̄pl,f ) and on the material by means of the model400

parameters m and q, ε̄pl represents the accumulated equivalent plastic strain,

εth the threshold plastic strain and Dcr the critical damage. The effect of

varying the model parameters m and q is represented in Figure 11.

Consequently, the approach followed for damage and fracture modelling is

mainly empirical, based on Johnson-Cook fracture model (Equation 11) and405

introducing a new non-linear damage accumulation law (Equation 13). This

accumulation model is also of empirical nature, however, due the shape of the

equation, some of its parameters represent actual physical behaviours of the

material (threshold plastic strain and critical damage), the same as parame-

ter A in Johnson-Cook plastic model (Equation 10) represents the yield stress.410

Therefore, one of the benefits of the proposed model is that it provides some ad-

ditional information about the material damage whilst maintaining its empirical

nature.

Some investigations have been conducted on the effect of stress state on the

ductile damage accumulation law (Papasidero et al. (2015); Fincato and Tsut-415

sumi (2019)). The model proposed here uses Johnson-Cook fracture criterion to

calculate strain to fracture, which considers the effect of stress triaxiality, how-

ever, does not include the effect of Lode angle. Therefore, the model may not

be able to represent the phenomena observed for stress states which are consid-

erably different to the range analysed in this work. Nonetheless, this research420

is focused on the development of the experimental and modelling techniques

required to measure and represent non-linear damage accumulation behaviours,
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and the effect of a wider range of stress states could be analysed and included

in the model in the future.

3. Experimental results425

3.1. Uniaxial tests results

The equivalent plastic stress and strain behaviour of the material was deter-

mined by applying the neck monitoring technique described in Section 2.3. The

results presented here correspond to Test No. 1 (see Table 1). From the images

post-processing the history of specimen minimum radius (a) and neck radius of430

curvature (ρ) can be obtained. The evolution of these geometrical parameters is

represented in Figure 12a for stainless steel 304L and in Figure 12b for copper

C110.

As observed, the cross-sectional radius reduces approximately uniformly with

applied strain for both materials. The other parameter represented is the neck435

radius of curvature, which presents an infinite value before necking starts due

to the cylindrical geometry of the specimen. At the onset of necking this value

decreases more or less quickly depending on how rapid the neck development is.

Apart from the higher ductility and cross-section reduction of copper compared

to stainless steel, the onset of necking location of both materials can be compared440

in Figure 12 and Table 2. While stainless steel presents a clear region of uniform

plastic deformation up to ∼35% strain, copper necks almost from the beginning

of the plastic region, allowing only ∼4% of strain before the instability starts.

The values of final specimen cross-section measured with the shadowgraph are

also included in Table 2, and it can be appreciated that the values are very445

similar to those obtained with the imaging method, validating the latter.

Making use of the geometrical parameters presented above, the equivalent

stress - equivalent strain curve can be obtained. Figure 13a shows the results

for stainless steel 304L, where results of two additional conventional tensile tests

are also presented. For these last two tests, strain has been measured using an450

extensometer and Equations 2-3 have been used to post-process the results. As
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expected, the results of both methods coincide before the specimen necks and

the traditional approach cannot be used during necking, where the real stress

and strain are no longer uniform. The same results are presented for copper

C110 in Figure 13b, where a conventional tensile test has also been plotted.455

The outcome is the same as that of the stainless steel, being in this case even

more pronounced due to the early necking of copper. The plastic strain - stress

obtained for this material using Equations 2-3 is inappropriate, since it necks

almost from the beginning of the test. The fracture mode is also different in

both materials, while the stainless steel fails suddenly when it reaches its failure460

strain, the copper fails progressively with high ductility, hence the gradual stress

decrease observed in Figure 13b.

3.2. Triaxiality effects results

The effect of stress triaxiality on ductility has been studied by testing round

notched bar specimens with different notch geometries. The results correspond465

to Tests No. 3 - 8 of Table 1, but results of Test No. 1 are also included here,

since they represent the extreme case of a notch with an infinite notch radius.

