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Abstract

Symmetry principles have played a crucial role in the development of modern physics and

underpin our most fundamental theories of nature. The present thesis is concerned with the

analysis of symmetries in the context of quantum information theory. Whenever a quantum

mechanical system interacts with its environment it is subjected to decoherence, a process that

is typically irreversible and most generally treated abstractly using the concept of quantum

operations. If there is an underlying symmetry principle, additional structures emerge.

The central question we address is, What are the consequences of global or local gauge symmetry

on the structure of many-body quantum processes? This leads us to a diagrammatic framework

of decomposing quantum operations into terms that respond to the symmetry principle in

particular ways and respect the causal structures involved. We present two core applications.

First, we address the interplay between irreversibility and repeatable use of coherent resources

under symmetry constraints. Second, we give an information-theoretic perspective on gauging

globally symmetric dynamics to a local symmetry applicable even in the presence of irreversibil-

ity and thus it goes beyond the usual Lagrangian formulation. Finally we analyse the departure

from conservation laws under symmetric dynamics subject to decoherence.
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3.2 Demystifying Åberg’s catalytic coherence . . . . . . . . . . . . . . . . . . . . . . . 92

3.3 Repeated use of symmetry breaking resources: a process mode analysis . . . . . 97

3.3.1 Asymptotic reference frames . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3.2 Arbitrary repeatable use of coherence resources . . . . . . . . . . . . . . . 98

6



3.3.3 Discussion: Are non-commutative symmetry breaking resources reusable? 101

4 How to gauge general quantum channels? 103

4.1 From global to local gauge symmetries . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.1.1 What does gauging mean? . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.1.2 Global vs local symmetry for many body systems . . . . . . . . . . . . . . 105

4.2 Gauging beyond Lagrangian formulations . . . . . . . . . . . . . . . . . . . . . . 106

4.2.1 I. Inclusion of background reference frame systems . . . . . . . . . . . . . 110

4.2.2 II. Dynamics on the reference frame system . . . . . . . . . . . . . . . . . . 112

4.2.3 III. Gauging globally symmetric processes to local symmetry . . . . . . . 114

4.3 Gauge fixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.4 Examples of gauge theories revisited: a quantum information theory perspective 119

4.4.1 U(1) symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.4.2 Unitary dynamics for a lattice gauge theory . . . . . . . . . . . . . . . . . . 121

4.4.3 Gauging quantum states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.5 Connections between resource theories and Gauss’s law . . . . . . . . . . . . . . 125

4.6 Further discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5 Beyond Noether’s Theorem 129

5.1 Noether’s charges and symmetric dynamics . . . . . . . . . . . . . . . . . . . . . . 130

5.2 Quantifying deviations from conservation laws . . . . . . . . . . . . . . . . . . . . 132

5.3 Quantifying openness of a quantum system . . . . . . . . . . . . . . . . . . . . . . 134

5.3.1 Definitions and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3.2 Symmetry constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7



5.4 Maximal deviations from conservation laws for spin systems . . . . . . . . . . . . 139

5.4.1 Simplex representation of symmetric channels with multiplicity-free irre-

ducible decomposition of the operator space . . . . . . . . . . . . . . . . . 140

5.4.2 Liouville representation of extremal SU(2)-symmetric channels . . . . . . 143

5.4.3 Unitarity of SU(2)-symmetric dynamics . . . . . . . . . . . . . . . . . . . . 144

5.4.4 Maximal spin reversal under symmetric dynamics . . . . . . . . . . . . . . 146

5.4.5 Maximal deviation for spin angular momentum conservation . . . . . . . 149

5.5 Trade-off relations between unitarity and deviation from conservation laws . . . 150

5.5.1 Dynamics that approximates symmetric unitary have approximate conser-

vation laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.5.2 When do conservation laws hold (beyond unitary dynamics)? . . . . . . . 152

5.5.3 Spin systems: approximate deviations from conservation laws lead to

approximate symmetric unitary dynamics . . . . . . . . . . . . . . . . . . 154

5.6 Supplementary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.6.1 Extremal irreducible SU(2)-symmetric channels . . . . . . . . . . . . . . . 155

5.6.2 Simplex representation of irreducibly symmetric extremal channels – A

proof of Theorem 5.6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.6.3 Maximal reversal of spin polarization for spin j systems . . . . . . . . . . 160

5.6.4 Maximal spin polarisation reversal under symmetric operations on spin

systems j1 −→ j2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6 Conclusion 164

Bibliography 168

8



List of Figures

1.1 Pictorial overview of the thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Process Mode Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2 Directionality of process modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 Examples of process orbits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4 Axial channels and resource demands. . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5 Diagrammatic representation of symmetric superoperators. . . . . . . . . . . . . 70

2.6 The set of 2-qubit SU(2)-diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.7 The set of induced channels on A via a globally symmetric channel on AB. . . . . 76

2.8 SU(2)-symmetric, relational channels on 2-qubits. . . . . . . . . . . . . . . . . . . 79

2.9 T-state transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.10 Diagrammatic decomposition of SU(2) symmetric unitary channel . . . . . . . . 82

3.1 Illustration of a 2-repeatable protocol on systemHB . . . . . . . . . . . . . . . . . . 87

3.2 Circuit of symmetric operationsW that induce identical local simulations. . . . . 89

3.3 Aberg’s protocol as broadcasting of reference frame data . . . . . . . . . . . . . . 96

4.1 Lattice associated with multipartite systems undergoing a globally symmetric

dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9



4.2 3-symmetric channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3 Lattice gauge theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.1 Symmetric operations vs charge conserving operations. . . . . . . . . . . . . . . . 131

5.2 Spin polarization of an environment. . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.3 SU(2)-invariant qutrit channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.4 Maximal spin reversal under symmetric dynamics for 1/2-spin particle and j-spin

particle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

10



Notation

In the following we summarise some commonly used notation throughout the thesis. Some of

these are standard, while others are particular to the present work:

H,K Hilbert spaces

B(H) C∗-algebra of bounded operators onH
S(H,K) Superoperator space (i.e linear maps between B(H) and B(K))

G,H Groups

U Unitary representation acting on operators

U Unitary representation acting on superoperators

J [E ] The Choi operator of E
L(E) The Liouville representation matrix of E
λ Labels an irreducible representation of the group

Ĝ Set of non-equivalent irreducible representations of G

Irrep(H,K) Set of irreducible representations in the decomposition of S(H,K)

vλkj(g) Matrix coefficients for the λ-irrep
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Chapter 1

Introduction

1.1 Symmetries in physics

From impressive architectural feats to the fundamental forces of nature and the structure of

DNA itself, the legacy of humankind employs symmetry and structure in every step of the way

to semper prorsum. While for the ancient civilisations of Greece or Egypt for instance symmetry

meant proportionality and harmony, the role symmetry takes in modern science is much more

precise and rests on the mathematical notion of a group. It is directly related to the idea of

invariance of a mathematical (e.g laws of motion) or physical (e.g crystals) object, under some

set of transformations. These transformations themselves are subject to rules such that they can

be composed and un-done thus respecting the composition and inverse conditions for a group.

When it comes to the role of symmetry in physics, there has been an important paradigmatic shift

at the beginning of the twentieth century. The emphasis changed from deriving the symmetries

of a system of interest from its laws of motion to a more central stage whereas the laws of

nature were instead derived from the laws of invariance. At least since the time of Galileo,

physicists have assumed that space is homogeneous, isotropic and that the arrow of time flows

uniformly, all of which assume an implicit manifestation of symmetry. Einstein’s theory of

relativity brings symmetry at the forefront, and the laws of invariance are promoted to the

status of postulate in the principle of relativity alongside the invariance of the speed of light

in vacuum for all inertial observers. Previously, Poincaré realised that translations in time and

space, rotations and boosts form a group structure – the group of isometries of the Minkowski

space. Special relativity postulates that the laws of physics must be invariant under these global
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space-time transformations, and thus brings about a new perspective on symmetries in physics.

Without a doubt this shift was also to a large extent influenced by Noether’s theorems. Exactly a

century ago in 1918, Emmy Noether published ”Invariante Variationsprobleme” [1]. It concerns

physical theories that can be cast in terms of an action integral. For such systems, any continuous

global symmetry of the action gives rise to conserved charges and the converse also holds. This

establishes a fundamental link between conservation laws and symmetries. A second theorem

underlines the differences when the global symmetry group is a subgroup of local symmetries.

In quantum mechanics, symmetry principles are no longer associated solely with global contin-

uous space-time transformations; there are internal symmetries that dictate the spin of particle,

discrete symmetries associated with indistinguishability of particles, parity and charge. The

developments of quantum mechanics are tightly intertwined with the evolution of the role of

symmetries in physics and even with the abstract mathematics that underpins it.

What does it mean for a quantum system described by Hilbert spaceH to carry a particular type

of symmetry? Mathematically it is often the case that we ascribe a priori toH a particular type

of symmetry given by a unitary representation U(g) of some group G.This means that for any

element of the group g ∈ G there is a unitary transformation U(g) acting on the Hilbert space in

such a way that collectively all of these transformations have the same algebraic properties as

the group. A given group can have many types of representations that act on a system and each

of them corresponds to a different physical scenario. Whether the system we are interested in

carries one type of representation or another is a statement about which of its physical properties

we are interested in. Therefore on top of the Hilbert space constraints we put extra structure

provided by the symmetries.

In reality the symmetry constraints may arise from either a particular type of dynamics that

is invariant under the symmetries of the group, from a superselection rule (lack of a reference

frame) [2] or imposed by the geometry of the physical system, which is the case in crystallogra-

phy or quantum chemistry [3]. Other times the origin of the symmetries involved is deeper and

points to fundamental laws of physics [4]. For completion, note that continuous symmetries are

associated with Lie groups while discrete symmetries (like point-symmetry) are associated with

discrete groups.

In this thesis we make no assumption on the origin of the symmetry constraints and quite often

the starting point will be an existent symmetry principle present for the physical system of
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Figure 1.1: Pictorial overview of the thesis.

interest. To clarify, we will call a symmetry principle any fixed representation of a group acting

on the physical system. In contrast, objects that remain invariant under a symmetry principle

will be called symmetric e.g symmetric states, symmetric operations.

1.2 Outline

The results in this thesis are based on two different projects:

• Global and local gauge symmetries beyond Lagrangian formulations [5]

• Maximal deviations from Noether’s charge conservation laws under symmetric dynamics

(in preparation1).

The current chapter gives a brief overview of mathematical tools related to representation theory

and quantum channels. Chapter 2 gives a full treatment of the framework of process modes,

introduced in [5]. The same work provides two different applications of the framework. First

1Joint work with Kamil Korzekwa and David Jennings
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chapter 3 expands on the role of process modes to analyse a quantum processing task relevant

to quantum thermodynamic settings (and extensions to other resource-theoretic formulations).

Second, chapter 4 gives an information-theoretic procedure to gauge general quantum processes

from a global to a local symmetry. Finally, chapter 5 contains (part of) the author’s contribution

to the second project on characterising the trade-off between decoherence and deviations from

conserved quantities under a general (non-unitary) symmetric process.

1.3 Quantum reference frames

In classical physics, the reference frames are macroscopic: rulers, gyroscopes, clocks. All of

these are suitable to describe large classical systems, and different observers will generally have

access to a common reference frame such as the Earth or stars to synchronise their physical

descriptions. Within this regimes observations of the systems involved have no effect on such

classical frames.

Reference frames are physical objects themselves. These should have the same nature as the

systems of interest and the measurement apparatus. When dealing with microscopic systems

the reference frames involved can be treated as quantum mechanical objects. Quantum reference

frames (QRFs) are additional quantum systems that transform non-trivially under a symmetry

group which encodes relational information about a particular physical property of interest. An

ideal mathematical realisation is given by the space of complex valued functions on a group

L2(G), which is considered to be the classical limit of a quantum reference frame because it

encodes group elements into perfectly distinguishable states.

There have been several situations in quantum optics, superconductivity, Bose-Einstein conden-

sates, where not taking the reference frames under explicit considerations has led to ambiguities

in the description of quantum states exhibiting superpositions of particle number eigenstates [2].

For example, a laser generates a coherent state given by a superposition of eigenstates of the

photon number; however a quantised treatment of the dipole source as in [6] leads to a reduced

state of the electromagnetic field given by an incoherent mixture of the photon number eigen-

states. It turns out these are not inconsistent descriptions but rather treat different degrees of

freedom [2].

Any useful mathematical representation of quantum states or observables involves a description
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relative to a particular basis. In order to describe the spin up | ↑〉 or spin down | ↓〉 states

prepared by a Stern-Gerlach apparatus it is essential to specify a particular z-direction. A

different laboratory can align the apparatus along another direction. It is in this sense that

a quantum state includes both an intrinsic description of the quantum system involved and

extrinsic information relative to an external reference frame.

In the quantum optics example above, the first case implicitly treats the phase reference frame

externally with respect to which the state of the laser field has a fixed phase. The second case

explicitly treats the quantum phase reference frame internally and while the bipartite state of the

laser and QRF contains extrinsic information relative to an external reference frame, the reduced

state of the laser field does not have a fixed phase with respect to the internal QRF subsystem.

Earlier ideas from Eddington [7] already hinted at the necessity of considering the uncertainty

features of reference frames when reaching small scales where quantum mechanical effects are

unavoidable. Quantum reference frames started gaining attention with the seminal papers by

Aharonov and Susskind [8, 9] and later Aharonov and Kaufherr [10] established a core result

linking the lack of a shared reference frame with the superselection rules. Later, an operational

perspective emerged in [11] by studying the transformations between QRFs associated with

space-time.

In recent years, the study of QRFs found a natural framework in the context of quantum

information theory [2, 12]. In quantum communication tasks one can make the distinction

between unspeakable and speakable information whereas the way in which information is

encoded matters for the former and does not for the latter. In particular, reference frames carry

unspeakable information. Two distant agents Alice and Bob, without access to any common

Cartesian reference cannot for instance communicate a direction using bit strings alone. Instead

they must encode the directional information into a particular degree of freedom that can break

rotational invariance.

Following [2], we look at the scenario where two agents Alice and Bob do not share a common

reference frame that encodes symmetry-breaking degrees of freedom corresponding to the

symmetry group G. For example, the role of a cartesian reference frame that specifies the z-

direction is to break rotational invariance (associated toG = SO(3)). Suppose that Alice prepares

state ρA ∈ B(H). Bob will describe such a state by U(g)ρAU(g)† where U(g) is a mapping that

”rotates” Alice’s local reference frame to be aligned with Bob’s for some group element g ∈ G.

16



A lack of common reference frame means that the group parameter g describing the relative

alignement of the two local frames is completely unknown. Therefore, from Bob’s perspective if

Alice sends him state ρ he can only describe the system with respect to his reference frame as a

uniform probabilistic mixture of states U(g)ρAU(g)† over all group elements g ∈ G. Hence Bob

will not be able to distinguish the state ρA that Alice sends him from a state G(ρA) given by:

G(ρA) =

∫

G
U(g)ρU(g)†d g. (1.1)

The state G(ρA) is symmetric such that [U(h),G(ρ)] = 0 for all h ∈ G and any state ρ. Therefore

the absence of a shared reference frame gives rise to a symmetry constraint on what states Alice

can prepare. Any operation or measurement will also be subject to this constraint.

However this restriction can be lifted if Alice sends Bob a token of her reference frame. In

principle, such an additional quantum system will allow Bob to estimate the element g that for

instance rotates Alice’s definition of the z-direction to his own. Alignment of the two reference

frames may also be partially achieved even when the token represents a bounded quantum

system. Note however that even without establishing a shared reference frame, quantum

information can still be transmitted between Alice and Bob if it is encoded in the relational

degrees of freedom in a multipartite system.

Quantum reference frames have been considered in diverse contexts such as quantum ther-

modynamics [13, 14], quantum cryptography [2], resource theories [12] and recently quantum

information in a relativistic setting [15, 16]. They also play an essential role in the relational

description of quantum theory [17] and in [18] Rovelli argued that a quantum treatment of

reference frames may be required to define physical operators for quantum gravity.

1.4 Quantum resource theory of asymmetry

Strongly motivated by quantum computation and communication, it has become standard to

think of quantum phenomena in terms of ”resources”. As per usual it bears the connotation

that some tasks are more useful than others and thus at its very core it is a relative or relational

type of description. Resources are tautologically scarce. A quantum resource describes a physical

property that cannot be readily associated with a hermitian observable. They are characterised

in relation to freely available states or operations; a setting in which the presence of a quantum
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resource is required in order to perform specific physical transformations of processing tasks

which would otherwise be inaccessible. Entanglement is the archetypal example [19] – an

entangled state is one which is not separable, and the amount of entanglement does not increase

under local operations and classical communication (LOCC). There is no hermitian observable

that describes entanglement but it is required to perform for instance quantum computations or

quantum teleportation. In a resource-theoretic formulation the free operations are LOCC and

the free states are separable states. Entangled states are resources that cannot be created using

free operations acting on free states alone.

A quantum resource theory consists of a set of free states F , a restricted set of operations and

resource statesR, which are those not in F .

The resource theory approach provides a cohesive general framework [20, 21] to analyse a

variety of physical phenomena such as athermality [22–24], coherence [25–27], non-gaussianity

in quantum optics [28, 29], magic states in quantum computation [30, 31]. Moreover, seemingly

disconnected resource theories are found to share many common structural features [20, 32, 33].

Of interest for the present work is the resource theory of asymmetry [34–38], which has emerged

from the study of quantum reference frames [2,12]. It aims to conceptually characterise symmetry

breaking properties of states. The free states are symmetric states and the free operations are

symmetric operations. More precisely, given a group G acting on a systemH via the (unitary)

representation U then the symmetric states ρ ∈ F remain invariant under the group action

that is they satisfy U(g)ρU(g)† = ρ for all g ∈ G. The resource states are those that break this

symmetry. The symmetric operations E on systemH are the ones that commute with the group

action such that U(g)E(ρ)U(g)† = E(U(g)ρU(g)†) holds for all g ∈ G and ρ ∈ B(H).

In [35, 36] Marvian and Spekkens introduce a formalism for quantifying the symmetry-breaking

degrees of freedom of a state in terms of modes of asymmetry. We will review some of the related

technical details in Section 1.5.5. Their analysis leads in [34] to introduce novel information-

theoretic measures of quantifying the asymmetry of a state. In particular it illustrates that

for mixed states in an otherwise isolated system undergoing a unitary symmetric evolution,

conservation laws of Noether’s charges do not capture all the consequences of this invariance.

By adopting a resource-theoretic perspective with these asymmetry modes, it is possible to

encode symmetry principles in general processes, and to quantify their effects in a rigorous

manner. This has provided a range of novel insights; in particular the structure has recently
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provided a natural, explanatory framework for quantum thermodynamics [23, 39–53]. It has

been used to prove that no formalism based solely on free energy functions can fully describe

coherence in the thermodynamics of extreme quantum regimes [45]. The modes perspective

also makes explicit general upper and lower bounds for quantum coherence [54, 55].

1.5 Mathematical Preliminaries

The role of this section is to set the scene for the rest of this thesis by emphasizing some key

results from quantum information and representation theory of groups and algebras. However,

it is not meant to be an exhaustive exposition on either of these topics. We assume familiarity

with the common quantum information theory concepts, as found in the introductory textbook

of Nielsen and Chuang [56] and with basic group theory techniques as in [57]. Instead we

focus on setting notation for the key concepts used later on, and address some issues that are

either typically overlooked in the literature or presented from a different perspective than we

need here. For more in-depth results on representation theory we refer to [58], the excellent

classical monograph [59, 60] thoroughly treats special functions, while for irreducible tensor

operators [61] gives an intuitive but extensive overview of this topic alone.

1.5.1 Overview of group representations

We will consider only compact2 groups typically denoted by G. Some of the results presented

may well be expanded beyond, but there would be significant technical challenges to do so.

A representation U of the (compact) group G on a vector space V is a (continuous) map that

takes every group element g −→ U(g) to an operator in GL(V ), the space of general linear

maps on V , in a way that preserves the group structure: U(gh) = U(g)U(h) for all g, h ∈ G and

U(e) = I where e is the identity group element.

The character χ of a given representation U is a complex valued function acting on the group

given by χ(g) := Tr(U(g)).

Typically we are interested in the group action on a physical system as represented by a Hilbert

2A topological group is compact if it compact as a topological space. This also includes finite groups with the
discrete topology.
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space H. For a Hilbert space we can identify GL(H) with B(H) the space of bounded linear

operators onH.

In addition, unless otherwise stated we will consider unitary representations, for which U(g) ∈
B(H) is a unitary operator U(g)U(g)† = U(g)†U(g) = I for all g ∈ G. This is not a restriction

because for compact groups any representation is equivalent to a unitary representation.

Definition 1.5.1. A representation V : G −→ B(H) is irreducible if and only if there is no subspace

S ⊂ H ofH (other than 0 and itself) which remains invariant under V i.e V (g)(S) ⊂ S for all g ∈ G.

Irreducible representations form the ”building blocks” of any representation. In a more informal

way, H carries an irreducible representation (for short, irrep) of G if equivalently for any

|ψ〉 ∈ H and orthogonal |φ〉 ∈ H with 〈ψ|φ〉 = 0 there exists a group element g ∈ G such that

〈ψ|V (g)|φ〉 6= 0.

In particular, all irreducible representations of a compact group are finite dimensional and

any unitary representation can be decomposed into a direct sum of orthogonal irreducible

representations.

Lemma 1.5.2. Let U be a unitary representation of a compact group G on a finite dimensional systemH.

ThenH can be decomposed into a direct sum of orthogonal irreducible subspaces:

H = H1 ⊕H2 ⊕ ...⊕Hn

and with respect to this, the unitary U(g) has a block-diagonal form for every g ∈ G:

U = V1 ⊕ V2 ⊕ ...⊕ Vn (1.2)

where each Vi : G −→ B(Hi) is an irreducible unitary representation of G.

Two representations U1, U2 of G on spacesH1,H2 are equivalent if there is a G-invariant linear

map I : H1 −→ H2 i.e it commutes with the group action U2(g)I = IU1(g) for all g ∈ G. Any

such map is called an intertwiner between representations3 H1 and H2. Schur’s lemma states

that the space of intertwiners between irreducible representations is one-dimensional.

3Aligned with much of the literature, in this work as well we make a slight abuse of terminology in calling
the representation spaces simply representation. It will be (hopefully) obvious from the context if we refer to the
representation itself or the underlying representation space.
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Lemma 1.5.3. Schur’s lemma Let H1 and H2 carry irreducible representations V1 and V2 of some

group G. Then given an operator O : B(H1) −→ B(H2) that commutes with the group action

OV1(g) = V2(g)O for all g ∈ G then O is either a multiple of the identity O ∝ I if the irreps are

isomorphic V1(g) = V2(g) andH1 = H2 or the zero operator otherwise.

We will denote by Ĝ the set of inequivalent irreducible representations of G. Each of them will

be associated with a unique label λ.

The decomposition in equation (1.2), may contain for instance many equivalent representations.

The number of such distinct irreps in decomposing U is called the multiplicity of said irrep in U .

Equivalently:

U ∼=
⊕

λ∈Ĝ
mλV

λ (1.3)

where mλ ∈ N is the multiplicity label corresponding to the λ-irrep given by V λ and mλV
λ =

V λ ⊕ ...⊕ V λ
︸ ︷︷ ︸

mλ times

= Vλ ⊗ Imλ denotes an orthogonal direct sum of mλ equivalent irreps.

Lemma 1.5.4. Any unitary representation U of a compact group G has a unique decomposition into

isotypical components:

U =
⊕

λ∈Ĝ
Uλ

where Uλ ∼= mλV
λ is called the λ-irrep isotypical component.

Equivalently, for any representation the carrier space H admits a coarse graining into a fixed

structure that depends only on the symmetry properties. The decomposition into fully irre-

ducible components is a much finer grained structure which does not admit a unique orthogonal

decomposition. In the latter case the additional freedom comes from choosing a basis for the

space of all intertwiners betweenH and any fixed λ-irrep.

For Lie groups, their irreducible representations give rise to irreducible representation of the Lie

algebra. One may characterise every finite dimensional irreducible representation of G uniquely

by a vector of highest weights. A weight of a representation of a Lie algebra g is a vector given

by the eigenvalues of all elements in the maximal commutative (Cartan) subalgebra of g. One

can introduce a partial order on the set of weights given by λ � µ if λ−µ is a linear combination

of the positive weights of the adjoint representation. A detailed discussion of this topic may be

found in [58].
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1.5.2 Haar measure on compact groups

One of the many nice features of compact groups is that they allow for an essentially unique

measure invariant under left (and right) translations. This allows to define an integral for

(measurable) complex-valued functions f : G −→ C on the group given by:

∫

G
f(g)d g (1.4)

where the measure is normalised such that
∫
G dg = 1.

This is invariant under left and right translation, meaning that:

∫

G
f(hg)d g =

∫

G
f(g)d g and

∫

G
f(gh)d g =

∫

G
f(g)d g (1.5)

hold for any h ∈ G.

1.5.3 Matrix coefficients of irreducible representations

For any λ ∈ Ĝ with unitary irreducible representation V λ, its matrix coefficients with respect to

a fixed orthonormal basis {|i〉}dim(λ)
i=1 for the carrier space are given by:

vλij(g) := 〈j|V λ(g)|i〉. (1.6)

These can be viewed as complex valued functions on the group vλij : G −→ C. Moreover they

satisfy several properties, particularly Schur orthogonality which we will use extensively.

Lemma 1.5.5. Let G be a compact group. Then the following hold:

1. For any λ, µ ∈ Ĝ ∫

G
vλij(g)(vµmn(g))∗d g =

δµ,λδimδjn
dim(λ)

2. The dual λ∗ of an irreducible representatation λ is irreducible and

vλ
∗
mn(g) = (vλmn(g))∗
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1.5.4 Irreducible tensor operators

The presence of a symmetry on the Hilbert spaceH, as described via a unitary representation

U , implies a particular structure. This will naturally also manifest itself in higher algebraic

constructs such as the operator space B(H) or superoperator spaces that are built on H. The

symmetry is lifted to such objects in a way that is compatible with their algebraic structure.

The notion of irreducible tensor operators illustrates the structure that emerges from the symmetry

lifted to the space of operators B(H).

Definition 1.5.6. Let G be a compact group with U a unitary representation onH. Then for any irrep

λ ∈ Ĝ the set of operators {T λk }
dim(λ)
k=1 in B(H) are called irreducible tensor operators if they transform

under the group action as:

U(g)T λk U(g)† =
∑

k′

vλk′k(g)T λk′ (1.7)

for all vector label k and g ∈ G.

As representation spaces for the groupGwe have that B(H) ∼= H⊗H∗ are isomorphic, where the

dual spaceH∗ carries the dual representation U∗. As Hilbert spaces,H andH∗ are isomorphic

so we can view B(H) as two copies of H with the tensor product representation U ⊗ U∗. In

this sense, the irreducible decomposition of U ⊗ U∗ will be the same as the decomposition of U .

Moreover every irreducible tensor operator set {T λk }
dim(λ)
k=1 ⊂ B(H) gives an orthogonal basis for

a λ-irrep subspace of B(H). Indeed, from Schur orthogonality of matrix coefficients it follows

that any irreducible tensor operators {T λk } and {Tµj } transforming under the λ-irrep and µ-irrep

respectively are orthogonal with respect to the Hilbert-Schmidt inner product:

Tr((T λk )†Tµj ) = Nλδλ,µδkj (1.8)

where N is a normalisation factor independent on the vector component. Typically, for conve-

nience we may assume that N = 1.

The irreducible tensor operators give the decomposition of B(H) into irreducible subspaces such

that:

B(H) =
⊕

λ,mλ

{T λk : 1 ≤ k ≤ dim(λ)} (1.9)

where the direct sum is over all irrep λ in U ⊗U∗ of multiplicity mλ. Conversely, any orthogonal
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basis for each irreducible subspace of B(H) must transform according to equation 1.7 so that it

forms a set of irreducible tensor operators.

For the case of compact Lie groups, there is an alternative definition of irreducible tensor

operators in terms of the generators {J1, ..., Jn} of the Lie algebra representation on B(H). Then

the set of operators {T λk }
dim(λ)
k=1 in B(H) transform as:

[Jm, T
λ
k ] =

∑

k′

〈λ, k|Jm|λ, k′〉T λk′ (1.10)

for all generators Jm and all vector labels k, where the 〈λ, k|Jm|λ, k′〉 are given by the matrix

coefficients of the generators with respect to an eigenstate basis |λ, k〉 corresponding to weight

vectors.

For more details on this topic we refer to [61].

1.5.5 Modes of asymmetry

We give a brief overview of the work of Marvian and Spekkens [35, 36] that formulates the

resource theory of asymmetry in order to quantify the symmetry-breaking properties of a

quantum state in terms of its irreducible components.

In the resource theory of asymmetry there is an inherent assumption of an underling symmetry

principle on the Hilbert space H given by the unitary representation U of G. Specifically, one

can decompose a density matrix into ρ =
∑

λ,k ρ
λ
k , where the operators ρλk form irreducible tensor

operators under the group action, namely they transform according to Ug(ρλk) =
∑

j v
λ
kj(g)ρλk

with vλ(g)kj being the matrix components of λ-irrep of the group G. Each term ρλk is called an

asymmetry mode.

A simple example is provided by quantum coherence in a quantum system S between eigenstates

of the number operator N =
∑

n≥0 n|n〉〈n|. The system S has a U(1) group action U(θ) := eiθN

corresponding to phase shifts. An operator X is a mode of coherence if it transforms irreducibly

under the group. For U(1) this simply means that U(θ)XU(θ)† = eikθX for some integer k ∈ Z.

A coherent state such as ρ = |ψ〉〈ψ|with |ψ〉 = 1√
2
(|a〉+ |b〉) has two non-zero off-diagonal terms

|a〉〈b| and |b〉〈a|. Under the group action

|a〉〈b| → eiθN |a〉〈b|e−iθN = ei(a−b)θ|a〉〈b| (1.11)
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and therefore is a mode of coherence with k = (a − b), while |b〉〈a| is a k = (b − a) mode. In

contrast the diagonal terms |a〉〈a| and |b〉〈b| are each k = 0 modes.

1.5.6 Quantum channels: transformations under symmetry principles

Quantum channels describe the dynamical evolution of quantum systems, in a general way. The

formalism includes system-environment interaction and admits several equivalent representa-

tions. A quantum channel (or quantum operation) is a completely positive trace preserving linear

map E : B(H) −→ B(K) taking density matrices ρ ∈ B(H) to density matrices E(ρ) ∈ B(K).

We denote by S(H,K) the set of all linear operators from B(H) to B(K), often referred to as

superoperators.

A major point of focus of this thesis is the study of quantum channels under symmetry principles.

As previously described, a symmetry principle involves specifying the action of a compact group

G on the input and output systems described by Hilbert spacesH and K respectively. Consider

U and U ′ to be unitary representations of G acting onH and K. This lifts to a representation of

G acting on the space of bounded operators, in such a way that it respects its algebraic structure.

Therefore under such a symmetry transformation any state ρ ∈ B(H) is mapped to:

Ug(ρ) := U(g)ρU(g)† (1.12)

and similarly for system K. We say ρ is a symmetric state if it remains invariant under the above

group representation so that U(g)ρU(g)† = ρ for all g ∈ G

In the same way the symmetry transformation lifts to an action on the space of superoperators

such that under the group action of G, any linear map (and in particular quantum channel)

E ∈ S(H,K) transforms as:

Ug[E ] := U ′g ◦ E ◦ U†g (1.13)

for any g ∈ G.

Definition 1.5.7. A quantum channel E : B(H) −→ B(K) is symmetric (or G-covariant) if it is

invariant under the group action, that is Ug[E ] = E for all g ∈ G. Equivalently, for all ρ ∈ B(H) and all

g ∈ G:

U ′(g)E(ρ)U ′(g)† = E(U(g)ρU(g)†).
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Kraus representation

For any quantum channel E : B(H) −→ B(K) there is a set of so-called Kraus operators

Ai : H −→ K such that:

E(ρ) =
∑

i

AiρA
†
i (1.14)

where
∑

iA
†
iAi = I in order to satisfy the trace-preserving condition.

In [12] it was shown that if E is a symmetric channel then it admits a Kraus decomposition

{Aj,m,α} labelled by the j-irrep with multiplicity α in the tensor product representation U ′ ⊗ U∗

of K ⊗H∗ such that under the induced group action on the space of linear operations fromH to

K it transforms as an irreducible tensor operator:

U ′(g)Aj,m,αU(g)† =
∑

m′

vjm′m(g)Aj,m′,α. (1.15)

Stinespring dilation

For any quantum channel E : B(H) −→ B(K) there exists a Hilbert spaceHE representing the

environment and an isometry V : H −→ K⊗HE such that:

E(ρ) = TrE(V ρV †). (1.16)

If E is a symmetric channel then in addition the isometry V itself is symmetric such that

V U(g) = U ′(g) ⊗ UE(g)V for all g ∈ G, where UE is a representation of G acting on the

environment spaceHE .

The Stinespring dilation is unique only up to a partial isometry on the environment system and

the minimum dimension forHE gives the minimal Stinespring dilation, which is determined up

to a local unitary onHE .
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Choi-Jamiołkowski representation

To every linear map E ∈ S(H,K) we can uniquely associate an operator J [E ] : K ⊗H −→ K⊗H,

its Choi matrix, defined via:

J [E ] := (E ⊗ id)

(
d∑

i=1

|i〉|i〉〈j|〈j|
)

(1.17)

where {|i〉}di=1 is an orthonormal basis for the d-dimensional input Hilbert spaceH. Conversely,

in terms of the Choi matrix, the channel is given by E(ρ) = TrH(J [E ](ρT ⊗ I))).

The superoperator E is completely positive if and only if its Choi matrix is positive J [E ] >

0. Moreover if E is trace-preserving then TrK(J [E ]) = IH. Therefore E −→ J [E ] gives an

isomorphism between quantum channels and positive operators in B(K ⊗H) with identity as

the reduced operator on the input system.

Under a symmetry principle, the group action of G on quantum channel transforms E into

Ug[E ]. This induces a group action on Choi operators such that J [E ] −→ J [Ug[E ]]. One can easily

check this corresponds to the tensor product representation U ′ ⊗ U∗ on K ⊗ H such that the

transformed Choi operator under the group element g ∈ G is:

J [E ] −→ U ′(g)⊗ U∗(g) J [E ] U ′(g)† ⊗ U(g)T . (1.18)

Liouville representation

Let {Ti}d2i=1 be an operator basis for B(H) with d the dimension ofH, such that it is orthonormal

with respect to the Hilbert-Schmidt inner product defined by 〈A,B〉 = Tr(A†B) for A,B ∈ B(H).

Then the Liouville representation of an operator A is given by the unique column vector |A〉〉 in

Cd2 with entries given by Tr(T †i A) the inner product of each of the basis operators with A.

The Liouville representation of a superoperator E ∈ S(H,K) is a d2 by d2
K matrix L(E), with dK

the dimension of K, such that for any A ∈ B(H)

L(E)|A〉〉 = |E(A)〉〉. (1.19)

The above relation uniquely defines the Liouville representation of a superoperator once or-

thonormal basis {Tj}d2j=1 and {Si}d
2
K
i=1 for B(H) respectively B(K) have been fixed. Moreover the
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entries of the matrix L(E) are given by:

L(E)ij = 〈〈Si|L(E)|Tj〉〉 = Tr(S†i E(Tj)) (1.20)

In the Liouville representation composition of maps (channels) becomes multiplication of

matrices such that:

L(E ◦ F) = L(E)L(F). (1.21)

The Liouvile representation of a unitary channel V(·) = V (·)V † is L(V) = V ⊗ V ∗. From these

two results we can deduce how the Liouvile representation of a channel will transform under a

group representation. We get that:

L(Ug[E ]) = L[U ′g]L[E ]L[U†g ] = U ′(g)⊗ U ′(g)∗ L[E ] U(g)† ⊗ U(g)T (1.22)

for any g ∈ G and any E ∈ S(H,K)

1.5.7 Clebsch-Gordan coefficients

In physics, Clebsch-Gordan coefficients appear when coupling spin angular momentum in

quantum mechanics where the relevant symmetry group is G = SO(3). Conceptually, what

follows is just a generalisation to an arbitrary compact group G.

Let V µ and V ν be two irreducible representations of the compact group G and assume these are

realised on the spaces Hµ and Hν respectively where µ and ν label the particular irreducible

representation (and may for instance correspond to highest weight vectors). The tensor product

representationHµ ⊗Hν decomposes into irreducible components:

Hµ ⊗Hν ∼=
⊕

λ∈Ĝ
mλHλ (1.23)

where mλ is the multiplicity of the λ-irrep in the above. This implies that the product of

representations V µ ⊗ V ν is unitarily equivalent to a block decomposition where each block is an

irreducible representation of the group. One can write that for all g ∈ G

C†(V µ(g)⊗ V ν(g))C =
⊕

λ

mλV
λ(g) (1.24)
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for some unitary matrix C which represents nothing more than a change of basis in Hµ ⊗Hν

from the tensor product basis to a basis that achieves the block-diagonal decomposition. The

entries of this matrix are what we call the Clebsch Gordan coefficients.

Let |eµk〉 and |eνk〉 be basis for Hµ and Hν respectively and |eλ,αk 〉 ∈ Hµ ⊗ Hν a basis for the

λ-irreducible component labelled by multiplicity α in the above decomposition. The Clebsch-

Gordan coefficients depend on a particular such choice of basis forHµ,Hν andHµ ⊗Hν :

|eλ,αk 〉 =
∑

m,n

〈µ,m; ν, n|λ, k〉|eµm〉 |eνn〉 (1.25)

where the coefficients 〈µ,m; ν, n|λ, k〉 represent entries for the unitary matrix C and for simplic-

ity4 we denote both the irrep and the multiplicity label in the decomposition by the single label

λ = (λ, α).

Explicitly equation (1.24) that defines Clebsch-Gordan coefficients can be cast in terms of matrix

coefficients:

vλk′k(g) =
∑

m,m′,n,n′

〈λ, k|µ,m; ν, n〉vµmm′(g)vνnn′(g)〈µ,m′, ν, n′|λ, k′〉. (1.26)

This expresses a duality between matrix coefficients and Clebsch-Gordan coefficients, which is

detailed in [59]. Moreover, unitarity of C implies the following conditions hold:

δkk′δλ,λ′ =
∑

m,n

〈λ, k|µ,m; ν, n〉〈µ,m, ν, n|λ′, k′〉 (1.27)

δm,m′δn,n′ =
∑

λ,k

〈µ,m; ν, n|λ, k〉〈λ, k|µ,m; ν, n〉. (1.28)

Using the above orthogonality conditions, or equivalently that C is a unitary matrix then

equation (1.26) transforms into the following useful relation:

∑

k′

〈µ,m; ν, n|λ, k′〉vλk′k(g) =
∑

m′,n′

vµmm′(g)vνnn′(g)〈µ,m′; ν, n′|λ, k〉 (1.29)

which simply expresses (V µ(g)⊗ V ν(g))C = C(
⊕

λmλV
λ(g)) at the level of matrix entries.

This illustrates that Clebsch-Gordan coefficients are fundamentally linked with a particular

4This is no longer necessary for SU(2), since every tensor product of irreps has a multiplicity-free decomposition.
In such case we simply write 〈µ,m; ν, n|λ, k〉 for the Clebsch-Gordan coefficients.
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choice of matrix coefficients for the irreducible representations. However the defining relation

above does not fully fix these coefficients so that there is freedom in choosing an overall phase.

This ensures that one can find real Clebsch-Gordan coefficients and for SU(2) we will employ

the Condon-Shortley choice of phase, which is defined in such a way as to give a simple

isomorphism between irreducible representations and their dual [61].

On computing the Clebsch-Gordan coefficients: a complexity aside

The Clebsch-Gordan problem: Given a compact Lie algebra, and highest weights µ, ν and λ compute

the multiplicity mλ of V λ in the irrep decomposition of the tensor product V µ ⊗ V ν .

It was recently proven in [62] that this problem is generally #P -complete. However, for Lie

algebras with fixed rank there is a polynomial time algorithm (in the dimensions of the weights)

computing these multiplicities [63].

A (simplified) version of the problem is to determine if mλ > 0 for a given a triplet of highest

weights (µ, ν, λ). This decision problem has a polynomial time algorithm which was proved

in [64] ans bears connections with the question of P vs NP via the program in geometric

complexity theory put forward by Mulmuley and Sohoni [64].

Moreover [65] presents a simple algorithm to compute the actual Clebsch-Gordan coefficients

numerically for SU(n) and SLn(C).

1.5.8 Example: SU(2)

We illustrate the main mathematical concepts reviewed so far in this chapter for the compact Lie

group G = SU(2).

Irreducible representations for SU(2) and matrix coefficients

SU(2) is the group of 2× 2 matrices with determinant one and can be characterised by:

SU(2) = {


 α −β∗

β α∗


 : |α|2 + |β|2 = 1}. (1.30)
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It is a compact simply-connected Lie group whose irreducible representations have a simply

characterisation. They are labelled by integer or half-integer numbers λ – these are the heighest

weight vectors that correspond to the d = 2λ+ 1-dimensional irrep. Each λ-irrep can be realised

on the d-dimensional vector space of homogeneous polynomials of degree d − 1 in two real

variables z1 and z2 with complex coefficients. This is given by:

Hd := span{md
k(z1, z2) =

zk1z
d−1−k
2√

k!(d− 1− k)!
: k ∈ {0, ...d− 1}} (1.31)

where {md
k}dk=1 form an orthonormal basis of homogeneous polynomials with respect to the

inner product 〈P,Q〉 = ∂(P )Q∗ for any P,Q ∈ Hd where ∂(P ) is an operator whose action is

given by substituting zki with ∂k

∂zik
for i = 1 or 2. More specifically we can write any polynomials

P and Q in a unique way P =
∑
k

pkz
k
1z

d−1−k
2 and Q =

∑
k

qkz
k
1z

d−1−k
2 for some arbitrary complex

coefficients. Then we can see the above does indeed define an inner product because 〈P,Q〉 =
∑
k

k!(d− 1− k)!pkq
∗
k.

Any element of Hd will be a homogeneous polynomial f(z1, z2) =
∑
akm

d
k for some arbitrary

complex coefficients ak. SU(2) acts irreducibly on Hd via the group action:

g · f(z1, z2) = f(gT (z1, z2)) = f(αz1 + βz2,−β∗z1 + α∗z2) (1.32)

for any group element g =


 α −β∗

β α∗


. This explicitly gives the irreducible representation

V λ : SU(2) −→ GL(Hd) with V λ(g)[f(z1, z2)] = f(αz1 + βz2,−β∗z1 + α∗z2).

This allows to compute the corresponding matrix coefficients vλkk′ with respect to the orthonormal

basis of homogeneous monomials. In particular:

V λ(g)[md
k(z1, z2)] =

(αz1 + βz2)k(−β∗z1 + α∗z2)d−1−k
√
k!(d− 1− k)!

. (1.33)

A binomial expansion of the RHS would allow to express the rotated monomial function with

respect to the basis chosen forHd. The corresponding coefficients will give the matrix coefficients

of the λ-irrep. For completeness we give the full form:

vλkk′(g) =

√
k′!(d− 1− k′)!√
k!(d− 1− k)!

min(k,k′)∑

m=0

(
k

m

)(
d− 1− k
k′ −m

)
αmβk−m(−β∗)k′−m(α∗)d−1−k−k′+m

(1.34)
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where k, k′ ∈ {0, 1, ..., d− 1}. These are also related to Wigner matrices that express the repre-

sentations of SO(3) in terms of the Euler rotation angles.

Clebsch-Gordan coefficients

For SU(2), the Clebsch-Gordan coefficients have closed analytical formulas. As we have seen,

these depend on a choice of basis for the irreducible representations, and the typically Clebsch-

Gordan coefficients employed in this thesis are computed with respect to irreps given in terms

of equation 1.34.

For SU(2) every irreducible representation is isomorphic to its own dual. Moreover the Condon-

Shortley choice of phase explicitly gives this isomorphism such that the dual basis for the j∗

irrep are related to the basis for the j irrep via:

|j∗,m〉 = (−1)j−m|j,−m〉. (1.35)

The decomposition of tensor products of irreps in SU(2) is multiplicity free such that:

j1 ⊗ j2 = j1 + j2 ⊕ j1 + j2 − 1⊕ ...⊕ |j1 − j2| (1.36)

for all j1, j2 irreps.

Irreducible tensor operators for SU(2)

LetH carry a j-irrep of SU(2) and choose {|n〉}2jn=0 to be the computational basis on the d = 2j+1

dimensional spaceH. Given such a symmetry, how does one construct a set of irreducible tensor

operators that decomposes B(H) into irreps? Since j ⊗ j∗ = 0 ⊕ 1 ⊕ ... ⊕ 2j, then for every

J-irrep in this decomposition we can build the standard irreducible tensor operators {T Jk }Jk=−J for

any J-irrep such that:

T Jk :=
∑

m,n

(−1)n+j〈j,m; j, n|J, k〉|m+ j〉〈−n+ j|. (1.37)
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By construction, the above transforms under the adjoint action of U : SU(2) −→ B(H):

U(g)T Jk U
†(g) =

∑

k′

vJk′k(g)T Jk′ (1.38)

for any g ∈ SU(2) and any irrep J in the decomposition of j ⊗ j∗ and all vector components

k. The matrix coefficients vJkk′(g) are necessarily related with the choice of Clebsch-Gordon

coefficients as explained in section 1.5.7.

Moreover the Condon-Shortley choice of phase ensures that these operators satisfy the following

relation:

(Tµk )† = (−1)J−kTµ−k. (1.39)

This is a very convenient relation because it will allow us to rotate this standard basis to a

complete orthonormal basis of hermitian irreducible tensor operators. For each J and positive k

this unitary rotation can be described by

T J−k −→ σJ−k :=
T J−k + (−1)kT Jk√

2

T Jk −→ σJk :=
i(T J−k + T Jk )√

2

(1.40)

and whenever k = 0 we take σJ0 = T J0 . Conveniently we can package this into a column vector

of operators with entries corresponding to each vector component TJ := (T J−J , ..., T
J
J )T so

that the defining transformation under the group action takes the form of Ug(TJ) = V J(g)TJ .