The same imaging methodology previously presented for smooth specimens

has been employed here for the analysis of the notched specimens. Tracking the

curvature of the neck, present from the beginning in these specimens, the evolu-470

tion of the geometrical parameters a (cross-sectional radius) and ρ (neck radius

of curvature) has been obtained. The neck reduction as a function of equiva-

lent plastic strain is governed by Equation 4, and results in an exponentially

decreasing curve that only differs for each specimen geometry on the fracture

strain point, which becomes smaller for higher triaxialities.475

The evolution of the other parameter, the neck radius of curvature, is pre-

sented in Figure 14a for the stainless steel and Figure 14b for the copper. Both

materials follow similar trends, presenting small curvature variation the sharper

notches (almost no variation for stainless steel) and considerable curvature de-

crease the smoother geometries. The curvature at fracture is slightly smaller480

for the copper compared to the stainless steel. For each of the materials all the
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specimens fail at similar values of curvature, with a weak ascending trend for

decreasing triaxialities.

The equivalent stress - equivalent strain curves of all the tests conducted

and obtained using the imaging method and Bridgman theory are presented485

in Figure 15a for stainless steel 304L and Figure 15b for copper C110. In

Figures 14-15 the yellow curves correspond to the round bar tensile test (Test

No. 1), and have been previously presented in Figure 12 for radius of neck cross-

section and radius of curvature and in Figure 13 for stress-strain. The rest of

curves depict the different notch geometries tested with the expected trend of490

decreasing fracture equivalent strain for increasing triaxiality already observed

in the a and ρ plots. In Figure 15 it can be observed that all the curves have

the same yield stress and hardening rate, proving that stress triaxiality does not

affect the early plastic region, and only affects the final fracture conditions. A

difference is observed in the plastic strain for which copper starts undergoing495

severe degradation, which follows the same trend as fracture strain, appearing

earlier the higher the stress triaxiality.

If the maximum axial stress is analysed (Figure 16), it can be observed that

most stainless steel specimens fracture at a similar maximum axial stress value,

independently of the stress triaxiality. In the case of copper, it is the initiation of500

the severe degradation process which occurs at the maximum axial stress of the

material, while instead of failing in a brittle manner, a subsequent degradation

occurs before final fracture. The value of maximum axial stress in the centre

of the neck is therefore, in both cases, the physical limit that the material can

withstand in tensile conditions and is not affected by stress triaxiality.505

From a damage modelling point of view, it is well known that fracture equiv-

alent strain decreases exponentially with stress triaxiality (Johnson and Cook

(1983); Bai and Wierzbicki (2008)); however, the results of this investigation

are presented in Figure 17, where the stress triaxiality history of each specimen

obtained with the imaging method has also been plotted. The crosses represent510

the fracture strain conditions against the average stress triaxiality throughout

the test, which in some cases varies considerably. The curves for stainless steel

19



are smooth up to fracture while the copper results present some fluctuation

at the end. This occurs because the neck developed by the steel presents a

smooth curvature during the whole deformation process; the neck of the copper515

specimens, however, is much sharper at the last stages of plastic deformation,

making it very difficult to determine the curvature. If the yellow lines obtained

from the smooth samples are analysed, it can be observed that although that

geometry is generally used to represent uniaxial conditions, these are only met

during the uniaxial deformation region, and a considerable increase of stress520

triaxiality takes place afterwards.

The selection of a stress triaxiality value for the test supposes a difficulty for

fracture models calibration. In some works the initial or final stress triaxialities

have been used, nonetheless, this implies a large error for some geometries and,

since in this case the triaxiality history is known, the use of the average triax-525

iality given by Equation 8 has been considered the most adequate alternative.

This approach was already used by Wierzbicki et al. (2005), making use in that

case of calibrated finite elements simulations to estimate the stress triaxiality

evolution, and thus the average triaxiality.

Detailed results with the information presented in Figure 17 are also available530

in Tables 3 and 4 for stainless steel and copper respectively. For each specimen

the theoretical value of stress triaxiality predicted by Equation 1 is firstly shown.

Since this value changes through the experiment, the values of initial, final and

average triaxiality calculated with the imaging method are presented. Finally,

the fracture equivalent strain obtained also with the imaging technique is shown.535

The same value obtained from the post-test specimen diameter measurement

using a Starret HE400 optical comparator and Equation 4 is also displayed for

comparison and validation of the imaging methodology.

3.3. Damage accumulation results

The outcome of the last experiment conducted is the evolution of ductile540

damage accumulated as the equivalent plastic strain progresses for the uniaxial

loading case. These results complement those of the fracture conditions by
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characterising the degradation process that occurs between damage initiation

and final fracture. They correspond to Test No. 2 of Table 1, for which the

hourglass shaped specimen geometry has been used.545

The effective elastic modulus measurement method with a small extensome-

ter, as previously described, has been used to obtain the results presented in

Figure 18. The results of four stainless steel 304L specimens are shown in Fig-

ure 18a and those of three copper C110 specimens in Figure 18b. As observed,

the repeatability of results is quite good in the case of stainless steel, with a550

maximum standard deviation of all the elastic modulus measurements taken at

a particular plastic strain of 3.04 GPa, and an average standard deviation of the

measurements taken at differnet plastic strains of 0.86 GPa. The results display

a similar shape to that presented in Bonora et al. (2011) for another steel. For

copper, the results show a bigger scatter (maximum standard deviation of 3.31555

GPa and average standard deviation of 1.53 GPa in the measurement of elastic

modulus), and the trend observed is clearly different to that of the stainless

steel. A very similar material was also studied in Lemaitre and Dufailly (1987)

and Bonora et al. (2011), and the behaviour reported is in close agreement with

that obtained in the present research.560

The stainless steel shows a prominent initial increase of damage that pro-

gressively stabilizes to a quite low critical damage value (the same behaviour

has been observed in microstructural measurements, as will be presented in the

following section). For copper, damage does not appear at the early stages of

deformation and then increases fairly linearly. This exemplifies the different565

damage accumulation behaviours that diverse materials can present and the

requirement of a non-linear damage growth model that allows to modify the

shape of the accumulation. The appearance of ductile damage at initial stages

of plasticity is generally associated to the nucleation of voids due to the fracture

of hard particles within the material, therefore, the results suggest that these570

defects appear in stainless steel 304L as soon as plastic deformation is applied,

however, some plastic strain can be applied to copper C110 before damaging

the material.
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For copper, it can be observed in Figure 18b that there are no damage

measurements beyond an equivalent plastic strain of around ε̄pl = 1. This is575

because from that point onwards the material is so degraded, as observed in

Figure 13b, that unloading and reloading cycles cannot be performed without

fracturing the specimen; therefore, damage has only been measured up to the

severe degradation start point and not until final fracture conditions.

3.4. Microstructural analysis580

A second experimental method has been applied to measure damage and

validate the experimental results obtained with the elastic modulus reduction

technique. This has consisted in the analysis of internal porosity in the mini-

mum cross-section of specimens with the same geometry of those used for the

elastic modulus analysis (HGR6, see Figure 3) strained to different levels of585

plastic deformation. It has been achieved through a metallographic study of

six stainless steel 304L specimens that have been plastically deformed to the

plastic strain levels specified in Table 5. The samples were deformed in the

same quasi-static and room temperature conditions used to obtain the elastic

modulus results. After being strained, the central region of the specimens was590

cut using a Struers Accutom-5 high precision cut-off machine, mounted and pol-

ished using an ATA Saphir 520 semi-automatic polisher down to 0.1 µm using

OP-S colloidal silica suspension as the final stage. A Zeiss compound optical

microscope has been used to take pictures of their microstructure. The main

objective of the investigation has been to quantify the porosity or void density595

in the micrographs, defined as percentage of the total area occupied by voids. A

thresholding algorithm was programmed in Matlab to batch process the images

from the microscope, and measurements of porosity have been taken in different

locations of the specimen’s cross-section.

Dark-field microscopy is recommended to detect voids, since the images have600

provided an improved contrast, making it easier to differentiate the defects from

the material during the thresholding process. A square region of size 156 µm x

156 µm in the centre of the picture was analysed in order to avoid brightness and
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contrast peaks from the corners. The threshold value used in the images post-

processing was calibrated by analysing the zoomed-in image of individual voids,605

both in the original and the thresholded picture. Their size has been compared

and the threshold modified until the size of both voids has been reasonably

similar, as shown in Figure 19.