Similarly, if R denotes the unitary matrix implementing the above basis rotation then we can

write σJ = RTJ . The operators σJ themselves transform irreducibly under the adjoint group

action Ug. However they correspond to a different choice of basis so the irreducible matrix

coefficients will reflect just that:

Ug(σJ) = RvJ(g)R†σJ . (1.41)

Example 1.5.8. One qubit spin system under SU(2) symmetry principle In this case the qubit

systemH ∼= C2 carries the fundamental j = 1/2 irrep of SU(2). Thus B(H) decomposes into a 1-irrep

subspace and a trivial 0-irrep subspace. As above with respect to the standard computational basis we get
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the irreducible tensor operators that span these irreducible subspaces:

T 1
−1 =


 0 −1

0 0


 T 1

0 =
1√
2


 1 0

0 −1




T 1
1 =


 0 0

1 0


 T 0 =

1√
2
I.

(1.42)

These will transform according to the 1-irrep of SU(2). The corresponding matrix coefficients, that are

associated with the standard choice of Clebsch-Gordan coefficients are easily computed using action of

SU(2) on homogeneous polynomials of degree two H2 := spanC{z2
1/
√

2, z1z2, z
2
2/
√

2}. For every group

element g =


 α −β∗

β α∗


 a column vector of the basis z = (z2

1/
√

2, z1z2, z
2
2/
√

2)T will transform

according to the the 1-irrep matrix of SU(2), z −→ V 1(g)z where:

V 1(g) =




α2
√

2αβ β2

−
√

2αβ∗ (|α|2 − |β|2)
√

2α∗β

(β∗)2 −
√

2α∗β∗ (α∗)2


 (1.43)

Moreover we can also obtain a complete set of orthonormal hermitian ITOs for B(H) as explained in the

previous section. In this particular case we recover the Pauli matrices. Although the Pauli matrices form

an orthogonal basis for the 1-irrep subspace of B(H), they will transform according to different matrix

coefficients given by Rv1R† where explicitly:

σ1 = RT1 :=




1√
2

0 − 1√
2

0 1 0

i√
2

0 i√
2


T1. (1.44)

1.5.9 Homogeneous spaces

A homogeneous space is a topological space that has a transitive group action.

Suppose that G acts on a manifoldM by · : G×M −→M, then under this action every point

x ∈M is send to a point in its orbit Orb(x) := {g ·x : g ∈ G}. This splitsM into a disjoint union

of orbits. G acts transitively onM if for all x,y ∈ M there exists a group element g ∈ G such

that y = g · x. In such a case there is a single orbit, the full homogeneous spaceM.
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Let H be a subgroup of G. The quotient G/H is the set of all left cosets of H in G and consists of

the set of equivalence classes {gH : g ∈ G} such that g ∼ g′ iff g = g′h for some h ∈ H and thus

gH = g′H . The group G acts transitively on G/H so that there is a one to one correspondence

between homogeneous spaces and quotient spaces.

In particular ifM is a homogeneous space and H is the stabilizer subgroup of a point x ∈M
such thatH = {g ∈ G : g ·x = x}, then the following defines an invariant measure onM = G/H :

∫

M
dx

∫

H
f(gh)d h =

∫

G
f(g)d g (1.45)

where d g and d h are the Haar measures on the compact groups G and H respectively.

1.5.10 The Hilbert space L2(G) and Peter-Weyl theorem

For a compact group G, any continuous complex valued functions on the group are also square

integrable. We denote by L2(G) = {f : G −→ C :
∫
f(g)f(g)∗d g ≤ ∞} the space of square

integrable functions on the group. There is a natural group action of G on L2(G) called the left

regular representation and given by left shifts:

g · f(g′) = f(g−1g′) (1.46)

for all g, g′ ∈ G. The action induces the left regular representation on L2(G) which is reducible.

Theorem 1.5.9. Peter-Weyl theorem

Let G be a compact group then:

i) The set of all matrix coefficients vλij : G −→ C for λ ∈ Ĝ and i, j is dense in C(G) the space of

continuous complex-valued functions on G and also in L2(G).

ii) Under the left regular representation, the space L2(G) decomposes into a direct sum of every irreducible

representation of G with multiplicity equal to its dimension.

The Peter-Weyl theorem implies that the set {√dλvλij : λ ∈ Ĝ, 1 ≤ i, j ≤ dλ} forms an

orthonormal basis for L2(G) and moreover the matrix coefficients for the λ-irrep will span the

λ-irrep isotypical component in the decomposition of L2(G). Therefore any function f ∈ L2(G)
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can be expanded into a generalised Fourier series with respect to this basis:

f(g) =
∑

λ∈Ĝ

∑

i,j

cλijv
λ
i,j(g) (1.47)

for some coefficients defined by cλij = dλ
∫
G f(g)(vλij(g))∗d g.

1.5.11 Spherical harmonics

Spherical harmonics are special functions on a sphere, have wide applicability in mathematics,

physics, chemistry and their structure combines different elements of differential equations,

group theory, harmonic analysis and geometry.

Typically spherical harmonics appear as eigenfunctions of the Laplacian operator and form a

basis for the space of complex valued functions on the unit sphereL2(S2,C). In polar coordinates,

every point in the sphere x ∈ S2 corresponds to angles (θ, φ) with θ ∈ [0, π] and φ ∈ [0, 2π]. The

spherical harmonics are joint eigenfunctions of the total angular momentum operator L2 and

the generator of rotations around the z axis Lz :

L2Y l
m(θ, φ) = l(l + 1)Y l

m(θ, φ) and LzY
l
m(θ, φ) = mY l

m(θ, φ) (1.48)

for any θ, φ where L2 = L2
x + L2

y + L2
z and Lx, Ly, Lz are components of the orbital angular

momentum operator ih(x×∇). The raising and lowering operators L± = Lx± iLy and Lz form

generators of the Lie algebra sl(2,C). The label l ranges over all positive integers and m is an

integer such that −l ≤ m ≤ k. Explicitly:

Y l
m(θ, φ) = (−1)mPlm(cos θ)eimφ

√
(2l + 1)(l −m)!

4π(l +m)!
(1.49)

where Plm(x) are Legendre functions, with

Plm(x) = (1− x2)
m
2
dmPl(x)

dxm
(1.50)

Pl(x) =
1

2ll!

dl(x2 − 1)l

dxl
. (1.51)

Moreover they are orthonormal
∫
S2 Y

l
mY

l′
m′dΩ = δll′δmm′ , with integration given by Haar mea-

sure over the sphere S2. The spherical harmonics defined above satisfy (Y l
m)∗ = (−1)mY l

−m so
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they are chosen to satisfy the Condon-Shortley phase convention.

The spherical harmonics form a complete orthonormal basis for L2(S2,C). However one can

view the S2 as a homogeneous space SO(3)/SO(2), so that there is a natural action of the

rotation group. For every integer l the set of spherical harmonics {Y l
m : −l ≤ m ≤ l} form an

orthonormal basis for the 2l + 1 dimensional irreducible representation of SO(3). Therefore,

under the left regular representation of SO(3), the spherical harmonics transform irreducibly:

g · Y l
m(θ, φ) =

∑

m′

vlmm′(g)Y l
m′(θ, φ) (1.52)

for all g ∈ SO(3) with vlmm′ matrix coefficients of the l-irrep of SO(3). In the above, for any

point x ∈ S2 with polar coordinates θ, φ, the group action is g · Y l
m(x) = Y l

m(g−1 · x), where

g−1 · x corresponds to the point on S2 resulting from point x under a rotation by g−1 ∈ SO(3).

In particular, the space L2(S2,C) decomposes into a direct sum of irreducible subspaces contain-

ing all irreps of SO(3) (or equivalently the odd dimensional irreps of SU(2)), each appearing

with multiplicity one. This property shows how one can extend the definition of spherical

harmonics to generalised spherical harmonic functions acting on homogeneous spaces G/H .

1.5.12 Generalised spherical harmonics

A function on a homogeneous space G/H is a function in L2(G) that is constant on the left cosets

i.e f(gh) = f(g) for all g ∈ G and h ∈ H . Similarly there is a left-regular group action of G

on L2(G/H,C), the space of square integrable complex-valued functions on the homogeneous

space:

g · f(g′H) = f(g−1g′H) (1.53)

for all g, g′ ∈ G. It follows from Peter-Weyl’s theorem that L2(G/H) decomposes into irrep with

multiplicity at most equal to the dimension of the respective irrep.

However there are situations – as we have previously seen for the rotation group – in which the

decomposition L2(G/H) is multiplicity-free. In such cases, the notion of spherical harmonics

can be immediately generalised.

In particular it follows that H must satisfy a particular property: For any λ-irrep there exists a

unique vector |n〉 in the λ-irrep carrier space such that vλ(h)|n〉 = |n〉 for all h ∈ H . A subgroup
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H of G that satisfies this is called a massive subgroup. In particular for any massive subgroup the

decomposition of L2(G/H) into irreducible component is multiplicity free. Moreover for each

λ-irrep in L2(G/H) we can define the associated spherical harmonics Y λ
m ∈ L2(G/H):

Y λ
m(gH) := 〈n|vλ(g−1)|em〉 (1.54)

with respect to an orthonormal basis {|em〉} for the λ-irrep carrier space.

Therefore one can check the above are indeed well-defined (i.e invariant on left cosets) and form

an orthonormal basis spanning the λ-irrep component of L2(G/H):

L2(G/H) =
⊕

λ∈Ĝ
spanC{Y λ

m : m = 1, 2, ...,dim(λ)}. (1.55)

As with the usual spherical harmonics there are many deep connections with partial differential

operators on a manifold that are invariant under a ”motion” group, Lie algebraic formulations.

However we will be mostly concerned with the transformation property of these generalised

spherical harmonics under the action of the group. This is directly related to the above decom-

position and it is easy to check that indeed:

g · Y l
m(g0H) = Y λ

m(g−1g0H) = 〈n|vλ(g−1
0 )vλ(g)|em〉 (1.56)

=
∑

m′

〈n|vλ(g−1
0 )|e′m〉〈e′m|vλ(g)|em〉 (1.57)

=
∑

m′

vλm′m(g)Y l
m′(g0H) (1.58)

for all g ∈ G and cosets g0H ∈ G/H , where the matrix coefficients are with respect to the fixed

orthonormal basis {|em〉}dim(λ)
m=1 .

A more detailed and rigorous account of associated spherical harmonics on homogeneous spaces

can be found in the monograph on special functions by Vilenkin and Klimyk [59].
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Chapter 2

A framework for quantum processes

under symmetry principles

Much like a musical composition contains pure notes of different frequencies with varying

time-weights, in the same way a quantum channel decomposes into components that respond to

the underlying symmetry principle in a particular, quantifiable manner. This structure appears

naturally as we view the space of superoperators on a given system to be the representation

space of the symmetry group that decomposes into irreducible isotypical components. The

formalism presented in this section goes beyond this, in that it aims to take into account the

causal structure of quantum channels that distinguishes the input from the output systems.

Therefore, the present framework gives a more fine-grained structure than the decomposition

into isotypic components and allow for an intuitive diagrammatic representation.

An immediate advantage of this approach arises when dealing with implementations of a given

target quantum channel via a globally symmetric interaction between system and environment.

This type of quantum processing task appears for instance frequently in the context of quantum

reference frames, quantum thermodynamics or general resource theories. In this setting, an

important question is, What are the resources required to implement the (symmetry-breaking)

target channel? Process modes allow to identify these minimal resource requirements without

committing to a particular environment or interaction.

Globally symmetric channels on bipartite systems, may arise trivially as two independent sym-

metric channels on each of the subsystems but generally, ignoring (tracing out) one subsystem
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results in a symmetry breaking channel. However, channels break the symmetry in different

ways, so that relative to this internal symmetry-breaking degree of freedom globally symmetric

channels have typically distinct features that lead to operational differences. These structural

aspects are best represented in terms of the process mode formalism, resulting in a distinguished

basis decomposition that can be connected at an abstract level with Feynman diagrams.

The framework we develop over the following sections represents the mathematical backbone

on which the applications discussed in chapters 4 and 3 rest.

Previous work on modes of asymmetry by Marvian and Spekkens in [35, 36] mainly focused

on decomposition of states into symmetry breaking terms, and their use in an environment for

simulation of channels under symmetry constraints. In here, we focus on quantum channels

instead and explore the rich structures emergent in bipartite systems along with geometric

interpretations for decomposition of symmetry-breaking channels. We emphasize the relation

and differences between process modes and asymmetry modes at the end of section 2.1.1.

For the remainder of the chapter, unless specified otherwise, we will consider quantum channels

E : B(H) −→ B(K), where the input systemH and output systemK carry unitary representations

U and U ′ of a compact group G. As detailed in Section 1.5.6, under the group action the channel

transforms according to the representation U of G on S(H,K) such that for any g ∈ G it maps

U(g)[E ] = U ′g ◦ E ◦ U†g , where Ug(·) := U(g)(·)U(g)†.

2.1 Process modes – a diagrammatic representation

2.1.1 Irreducible tensor superoperators

The space of superoperators S(H,K) with the representation U of G has a unique decomposition

in terms of irreducible isotypical components. Moreover, the isomorphism between S(H,K)

andH⊗H∗ ⊗K ⊗K∗ implies that the irreps that appear in the decomposition of the space of

superoperators are exactly the same as those in the unitary representation U ⊗ U∗ ⊗ U ′ ⊗ (U ′)∗.

Since it shares the algebraic properties of bounded operator spaces, the notion of irreducible

tensor operators described in 1.5.4 can by immediately generalised.

Definition 2.1.1. For every irrep λ ∈ Ĝ the irreducible tensor superoperators are defined as a set of
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dim(λ) (dimension of λ) linear maps {Φλ
k}
dim(λ)
k=1 in S(H,K) that transform as:

U(g)[Φλ
k ] =

∑

k′

vλk′k(g)Φλ
k′ , (2.1)

for all g ∈ G, where vλkk′ are matrix coefficients of the λ-irrep in the decomposition of U ⊗U∗⊗U ′⊗U ′∗.

The above definition warrants some further clarifications. Generally the irreps in the decompo-

sition of U ⊗ U∗ ⊗ U ′ ⊗ U ′∗ may have multiplicity greater than one and this fact is not explicitly

taken into account in the definition of an irreducible tensor superoperators – what matters is

only how they transform under the group action.

We will denote by Irrep(H,K) the non-equivalent irreps that appear in the decomposition of

U ⊗ U∗ ⊗ U ′ ⊗ U ′∗ (or equivalently in S(H,K)) into irreducible components. Moreover for

each λ ∈ Irrep(H,K) we label the associated multiplicity generically by mλ so that the unitary

representation U has a unique decomposition into:

U ∼=
⊕

λ

V λ ⊗ C|mλ| (2.2)

where V λ denotes the irreducible representation of G labelled by highest weight λ.

The irreducible tensor superoperators give a natural symmetry-adapted basis for the space of

superoperators, which therefore decomposes into:

S(H,K) ∼=
⊕

λ,mλ

span{Φλ,mλ
k : 1 ≤ k ≤ dim(λ)}. (2.3)

As written, the decomposition in equation (2.3) assumes a particular choice of irreducible

tensor superoperators for each λ and each multiplicity mλ. We emphasize that there is unique

coarse-grained structure given by the isotypical decomposition S(H,K) ∼=
⊕

λ Sλ with Sλ :=
⊕

mλ
span{Φλ,mλ

k : 1 ≤ k ≤ dim(λ)}. In particular, for any map E ∈ S(H,K) its orthogonal

projection onto the isotypical component Sλ will be given by:

Eλ := dim(λ)

∫
Tr(vλ(g))U(g)[E ]d g (2.4)

where Tr(vλ(g)) is the character of the λ-irrep and integration is with respect to the Haar measure
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on the compact group G. Note that projection above is independent of any choice of basis and

Eλ is uniquely defined for any given map E .

However, the finer-grained structure given by further decomposing Sλ into a direct sum of

λ-irreps presupposes a particular choice of basis. In order to construct sets of irreducible tensor

superoperators in S(H,K) defined by their transformation property it is important to emphasize

that two choices of basis are needed: i) A basis of each irreducible representation of G, which

gives the matrix coefficients (vλ(g))kk′ and ii) A basis for the underlying Hilbert spacesH and K
respectively.

Given a full set of irreducible tensor superoperators {Φλ,mλ
k }dim(λ)

k=1 ⊂ S(H,K) for all λ ∈
Irrep(H,K) with corresponding multiplicity label mλ, this forms a complete orthogonal ba-

sis for S(H,K) in the following sense. For every linear map E ∈ S(H,K) there is a unique

Choi operator J [E ]. Since the operator space has a Hilbert-Schmidt inner product, then the

superoperator space can be given the inner product structure defined by 〈E ,F〉 := Tr(J [E ]†J [F ])

for any E ,F ∈ S(H,K). It is with respect to this choice of inner product space that the irreducible

tensor superoperators form an orthonormal basis such that 〈Φλ,mλ
k ,Φ

µ,mµ
k′ 〉 ∝ δλ,µδk,k′δmλ,mµ , a

direct consequence of Lemma 2.1.2 below.

Lemma 2.1.2. Suppose that {Φλ
k}

dim(λ)
k=1 ⊂ S(H,K) are irreducible tensor superoperators. Then the

set of operators J [Φλ
k ] in B(K ⊗H) form a set of irreducible tensor operators under the tensor product

representation U ′ ⊗ U∗, and are orthogonal with respect to the Hilbert-Schmidt inner product.1

Proof. From the Definition 2.1.1 and linearity of the Choi map it follows that J [U(g)[Φλ
k ]] =

∑
k′ v

λ
k′k(g)J [Φλ

k′ ]. However, for any linear map E , J [U(g)[E ]] = U ′g ⊗ U∗g (J [E ]]) and therefore

U ′g ⊗U∗g (J [Φλ
k ]) =

∑
k′ v

λ
k′k(g)J [Φλ

k′ ] transform as λ irreducible tensor operators and in particular

they are orthogonal.

For practical purposes, we will assume without loss of generality that the irreducible tensor

superoperator basis are normalised such that 〈Φλ
k ,Φ

λ
k〉 = 1 for all irreps λ and vector component

k. Therefore, any superoperator E ∈ S(H,K) acting on systems with an underlying symmetry

can be written as a linear combination of irreducible tensor superoperators:

E =
∑

λ,mλ,k

αλ,mλ,k Φλ,mλ
k (2.5)

1A similar result holds for the Liouville representation of a superoperator
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for some complex coefficients αλ,mλ,k = 〈E ,Φλ,mλ
k 〉 = Tr(J [E ]†J [Φλ,mλ

k ]). We will refer to the

above as a process mode decomposition. To emphasize the physical aspects of our framework we

refer to the irreducible tensor superoperators interchangeably as process modes.

Lemma 2.1.2 allows a constructive way of building irreducible tensor operators. We will

deal with the question of how to concretely construct these basis in the following sections.

For now, we address a type of decomposition of linear maps E ∈ S(H,K) that has been

introduced as modes of asymmetry of quantum channels in [36], with the scope of differenti-

ate between the approach taken herein. The (λ, k) asymmetry mode was defined as Eλk :=

dim(λ)
∫

(vλkk)∗(g)U(g)[E ]d g, which do transform as irreducible tensor superoperators. We note

that these depend on a choice of basis for the irreducible representations V λ of G, but carry no

assumption on the basis for the underlying input and output spaces. At an abstract level, it falls

between an isotypical decomposition and a full, basis dependent, decomposition into irreducible

subspaces. It only identifies different sectors in an isotypical component, without fully splitting

it into specified λ-irreducible subspaces. In particular, if E decomposes as in equation 2.5 in terms

of irreducible tensor superoperators then the asymmetry modes are Eλk =
∑

mλ
αλ,mλ,kΦ

λ,mλ
k ,

where we sum over all multiplicities of the λ-irrep. Similarly, we also have the projection onto

the isotypic component Eλ =
∑

k Eλk , where in this case we sum over all vector components.

Therefore the decompositions into asymmetry modes, process modes or isotypical components

represent different levels of coarse-graining a quantum channel (and generally linear maps)

according to the underlying symmetry principles governing the physical systems involved.

Different applications are more suitable to one or another type of such decomposition giving

rise to different perspectives on the role symmetry plays in physics and particularly quantum

information.

In summary, there are two different aspects we have tackled in the above discussion, which at

its core they are fundamentally the same. On one hand we have the canonical isotypical decom-

position of the superoperator space, and on the other hand a symmetry adapted orthogonal

basis for S(H,K) in the form of irreducible tensor superoperators. It is clear that the latter gives

a particular decomposition into irreducible subspaces. Conversely, any orthogonal basis for each

irreducible subspace in the decomposition of S(H,K) will transform accordingly as irreducible

tensor superoperators.
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2.1.2 Process modes as a natural symmetry adapted basis for S(H,K)

In this section we delve into how process modes can be constructed generally and introduce a

set of canonical process modes that have an intuitive diagrammatic representation that takes into

account the causal structure of quantum channels.

We can view the space of superoperators as carrying a tensor product structure via the isomor-

phism of representations S(H,K) ∼= B(H)∗ ⊗ B(K). This means that there is an intertwiner

which respects this in the sense that any irrep λ ∈ Irrep(H,K) arises in some tensor product

coupling between an irrep a in B(H)∗ and ã in B(K) (or equivalently in U ⊗ U∗ and U ′∗ ⊗ U ′

respectively). Tracking all possible such couplings gives a useful way to label the multiplicities

of irreps λ ∈ Irrep(H,K) in a constructive way that takes into account how superoperators act

on the input and output spaces. We package this data into a compact notation λ = (λ,mλ)

that includes both the irrep label and the multiplicity label. Moreover, under such a bottom up

construction of the decomposition into irreducible components of S(H,K) we can say that each

multiplicity label mλ = (a, ã) is associated with a coupling of irreps in the input and output

systems (which themselves may carry a multiplicity label).

Definition 2.1.3. Let G be a compact group, U and U ′ unitary representations ofH and K respectively.

We define canonical process modes for the superoperator space S(H,K) to be a complete set of

irreducible tensor superoperators {{Φλk }
dim(λ)
k=1 }λ of S(H,K) that have as non-trivial domain and co-

domain irreducible subspaces of B(H) and B(K) respectively.

A technical remark related to the above definition; for any general group G, there is a one to

one correspondence between irreps a in the decomposition of B(H) with the adjoint action of

U and those in B(H)∗, space that carries the adjoint action of U∗. The following lemma gives a

construction for the canonical process modes. A priori there is no assumption of a particular

basis choice – except for the choice of tensor product. The choice of basis is reflected in the

set of irreducible tensor operators for the input and output spaces and in the Clebsch-Gordan

coefficients, but the definition itself is independent of these; there is still a freedom to choose

particular basis forH and K, but we only impose an algebraic structure.

Lemma 2.1.4. Let {Ta}a and {Sã}ã denote a complete set of irreducible tensor operators for B(H) and

B(K) respectively. The set of linear maps Φλk : B(H) −→ B(K) given by:

Φλk (ρ) =
∑

m,n

〈ã,m; a, n|λ, k〉 Sãm Tr(Tan ρ) (2.6)
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for all ρ ∈ B(H) form a set of canonical process modes for all λ = (λ,mλ) where λ ∈ Irrep(H,K) with

the multiplicity mλ = (a, ã).

Proof. We just need to check that under the group action Ug the set of superoperators {Φλk }
dim(λ)
k=1

defined above transform irreducibly. Since {Sãm} in B(H) and {Tan } in B(K) are irreducible

tensor operators then they will transform as:

Ug(Tan ) =
∑

nn′

van′n(g)Tan′

U ′g(Sãm) =
∑

m′

vãm′m(g)Sãm′

(2.7)

and therefore the set of superoperators defined in the Equation 2.6 will satisfy:

Ug[Φ
λ
k (ρ)] =

∑

m,n,m′,n′

〈ã,m; a, n|λ, k〉vãm′m(g)van′n(g) Sãm′ Tr(Tan′ρ). (2.8)

Taking into account the definition of Clebsch-Gordan coefficients and the fact that they represent

a unitary change of basis then they must satisfy the following relation between matrix coefficients

of irreducible representations:
∑
k′
〈ã,m′; a, n′ |λ, k′〉vλk′k =

∑
m,n
〈ã,m; a, n|λ, k〉vãm′mvan′n. Finally by

substituting this into the previous equation we obtain that:

Ug[Φ
λ
k (ρ)] =

∑

k′,m′,n′

〈ã,m′; a, n′ |λ, k′〉vλk′k(g) Sãm′ Tr(Tan′ρ)

=
∑

k′

vλk′k(g) Φλk′ . (2.9)

At a more abstract level, the canonical process modes give an explicit intertwiner map ιC :

B(H)∗ ⊗ B(K) −→ S(H,K), whereas the canonical process modes are the image of irreducible

tensor operators with a choice of tensor product B(H)∗ ⊗ B(K). The space of all intertwiners is

the commutant of the group action U i.e Comm := {ι : S(H,K) −→ S(H,K) : ∀ g ∈ G U(g) ◦ ι =

ι ◦ U(g)}. Therefore any set of irreducible tensor superoperators can be written as the image of

the canonical process modes {ι(Φλk )}λ,k under some intertwiner ι ∈ Comm.

Moreover we can view the process modes in a more compact notation as a column vector of
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superoperators that transform irreducibly:

Φλ :=
[

Φλ1 · · · Φλk · · · Φλdim(λ)

]T
. (2.10)

As described, each such vector Φλ arises from couplings of irreps (a, ã) and thus we can

associate a diagram as in figure 2.1.The diagrammatic notation reflects a bottom-up approach in

constructing irreducible tensor operators. It captures the fact that any λ-irrep subspace in the

space of operators S(H,K) arises from coupling particular a-irrep in B(H) and ã-irrep in B(K).

The edges are associated with irrep labels, while the vertex can be viewed as an intertwiner

between a⊗ ã and λ (or equivalently between the trivial representation and a⊗ ã⊗ λ∗) as given

by the Clebsch-Gordan coefficients. The diagram contains all the information needed to write

down an expression for the corresponding irreducible tensor superoperators. This scheme gives

a tractable way of labelling multiplicities for the λ-irrep.

Figure 2.1: Process Mode Diagram
Diagrammatic representation of the dim(λ) canonical process modes components {Φλk }

dim(λ)
k=1

arising from the input-output coupling (a, ã)
λ−→. The edges are labelled by irreps and the

vertex corresponds to an intertwiner.

The diagram in figure 2.1.2 intuitively gives a pictorial representation of components in the

harmonic analysis decomposition of any quantum channel. It shows how the asymmetry in the

initial state is transformed into the asymmetry of the output state by means of interaction with

the λ-irrep process mode. Time runs up the page, to reflect the ordering of events: the a-irrep

state mode of the initial state ρ is selected by the edge labelled by a with an incoming arrow

into the vertex and mapped under the process mode Φλ solely into the ã-irrep state mode of the

output state, described by the edge labelled by ã with outgoing arrow. If a state ρ has no a-irrep
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component then Φλ
k(ρ) = 0. The vertical edge is labelled by λ, and captures the asymmetry

provided by the environment to map incoming a-state modes into outgoing ã-irrep state modes.

The diagram in figure 2.1.2 can also be viewed as a short-hand notation for the mathematical

expression introducing canonical process modes in equation 2.6. Typically, graphical calculus

for tensors will include all the labels (degrees of freedom) involved, and one may very well

extend the process mode diagrams by adding vector component labels. Extending the process

mode diagram notation to a well defined graphical calculus is beyond the aims of this thesis,

and here we use them only for their descriptive power rather than as a full calculating tool. One

can formalise the idea of combining different diagrams, and in some sense the diagrams we give

in section 2.4.2 for symmetric channels on bipartite systems will describe one way of doing such

a procedure.

At this stage a comment is warranted on the similarities between the diagrammatic representa-

tion of canonical process modes and Feynman diagrams. The latter come up in perturbative

analysis of quantum field theory and are usually thought of as processes representing inter-

actions between particles, with associated complex amplitude giving the probability that a

particular process occurs. There is however a deeper perspective on Feynman diagrams [66, 67]

in which the edges label irreps (these correspond to elementary particles according to Wigner’s

classification) while vertices label intertwiners between the trivial representation and tensor

product of irreps connected at said vertex (in physical terms, these are interactions between said

particles).

Example 2.1.5. SU(2) acting irreducibly on one qubit system

We consider operations on single qubit system H ∼= K ∼= C2 with the 1/2-irrep of SU(2). As a

representation space B(H) ∼= 1/2 ⊗ 1/2∗ it splits into a direct sum of B(H) ∼= 0 ⊕ 1. With re-

spect to the spin angular momentum basis for H given by |0〉 := |1/2,−1/2〉, |1〉 := |1/2, 1/2〉,
the orthonormal irreducible tensor operators2 are {T 0 := I/

√
2} for the 0-irrep and for the 1-irrep

{T 1
−1 := −σ+/

√
2, T 1

0 := σZ/
√

2, T 1
1 := σ−/

√
2}, where σX , σY , σZ are the Pauli matrices and

σ± = σX ± iσY .

The space of one qubit superoperators will decompose into a 2-irrep, a 1-irrep with multiplicity three,

a 0-irrep with multiplicity 0 such that S(H,H) ∼= 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 2. Each arises in a particular

coupling of irreps in B(H)∗ and B(H) corresponding to the input and output respectively. However for

2In this example we consider the standard basis for the irreducible representations of SU(2) – this fixes the matrix
coefficients and the Clebsch-Gordan coefficients (for which we choose the Condon-Shortley phase convention). These
aspects are detailed in section 1.5.7 of Chapter 1.
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SU(2), every irreducible representation is isomorphic to its dual and thus S(H,H) ∼= (0⊕ 1)⊗ (0⊕ 1).

An integer spin value j labels each process mode, and it only takes on values j = 0, 1 and 2. The j = 0

process mode components by definition transform trivially under the SU(2) action and the most general

form is

Φ0(ρ) = aρ+ b(σXρσX + σY ρσY + σZρσZ), (2.11)

which in the case of quantum channels gives a directionless depolarization process on the qubit. These are

the only SU(2)-symmetric processes on a qubit.

The j = 1 process mode terms transform under the symmetry as a vector (Φ1
1,Φ

1
0,Φ

1
−1) of process

components. There are precisely three such process modes; one arises from coupling 1-irreps for both

output and input

Φ1,1
∓1 = − 1

2
√

2
(σ±Tr(σZρ)− σZTr(σ±ρ))

Φ1,1
0 =

i

2
√

2
(σXTr(σY ρ)− σY Tr(σXρ))

and the other two arise from coupling a 1-irrep with a 0 irrep in either the output or input space according

to:

Φ
1,(0,1)
∓1 (ρ) = ∓1

2
σ±

Φ
1,(0,1)
0 =

1

2
σZ

Φ
1,(1,0)
∓1 (ρ) = ∓ I

2
Tr(σ±ρ)

Φ
1,(1,0)
0 =

I
2

Tr(σZρ).

Finally, for the j = 2 case, there is a single process mode term, which transforms as a 5-dimensional

vector (Φ2
2,Φ

2
1,Φ

2
0,Φ

2
−1,Φ

2
−2) of process components. These are given by coupling 1-irreps in both the
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output and input space:

Φ2
∓2(ρ) =

1

2
σ±Tr(σ±ρ)

Φ2
∓1(ρ) = ∓ 1

2
√

2
(σ±Tr(σZρ) + σZTr(σ±ρ))

Φ2
0(ρ) = − 1

2
√

6
(σXTr(σXρ) + σY Tr(σY ρ)− 2σZTr(σZρ)) .

It turns out that when dealing with quantum channels, the canonical process mode formalism

gives rise to several particular features. For one, regardless of the symmetry group G, any

operator space B(H) (and similarly B(K) ) contains the identity operator I which transforms

trivially under the adjoint representation. For the following result, we distinguish a trivial

mode in the basis of irreducible tensor operators - and denote it by 0 with the corresponding

irreducible tensor operator proportional to I (i.e I/
√

dim(H) for B(H) and I/
√

dim(K) for B(K)).

No quantum channel E : B(H) −→ B(K) contains the process modes corresponding to coupling

(a,0) for all irreps a in U ⊗ U∗, except in the case a = 0. Note that amay be a trivial irrep too,

but it has to represent a different multiplicity such that it is orthogonal to 0.

The proof is a direct consequence of the trace preserving condition for E and orthonormality

of irreducible tensor operators. Moreover the coefficient associated with the process mode

Φ0(ρ) := I√
dim(K)

Tr(ρ I√
dim(H)

) labelled by the coupling (0,0) in the decomposition of E into

process modes is
√

dim(H)/dim(K).

Example 2.1.6. Vibrational modes of molecules are characterised by an underlying symmetry principle

in that each mode corresponds to a particular irreducible representation. Coupling of different vibrational

modes or a vibrational mode with an external field is akin mathematically speaking with the couplings in

the description of canonical process modes.

The process mode formalism developed herein, apart from providing the mathematical toolkit

with which to analyse quantum channels in the presence of a symmetry principle carries an

inherent directionality given by the arrow of time. This arises from a particular choice of tensor

product that reflects how symmetry breaking degrees of freedom3 in the input and output

3The notion of ”symmetry breaking degrees of freedom” or more generally just ”degrees of freedom” is at times
loosely used in physics and can refer to several distinct ideas. In order to avoid using a vacuous description and hide
complex ideas behind familiar terminology, further clarifications on the matter are needed.

Typically, degree of freedom refers to the dimensionality of the physical space related to a particular unchanged
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systems interact.

Given a quantum channel E that contains the process mode vector Φλ corresponding to coupling

(a, ã)
λ−→, it acts non-trivially only on components of an input state ρ corresponding to the irrep

a, which are transferred into components of the output state E(ρ) corresponding to the irrep ã.

We recall that a state ρ ∈ B(H) decomposes as:

ρ =
∑

a

dim(a)∑

k=1

ρa,kT
a
k (2.12)

in terms of a complete orthogonal basis of irreducible tensor operators for B(H), where the

summation ranges over all irreps, multiplicities (which are compactly packaged into a = (a,ma)

with a the irrep label and ma the multiplicity label) and vector components labelled by k. The

complex coefficients in the above decomposition are uniquely given by ρa,k = Tr(ρ(Tak )†). We

define the state modes of ρ for any a-irreps and associated multiplicity as ρa :=
∑

k ρa,kT
a
k . In

previous work [36] the asymmetry modes of state ρ were defined as ρak =
∑

ma
ρa,kT

a
k where

the summation is over all multiplicities. Both the asymmetry modes and state modes transform

irreducibly under the group action and while related, they represent distinct quantities. The

present work will focus on state modes as they are more relevant within the context of process

modes and quantum channels more generally. The process modes have the role of transferring

state modes between the input and output system, in a way consistent with their transformation

property under the underlying symmetry principles. Equivalently, we can say the process modes

λ = (a, ã) (and their diagrammatic representation) are objects labelled by an incoming state

mode a that evolves into an outgoing state mode ã by way of an interaction with an external

degree of freedom λ.

Of note in the definition of process modes is the temporal ordering of events in the sense that

it respects the notion that there is an input and output space and that the incoming modes a

are transformed into outgoing modes ã. In figure 2.1.2 we illustrate this directionality of events

with an example whereas a channel that transforms a polarised spin state into a maximally

property of a physical system. For instance a train confined to a track has a single degree of freedom when it comes to
displacements in 3D space. In here, symmetry breaking degrees of freedom can be thought of as the ”dimensionality
of the non-trivial irreps”, concept that can be associated to every ”leg” of a process mode in its diagrammatic

representation. For example, a process mode (a, ã)
λ−→ acting on input state without an a-irrep mode produces

no output (returns 0). In more physical terms, symmetry-breaking degrees of freedom are related to the coherence
or more generally asymmetry properties of a state (or a system). An energy eigenstate coupled to a Hamiltonian
driving transitions between different energy eigenstates will result in output state which exhibits coherence, that is
dictated entirely by couplings of different energy eigenstates present in the driving Hamiltonian.
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a) b)

Figure 2.2: Directionality of process modes
a) A quantum channel E2 that maps the maximally mixed state into spin state polarised along
some direction n̂ requires at least one non-trivial process mode, while the reverse transformation
may be achieved by a quantum channel E1 consisting solely of trivial process modes (λ = 0).
b) The ground state |E0〉〈E0| of some system thermalises into the Gibbs state at temperature
T = 1/β without external interaction, but the reverse transformation requires a non-zero amount
of ordered energy – mechanical work.

mixed state will have a fundamentally different process mode decomposition than a channel

performing the inverse state transformation. It is in this sense that we say the process mode

decomposition respects the causal structure of the quantum systems involved.

2.2 Simulation of open quantum systems and the process orbit of a

channel

Simulation of quantum systems promises to be one of the key applications for quantum com-

puters and can address a wide range of problems from quantum chemistry, material science,

fundamental physics. Interactions involving many particles exhibiting a high degree of en-

tanglement are considered to be generally difficult to simulate on classical computers – either

analytically or numerically. There are only a handful of systems for which efficient classical

simulation has been proven such as interaction-free fermionic modes [68]. On the other hand

Hamiltonian simulation lies in BQP-complete, the class of decision problems which can be

solved by a quantum computer in polynomial time. While much of the focus has been on

closed-systems, there are many important problems that motivate studying the simulation

of open quantum systems such as dissipative phenomena (engineering quantum state [69],

dissipative quantum phase transitions [70]), thermalisation [71], modelling quantum effects in
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biology [72, 73], non-unitary quantum computation [74].

In broad terms, efficient simulation of the unitary dynamics U(t) of a d-dimensional system

involves engineering a sequence of unitary gates U1, U2, ..., Un that approximate U within some

precision ε such that the number of gates n is polynomial in time t, the size of the system d

and in 1/ε. Analogously, simulating the evolution of an open quantum system A described by

the quantum channel E involves exhibiting both the coherent evolution dynamics as well as

dissipative dynamics given by an interaction with an environment system B. We can formalise

this into the following definition.

Definition 2.2.1. Simulation of open-system dynamics

Given a target channel E : B(HA) −→ B(HA) on system A, a simulation of E is a triplet (E, σE ,V)

formed of the environment quantum system E with Hilbert spaceHE with an initial state σE ∈ B(HE)

and a unitary V : B(HA ⊗HE) −→ B(HA ⊗HE) such that for all ρ ∈ B(HA):

E(ρ) = TrE(V(ρ⊗ σE)). (2.13)

Stinespring’s theorem [75] ensures that for any quantum channel (i.e CPTP map) there exists a

simulation in the sense of the above definition. In this context an efficient simulation of E must

be given by i) an environment state σE that can be efficiently prepared and ii) an efficient unitary

V . These aspects are however beyond the reach of the present exposition. We will however be

interested in a resource theoretic perspective. Suppose that V in the above is restricted to the

unitary free operations within a resource theory. Such a setting has been analysed in a number

of different contexts such as quantum thermodynamics and quantum reference frames.

2.2.1 Process orbit and relative alignments

Under a symmetry principle, the simulation of open-system dynamics that arises from a

symmetry-constrained unitary interaction with an ambient environment leads to a set of local

”coordinates” {xi} in the environment with respect to which the target channel E is induced.

Definition 2.2.2. Let E : B(H) −→ B(K) be a superoperator withH and K carrying representations U
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respectively U ′ of a group G. Then we denote the process orbit of E under the group action by:

M(G, E) := {U ′g ◦ E ◦ U†g : ∀g ∈ G}. (2.14)

Any two quantum channels in the same process orbit are related by a group element in G

and will contain the same decomposition into process modes (with different corresponding

coefficients or weights). Moreover the space of all superoperators splits into a union of disjoint

orbits i.e ∪EM(G, E) = S(H,K). Therefore any quantum channel can be fully specified by

providing its orbit and alignment with respect to some fixed representative element of each

orbit. Let E ∈ M(G, E0) then this alignment corresponds to the group element g ∈ G for which

E = U ′g ◦ E0 ◦ U†g .

Suppose that (E,V, σE) is a covariant-simulation of channel E . Then, under a misalignment of

the refrence frame at system E with some group element g ∈ G such that σE −→ UEg (σE), then

the simulation yields a different quantum channel E ′(ρ) = TrE(V(ρ⊗ UEg (σE))). It follows that

E ′ = Ug ◦ E ◦ U†g since:

E ′(ρ) = Ug(TrE(U(g)† ⊗ UE(g)†(V(ρ⊗ UEg (σE)))U(g)⊗ UE(g))) (2.15)

= Ug(TrEV((U(g)† ⊗ UE(g)†(ρ⊗ UEg (σE))U(g)⊗ UE(g)))) (2.16)

= Ug(TrE(V(U(g)†ρU(g)⊗ σE))) (2.17)

= Ug ◦ E ◦ U†g (2.18)

where the first equality follows from cyclicity of trace and the second from the covariance

property of the unitary channel V . This means that the process orbit of E remains invariant

under misalignments in the environment system.

Equivalently the above calculation says that any channel E within some fixed orbitM(G, E)

admits a Stinespring dilation with the same covariant unitary V . In some sense, simulating

channels within the same orbit requires the same type of resources. Distinct orbits will most

likely require different simulations (E′,V ′, σ′E). The symmetry breaking properties of the initial

state in the environment are transferred into the simulated channel.

Lemma 2.2.3. For any E and group G the process orbitM(G, E) is a homogeneous space.

Proof. A homogeneous space is a manifold with a transitive group action. In this case there is a
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canonical group action G ×M(G, E) −→M(G, E) that maps (g,F) −→ Ug[F ]. This is clearly

transitive by the definition of an orbit.

Under the group action given by the representation U on superoperators, the stabilizer (or

isotropy) group Stab(E) = {g ∈ G : U(g)[E ] = E} is a closed subgroup of G and the coset4 space

G/Stab(E) is homeomorphic(i.e topologically isomorphic) to the process orbitM(G, E).

a) b) c)

Figure 2.3: Examples of process orbits.
a)The process orbit of any symmetric quantum channel is a point b) The process orbit of axial
quantum channels (that have a fixed direction) under rotational symmetry is a sphere c) General
quantum channels will have more complex process orbits given by homogeneous spaces.

It should be remarked that the problem of determining all the orbits under a representation

of a general finite or compact Lie group is a difficult task. Some general results are however

known, but only for particular classes of representations (e.g multiplicity-free, representations

on pre-homogeneous vector spaces).

Example 2.2.4. a) If E is a covariant (symmetric) channel then Ug[E ] = E and thenM(G, E) ∼= {e},
where {e} is the identity element in the group G. b) Consider a single qubit system with the defining

spin-1/2 representation of SU(2) and suppose E is given by unitary rotations by angle θ around a fixed

axis n̂. ThenM(SU(2), E) ∼= SU(2)/U(1) ∼= S2.

One may consider the existence of additional geometrical structure onM(G, E) – this fits into

the wider scope of the Erlangen5 program. For instance if H is a closed compact subgroup of a

4Given a subgroup H of a group G a coset space is given by gH = {gh, h ∈ H}, which describes an equivalence
class with respect to the relation g ≈ g′ if and only if there is h ∈ G such that g′ = gh

5The Eralangen program was initiated by Felix Klein in the 19th century with the aim to fully characterise different
geometries using group theory.
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connected Lie group G then there is at least one Riemannian metric on G/H that is invariant

under the group action of G. Moreover the set of G-invariant Riemannian metrics on G/H are

given exactly by the set of scalar products (invariant under the H action) on g/h with the adjoint

representation of G. For particular cases e.g G = SU(2) with the maximal torus H = U(1)

one recovers the (unique) Fubini-Study metric. Unfortunately these details are beyond the

scope of the current work. However, of relevance to the discussion herein is that any geometric

parametrisation of the process orbit would give rise to a set of coordinates on the process

orbit. Such coordinates will depend on the topology and geometry of the orbit, and the origin

corresponds to a fixed representative channel. Any other quantum channel in the same orbit

can be fully identified by a coordinate value.

Example 2.2.5. Consider a single spin-1/2 particle with Hamiltonian given by H = ω
2Z where Z

is the Pauli matrix and ω is a precession frequency. The time evolution of the system is given by

U(t) = e−iHt. Consider a rotation about the x axis by an angle θ described by a quantum process E(ρ) =

RX(θ)ρRX(θ)† = e−iθXρeiθX . The quantum process E is not symmetric under time-translations

because it matters if one first rotates and then evolves or evolve and then rotate. Mathematically this

simply means that

U(t)RX(θ) 6= RX(θ)U(t), (2.19)

for general θ, t. Framed another way, this means that

Ut ◦ E − E ◦ Ut 6= 0, (2.20)

and which means that the quantum process does not commute with the group action. To study the degree

to which this occurs we can define the family of quantum processes

Et := Ut ◦ E ◦ U−t for t ∈ R (2.21)

that describe the action of the group on E . We find that Et(ρ) = V (t)ρV (t)†, where V (t) is a unitary

given by

V (t) = exp[−iθ(X cos(ωt) + Y sin(ωt))]. (2.22)

It is clear that for t = 0 we recover the central process E , but for t > 0 we have a whole family of unitary

rotations around different axes. We see that V (t) is periodic in t with period 2π
ω and so the set of matrices

{V (t)} form a ring in the space of all matrices. Therefore we actually have a G = U(1) symmetry group

action. In exactly the same way the set of quantum processes {Et} also form a ring of points in the set of
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all quantum processes, describing how the symmetry group action affects E . It is important to note that

these set of processes depend both on the particular initial process E and the group that act on it, and so

for this set we write

M(U(1), E) := {Et : Et(ρ) = V (t)ρV (t)†}, (2.23)

which is the process orbit of E under the phase group U(1). Each point on the orbit is uniquely determined

by the parameter t ∈ [0, 2π/ω], and so t provides a coordinate system on the orbit, with origin centered

at E . The basic shape of M(U(1), E) describes the way in which E breaks the symmetry constraint.

For example, note that if we send θ → 0 then the radius of the process orbit shrinks to zero, and it

becomes a trivial point. This corresponds to E being the identity unitary, which is symmetric under

time translations. This is also true for any other symmetric process, and so we have the following simple

geometric characterization: a process E is symmetric if and only if its orbit is a single point.

We summarise the core physical motivations for introducing the process orbit of a quantum

channel:

i) Provides the minimal resources needed for covariant simulation

ii) The choice of origin in the process orbit corresponds to a gauge degree of freedom that

shows how the physics on the main system is related to the physics in its environment

iii) Any parametrisation of the process orbit gives a set of (classical) coordinates that depend

on the underlying geometric features.

These features will become relevant in the context of applications of the current framework that

we develop in Chapters 4 and 3.

2.3 A polar-decomposition for quantum channels

In this section we describe connections between the process orbit and the process mode decom-

position of a quantum channel. Recall that given a quantum channel E : B(H) −→ B(K) where

H and K have representations U respectively U ′ of a compact group G then it decomposes in

terms of process modes as:

E =
∑

λ

αλ ·Φλ (2.24)
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where αλ is a vector of complex coefficients.

We start by restricting to the SU(2) group in the first instance, and then we give a generalisation

to arbitrary finite and compact Lie groups in the subsequent subsection.