The post-process of micrographs has provided the porosity contour maps in

the neck cross-section of Figure 20, where the first sample corresponds to the610

undamaged raw material, and the other six to the strained samples presented in

Table 5. In these plots, the final diameters of all samples are proportional to the

real values and the colour scale is also the same in all of them except in the last

one, which presents much higher void density than the rest. From the analysis

it was observed that the porosity distribution in the raw material is almost per-615

fectly uniform, of very low value, and can be attributed to the inherent defects

present in the material. Porosity is also fairly uniform in the cross-section of the

following four specimens, the lighter blue in the porosity contours represents the

higher void density, nevertheless, porosity increases significantly for specimen

# 34 (ε̄pl = 0.11), and almost stabilises for the following three specimens, vali-620

dating the behaviour observed from the elastic modulus measurements. Finally,

the last two specimens were deformed beyond the necking limit, presenting a

much higher porosity in general, and a higher concentration in the centre of

the specimen than near its surface, especially specimen # 6, which had already

fractured.625

The porosity results of the contour plots have been plotted together in Fig-

ure 21, where the evolution of void density along the plastic range can be anal-

ysed. For each sample, the average of all the measurements taken in the cross-

section has been represented. As observed, the trend is the same described

above, with a significant increase of porosity in the first stages of plastic defor-630

mation, and a subsequent stabilisation and slight increase near fracture. The

mean values of ductile damage from Figure 18a obtained by measuring changes

in elastic modulus have also been included. Although the scale is different for

the void density and the macroscopic damage, it can be observed that both mea-
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surements follow the same trend. These results prove that the ductile damage635

measured from elastic modulus degradation is driven by voids nucleation, growth

and coalescence. However, they also suggest that the reduction of mechanical

properties does not take exactly the same value as the area reduction that these

voids produce in the cross-section, as is generally asserted by continuum damage

mechanics formulation. Therefore, additional degradation processes linked to640

the density of voids, but not entirely to the area that they occupy, have to be

responsible of the reduction of material properties and will be studied in the

future. From the degradation of elastic modulus, which is an actual macroscopic

quantifiable property, a value of ductile damage can be obtained and used in

material models to perform useful engineering calculations. The microscopic645

analysis carried out in this section serves as validation of the trends followed by

the ductile damage parameter, but it is considered that the elastic modulus ap-

proach can provide a more real representation of the real macroscopic operation

of components.

4. Model calibration650

The equivalent stress - equivalent strain results obtained through the imaging

technique applied to tensile specimens (Figure 13) have been used to calibrate

the isotropic hardening part of Johnson-Cook plastic model (Equation 10), to

represent the plastic behaviour of the studied materials. The experimental stress

- strain results and the fitted plastic model curve are presented in Figure 22 and655

the model parameters obtained summarised in Table 6. The fracture equivalent

plastic strain - stress triaxiality results of Figure 17 have been used to calibrate

the quasi-static and room temperature part of Johnson-Cook fracture model

(Equation 11). The experimentally obtained data points as well as the model

fitted curve and the model parameters for stainless steel 304L and copper C110660

are represented in Figure 23. In a similar manner, the results obtained in the

damage accumulation experiments (Figure 18) have been fitted to the proposed

damage accumulation law of Equation 13.
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In this case damage evolves with equivalent plastic strain (ε̄pl) and with frac-

ture equivalent plastic strain, and hence with stress triaxiality (ε̄pl,f = f(η)),665

according to the non-linear model. The variables to be calibrated based on

the experimental evidence are Dcr, εth, q and m, as well as the variables of

Johnson-Cook model embedded in the fracture equivalent plastic strain expres-

sion (D1, D2 and D3). The experimental damage points can be fitted to a three

dimensional surface against equivalent plastic strain and stress triaxiality axes670

(D = f(ε̄pl, η)), as presented in Figure 24. The crosses represent the damage

- equivalent plastic strain values already plotted on Figure 18, while the triax-

iality data has been obtained from the neck monitoring technique, following a

similar procedure to that used to obtain the engineering to equivalent strain

corrections.675

The parameters D1, D2 and D3 of Johnson-Cook model have been calibrated

by least squares fitting of the fracture experimental data (fracture equivalent

plastic strain vs. average stress triaxiality throughout the experiment) to Equa-

tion 11. Dcr, εth, m and q of the accumulation law have also been obtained

by least squares fitting of the damage accumulation data to Equation 13 using680

the previously fitted Equation 11 expression as input. The calibrated variables

obtained for both materials have been summarised in Table 7.

5. Conclusions

The proposed advanced methodology was successfully employed to obtain

the post-necking equivalent stress - strain measurements of 304L stainless steel685

and C110 copper. The accuracy of the approach was validated by comparison

with traditional tensile results in the uniform deformation region and with post-

fracture geometrical measurements. The technique was applied using affordable

equipment, making it accessible and of high value for industrial applications.