2.3.1 Case I: SU(2) symmetry

For now, we restrict to the SU(2) group and consider operations E : B(H) −→ B(K) where H
and K have the unitary representations U and U ′ of SU(2). If E is a symmetric channel then the

stabilizer subgroup is the whole SU(2) group, and at the other extreme are channels for which

the stabilizer contains only the identity. In between these two situations we find channels which

are not symmetric, but still have some residual symmetry. Take for example a qubit system, the

rotations, measurements or depolarizing along a fixed axis of the Bloch sphere corresponds to

quantum channels which break the full rotational symmetry, but have a residual U(1) symmetry,

as they remain invariant under rotations along the fixed axis.

Definition 2.3.1. Axial quantum channels

Under an SU(2) symmetry principle, E is called an axial quantum channel if the stabilizer subgroup

Stab(E) := {h ∈ SU(2) : Uh[E ] = E} is isomorphic to U(1).

By the above definition it is clear that the process orbit of any axial quantum channel is a sphere

since S2 ∼= SU(2)/U(1). In the previous section we have explained how any quantum channel

is determined by a label for which orbit it belongs to and an alignment with respect to the origin

within that orbit. The fact that axial channels have a fixed (up to homeomorphism) process orbit,

determined by a sphere in the case of SU(2), implies that each quantum channel E in that orbit

will have associated a unique coordinate point n̂ = (θ, φ), a unit vector corresponding to a point

on the sphere. Fix an axial channel E0 for instance, as representative of the orbitM(SU(2), E0)

then the homeomorphism F : M(SU(2), E0) → SU(2)/U(1) → S2 bijectively maps any E ∈
M(SU(2), E0) to points on the sphere S2 given by unit vectors. Moreover for the channels in

this orbit, the coefficients in the process mode decompositions are complex-valued functions

on the sphere. If F (E) = n̂ then E =
∑
λ,k αλ,k(n̂)Φλk , where each coefficient is a function

αλ,k ∈ L2(S2). This follows easily from the following argument: i) the coefficients are uniquely

given by αλ,k = 〈Φλk , E〉 and since F is bijective then αλ,k : S2 −→ C such that n̂ −→ 〈Φλk , F−1[n̂]〉,
ii) looking at the decomposition in the Choi representation J [E ] =

∑
λ,k αλ,k(n̂)J [Φλk ] and using
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orthogonality of irreducible tensor superoperators Tr[J [E ]2] =
∑
λ,k |αλ,k(n̂)|2 and therefore

||αλ,k||2L2 =
∫
S2 |αλ,k(n̂)|2d n̂ ≤

∫
S2 Tr(J [F−1(n̂)]2)d n̂. This upper bound is the average purity

of the Jamiolkowski state in the process orbitM(SU(2), E0) so it will be finite (since from Cauchy

Schwartz, for any channel the purity of the Jamiolkowski state is less than or equal to dim(H)2)

and hence αλ,k ∈ L2(S2).

The following result in Theorem 2.3.3 shows how the residual symmetry for axial channels

reduces the number of free parameters in the description of E in terms of process modes. These

parameters split into intrinsic data and a gauge degree of freedom, which corresponds directly

to the choice of origin in the orbit. We illustrate these aspects with an example, then proceed to

give the general results.

Example 2.3.2. Axial unitary on a qubit

Let V = ei
γ
2
n̂·σ be a unitary rotation by angle γ around the n̂ axis of the Bloch sphere, where σ =

(σX , σY , σZ) is a vector of Pauli matrices. Under the 1/2 fundamental irrep of SU(2), the quantum

channel V(ρ) = V ρV † decomposes into process modes V =
∑

j,k αjkΦ
j
k with the irrep label j taking

values of 0, 1 and 2 with multiplicities two, three and one respectively. From orthonormality of process

modes the complex coefficients are given by αjk = Tr(J [Φj
k]
†J [V]) where J [V] = |vec(V )〉〈vec(V )| is

the Choi operator of the unitary channel V and J [Φj
k] is the Choi operator corresponding to the process

mode Φj
k. Note that |vec(A)〉 corresponds to the vectorisation of an operator A with respect to the

standard computational basis.

Therefore the coefficients are given by:

αjk(n̂) = 〈vec(ei γ2 n̂·σ)|J [Φj
k]
†|vec(e−i γ2 n̂·σ)〉 (2.25)

where we emphasize the explicit dependence of αjk on the axis n̂. On the space of function on the sphere,

there is a natural group action whereas for any g ∈ SU(2) and α ∈ L2(S2):

g · α(n̂) = α(g−1 · n̂) (2.26)

where the group action of SU(2) on the sphere S2 is defined by (g · n̂) · σ = g(n̂ · σ)g−1. Under this

group action we have that the coefficients in the process mode decomposition transform irreducibly, just
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like spherical harmonic functions. This follows from:

αjk(g
−1 · n̂) = 〈vec(ei γ2 g†n̂·σg)|J [Φj

k]
†|vec(e−i γ2 g†n̂·σg)〉 (2.27)

= 〈vec(g†ei γ2 n̂·σg)|J [Φj
k]
†|vec(g†e−i γ2 n̂·σg)〉 (2.28)

= 〈vec(ei γ2 n̂·σ)|(g ⊗ g∗J [Φj
k]g
† ⊗ gT )†|vec(e−i γ2 n̂·σ)〉 (2.29)

=
∑

k′

(vjk′k(g))∗αjk(n̂) (2.30)

where the third equality comes from the properties of vectorisation and the last equality from the trans-

formation property of irreducible tensor superoperators and the group action on the Choi representation.

The equation (2.30) implies that the vector αj(n̂) transforms within the j∗ irrep in the decomposition of

L2(S2). This component is spanned by the spherical harmonics {Y j∗

k }k.

With respect to the canonical process modes in Example 2.1.5, denote the coefficients by α0 and α′0 for

the 0-irreps arising from couplings (0, 0) and (1, 1), α1 and α′1 for couplings (1, 1)
1−→ respectively

(0, 1)
1−→ and α2 for the coupling (1, 1)

2−→. For any qubit quantum channel we have that α0 = 1 and

the rest of the coefficients for the unitary channel V are given by:

α0 = − 1√
3

(1 + 2 cos γ) (2.31)

α1(n̂) = −i
√

2 sin 2γ

(
−x− iy√

2
, z,

x+ iy√
2

)
(2.32)

α′1(n̂) = 0 (2.33)

α2(n̂) = sin2 γ

(
(x− iy)2,−2(x− iy)z,−

√
2

3
(1− 3z2), 2(x+ iy)z, (x+ iy)2

)
(2.34)

where n̂ = (x, y, z) are the cartesian coordinates of the unit vector n̂. The above reveal that indeed

the coefficients are proportional to the dual spherical harmonics given by Y 1∗
k = (−1)1−kY 1

k and

Y 2∗ = (−1)kY 2
−k with the vector component k ranging from −j,... j and where the form of the spherical

harmonics Y λ(n̂) corresponds to the standard choice of basis for irreps of SU(2).

The core result of this section describes how the coefficients in the process mode expansion split

into an invariant term and a particular choice of gauge for the process orbit. We will refer to

this result (and its subsequent generalisation in theorem 2.3.5) as a polar decomposition for

quantum channels. The use of such a name can be motivated by the following example: A

complex number z ∈ C can be decomposed into the magnitude r = |z| and complex exponential

of its argument φ := arg(z) such that z = reiφ. The magnitude r is invariant under rotations
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of the complex plane around the origin z = 0, which can be viewed as the action of the group

U(1) on C. The orbits of this group action are circles centred around the origin and the spherical

harmonics for U(1) correspond to complex exponentials. The polar decomposition of channels

gives a harmonic analysis of the quantum channel under a general group G. Traditionally such

techniques have proven useful in a range of applications e.g signal processing, abelian/non-

abelian (quantum) Fourier transform and therefore it is natural to extend such type of analyses

to quantum channels.

Theorem 2.3.3. (Polar decomposition of channels under SU(2)) Let E be an axial quantum channel,

and suppose that E corresponds to point n̂ on S2, the process orbitM(SU(2), E). Then there is a basis

of process modes such that in the decomposition of E =
∑
λαλ · Φλ, the vector coefficients α are

proportional to spherical harmonics:

αλ = aλYλ∗(n̂) (2.35)

where the complex coefficient aλ does not depend on the vector component.

Proof. Recall that the homeomorphism F :M(SU(2), E)→ SU(2)/U(1)→ S2 bijectively maps

E to the unit vector n̂ ∈ S2 such that F [E ] = n̂ with inverse E = F−1(n̂).

SU(2) acts transitively on the orbit M(SU(2), E) via g −→ Ug. Under the homeomorphims

above the axial operation Ug[E ] ∈ M(SU(2), E) has a corresponding unique vector in n̂′ ∈ S2

such that n′ = F [Ug[E ]] where n′ depends on the fixed g ∈ SU(2). The transitive group action

on the orbit induces a transitive group action on S2 given by g · n̂ := n̂′ = F [Ug(F
−1(n̂))]. In

turn since the coefficients αλ,k ∈ L2(S2) we have an induced group action on the function space

given by g · αλ,k(n̂) = αλ,k(g
−1 · n̂). Moreover this group action will be equivalent to the left

regular representation since we can identify the orbit with the coset space.

As E transforms under the group action it generates only operations inM(SU(2), E) so we can

explicitly show how the coefficients transform under the induced group action.

Claim 1 The alpha-coefficients will transform under the induced group action as:

g · αλ,k(n̂) =
∑

k′

vλ
∗
k′k(g)αλ,k′(n̂) (2.36)

for any g ∈ SU(2) and any irrep λ ∈ Irrep(A,A′) with vλ∗k′k matrix coefficients of the dual irrep j∗.

Proof of claim:
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We have that:

Ug[E ] =
∑

λ,k

αλ,k(n̂
′)Φλk . (2.37)

We want to express αλ,k(n̂′) in terms of αλ,k(n̂) to explicitly show how the alpha coefficients

transform under the group action. Since Φλk transform as irreducible tensor superoperators we

have that:

Ug[E ] =
∑

λ,k

αλ,k(n̂)Ug[Φ
λ
k ]

=
∑

λ,k

vλk′k(g)αλ,k(n̂)Φλk′ .
(2.38)

Then equating the two different expressions for Ug[E ] and using orthogonality of irreducible

tensor superoperators implies that:

αλ,k(n̂
′) =

∑

λ,k′

vλkk′(g)αλ,k′(n̂). (2.39)

Since n̂′ = g · n̂ we can re-write the above as g−1 · αλ,k(n̂) =
∑
λ,k′

vλkk′(g)αλ,k′(n̂). However there

is nothing special in our choice of the particular element g and corresponding point n̂′ so it turns

out that this occurs for all elements g ∈ SU(2). Because we can use (vλkk′(g))∗ = vλk′k(g
−1) and

(vλkk′(g))∗ = vλ
∗
kk′(g) where λ∗ is the dual irrep this leads to the desired transformation

g · αλ,k(n̂) = αλ,k(g
−1 · n̂) =

∑

λ,k′

vλ
∗
k′k(g)αλ,k′(n̂). (2.40)

This ends our proof of Claim 1.

We have previously shown that αλ,k ∈ L2(S2,C). However square integrable functions on

the sphere decompose L2(S2,C) into a complete set of spherical harmonics. It is important to

mention at this point that the irrep-decomposition of L2(S2,C) is multiplicity-free and each

λ-irrep component is spanned by a complete basis of orthonormal functions Yλ,k for k = −λ, ...λ
which correspond to the spherical harmonics. The fact that the isotypical decomposition is

multiplicity free is exactly what allows us to define spherical harmonics for this homogeneous

space in the first place. Since αλk are functions on the manifoldM(SU(2), E) and transform

according to Equation (2.40) then they lie in the λ∗-irrep component of L2(S2,C) that is spanned

by spherical harmonics Yλ∗k. Therefore we can write them in terms of a spherical harmonics
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basis such that:

αλ,k(n̂) =
∑

k′

a
(k)
λk′Yλ∗k′(n̂) (2.41)

for some complex coefficients akλk′ depending on some fixed λ and k. We show in the following

that akλk′ = δkk′aλ for some complex number aλ that is independent on the vector component k.

To do so note that the above equation holds for all n̂ ∈ S2. So we have:

αλk(g
−1 · n̂) =

∑

k′

a
(k)
λk′
(
Yλk′((g

−1 · n̂)
)

=
∑

k′,m

a
(k)
λk′v

λ∗
k′m(g)Yλ∗m(n̂)

(2.42)

and similarly directly from Claim 1 we have that the coefficients transform as:

αλk(g
−1 · n̂) =

∑

k′

vλ
∗
kk′(g)αλk′(n̂)

=
∑

m,k′

vλ
∗
kk′(g)a

(k′)
λmYλ∗m(n̂).

(2.43)

Using orthonormality of spherical harmonics we can equate the two different forms for the

transformed alpha-coefficients to obtain that for all m the following holds:

∑

k′

vλ
∗
kk′(g)a

(k′)
λm =

∑

k′

a
(k)
λk′v

λ∗
k′m(g). (2.44)

Now we can use orthonormality of matrix coefficients for the λ∗ irrep to multiply both sides by

(vλ
∗
ls )∗(g) and integrate over all group elements to get

∑

k′

δklδk′sa
(k′)
λm =

∑

k′

δk′lδmsa
(k)
λk′ (2.45)

and therefore reduce to a(s)
λmδkl = δmsa

(k)
λl for allm. This implies that a(k)

λk′ is non-zero if and only if

k = k′ and moreover it is independent on the vector component k. Therefore we denote it simply

by aλ := a
(k)
λk . It follows immediately that the coefficients are then given by αλ,k = aλYλ∗,k or

equivalently using the vector notation, αλ = aλY
λ∗ . Furthermore since for SU(2) any irrep is

isomorphic to its dual, under the choice of Condon-Shortly phase the spherical harmonics for

the dual representation are given by Yλ∗,k = (−1)kYλ,−k. Therefore under some basis choice for
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Quantum channel (a0, a
′
1, a1, a2)

Dephasing channel: E(ρ) = pρ+ (1− p)∑k Tr(Πkρ)Πk

(
2p−1√

3
, 0, 1− p, 0

)

Projective measurements: E(ρ) =
∑

k ΠkTr(Πkρ)
(
− 1√

3
, 0, 0, 1, 0

)

Rotation about an axis: E(ρ) = ei
γ
2 n̂·σρe−i

γ
2 n̂·σ

(
− 1√

3
(1 + 2 cos γ), 0,−i

√
2 sin 2γ, 2 sin2 γ

)

State preparation E(ρ) = 1
2 (I + pn̂ · σ) (0, p, 0, 0)

Depolarising channel: E(ρ) = pρ+ (1− p) 1
2 I

(
1−4p√

3
, 0, 0, 0

)

Figure 2.4: Axial channels and resource demands.
Any single qubit axial quantum channel with fixed axis n̂ decomposes into canonical pro-
cess modes as E = I/2 + a0Φ0 + a′1Y

1∗(n̂) · Φ1,(0,1) + a1Y
1∗(n̂) · Φ1 + a2Y

2∗(n̂) · Φ2.
The un-normalised dual spherical harmonics are Y 1∗ =

(
−x−iy√

2
, z, x+iy√

2

)
and Y 2∗ =

1
2

(
(x− iy)2,−2(x− iy)z,−

√
2
3(1− 3z2), 2(x+ iy)z, (x+ iy)2

)
. The table shows the intrinsic

resource demands (a0, a
′
1, a1, a2) for various examples of channels. These are constant for any

channel within the same process orbit. Here Π0 = |n̂〉〈n̂| denotes the projection onto the direction
n̂ and Π1 = I−Π0.

the irreducible tensor operators and spherical harmonics the coefficients will take the form:

αλ,k(n̂) = aλ(−1)kYλ,−k(n̂) (2.46)

for any n̂ ∈ S2 and some aλ independent on the vector component labelled by k.

A general quantum channel on a d-dimensional system requires d4 − d2 real independent

parameters [76]. For a qubit system, there are 12 independent real parameters. Axial channels

are a particular class for which the orbit under the action of SU(2) is isomorphic to a sphere.

These are fully characterised by 7 real independent parameters for qubit systems with the

fundamental representation of SU(2). Three parameters describe the “position” of the channel

within its orbit, while the rest of the free parameters are associated with different orbits and

remain constant within every fixed orbit. The same classification into “intrinsic data” and

“gauge degree of freedom” holds for higher dimensional systems under the action of SU(2).

In Figure 2.4 we give the intrinsic data for several examples of one qubit axial channels and of

the depolarising channel. The decomposition is computed with respect to a basis of canonical

process modes as given in Example 2.1.5. The depolarising channel is fully symmetric under
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rotations, there is no residual symmetry and so its orbit consists of a single point. For the

dephasing channel, projective measurement, state preparation and rotation along a fixed axis

defined by the unit vector n̂ the stabilizer subgroup is given by: {eiθn̂·σ : θ ∈ [−π, π]} ∼= U(1).

This allows to associate for every such channel a unit vector n̂ on an distinct S2 process orbit.

Each of these classes of channels belongs to a different orbit, while the stabilizer subgroup is

the same. The association between channels and points on S2 is certainly non-unique, and

the intrinsic data does indeed depend on such a choice of origin for the orbit. In particular,

if E corresponds to n̂ ∈ S2 then for any E ′ ∈ M(SU(2), E) in the same orbit there is a group

element g ∈ SU(2) such that Ug[E ] = E ′ and therefore E ′ will correspond to a unit vector g · n̂,

which is uniquely determined by (g · n̂) · σ = gn̂ · σg−1. This explicitly gives the isomorphism

Ug[E ]←→ g · n̂ between S2 and the process orbitM(SU(2), E).

This prompts an important question: given an arbitrary axial quantum channel E , how is the

choice of origin of its orbit related to the choice of basis for the process mode decomposition?

It is clear that if one fixes a basis for the process modes, then the coefficients in the decom-

position of a given E are uniquely determined. According to Theorem 2.3.3 then this gives a

corresponding unit vector n̂ ∈ S2 for E .

Conversely, given E since its stabilizer is an abelian group, all elements are commuting so there

is an orthogonal basis {|n̂〉, |n̂⊥〉} that simultaneously diagonalises each element in the stabilizer

subgroup. This determines a unit vector n̂ ∈ S2 such that Stab(E) = {eiθn̂·σ : θ ∈ [−π, π]}.
Therefore we can associate E with a unit vector n̂.

2.3.2 General case of compact Lie group symmetry

In this section we generalise some of the previous results to general compact Lie group G. We

consider quantum channels E ∈ S(H,K), withH and K carrying the unitary representations U

and U ′. Then G acts on the space of superoperator S(H,K) via the (continuous) group action

(g, E) −→ Ug[E ]. Under this group action, the space S(H,K) splits into a disjoint union of

orbits S(H,K) = ∪EM(G, E). Note that if E is a CPTP map then so is every linear map in

its orbit, because it is a composition of CPTP maps. Lemma 2.3.4 below ensures each orbit is

a homogeneous space. Moreover for any channels E and F if their corresponding stabilizer

subgroups are conjugate in G, then the quotients G/Stab(E) ∼= G/Stab(F) and therefore their
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orbits have the same type. This gives an equivalence relation on the space of orbits and classifies

orbits according to their type.

Lemma 2.3.4. Let G be a compact Lie group. For any channel E , there is a homeomorphism between the

process orbitM(G, E) and the homogeneous space G/Stab(E):

M(G, E) ∼= G/Stab(E). (2.47)

Proof. We show that the mapping f : G/Stab(E) −→M(G, E) taking every left coset gStab(E) ∈
G/Stab(E) to a channel F ∈M(G, E) such that F = Ug[E ] defines a continuous bijection (which

for a compact group G becomes a homeomorphism).

We have the series of equivalences f(g1Stab(E)) = f(g2Stab(E)) iff Ug1 [E ] = Ug2 [E ] iff E =

Ug−1
1
◦ Ug2 [E ] = Ug−1

1 g2
[E ] iff g−1

1 g2 ∈ Stab(E) iff g1Stab(E) = g2Stab(E). One way establishes

that f is well defined the other that it is injective. Surjectivity is clear since for any F ∈M(G, E)

there is g ∈ G such that F = Ug[E ] = f(gStab(E)) (as G acts transitively onM(G, E)).

Moreover the group action g −→ Ug[E ] is continuous so the induced map f will be continuous

with respect to the quotient topology. f is also an open map because G/Stab(E) is compact (as

the cosets of a compact group are compact), therefore the inverse of f is continuous and thus f

is a homeomorphism. Note that for Lie groups the homeomorphism becomes a diffeomorphism

since in this case the orbit and coset space are smooth manifolds.

Let us fix a generic quantum channel E and denote by H := Stab(E) the stabilizer subgroup of G.

This also fixes the orbit type of E to be the homogeneous space G/H with transitive group action

of G given left multiplication. Within an orbit the coefficients of any channel in the process

mode decomposition are complex functions on this homogeneous space. Thus for each process

mode in a complete orthonormal basis of irreducible tensor superoperators {Φλk }λ,k for S(H,K)

we denote:

αλ,k(gH) := 〈Φλk ,Ug[E ]〉. (2.48)

These are well defined functions αλ,k : G/H −→ C because if gH = g′H then g−1g′ ∈ H

and thus Ug[E ] = Ug′ [E ] so αλ,k(gH) = αλ,k(g
′H) for all ireps λ with vector component
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k. Moreover we have that αλ,k ∈ L2(G/H). This follows from the following argument
∑
λ,k ||αλ,k||2L2 =

∑
λ,k

∫
G/H αλ,k(gH)〈Φλk ,Ug[E ]〉∗d gH =

∫
G/H〈Ug[E ],

∑
λ,k αλ,k(gH)Φλk 〉d gH

and therefore
∑
λ,k ||αλ,k||2L2 =

∫
G/H〈Ug[E ],Ug[E ]〉dµ(gH) =

∫
G/H Tr(J [Ug[E ]]2)dµ(gH) so that

the RHS is ≤ d2
∫
G/H dµ(gH), where in the last inequality we use the fact that Tr(J [E ]) = d

for all E and d the dimension of the input systemH. Thus
∑
λ,k ||αλ,k||2L2 ≤ d2 and so αλ,k are

square integrable complex functions on G/H . The integration is with respect to the induced

Haar measure on the homogeneous space G/H , for more details see Chapter 1.

Theorem 2.3.5. Let G be a compact group with unitary representations U and U ′ on the Hilbert spaces

H and K. Consider the quantum channel E in S(H,K) with stabilizer H , a closed subgroup of G. Then

the following hold:

i) The functions αλ,k ∈ L2(G/H) transform as a λ∗-irreducible representation under the action of G.

ii) If H is a massive6 subgroup, then there is a basis of irreducible tensor superoperators such that:

Ug[E ] =
∑

λ,k

aλY
λ∗(gH) ·Φλ (2.49)

where Y λ∗(·) is the vector of associated spherical harmonics Y λ∗
k ∈ L2(G/H) for the λ∗-irrep and aλ

are complex coefficients independent on the vector component label k.

Proof. i) We have shown that the coefficients αλ,k are square integrable functions on the homoge-

neous space G/H , where αλ,k(gH) = 〈Φλk ,Ug[E ]〉 for {Φλk } an orthonormal basis of irreducible

tensor superoperators. There is a transitive left action of G on L2(G/H) such that for any

f ∈ L2(G/H) and any g ∈ G:

g · f(x) = f(g−1 · x) (2.50)

where by x we denote a point on the homogeneous space G/H (x can be thought to represent

a particular coset in G/H). We show that under this group action, the coefficients transform

irreducibly.

Under the left regular action onL2(G/H), for any g, g0 ∈ Gwe have g·αλ,k(g0H) = αλ,k(g
−1g0H).

6This is a technical assumption – see 1.5.12 for more details on massive subgroups and their relation to principal
orbits. It allows for spherical harmonics to be defined and they will span the multiplicity free irreducible subspaces
in the decomposition of L2(G/H). In particular one can think of H for instance as a maximal torus in G since it will
always satisfy the requirement. In principle it holds for more general subgroups H as long as the homogenous space
G/H is a symmetric space.
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However, directly from the definition of such coefficients the RHS is:

αλ,k(g
−1g0H) = 〈Φλk ,Ug−1g0 [E ]〉 = 〈Ug[Φλk ],Ug0 [E ]〉. (2.51)

The irreducible tensor superoperators transform as Ug[Φ
λ
k ] =

∑
k′ v

λ
k′k(g)Φλk′ and therefore

substituting into the above equations we obtain that:

g · αλ,k(g0H) = 〈
∑

k′

vλk′k(g)Φλk ,Ug0 [E ]〉 (2.52)

=
∑

k′

(vλk′k(g))∗〈Φλk ,Ug0 [E ]〉. (2.53)

However for any λ-irrep (vλk′k(g))∗ = vλ
∗
k′k(g). Therefore we have that the coefficents in the

process mode decomposition transform as λ∗ irreducible representations:

g · αλ,k(g0H) =
∑

λ,k′

vλ
∗
k′k(g)αλ,k(g0H). (2.54)

ii) BecauseH is a massive group, the space L2(G/H) decomposes under the left regular represen-

tation into irreducible subspaces all appearing with multiplicity one. Unlike the decomposition

of L2(G) not all irreps of G appear in the decomposition of L2(G/H). However each such λ

irreducible subspace has a basis of associated spherical harmonic functions Yλ,k ∈ L2(G/H) with

the vector label component ranging from k = 1, ...,dim(λ). The vector of spherical harmonics

Y λ with components Yλ,k transforms like the λ-irrep and therefore up to a change of basis

αλ = aλY
λ∗ for some complex coefficient aλ that does not depend on the vector component.

2.4 Symmetric quantum channels on bipartite systems

2.4.1 Structure theorem for symmetric channels

In this section we consider quantum channels on bipartite systems AB, E : B(H) −→ B(K)

where H = HA ⊗ HB and K = KA ⊗ KB carry the tensor product representation UA ⊗ UB
respectively U ′A ⊗ U ′B of a finite or compact group G. We say that E is globally symmetric if it

is invariant under the group action E = Ug[E ] = (U ′A(g) ⊗ U ′B(g)) ◦ E ◦ (UA(g)† ⊗ UB(g)†) for

all g ∈ G. The following theorem reveals the structure of such an operator with respect to a
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bipartite splitting of the input and output system into A and B. The local process modes for

system A and B must be coupled in particular ways to give rise to a globally symmetric channel.

Theorem 2.4.1. Every symmetric quantum channel E : B(HA ⊗HB) −→ B(KA ⊗KB) decomposes

into symmetric superoperators χλAB :=
∑dim(λ)

k=1 ΦλAk ⊗ Φ
λ∗B
k such that:

E =
∑

λAB

cλABχ
λAB (2.55)

where cλAB ∈ C and λA = (λ,mA) and λ∗
B = (λ∗,mB), for any choice of multiplicity labels mA,mB ,

and where {ΦλA
k } (respectively {ΦλB

k }) is any complete set of irreducible tensor superoperators for

S(HA,KA′) (respectively S(HB,KB′)). The summation ranges over all irreps λ ∈ Irrep(A,A′) for

which there is λ∗ ∈ Irrep(B,B′) and their associated multiplicities mA and mB are labelled collectively

by λAB = (λ,mA,mB).

Proof. First step, we show that for any set of local irreducible tensor superoperators {ΦλAk }k,λA ∈
S(HA,KA) on system A and {ΦλBk }k,λB ∈ S(HB,KB) on system B the superoperators χλAB ∈
S(H,K) are symmetric. Let us denote for any EA ∈ S(HA,KA) the group action UAg (EA) :=

U ′A(g) ◦ EA ◦ U†A, and similarly for system B. Then:

Ug[χ
λAB ] =

dim(λ)∑

k=1

UAg [ΦλAk ]⊗ UBg [Φ
λ∗B
k ] (2.56)

=
∑

k,m,n

vλmk(g)vλ
∗
nk(g)ΦλAm ⊗ ΦλBn (2.57)

where we have used that the ΦλA on system A and Φλ
∗
B on system B transform as λ and λ∗-

irreps respectively. However
∑

k v
λ
mk(g)vλ

∗
nk(g) =

∑
k v

λ
mk(g)(vλnk)

∗(g) =
∑

k v
λ
mk(g)vλkn(g−1) =

(vλ(e))m,n = δnm, in which we have used that vλ
∗
(g) = vλ(g−1)T and thus it follows for all g ∈ G

that:

Ug[χ
λAB ] = χλAB (2.58)

is indeed a symmetric superoperator in S(H,K).

Second, we must show that the invariant subspace of S(H,K) is fully spanned by χλAB as

we range over all labels λAB . We use the following core result in representation theory: Let

VA and VB be a λA-irrep respectively λB-irrep, then there is at most one trivial 0-irrep in

the decomposition of the tensor product VA ⊗ VB which appears if and only if VA ∼= V ∗B as
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representations. The proof of this result is immediate by looking at the characters.

Moreover as representation spaces we have that S(H,K) ∼= S(HA,KA)⊗S(HB,KB). The irreps

in the decomposition of S(H,K) are those that appear in U ⊗U∗⊗U ′∗⊗U ′ where U = UA⊗UB
and U ′ = U ′A ⊗ U ′B . We write S(HA,KA) ∼=

⊕
λA
VλA and S(HB,KB) ∼=

⊕
µB

VµB for the

decomposition into irreducible subspaces of superoperators on A and B respectively, where

λA = (λ,mA) and µB = (µ,mB) label both the irrep and its corresponding multiplicity. We can

write:

S(H,K) ∼=
⊕

λA,µB

VλA ⊗ VµB . (2.59)

Any symmetric E lies fully within the trivial subspace of S(H,K). Each subspace VλA ⊗ VµB
in the above orthogonal decomposition contains at most one trivial subspace if and only if

µ ∼= λ∗. Then each such trivial subspace is uniquely characterised by a label λAB = (λA,λ
∗
B)

with µB = λ∗B = (λ∗,mB) corresponding to the coupling VλA ⊗ Vλ∗B that has a unique 0-irrep

spanned by χλAB . Moreover orthogonality of the local irreducible tensor superoperators implies

that 〈χλAB , χλ̃AB 〉 ∝ δλ,λ̃δmA,m̃BδmB ,m̃B so each symmetric superoperator lies in orthogonal

subspaces. Therefore span{χλAB : ∀λAB} ∈ S(H,K) is exactly the invariant subspace of the

superoperator space.

What are the assumptions that come into play in the above structure theorem for symmetric

channels on bipartite systems? Once the local set of irreducible tensor superoperators on

system A and B are fixed, Theorem 2.4.1 gives a complete orthogonal basis for all symmetric

superoperators in S(H,K). However, a priori there is no assumption that requires to choose a

specific set of local ITS. The structure theorem we give only assumes that there is a tensor product

structure arising from a bipartition of the input and output Hilbert spacesH and K into system

AB. There is freedom in both the choice of bipartite split and the local basis of ITS for A and B.

2.4.2 Diagrammatic representation of symmetric channels on bipartite systems

We have seen in Section 2.1.2 how to construct process modes from coupling irreducible tensor

operators for the input and output Hilbert spaces and how to represent them diagrammatically.

The structure of symmetric channels on bipartite systems allows to build a similar diagrammatic

representation for the basis of symmetric superoperators χλAB in Theorem 2.4.1. This relies on a

particular choice of tensor product structure in the space of superoperators S(H,K) on system
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AB with H = HA ⊗HB and K = KA ⊗ KB having representations U = UA ⊗ UB respectively

U ′ = U ′A ⊗ U ′B . As representation spaces we have the series of isomorphisms:

S(H,K) ∼= S(HA,KA)⊗ S(HB,KB) ∼= B(KA)⊗ B(HA)⊗ B(KB)⊗ B(HB) (2.60)

This allows to classify a basis for the symmetric superoperators in S(H,K) in terms of the

coupling of irreps between the input and output across the bipartite split into system A and B.

Each element in this basis is characterised by a diagram θ as in Figure 2.5 that corresponds to

coupling the process modes corresponding to the diagram λA = (a, ã)
λ−→ at A and process

modes given by λ∗B = (b, b̃)
λ∗−→ on system B. This data is packaged together in the θ label,

which is descriptively given by θ = (a, ã)
λ−→ (b, b̃).

Figure 2.5: Diagrammatic representation of symmetric superoperators.

Each such diagram denoted generically by θ := (a, ã)
λ→ (b, b̃) corresponds to a symmetric

superoperator Φθ =
∑
λΦλAk ⊗ Φ

λ∗B
k . The directionality on the horizontal leg is chosen such that

the dual representation acts at the incoming vertex.

The symmetric superoperator Φθ corresponding to diagram θ is:

Φθ(ρ) =
∑

k,m,m′,n,n′

〈ã,m; a, n|λ, k〉〈b̃,m′; b, n|λ∗, k〉T̃ ãm ⊗ S̃b̃m′Tr(Tan ⊗ Sb
n′ρ) (2.61)

where {Tam}a,m and {T̃ ãm′}ã,m′ are complete sets of irreducible tensor operators for the input

space B(HA) and output space B(KA) on system A and similarly {Sam}a,m and {S̃ãm′}ã,m′ for

B(HB) respectively B(KB) on system B. Every set of ITOs will contain at least one operator

invariant under the group action. Therefore there is always a choice of basis which distinguishes

the identity I√
d

. To refer to this element in a set of orthonormal ITOs we denote the corresponding
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label a = 0 and reserve the notation a ∼= 0 for the operators that transform trivially under the

group action, but are orthogonal to the identity (i.e they are trace free symmetric operators).

One can classify the set of all possible diagrams for a given physical system and symmetry in

three broad classes:

• Local diagrams for which λ ∼= 0

• Asymmetry injection diagrams for which one of the output modes ã = 0 or b̃ = 0

• Relational diagrams.

Local diagrams – these correspond to symmetric superoperators where the local process modes

are themselves symmetric. They take the general form Φ0,A⊗Φ0,B where for all g ∈ G Ug[Φ
0,A] =

Φ0,A and Ug[Φ
0,B] = Φ0,B . There is no asymmetry flowing between subsystems A and B.

Asymmetry injection diagrams that have the form θinject = (a, 0)
λ−→ (b, b̃) correspond exactly

to symmetric superoperators Φθinject for which tracing out system A gives a non-trivial action

on system B. Similarly if b̃ = 0 then such diagrams will give non-zero local operation at A

upon tracing out the system B. More generally, only quantum channels that contain at least an

injection diagram in their decomposition can give a non-trivial local simulation on one of the

subsystems.

Relational diagrams will give no contribution to local simulation, but still allow flow of asym-

metry between the subsystems A and B as these diagrams will have λ 6∼= 0.

2.4.3 Example: symmetric channels on two qubits under SU(2) symmetry

In this section we characterise the symmetric channels on two qubit systems under SU(2)

symmetry where each qubit system carries the fundamental representation of highest weight

1/2. With a slight abuse of notation, whereas the irrep label denotes the subspace transforming

under the said irrep thenHA ∼= KA ∼= HB ∼= KB ∼= 1/2 and:

S(HB,KB) ∼= S(HA,KA) ∼= 0⊕ 0⊕ 1⊕ 1⊕ 1⊕ 2 (2.62)

For SU(2) every irrep is isomorphic to its dual, and therefore the number of symmetric su-

peroperators will be the sum of the squares of the multiplicity of each irrep appearing in the
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above decomposition. In total we have a basis consisting of 22 + 32 + 1 = 14 for the space of

symmetric superoperators on S(1/2⊗ 1/2, 1/2⊗ 1/2). For quantum channels however, the trace

preserving condition implies the diagram (1, 0)
1−→ (1, 0) cannot appear. Therefore in terms of

the diagrammatic decomposition, any quantum channel can be decomposed into at most 13

different types of symmetric superoperators Φθ corresponding to the diagrams in Figure 2.6.

These are classified in terms of the directionality of symmetry breaking degrees of freedom

exchanged between A and B.

Figure 2.6: The set of 2-qubit SU(2)-diagrams.
All possible diagrammatic terms allowed for a 2-qubit symmetric quantum channel. The space
of valid channels is 13-dimensional.

Local channels on two qubits

Channels E that contain only diagrams for which λ ∼= 0. E are also constructed out of locally

symmetric terms. This leads to a two-parameter family of channels given by the product of

partial depolarising channels E = DpA ⊗DpB , where pA, pB ∈ [−1
3 , 1] and

Dp(ρ) = pρ+
1

4
(1− p)I. (2.63)

These channels involve only two process modes locally, id(ρ) = ρ and Φ0(ρ) = σxρσx + σyρσy +

σzρσz .
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Asymmetry injection channels on AB and simulation of channels at A.

In this section we take a closer look at quantum channels on qubits that are built only from

diagrams in the first and second class. These are the only terms that contribute to any protocol

which aims to simulate or induce a target quantum channel local at A (or B) using asymmetry

resources at in system B (or A).

The general structure of these channels is:

E = E0 + Ein,A + Ein,B, (2.64)

where E0(ρ) = I
2 ⊗ I

2 and Ein,A , Ein,B contain class-1 and class-2 diagrams such that for any

ρ we have TrA[Ein,A(ρ)] = TrB[Ein,B(ρ)] = 0, and TrA[Ein,B(ρ)] 6= 0, TrB[Ein,A(ρ)] 6= 0 so these

components describe the injection of asymmetry into A and B respectively. In this we also

include diagrams that maintain the local Bloch vectors (which are class-1 diagrams) since we are

interested in inducing local channels.

For a qubit under SU(2) symmetry, each of these two terms form a 3-parameter family of maps

given by

Ein,A = xΦθ1 + yΦθ2 + zΦθ3 (2.65)

Ein,B = x′Φθ′1
+ y′Φθ′2

+ z′Φθ′3

for coefficients x, y, z, x′, y′, z′ chosen such that E is a valid quantum channel.

The diagrams involved are given by

θ1 = [(1, 1)
0−→ (0, 0)]

θ2 = [(0, 1)
1−→ (1, 0)]

θ3 = [(1, 1)
1−→ (1, 0)] (2.66)
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for simulation at A, and by

θ′1 = [(0, 0)
0−→ (1, 1)]

θ′2 = [(1, 0)
1−→ (0, 1)]

θ′3 = [(1, 0)
1−→ (1, 1)] (2.67)

for simulation at B.

More generally these channels can be described by their action on a generic two qubit state. Any

two qubit density matrix ρAB takes the canonical form:

ρAB =
1

4


I⊗ I + a · σ ⊗ I + I⊗ b · σ +

∑

i,j

Tijσi ⊗ σj


 (2.68)

where local Bloch vectors a and b together with the correlation matrix Tij are chosen such that

ρAB is a positive matrix with trace 1. Given the above parameterisation of the general channel E ,

we have that

E(ρAB) =
1

4

(
I⊗ I + ã · σ ⊗ I + I⊗ b̃ · σ

)
, (2.69)

where the local Bloch vectors of the output states are given by

ã = −
(
xa√

3
+ yb +

zT√
2

)
(2.70)

b̃ = −
(
x′b√

3
+ y′a +

z′T√
2

)
. (2.71)

Here T denotes the vector with components Tk :=
∑

i,j εkijTij . The geometric significance of

this can be seen for the case of initial product states ρAB = ρA ⊗ ρB with local Bloch vectors

a and b. In such case the correlation matrix takes the form of Tij = aibj and therefore since

εkijaibj = (a×b)k and so the vector T = a×b is cross-product between the input Bloch vectors

at A and B. More generally T is a vector component that describes the joint asymmetry of A

and B, in contrast to a and b, which are purely local terms.

We now restrict to the set of channels that yield a non-trivial simulation at A. Recall that this

consists of the class-1 and class 2 diagrams:

E = Φ0 + xΦθ1 + yΦθ2 + zΦθ3 (2.72)
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or equivalently:

E = + x + y + z .

This is a 3-parameter family of quantum channels characterised by (x, y, z) and so we can plot

the allowed region in 3-D. Imposing CPTP conditions for E leads to a convex region of allowed

values for (x, y, z) in R3. The set of all such valid quantum channels is given by the convex set

bounded by the paraboloid

x2 + x

(
2− 6y√

3

)
+ 2y + 3y2 + 6z2 = 1 (2.73)

and the plane
√

3(1 + y) + x = 0.

We can make a change of coordinates for which the quartic boundary (paraboloid) reduces to

one of the 17 standard forms. Let

X = (1 +
√

3x− 3y))/2

Y = 1− 3y

Z = 3z/
√

2. (2.74)

Then the region of parameters (X,Y, Z) is given by the three dimensional convex set bounded

by an elliptic paraboloid described by the equation,

X2 + Z2 = Y, (2.75)

and the plane 2 +X − Y = 0. In Figure 2.7 we show this parameter region while highlighting

the points corresponding to distinguished extremal channels. In particular, we find that the

vertex of the paraboloid at (X,Y, Z) = (0, 0, 0) corresponds to the quantum channel

EU-NOT(ρ) =
1

4

(
I− 1

3
b · σ ⊗ I

)
(2.76)

which is the result of discarding the input at A, performing an approximate Universal NOT

gate on system B (mapping local Bloch vectors b −→ −1
3b), and then injecting this into the
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Z

Y

X

EU−NOT

Eφ

Figure 2.7: The set of induced channels on A via a globally symmetric channel on AB.
Shown is the allowed parameter region for the rotated coefficients corresponding to each
diagram appearing in a general quantum channel that injects asymmetry. The boundary is
described by the intersection of a plane and an elliptic paraboloid.

output system at A. This approximate U-NOT it is the optimal “spin inversion” that is allowed

by quantum mechanics [77].

The intersection of the two boundary regions is an ellipse that we parametrise by a single

coordinate φ. The coordinates for this parametrisation are Z(φ) = 3
2 cosφ, Y (φ) = 3

2 sinφ + 5
2

and X(φ) = 3
2 sinφ+ 1

2 resulting in the corresponding one-parameter family of channels with:

Eφ(ρ) =
1

4
(I⊗ I + ã · σ ⊗ I) , (2.77)

where

ã =
1

2
((a + b) + (b− a) sinφ+ T cosφ) . (2.78)

If the input state ρAB is a tensor product state with local Bloch vectors a and b at A re-

spectively B, then under Eφ we get output state ρ′A(φ) ⊗ I
2 where ρ′A has Bloch vector ã =

1
2 ((a + b) + (b− a) sinφ+ a× b cosφ). This corresponds geometrically to an ellipse parametrised

by φ with orientation and size determined by b−a
2 and a× b that is displaced by vector a+b

2 .

Note that for φ = π
2 we have that the output on A is the input state on B. Therefore the line

joining EUNOT and Eφ=π
2

is the set of general depolarization channels on B where the output is

sent to the output on system A.
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Finally, to a good approximation, the set of all channels using a qubit at B to induce a non-

symmetric channel on A is given by the convex hull of the optimal U-NOT gate and the set of

channels Eφ with 0 ≤ φ ≤ 2π.

Purely relational channels

In this section we consider quantum channels which contain only class-3 diagrams (and the

trivial diagram (0, 0)
0−→ (0, 0) which ouputs the identity operator and is needed for satisfying

the completely positive and trace preserving condition). For a qubit with SU(2) symmetry there

are 5 diagrams in total within class-3 and therefore the most general quantum channels that

involve only these type of diagrams take the form of:

E = Φ0 + x4Φθ4 + x5Φθ5 + x6Φθ6 + x7Φθ7 + x8Φθ8 (2.79)

where

θ4 = [(0, 1)
1−→ (0, 1)] θ7 = [(0, 1)

1−→ (1, 1)]

θ5 = [(1, 1)
1−→ (1, 1)] θ8 = [(1, 1)

2−→ (1, 1)].

θ6 = [(1, 1)
1−→ (0, 1)] (2.80)

Any such quantum channel has the property that the output state E(ρ) always has maximally

mixed marginals for all initial states. More precisely, for any ρ ∈ B(HA ⊗ HB) we have that

TrA(E(ρ)) = TrB(E(ρ)) = 1
2I. This implies that we must have

E(ρAB) =
1

4


I⊗ I +

∑

i,j

Rijσi ⊗ σj


 (2.81)

for some correlation matrix Rij that depends on both ρAB and the particular relational channel.

Given that the input state ρAB takes the general form ρAB = 1
4 (I⊗ I + a · σ ⊗ I + I⊗ b · σ+

∑
i,j Tijσi ⊗ σj) then we can precisely identify the contribution of each class-3 diagram to the
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output state determined by the tensor Rij . We have the following tensors:

θ4 : Rθ4 = − I
4

θ5 : Rθ5 =
1

8
(T T + Tr(T )I)

θ6 : Rθ6ij = i

√
2

2
(εijkak)

θ7 : Rθ7ij = i

√
2

2
(−εijkbk)

θ8 : Rθ8 =
1

8
(T T − 2

3
T + Tr(T )I),

(2.82)

where we have denoted by Rθm the correlation matrix of the output under applying the super-

operator Φθm to ρAB . In other words, Φθm(ρAB) =
∑

i,j R
θm
ij σi ⊗ σj .

To explore such channels, we restrict for simplicity to those diagrams that are invariant under

swapping A and B. For this, the most general form we analyse in the following is:

E = Φ0 + xΦθ4 + yΦθ5 + zΦθ8 (2.83)

or equivalently

E = + x + y + z

for real parameters x, y, z. Imposing that E is a valid quantum channel restricts to a convex

region of allowed parameters (x, y, z) ∈ R3. This region is characterised via its boundary

surfaces that are given by the following quartics:

(9x+ 3y + 5z − 3)2 = (5z + 21y − 12)2 − 108(1− 2y)2

(6y + 3x)2 = 6x+ 3 + 20z

y2 =

(
1− x

2

)2

for 0 < x ≤ 1

y2 =
(x+ 5/3)2

4
− 4

9
for − 1/3 ≤ x ≤ 0.

In other words the boundary is the intersection of an elliptic cone, a parabolic cylinder, two

intersecting planes and a hyperbolic cylinder respectively.
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E2

E1

Esinglet

x

y

z

Figure 2.8: SU(2)-symmetric, relational channels on 2-qubits.
The allowed parameter region for the relational channels including only class-3 diagrams
invariant under swapping A and B. The right-most red point is the singlet channel Esinglet, blue
point is E1 and green point is E2

There are distinguished simple channels that correspond to points on the surface boundary.

For instance the point (1, 0, 0) is the unique intersection of the two intersecting planes, the

parabolic cylinder, the elliptic cone. It corresponds to the singlet preparation channel Esinglet(ρ) =

|ψ−〉〈ψ−| for any 2-qubit state ρ.