The measurements of stress triaxiality demonstrated that this parameter690

changes considerably throughout the tests, highlighting the fact that a constant

value cannot be assumed. In this research, the use of the average measured
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value is proposed as a way of accounting for the variation of stress triaxiality

when calibrating the fracture model.

A highly non-linear ductile damage behaviour was measured on 304L stain-695

less steel and C110 copper. Additionally, these materials showed significant

differences in their damage accumulation behaviour. The above findings demon-

strated the need of a complex and versatile ductile damage model that is able

to represent non-linearity and different damage accumulation shapes.

The damage accumulation behaviour was validated by a microstructural700

analysis, which provided estimations of porosity or void density along the plastic

deformation process. The trends followed by the increase in void density and

the degradation of elastic modulus are coincident. However, the magnitude of

modulus decrease is much higher than that of porosity increase, suggesting that

void density does determine the shape of damage accumulation, but additional705

degradation phenomena proportional to void density occur within the material

and require further investigation.

The proposed ductile damage model includes non-linear behaviour and has

been successfully calibrated using the experimental data gathered. The capabil-

ity of representing accurately damage accumulation makes the model an effective710

solution in, for example, the automotive and transport industry, where accurate

damage prediction in collisions is important for safe and efficient component

design. Also, the approach is of much value to components manufactured using

metal forming where very high plastic deformation can occur and there is a need

to avoid failure by ductile damage.715
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1 4 6 7 8

2

Figure 1: Geometry of copper specimens tested (for stainless steel, specimens 3 and 5, as

defined in Table 1, have been used instead of specimen 4).

Test

number
Specimen characteristics

Notch acuity,

a/ρ [-]

Curvature,

ρ [mm]

Diameter,

2a [mm]

Theoretical

triaxiality, η0 [-]

1 Smooth bar 0 ∞ 6 0.333

2 Hourglass shaped bar 0 ∞ 6 0.333

3

Notched bar

0.25 8 4 0.557

4 0.313 8 5 0.605

5 0.417 6 5 0.682

6 0.833 3 5 0.940

7 1.25 2 5 1.144

8 2.5 1 5 1.586

Table 1: Characteristics of the analysed specimens.
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Figure 2: RB6 specimen geometry.
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Figure 3: HGR6 specimen geometry.
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Figure 4: RNB6 specimen geometry (a = 5 mm, ρ = 3 mm).

Material Geom. Spec.
Imaging Shadowgraph

εonset [-] ρf [mm] af [mm] af [mm]

s/s

304L
RB6

#14 0.35 2.62 1.50 1.49

#16 0.38 2.58 1.51 1.53

copper

C110
RB6

#1 0.05 0.94 1.29 1.27

#2 0.05 0.88 1.22 1.22

Table 2: Neck onset strain (εonset), final neck radius of curvature (ρf ) and final cross-sectional

radius (af ) measured with imaging method; final cross-sectional radius (af ) measured with

shadowgraph.
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Figure 5: Experimental rig used for the specimen’s neck geometry monitoring.

≈ 3 pixels

Figure 6: Representation of the accuracy of the neck monitoring technique, thickness of the

grey transition between dark and light pixels of the image.
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2a

ρ

Figure 7: Representation of the necked specimen obtained in the condition of εT = 1.3 for a

stainless steel 304L specimen. The neck shape, minimum diameter (2a) and osculating circles

are shown.

(a) Strain correction for stainless steel 304L (b) Strain correction for copper C110

(c) Stress correction for stainless steel 304L (d) Stress correction for copper C110

Figure 8: Necking effect correction curves: strain correction (ε̄ - εe) and stress correction (σ̄

- σe).
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Figure 10: Equivalent stress - equivalent plastic strain (σ̄ - ε̄pl) of one unloading-reloading

cycle.
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Figure 11: Effect of m and q parameters on the damage accumulation model: (a) q = 1 and

variable m; (b) m = 1 and variable q. In both cases εth = 0.2 and Dcr = 0.5.
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Figure 12: Evolution of the neck geometry (minimum cross-sectional radius (a) and radius of

curvature of the osculating circle (ρ)) vs. equivalent plastic strain: (a) stainless steel 304L;

(b) copper C110.
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Figure 13: Equivalent stress - equivalent strain: (a) stainless steel 304L; (b) copper C110.
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Figure 14: Evolution of the radius of curvature of the notch with applied equivalent plastic

strain for the different RNB tensile tests: (a) stainless steel 304L; (b) copper C110.
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Figure 15: Equivalent stress - equivalent strain of the RNB tensile tests: (a) stainless steel

304L; (b) copper C110.