In addition there are two points that lie at the intersection of the elliptic cone the parabolic cylin-

der and the hyperbolic cylinder and each of them are in one of the two planes and correspond

to imposing that x = 0. These channels are unital, so they do not displace the maximally mixed

state. More concretely, these two distinguished channels take the form:

E1 = Φ0 −
1

2
Φθ5 +

3

10
Φθ8 (2.84)

E2 = Φ0 +
1

2
Φθ5 +

3

10
Φθ8 (2.85)

where E1 corresponds to the point (0,−1
2 ,

3
10) and E2 to the point (0, 1

2 ,
3
10).

Both are only sensitive to the Tij components of the input state ρ. Therefore without loss of

generality, we look at how they act on input states that have no local Bloch vectors: ρAB =

1
4

(
I +

∑
i,j Tijσi ⊗ σj

)
. Moreover, up to local unitaries any such state can be brought to a

canonical form ρAB = 1
4 (I +

∑
i tiσi ⊗ σi) specified by a single vector (t1, t2, t3) and often

referred to as T -states. It is well-known that the range of these parameters lie in a tetrahedron
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ψ−

t1

t2

t3

φ−

ψ+

φ+

Figure 2.9: T-state transformations.
The set of 2-qubit states with maximally mixed marginals modulo local choice of bases (or
“T-states”) have a tetrahedral state space with the four Bell states at the extremal points. Under
the extremal channels E1 and E2 the set of T-states is mapped into the (blue) triangle and inner
(brown) tetrahedron respectively.

whose vertices correspond to the Bell states [76]. The extremal channels E1 and E2 act on the Bell

states φ±, ψ± in the following way:

E1(φ±) =
3

20
I +

3

10
φ± +

1

10
ψ−

E1(ψ+) =
3

20
I +

3

10
ψ+ +

1

10
ψ−

E1(ψ−) =
1

4
I (2.86)

and

E2(φ±) =
2

5
I− 1

5
φ± − 2

5
ψ−

E2(ψ+) =
2

5
I− 1

5
ψ+ − 2

5
ψ−

E2(ψ−) = ψ− (2.87)

The convex hull of these images of the set of Bell states under E1 and E2 will give the action of

these channels in the more general cases. E1 and E2 will map T -states to T -states and the image

of the tetrahedral state space is graphically displayed in Figure 2.9.
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The preceding analysis can be used on more general bipartite quantum systems, where it allows

a compact book-keeping for simplifying the analysis of quantum channels .

Symmetric unitary channels on two qubits

The space of invariant Hermitian matrices on two qubits under the 1/2⊗ 1/2 representation of

SU(2) is spanned by I and σx⊗σx +σy⊗σy +σz⊗σz , and therefore the set of unitaries invariant

under the group action is a two-parameter family given by:

exp[i(sI + t(σx ⊗ σx + σy ⊗ σy + σz ⊗ σz))]. (2.88)

The first term is a phase term and so V (t) = eit(σx⊗σx+σy⊗σy+σz⊗σz) is the only non-trivial unitary

interaction present. The quantum channel E(ρ) = V (t)ρV (t)† has a process mode decomposition

into diagrammatic form as in Figure 2.10.

Note that because V is symmetric under swapping A and B, we have this additional symmetry

reflected in the diagram contributions. The aim of this examples stands to illustrate how

quantum channels that have a simple description in terms of their Kraus decomposition (unitary

channel have a single Kraus operator) can hide non-trivial structure in terms of the exchange of

asymmetry between the bipartite subsystems.

81



Figure 2.10: Diagrammatic decomposition of SU(2) symmetric unitary channel
The decomposition of the channel given by the symmetric unitary V (t) = eit(σx⊗σx+σy⊗σy+σz⊗σz)

on two qubits.
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Chapter 3

Irreversibility in the symmetry

breaking degrees of freedom

One of the most fundamental ways to mark the difference between classical and quantum

mechanics appears in the form of no-go theorems such as ”no-cloning” or ”no information

without disturbance”. These can all be related under the notion of incompatibility of devices:

given two physical devices these are compatible if and only if they can be viewed as subcom-

ponents of an allowed physical device. Whenever we consider physical devices subjected to

symmetry constraints there are limitations as to what types of transformations can be achieved.

For example the Wigner-Araki-Yanase theorem states that under a symmetry corresponding

to an additive conserved charge, measurements described by observables that do not com-

mute with said charge are not allowed [78, 79]. Typically these limitations can be lifted by

using an external system, initialised in a symmetry-breaking state. Once used, these symmetry-

breaking resources are subject to irreversibility. A clock functions by breaking time-translation

symmetry. However when used as a quantum mechanical system to implement timed op-

erations its ability to be used subsequently as a clock is affected. More specifically, under a

globally symmetric process ρA⊗σB −→ V(ρA⊗σB), the external system B suffers a back-action

σB −→ σ′B = TrA(V(ρA⊗σB)) that affects the ability of σB to act as a reference state to break the

symmetry. Generally σ′B breaks the symmetry in a much weaker form than the original state σB ,

and thus we say that this gives rise to an irreversibility under the symmetry constraint. There

are situations where with respect to using system B in a specific way via some fixed protocol,

such a type of irreversibility can be avoided.
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We start by establishing a formal set-up that probes for repeatable use of resources from a

reservoir to perform a particular processing task, with an emphasis on studying irreversibility

in the environment involved in a simulation of a target quantum channel. The work of Johan

Åberg [80] on catalytic coherence highlights particular models in which coherence from a

reservoir can be used repeatedly in order to perform the same task without degradation relative

to the outcome of interest. This provides motivation for our first application of the framework

developed in Chapter 2. Using the process mode formalism we characterise a class of protocols

that allows for repeatable use of coherence resources from a reservoir and establish links with

incompatibility and broadcasting. We provide a different perspective between the interplay of

quantum coherence and U(1) symmetry that arises from energy conservation constraints and

identify the core features necessary for re-use of coherence.

3.1 Irreversibility with respect to a fixed processing task

We aim to formalise the previous discussion. Suppose that performing a particular quantum

processing task denoted by P makes use of a system B. We write P(σB) for the outcomes of

implementing the processing task with a use of system B initialised in state σB . The reduced

state in system B becomes σB −→ σ′B . If P(σB) 6= P(σ′B) then we say that system B suffers an

irreversible process with respect to the processing task P . More interestingly is the situation

when P(σB) = P(σ′B) so that the reduced state in system B changes, but from the point of view

of implementing P it remains unchanged. This is a situation which allows to investigate the

subtle boundary between reversibility and irreversibility in quantum mechanics.

There are many examples that can be analysed in such terms ranging from entanglement cataly-

sis, cryptographic protocols, quantum thermodynamics processes, use of reference frames under

a symmetry principle. For example, it is well-known that not all bipartite states can be inter-

converted into one another via local operations and classical communication alone. For pure

sates, Nielsen’s criterion provides a necessary and sufficient condition in terms of majorization.

However there are examples where |φ〉AA′
LOCC
6−→ |ψ〉AA′ but there exists a catalyst state χ which

makes the transformation |φAA′〉⊗|χ〉B LOCC−→ |ψAA′〉⊗|χB〉 possible. With respect to the process-

ing task of transforming |φ〉AA′ into |ψ〉AA′ via local operations, the system B aids this process

without suffering any irreversibility σB = σB′ = |χB〉〈χB| and thus it can be re-used to perform

the same task again. A more non-trivial example in which irreversibility crops in comes from
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the use of embezzling states. Suppose that the processing task of interest P is to implement an

LO protocol converting any two pure arbitrary bipartite states on AA′ within δ-error by making

use of system B. The embezzling protocol [81] provides such an example by using embezzling

states |χ(d)〉 := 1
C(d)

∑d
j=1

1√
j
|j〉|j〉 to implement the transformation |χ(d)〉 LOCC−→ |µ(d)〉 ⊗ |ψAA′〉

with fidelity 〈χ(d)|µ(d)〉 = 1 − ε, where the error depends on the dimension of the auxiliary

system B such that ε→ 0 as d→∞. Initially σB = |χ(d)〉〈χ(d)| and after one use of system B

for the embezzling protocol the state will change into σ′B = |µ(d)〉〈µ(d)|. However as long as the

dimension d is large enough such that (1− ε)2 ≥ (1− δ), the system B can be re-used to convert

two different states within δ-error via LO. While the state in system B changes, its ability to

perform the processing task of interest does not.

The purpose of the examples above is to illustrate that there are many useful scenarios in quan-

tum information theory which operate at this interface between reversibility and irreversibility.

The present work contributes to this aim, by investigating this boundary when the quantum

processes involved operate under a (global) symmetry constraint.

3.1.1 Repeatable use of quantum resources for simulation protocols

The focus of our analysis consists of studying irreversibility in the use of an environment system

B with respect to the processing task of simulating local dynamics at A by way of interaction

with B. In subsequent sections we restrict to interactions that are subjected to symmetry

constraints, but for now we make no such assumption and treat the problem in the general

terms of a resource theory. Suppose that F denotes the free operations of the resource theory

and R the resource states.

More specifically, given a fixed initial state σB then this is used in order to implement a simula-

tion E : B(HA) −→ B(H′A) on system A given by

E(ρ) = TrB′V (ρA ⊗ σB)V †,

where V : HA ⊗ HB −→ H′A ⊗ H′B is an isometry. Denote by P the protocol that probes the

use of a resource state in system B to induce a channel on system A. The protocol specifies a

free isometry V : B(HA ⊗HB) −→ B(H′A ⊗H′B) with V ∈ F and takes as input a particular state

σB ∈ B(HB) to output channel E as above; we can write P(V, σB) = E .
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Typically one is interested to simulate a particular target operation Etarget on system A using

resource states in system B. However, given access to only system B as an environment there

might not always exist an exact simulation. A particular protocol P as described above will

provide an approximate simulation P(V, σB) = E ≈ Etarget for some resource state σB . The

performance of the protocol P is generally determined by the distance between the induced

channel E and the target Etarget (as measured for instance by the diamond norm ||E − Etarget||�).

For simplicity, to emphasize the conceptual ideas involved we restrict toH′B ∼= HB and protocols

that specify a single free isometry V (as opposed to a set of isometries designed to provide

approximate simulations of a set of target channels).

We write P ◦ P(V, σB) to denote two subsequent uses of the system B under the protocol P .

Explicitly it involves the following steps:

• System B initialised in state σB

• Apply the free isometry V on system B and A1

• Apply the free isometry V on system B and a different system A2, isomorphic to A1

• Output the channel E2 induced on system A2, which will generally depend on both σB

and the initial state of system A1.

More specifically the induced channel E2 : B(HA2) −→ B(H′A2
) on the second system A2 takes

the form E2(ρ2) = TrA′1B(V2◦V1(ρ1⊗ρ2⊗σB)) where V1, V2 : HA1⊗HA2⊗HB −→ H′A1
⊗H′A2

⊗HB
are isometries such that V1 = IA2 ⊗ V acts trivially on system A2 and with the free isometry V

on A1 and B and similarly V2 = IA1 ⊗ V acts trivially on system A1 and with V on A2 and B.

Suppose that we denote the back-action channel on system B after a single application of the

protocol by Fρ(σB) = TrA′V(ρ ⊗ σB) for a fixed initial state ρ ∈ B(HA). Then the channel E2

induced upon a second application of the protocol that uses the same environment system B

can be equivalently thought of as E2(ρ2) = TrBV(ρ2 ⊗Fρ1(σB)). This is the channel induced by

a single application of the protocol to the state σ′B = Fρ1(σB).

We will shortly see that a protocol P is twice repeatable if P ◦ P(V, σB) = P(V, σB), which

means that the channel induced on system A by using σB is the same after either applying the

protocol twice or a single time E2 = E . Note that these statements are independent on the initial

states in the systems A1 or A2. Indeed the focus is not on single shot state transformations but,
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Figure 3.1: Illustration of a 2-repeatable protocol on systemHB .

more generally we aim to investigate the capability of a reservoir to reliably implement the same

local channel subsequently.

An elementary aspect of the repeatable use of some resource state σB that induces a map E on

system A is that a subsequent uses of system B will also result in exactly the same quantum

process.

In general we may allow for different isometries to be applied at each step, and also we could

allow for the output system of the environment B to change. Thus we give the definition of

n-repeatability.

Definition 3.1.1. Let A1, ...An be n isomorphic systems Ai ∼= A and Etarget : B(HA) −→ B(HA′) a

target quantum channel. We say that the protocolP for Etarget using systemB is n-repeatable if it specifies

a circuit of (symmetric) operationsW = Vn◦Vn−1◦...◦V1 with Vi : B(HAi⊗HBi−1) −→ B(HA′i⊗HBi)
for all i initially acting on B0 = B such that for any σB ∈ HB and any k:

Trrk,Bn(W(ρ1 ⊗ ρ2 ⊗ ...⊗ ρn ⊗ σB)) = E(ρk) (3.1)

the induced process E is the same on all subsystems Ak and is an approximation of Etarget using σ. In

particular E will depend on σ but not on k.

In particular, in the case of the previous protocol P , the circuit of operations consists of applying
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the same isometry V to the different systems Ai and B, where the system B = Bi remains

unchanged. In such a particular case it follows from the above definition that P is a n-repeatable

protocol on systemHB if for all σB ∈ B(HB) and all i ≤ n:

P ◦ ... ◦ P︸ ︷︷ ︸
i times

(V, σB) = P(V, σB),

where E = P(V, σB) is the channel induced by a single application of the protocol to the initial

state σB .

3.1.2 Repeatable use of resources and connections with quantum-classical channel

from the reference system into the multiple simulations

Suppose a protocol is n-repeatable for any arbitrary finite n then we say that the protocol is

arbitrarily repeatable. For example: If the interaction between systemA andB is given by a unitary

acting only locally UA ⊗ UB then the protocol that simulates dynamics at A using V = UA ⊗ UB
is arbitrarily repeatable in a trivial way. We will look at more complex examples in the following

sections.

The fact that the induced channel on system k depends only on the state σB in the reservoir B

and not on systems A1, ..., An is essential. This implies that applying the simulation protocol

repeatedly for n times as in definition 3.1.1 can be described for a fixed ρ ∈ B(HA) by a channel

Λρ : B(HB) −→ B(HA1 ⊗HA2 ⊗ ...HAn) given by Λρ(σB) = TrBnW(ρ⊗n ⊗ σB).

The n-repeatability ensures that for every fixed ρ ∈ B(HA) and any σ ∈ B(HB) the state Λρ(σB)

has same marginals on each subsystem Ai so that for all k, Trrk(Λρ(σB)) = E(ρ) where we

trace over all but the kth system, gives a channel independent of k. This property reveals

a connection with the notion of n-extendible quantum channels [82], which we recall in the

following definition. 1

Definition 3.1.2. A quantum channel C : B(HB)→ B(HA) is said to be n-extendible if there exists

a quantum process Λ : B(HB)→ B(HA1 ⊗HA2 ...⊗HAn) with HAi ∼= HA for all i, such that for all

X ∈ B(HB) we have that TrriΛ(X) = C(X), where all but the i-th system has been traced out.

1The definition below that we use for k-extendibility of channels is a (possibly) stronger version of the usu-
ally encountered k-extendibility of channels which is typically directly related to the k-extendibility of the Choi
representation
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Figure 3.2: Circuit of symmetric operationsW that induce identical local simulations.
This gives a protocol that implements arbitrary repeatable use of symmetry-breaking operations.

We also recall the definition of a k-extendible state [83]. A bipartite state ρAB ∈ HA ⊗ HB is

k-extendible with respect to A if there exists a state ρA1A2...AkB ∈ H⊗kA ⊗ HB that is invariant

under permutations of the A system and have same marginals ρAB = Tr̄i(ρA1A2...AkB), where

we trace all but the i-th A system for any i. The following result establishes the connections

between k-extendibility of states and k-extendibility of channels as is definition 3.1.2 via the

Choi operator.

Lemma 3.1.3. Suppose C : B(HB) −→ B(HA) is an n-extendible quantum channel, then the corre-

sponding Choi operator J [C]AB = id⊗ C(|Φ+〉〈Φ+|) is n-extendible state, where |Φ+〉 =
∑

i |ii〉 is the

maximally mixed state for {|i〉}dim(B)
i=1 , an orthonormal basis for the input systemHB .

Proof. From the definition it follows that there is a channel Λ : B(HB) −→ B(HA1 ⊗ ...⊗HAn)

such that Trri(Λ)(X) = C(X) and denote by J [Λ]BA1,...An = id⊗Λ(|Φ+〉〈Φ+|) its corresponding

Choi operator. It follows that Trri(J [Λ]BA1,...,An) = J [C]BA. In addition J [Λ]BA1,...,An can be

chosen to be invariant under permutations ofA1, ..., An. Denote this action Vπ ∈ B(HA1 , ...,HAn)

for every π ∈ Sn and construct the channel Λ̃ : B(HB) −→ B(HA1 ⊗ ...⊗HAn) given by:

Λ̃ =
1

dim(Sn)

∑

π∈Sn
VπΛV †π (3.2)
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This is invariant under permutations by construction and it is an n-extension of C because

Trri(VπΛV †π ) = Trrπ−1(i)Λ = C (3.3)

for all π ∈ Sn. Therefore the Choi operator corresponding to Λ̃ will be a k-extendible state with

a symmetric extension.

Therefore it follows that under an n-repeatable protocol given by the circuit of symmetric

operationsW then for any fixed ρ ∈ B(HA), the channel Trrk(Λρ(σB)) : B(HB) −→ B(HAk) is

n-extendible where we recall that Λρ(σB) = TrBn(W(ρ⊗n ⊗ σB)). The following lemma will

help characterise what channels can be implemented locally at A under an arbitrarily repeatable

protocol. In [83] it was shown that if a state ρAB is k-extendible for all finite k then it is a

separable state. One direction is straightforward to check, whilst the other follows from the

quantum de Finetti theorem. The idea is to use each k-extension to generate states inH⊗kA , which

are separable as a consequence of the de Finetti theorem, and then argue that ρAB itself must be

separable.

Lemma 3.1.4. Suppose that a quantum channel C : B(HB) −→ B(HA) is n-extendible for every finite

n. Then it is an entanglement-breaking channel so it takes the form of a measure and prepare channel:

C(σ) =
∑

a

Tr(Naσ)ρa

where {Na} is a POVM on B(HB) and ρa ∈ B(HA) fixed states.

Proof. By the corollary 3.1.3 it follows that the Choi operator for C given by JBA is n-extendible

for all finite n so that there is a symmetric state JBA1,...,An which is invariant under any permu-

tation π ∈ Sn of the systems A1, ..., An. Therefore it follows that JBA is separable (from [83]).

Finally, separable Choi operators correspond to entanglement-breaking channels.

We emphasise that the proof techniques for the above lemmas are the same even in the case where

HB is an infinite dimensional system, butHA is finite dimensional. Two further clarifications

need to be made in this direction to be fully mathematically precise. First, we can extend the

definition of a Choi operator to those channels for which the input system is infinite dimensional.

This has previously been done already by Holevo in [84], where it is also shown that one does

not need to employ a limiting approximation to extend the maximally entangled state |Φ+〉 to
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infinite dimensions. In addition it is also shown that even in this infinite dimensional setting

separable Choi operators correspond to entanglement-breaking channels. Second, the core result

in establising the lemma 3.1.4 is that a bipartite state is k-extendible for all finite k if and only if it

is separable. If the extension is carried with respect to A, then the other system B can be infinite

dimensional and the same result holds. For instance, [85] gives finite upper bounds on how close

a k-extendible state can be to a separable state. The bound is proportional to the dimensionality

of the extension space, that is of A and 1/k, but does not depend on the dimension of B.

This allows to show the following theorem, that characterises what types of channels can be

induced by using arbitrarily repeatable protocols. Note however that the result does not assume

the circuit of isometries/unitaries specifying P to be symmetric.

Theorem 3.1.5. Let B be a quantum system with Hilbert spaceHB . Suppose that the quantum channel

E : B(HA) −→ B(H′A) on system A is simulated by a state σ ∈ B(HB) via an arbitrarily repeatable

protocol P . Then there exists a POVM {Ma} on HB and completely positive maps Φa : B(HA) →
B(HA′) such that:

E(ρ) =
∑

a

Tr(Maσ)Φa(ρ). (3.4)

Proof. For every finite n the protocol P gives a circuit of operations W as in definition 3.1.1

such that for fixed state ρ the induced channel is E(ρ) = Trrk,BTr(W(ρ⊗n ⊗ σ)). As E explicitly

depends on σ but not on k (or n) we denote for every fixed ρ the channel Cρ(σ) : B(HB) −→
B(H′A) defined by Cρ(σ) = E(ρ). Repeatability ensures that Cρ is n-extendible for every fixed ρ.

Since P is arbitrarily repeatable then it follows from Lemma 3.1.4 that Cρ takes the form of a

measure and prepare channel.

Therefore for each fixed ρ ∈ B(HA) there exists a POVM {Ni} on HB and quantum states

ρi ∈ B(H′A) such that:

Cρ(σ) =
∑

i

Tr(Niσ)ρi. (3.5)

Note that there could be dependence on ρ in either ρi or Ni, however this can be simplified by

noting that one can decompose any POVM into a convex combination of extremal POVMs. We

can write

Ni =
∑

k

pkMk,i (3.6)
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whereMk = (Mk,i) is an extremal POVM for each k, and pk is a probability distribution. This

implies that

Cρ(σ) = Trrk,Bn(W(ρ⊗n ⊗ σ)) =
∑

i,k

pkTr(Mk,iσ)ρi (3.7)

=
∑

i,k

Tr(Mk,iσ)Φk,i(ρ) (3.8)

where Φk,i(ρ) := pkρi is a completely-positive linear map on ρ (since it maps density matrices

to fixed positive operators), and which implies that the POVM acting on B can be chosen to

be independent of the input state ρ on A. Introducing the single index a = (k, i) completes the

proof.

3.2 Demystifying Åberg’s catalytic coherence

Typically resources such as coherence, entanglement or asymmetry degrade upon use [86, 87].

The work of Johan Åberg [80] aims to investigate repeatable use of the coherence reservoir in

implementing the same target operation that generates coherence on several qubit systems. The

catalytic coherence protocol gives a particular non-trivial example of an arbitrary repeatable

protocol as previously described in this chapter. In what follows we give a brief overview of the

core results in [80] by emphasizing the connection with process modes.

The particular set-up consists of a coherence reservoir described byHE an infinite-dimensional

(ladder) system with equally spaced energy eigenstates {|j〉}j∈Z and the main system given

byHA with orthonormal basis {|φm〉}dm=1. The reservoir interacts with system A under a U(1)

symmetry constraint, a consequence of imposing conservation of total energy. The group U(1)

acts on system A and the ladder system via the tensor product representation UE ⊗ UA where

UE(θ)|n〉 = einθ|n〉 and UA(θ)|φm〉 = eimθ|φm〉.

A state σ ∈ B(HE) simulates quantum operations Eσ(·) = TrE(VU (·)⊗ σV †U ) via a set of globally

symmetric unitary interactions VU ∈ B(H⊗HE):

VU =
∑

mn

Umn|φm〉〈φn| ⊗∆n−m (3.9)

where ∆n :=
∑

j |j + n〉〈j| and Umn are matrix coefficients for some arbitrary unitary U ∈ B(H)
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with respect to the orthonormal basis {|φm〉}m. The unitary VU commutes with this group action

and thus [VU , (UA ⊗ UE)(θ)] = 0 for all θ ∈ U(1) ∼= S1.