Figure 16: Maximum axial stress - equivalent strain of the RNB tensile tests: (a) stainless

steel 304L; (b) copper C110.
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Figure 17: Variation of stress triaxiality with applied equivalent plastic strain for the different

RNB tensile tests, the crosses represent the fracture equivalent plastic strain vs. average

triaxiality (ε̄pl,f ,ηav): (a) stainless steel 304L; (b) copper C110.

Test #

Notch

acuity, Spec.
Theor. Imaging Shadowgr.

a/ρ [-] η0 η0 ηf ηav ε̄f ε̄f

1 0
#14 0.333 0.333 0.787 0.491 1.37 1.39

#16 0.333 0.333 0.796 0.494 1.36 1.34

3 0.25 #19 0.546 0.582 0.905 0.742 1.18 1.18

5 0.417 #15 0.660 0.726 1.001 0.880 1.08 1.04

6 0.833 #11 0.892 1.084 1.144 1.117 0.96 0.96

7 1.25 #7 1.110 1.225 1.203 1.207 0.86 0.88

8 2.5 #3 1.540 1.614 1.346 1.447 0.74 0.75

Table 3: Stress triaxiality results of stainless steel 304L. Theoretical initial stress triaxiality

(η0) obtained using Eq. 1; initial (η0), final (ηf ) and average (ηav) stress triaxiality throughout

the test obtained using the proposed imaging method; and fracture equivalent strain (ε̄f )

obtained using the imaging technique and measuring the final diameter.
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Test #

Notch

acuity, Spec.
Theor. Imaging Shadowgr.

a/ρ [-] η0 η0 ηf ηav ε̄f ε̄f

1 0
#1 0.333 0.333 1.397 0.823 1.60 1.69

#2 0.333 0.333 1.316 0.867 1.78 1.78

4 0.313 #11 0.606 0.602 1.324 0.981 1.50 1.49

6 0.833 #8 0.958 0.936 1.530 1.198 1.16 1.19

7 1.25 #5 1.173 1.147 1.808 1.403 0.95 0.98

8 2.5 #2 1.532 1.586 2.081 1.721 0.80 0.77

Table 4: Stress triaxiality results of copper C110. Theoretical initial stress triaxiality (η0)

obtained using Eq. 1; initial (η0), final (ηf ) and average (ηav) stress triaxiality throughout

the test obtained using the proposed imaging method; and fracture equivalent strain (ε̄f )

obtained using the imaging technique and measuring the final diameter.
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Figure 18: Ductile damage - equivalent plastic strain experimental results: (a) stainless steel

304L; (b) copper C110.

Specimen #34 #33 #32 #36 #31 #6

Equivalent plastic strain (ε̄pl) 0.110 0.214 0.384 0.673 0.993 1.292

Table 5: Specimens studied in the metallographic damage analysis and equivalent plastic

strains.
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Figure 19: Size comparison of individual voids in the original and thresholded pictures for the

calibration of the intensity threshold value; numbers represent size in pixels.
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Figure 20: Contours of porosity in the cross-section of the analysed specimens.
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Figure 21: Analysis of the porosity and ductile damage evolution with equivalent plastic

strain.

Figure 22: Experimental true equivalent stress - true equivalent plastic strain data fitted to

Johnson-Cook plastic model: (a) stainless steel 304L; (b) copper C110.

Material A [MPa] B [MPa] n

Stainless steel 304L 628.7 945.2 0.9314

Copper C110 354.1 259.2 0.9221

Table 6: Plastic model parameters.
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Figure 23: Experimental fracture equivalent plastic strain - stress triaxiality data fitted to

Johnson-Cook fracture model: (a) stainless steel 304L; (b) copper C110.

Figure 24: Experimental ductile damage as a function of equivalent plastic strain and stress

triaxiality data fitted to the proposed damage accumulation model: (a) stainless steel 304L;

(b) copper C110.

Material D1 D2 D3 Dcr εth m q

Stainless steel 304L -0.7786 2.5588 -0.3607 0.226 0.01 0.4115 1.3058

Copper C110 0.1548 3.6821 -1.0485 0.214 0.25 1.1955 -0.0568

Table 7: Fracture and damage accumulation model parameters.
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