The induced operations on system A take the general form:

Eσ(ρ) =
∑

n,n′,m,m′

KmnρK
†
m′n′Tr(∆n−m+m′−n′σ) (3.10)

whereKmn := Cmn|φm〉〈φn|. In more compact notation, writing Φλ(ρ) :=
∑

n,n′,m,m′

λ=n−m+m′−n′

KmnρK
†
m′n′

we get that:

Eσ(ρ) =
∑

λ

Φλ(ρ)Tr(∆λσ) (3.11)

and we observe that Φλ is an irreducible tensor superoperator transforming as a λ-irrep of U(1)

under the group action on system A, UA(θ)[Φλ] = eiλθΦλ. For every interaction between systems

A and E as above, the reservoir suffers a back-action depending on the initial state in the main

system given by F(σ) = TrS(VUρ⊗ σV †U ).

The catalytic coherence property. The coherence reservoir can be used arbitrarily many times to

perform the same task – induce a target operation on system A. The operations induced by

states σ and F(σ) in a simulation involving the set of U(1)-symmetric unitaries VU are the same:

Eσ = EF(σ). (3.12)

While the reduced state in the coherence reservoir changes σ −→ F(σ), the expectation values

of the operators 〈∆λ〉 remain unchanged. For the protocol specified, these coefficients are the

only quantities involved in the simulation Eσ. States in the coherence reservoir are subject to

irreversibility, but their coherence properties relevant for this set-up do not degrade.

Different aspects of Åberg’s paper have been debated and challenged2 in [88], while others have

2A particular point of discontent raised by [88] was whether catalytic coherence protocol gives rise to a state
that has an unbounded amount of coherence. On physical grounds one cannot increase the amount of coher-
ence under time-translation symmetric operations (i.e under unitary evolutions that commute with the Hamil-
tonian). The problem raised was the following: Start with the initial state ρ = |0〉〈0| which is transformed into
Eσ(ρ) = 1

2

(
|0〉〈0|+ |1〉〈1|+ (1− 1

L
)(|0〉〈1|+ |1〉〈0|)

)
by use of a particular unitary U (which would implement

|0〉 −→ |0〉+|1〉√
2

) and some reservoir state in a coherent superposition of L energy eigenstates σ = 1√
L

∑L
j=1 |j〉 in

the reservoir with initial asymmetry measure A(ρ ⊗ σ) = 1
L

(the asymmetry measure quantifies the amount of
asymmetry(coherence) present and is defined as A(σ) = S(G(σ))− S(σ) where S(·) is the Von Neumann entropy
and G(X) =

∫
U(θ)XU†(θ)d θ the average state under all group actions). Then it is argued that the asymmetry in

the final state diverges in the number n of repeated experiments since A(ρ⊗nS ) ≈ 1
2
ln(nπe/2), which contradicts the

idea that the amount of asymmetry (or coherence) does not increase under symmetric operations. However, the
resolution is that subsequent uses of Aberg’s protcol will not result in implementing a product state ρ⊗nS but rather a
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taken the ideas further to exploit repeatable work-extraction [89], the role of clocks in quantum

thermodynamics [90, 91] or autonomous quantum machines [92, 93]. Perhaps indeed the use of

the word ”catalytic” is unfortunate leading to a misrepresentation of the subtle conceptual ideas

behind the catalytic coherence protocol (particularly since the state in the reservoir is subject to

irreversible change). Nevertheless we highlight the more important aspects:

• Catalytic coherence is about investigating properties of a coherence reservoir, a system

with a particular structure undergoing a U(1) symmetry principle. The emphasis is not on

the implementation of a target operation, but rather on how the resources in the coherence

reservoir change upon multiple subsequent uses. This is in contrast with a large body of

works in the context of reference frames whereas the accent falls on a fixed target operation

and investigates what minimal or optimal external resources can be used to implement

such operations. These are two different sides of a coin, and while related are inherently

distinct features.

• The coherence reservoir can be re-used arbitrarily many times to produce the same local

channels on many subsystems. All of these subsystems are necessarily correlated via their

interaction with the common coherence reservoir.

• The structure of the particular model, that is the form of the unitaries VU is essential for

the catalytic coherence property property to hold. We show in the following section that it

is essentially the unique interaction model with a system formed of an infinite ladder of

energies that allows for repeatable use of coherence.

Let us expand on the second point above, by describing the catalytic coherence protocol in

slightly different, more operational terms. Suppose that Alice is in charge of system HE , the

coherence reservoir and there are countably many Bobs, each having a qubit system labelled

by A1, A2, ...An. Alice prepares her system in a state σ, picks a unitary U and subsequently

interacts it with systems A1, A2, ...An (in some arbitrary order) using the U(1)-symmetric unitary

VU . Therefore Alice prepares:

ρ1 ⊗ ρ2 ⊗ ...⊗ ρn ⊗ σ −→ (V 1
U ⊗ ...⊗ V n

U )(ρ1 ⊗ ...⊗ ρn ⊗ σ)((V 1
U )† ⊗ ...(V n

U )†),

where V i
U is a unitary interaction of the form 3.9 that acts only on system E and the i’th qubit.

There’s no ambiguity in this notation because all such unitaries commute through on the system

multipartite system with correlations such that the marginals at each site are the same.
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E. The qubit systems are then returned to the Bobs (which are otherwise isolated from one

another). Globally, such a multipartite interaction builds correlations between the qubit systems

A1, ...An. However, the essence of Aberg’s work is that, each Bob will locally have implemented

the same operation, so that for the purpose of local experiments in the ith Bob’s lab their system

will be prepared in state Eσ(ρi). The reduced state on all of Bob’s system ρ′1,2,...n will not be

a product state of the form Eσ(ρ1)⊗ ...⊗ Eσ(ρn) but will have marginals Tri(ρ1,2...n) = Eσ(ρi),

where we trace over all but the i’th system.

As we have emphasized, the induced operations under this set-up depend only on particular

degrees of freedom in the resource state of the coherence reservoir. These are given by the

expectations values 〈∆λ〉. Therefore with respect to Aberg’s protocol, the states in the reservoir

can be partitioned into equivalence classes Ck = {σ ∈ B(HE) : 〈∆n〉σ = kn} for any vector

of k = (k−d, ..., k0, ..., kd) with k∗n = k−n and the dimension of d is related to the number of

modes required to simulate operations on A, so it will be related to the dimension of A. Under

U(1) symmetryHA decomposes into dim(HA) irreducible representations of various weights,

labelled by integer numbers n. Aberg’s protocol is insensitive to which state in a particular class

has been used in the reservoir.

It is this information alone that is shared with all Bobs. In an intuitive sense, Alice’s state

acts as a reference frame for lifting the U(1) symmetry principle and involves broadcasting

of particular degrees of freedom related to the ladder operators ∆λ. In more detail given

ρ ∈ B(H) then say that ρ can be broadcasted if there is a channel Λ : B(H) −→ B(H ⊗ H)

such that Tr1Λ(ρ) = Tr2Λ(ρ) = ρ. The no-broadcasting theorem [94] says that a set of states

{ρ1, ..., ρk, ...} can be simultaneously broadcasted (i.e there is a channel Λ such that for all k

it satisfies Tr1Λ(ρk)) = Tr2Λ(ρk) = ρk) if and only if they commute [ρi, ρj ] = 0 for all i, j.

Analogously, the ladder operators commute [∆n,∆m] = 0 for all integers m,n ∈ Z therefore

all representative states σB(k) =
∑
k−n∆n for every equivalence class C(k) will commute with

each other. In this sense the information flow from the coherence reservoir to each of the different

simulations on systems Ai involves broadcasting of compatible degrees of freedom.

The above analysis of the catalytic coherence protocol illustrates that it is a particular example

of an arbitrary repeatable protocol under a U(1) global symmetry constraint as in Definition

3.1.1. In particular it follows from Theorem 3.1.5 that the local channels induced by this model

of interaction take the form of measure and prepare channels from the coherence reservoir into
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Figure 3.3: Aberg’s protocol as broadcasting of reference frame data

the simulation. For example in the case of a qubit d = 2 we have that:

Ma = xaI + ya cos φ̂+ za sin φ̂, (3.13)

where we have ∆±1 = cos φ̂ ± i sin φ̂ and φ̂ is an observable (self-adjoint operator) that is

conjugate with generator of translations [95] which is given by the ladder operators ∆ (see

section 3.3.1 for more details). Therefore the operations implemented on a qubit system by a

catalytic coherence protocol must take the form:

Eσ(ρ) = Φ1(ρ)Tr(M1σ) + Φ2(ρ)Tr(M2σ) + Φ3(ρ)Tr(M3σ) (3.14)

where M1 +M2 +M3 = I. For finite d-dimensional subsystems A, we also see that the POVM

required only involves modes no larger than d. In such a case the set {Ma} will be composed of

additional terms cosλφ̂ and sinλφ̂ with λ an integer that labels the U(1) irreps in B(HA).

Definition 3.2.1. We call a catalytic coherence protocol any simulation protocol that implements

target operations of the form E(ρ) : B(H) −→ B(H):

E(ρ) =
∑

λ

Tr(∆λσ)Φλ(ρ) (3.15)

for some σ ∈ B(HE), where Φλ are irreducible tensor superoperators in S(H,H) under U(1) symmetry.
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3.3 Repeated use of symmetry breaking resources: a process mode

analysis

3.3.1 Asymptotic reference frames

A quantum system of unbounded size can play the same role as a classical reference frame.

The space L2(G) of complex valued functions on a compact group G with the left-regular

representation can act as a perfect classical reference frame that lifts the symmetry constraint.

For every group element g ∈ G there exists a wavefunction on the group, |g〉 which can be

thought of as a state in the separable Hilbert space L2(G) such that {|g〉}g∈G forms an orthogonal

basis 〈g|h〉 = δ(gh−1). Therefore there is a perfect encoding of group elements g −→ |g〉 into

states that can be perfectly discriminated. For an infinite group, such an encoding is not possible

if the size of the reference frame is bounded. It is in this sense that we refer to an unbounded

quantum system described by L2(G) as a classical reference (or the classical limit of a QRF). We

will also refer to the set of orthogonal states {|g〉}g∈G as the asymptotic reference frames of L2(G).

This in turn allows that for every Etarget operation on some system A, there will be a covariant

simulation using L2(G) as an environment initialised in a sufficiently symmetry-breaking state.

U(1) symmetry

There is a physical realisation of L2(U(1)) using a systemHE consisting of an equally spaced

”ladder” of energies {|n〉}n∈Z corresponding to Hamiltonian H = c
∑

n∈Z n|n〉〈n| for some

scaling constant factor c, which for simplicity we take to be c = 1. There is a U(1) group

action on Hladder, induced by time-translations t −→ eiHt which acts on Hladder by displacing

states |ψ(0)〉 −→ |ψ(t)〉 := |eiHt|ψ(0)〉. However the structure of the Hamiltonian is such

that any state displaced at times equal to integer multiples of 2π returns to the initial state,

|ψ(2π)〉 = |ψ(0)〉. Therefore the action of the non-compact translation group for this system

reduces to a representation for the compact U(1) group:

UB : θ −→ eiHθ θ ∈ [0, 2π].

OnHE we can define an orthonormal basis {|θ〉}θ∈S1 that encodes every group element θ −→ |θ〉.
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In terms of the energy eigenstates these are defined by:

|θ〉 = (2π)−1/2
∑

m

e−iθm|m〉 (3.16)

and much as functions in L2(S1) they should be viewed in a distributional sense where 〈θ|θ′〉 =

δ(θ − θ′). We will refer to the set {|θ〉}θ∈S1 as asymptotic reference frames under U(1). In [95] it

was shown that the associated phase angle observable φ̂ :=
∫
θ|θ〉〈θ|d θ is canonically conjugate

to angular momentum along the z-axis. Hence φ̂ generates the (additive) unitary group of

shift operators ∆n :=
∑

m |m + n〉〈m|. These act on the ladder system by shifting the energy

eigenstates and are equivalently given by:

∆n = einφ̂ (3.17)

for all integers n.

3.3.2 Arbitrary repeatable use of coherence resources

Quantum coherence underpins a wide range of quantum mechanical phenomena exhibiting non-

classical behaviour from the wave particle duality and interference of particles in superposition,

entanglement to its crucial role in quantum computation. Over the last decade, significant efforts

and advancements have been made in controlling and manipulating quantum mechanical

systems that exhibit a high degree of coherence, also prompting foundational questions on how

to define and quantify coherence in rigorous terms [25]. These have found answers in resource

theoretic formulations, which aim to describe coherence in an operational way from a set of

simple principles. With respect to a fixed orthonormal basis, states that exhibit coherence are

those which are not diagonal with respect to the distinguished basis – these are resource states.

The free states in such a theory of coherence are incoherent states; these are diagonal in the said

basis and form a classical probabilistic mixture of basis states. Typically, for all practical purposes

there will be a distinguished basis, such as the eigenstates of an observable or of a Hamiltonian

driving the system of interest. In such situations superselection rules or conservation laws hold.

For example, when the total energy is conserved the only way to transform a system in an

energy eigenstate into a coherent state is by introducing an external source of coherence. Such a

setting necessarily introduces a certain degree of irreversibility.
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In the following we show that any arbitrarily repeatable protocol for simulation under global

energy conservation which has a classical asymptotic limit must necessarily be a catalytic

coherence protocol as defined in 3.2.1.

Theorem 3.3.1. If a protocol P to induce a local process Etarget on A using a ladder system B satisfies:

i Global U(1) symmetry.

ii Arbitrary repeatability.

iii Asymptotic reference frames on B are not disturbed.

iv Asymptotic reference frames on B yield perfect simulations of Etarget.

then P is a catalytic coherence protocol.

This provides a clear physical interpretation of the repeatable use of quantum coherence in

simple physical terms. Note it does not imply that the system B is in some perfectly coherent

state, or that the state of B stays the same – the repeatability holds irrespective of the state on B.

The proof of this result is straightforward using process modes, and is given as follows.

Proof. From (ii) we have that since the protocol P for target map Etarget ∈ S(A,A′) is arbitrarily

repeatable on system B then from Theorem 3.1.5 it follows that there is a POVM {Ma} such that

the protocol P induces the channel Eσ(ρ) =
∑

a Tr(Maσ)Φa(ρ). We introduce the extra label Eσ
to emphasize that different reference states σ will induce different channels.

Hypothesis (i) assumes that there is a U(1) tensor product representation on the bipartite system

AB. Explicitly denote by U and UB the representations acting onHA andHB with the adjoint

representations U respectively UB . Therefore channels Φa ∈ S(A,A′) will have a process mode

decomposition Φa =
∑
λ cλ,aΦ

λ for complex coefficients cλ,a, where λ includes both a highest

weight irrep label and a multiplicity label. Note that as U(1) is abelian all its irreps are one-

dimensional so the irreducible tensor superoperator basis {Φλ} carries a single irrep label and

transforms as Uθ[Φλ] = Uθ ◦ Φλ ◦ U†θ = eiλθΦλ. It follows that the induced target maps have the

form:

Eσ(ρ) =
∑

λ

Tr(
∑

a

(cλ,aMa)σ)Φλ(ρ). (3.18)
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We simplify the above equation using the notation Xλ :=
∑

a cλ,aMa to get the compact form

for the induced map:

Eσ(ρ) =
∑

λ

Tr(Xλσ)Φλ. (3.19)

As a direct consequence of the global U(1) symmetry the action of the symmetry group on σ will

generate the orbit of Eσ. More concretely for any σ ∈ B(HB):

EUBθ (σ) = Uθ ◦ Eσ ◦ U†θ . (3.20)

Now we substitute equation (3.19) into (3.20) to get that:

∑

λ

Tr(XλUBθ (σ))Φλ =
∑

λ

Tr(Xλσ)Uθ ◦ Φλ ◦ U†θ . (3.21)

The irreducible tensor operators Φλ are orthonormal and therefore the associated coefficients

must be equal in the above. Since Uθ ◦ Φλ ◦ U†θ = eiλθΦλ it follows that for all λ-irreps and all

θ ∈ U(1):

Tr(XλUθ(σ)) = Tr(Xλσ)eiλθ. (3.22)

Using cyclicity of the trace in the left-hand side of the above we move the group action Uθ on to

the POVM element. The equation (3.22) holds for all σ ∈ B(HB) so:

U†θ (Xλ) = eiλθXλ. (3.23)

Assumption iii is equivalent to the statement that the POVM effects {Ma}must all commute with

the self adjoint operator Φ̂ associated with the asymptotic reference frames {|θ〉}θ∈U(1), given by

Φ̂ :=
∫ 2π

0 θ|θ〉〈θ|d θ. In particular, [Xλ, Φ̂] = 0, and therefore Ma (and each Xλ) will be diagonal

in the asymptotic reference frame basis. Finally, we can write this as Xλ =
∫
〈θ|Xλ|θ〉|θ〉〈θ|d θ.

However, the operators Xλ transform under the group action according to equation 3.23 and

the U(1) asymptotic reference frames satisfy |θ〉 = U(θ)†|0〉. Thus

〈θ|Xλ|θ〉 = 〈0|Uθ(Xλ)|0〉 = e−iλθ〈0|Xλ|0〉.

Altogether,

Xλ = αλ(E0)

∫
e−iλθ|θ〉〈θ|d θ (3.24)
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where αλ(E0) is a constant that depends only on E0 the origin in the process orbit of E , corre-

sponding to the reference frame σ = |0〉〈0|.

However (see [96]) the displacement operators can be written as ∆λ = eiλΦ̂. This implies that

Xλ ∝ ∆−λ and the maps induced by the protocol must take the form of:

Eσ(ρ) =
∑

λ

αλ(E0)Tr(∆−λσ)Φλ(ρ). (3.25)

Therefore the protocol under assumptions i)-iv) must necessarily be a catalytic coherence

protocol as defined in 3.2.1

3.3.3 Discussion: Are non-commutative symmetry breaking resources reusable?

Given the analysis we have provided for quantum coherence, we might wonder if a similar

construction applies for more general groups. For such cases, there is one simple way in which

an environment B can be used in a repeatable way – namely we can embed the system’s Hilbert

space into the space of wavefunctions on G and perform the measurement that estimates groups

elements {|g〉〈g|} on this infinite dimensional space. Since this extracts all the reference data

from B into a classical form it can be copied and repeatedly used. However this assumes a

very particular interaction, and that B can physically be embedded in the required infinite-

dimensional system (which is a non-trivial assumption).

We can therefore ask if repeatability can occur for a general group G and a finite dimensional

system B? For simplicity we can restrict to G = SU(2) and consider just the set of all axial

channels as our target quantum channels. As already described, the process orbitM(G, E) for

these quantum channels is the 2-sphere S2, with coordinates (θ, φ). Now if arbitrary repeatability

is present then we have by the same analysis that E =
∑

a Tr(Maσ)Ea where the POVM elements

on B must supply the coordinates onM via the condition

∑

a

cj,m,aTr(MaσB) = aj(E)Yjm(θ, φ), (3.26)

where {aj(E)} are the invariant data for the channel orbit, and cj,a are the coefficients of Ea in

the SU(2) process mode decomposition.

However, now an important distinction is made with the U(1) coherence case. The POVM
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that extracts the reference data from B must estimate a point on a sphere. In the classical limit

one can have perfect resolution of any point (θ, φ) ∈ S2, however for finite dimensional B it

is impossible to provide a perfect encoding of the point. Moreover, we know that quantum

mechanics on S2 is a phase space and so in the case that B is finite dimensional there will

be a non-trivial uncertainty relation present. If, for example, B is a d-dimensional spin, then

one has operators X̂i := r
d2−1

Ji for B that constitute non-commuting coordinates such that

X̂2
1 +X̂2

2 +X̂2
3 = r2. This defines the so-called “fuzzy sphere” [97] in non-commutative geometry

where one has a discrete representation of spherical geometry. In the d→∞ limit this coincides

with classical geometry, however for finite d has a fundamental lower bound on resolution and

complementarity in measurements.

Therefore if one is using the system B within some globally symmetric channel to represent

M(G, E) ∼= S2, then the complementary in measurements on this phase space will imply

incompatibility in the use of symmetry-breaking resources. This incompatibility is not present

for coherence, since essentially only φ̂ is needed to supply the reference data.

More generally, the channel orbit perspective suggests a form of quantum-mechanical irre-

versibility in the use of symmetry breaking resources that depends on whether the geometry

that can be induced onM(G, E) by B is non-commuting or not. This is consistent with the

asymptotic limit of classical reference frames in quantum theory for an arbitrary group G, and

also with the case of quantum coherence, however we must leave any further analysis to later

work.
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Chapter 4

How to gauge general quantum

channels?

Gauge theories have played a deeply important role in the development of modern physics [4]

and underpin our understanding of the fundamental forces of nature. Traditionally, gauge

symmetries are viewed as mathematical redundancies in the description of a physical system

and introduce interaction mediators – gauge fields.

Recently, quantum information theory tools have paved novel paths in other areas of theoretical

physics. In particular, the AdS/CFT dual correspondence has been linked to error correcting

codes [98, 99], and tensor networks approaches to holography revealed entanglement features

[100]. Moreover quantum simulation of lattice gauge theories [101, 102] and tensor network

approaches to group renormalisation have been widely investigated. In this context of bridging

quantum information with high energy physics concepts, gauge symmetries have received

relatively little consideration not least because dualities act on quantities that are gauge invariant.

However in [103] it was argued that gauge invariance explains the correspondence between a

bulk operator and multiple distinct boundary operators unveiling a connection to the emergence

of spacetime and therefore provides a motivation for introducing gauge symmetries in the

context of quantum information.

We aim to address this gap and use the formalism of process modes to give an information

theoretic perspective on gauge symmetries. Therefore the approach we take is operational. The

core results describe a procedure to gauge global symmetries of quantum processes to local
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symmetry acting on additional degrees of freedom. The main advantage of the result is that

it does not rely on a Lagrangian formulation – the usual formalism to describe gauge theories.

While our prescription recovers both the usual results on gauging lattice systems undergoing a

unitary evolution [104–106] and on gauging quantum states [107], it goes beyond these examples

and allows for analysis of general symmetric dynamics in which irreversibility is present as

described by the language of quantum operations.

The present work is also motivated by the study of entanglement in systems with gauge

symmetries, which poses significant challenges, particularly since local symmetry constraints (in

the form of Gauss’s law) on the physical states prevent introducing a tensor product structure

between different regions. Thus, there may be conceptual or technical advantages to express

gauge symmetries in a manner that does not involve a Lagrangian formulation but uses the

more suitable notion of quantum channels. One should expect that applications involving novel

statements about entanglement in quantum field theories would require additional conceptual

leaps beyond the aims of the present work. A more tangible motivation and future application

of the framework concerns the measurability of gauge-invariant observables. It is known that

Wilson loops in gauge theories are not measurable in relativistic physics if one has a non-abelian

symmetry. This non-trivial result raises the question as to what POVMs can be measured in such

non-abelian gauge theories. The present analysis seems suitable to address this, at least in a

toy-model scenario, however we leave it for future work. To summarise, the increasing body of

work that connects quantum information and high energy physics concepts motivates building

a broader framework to provide a toolkit to analyse gauge theories in the more general setting

of quantum channels. Thus it gives a unifying formalism that can deal with both traditional

Lagrangian formulations and newer approaches using tensor network states.

4.1 From global to local gauge symmetries

4.1.1 What does gauging mean?

A gauge typically refers to a choice of a particular coordinate system that depends on an

underlying parameter space such as a location in space-time. One may change these coordinates

associated to every point in the parameter space and such mappings between different gauges

are called gauge transformations.
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For example the purification of a mixed state is non-unique, there is a unitary freedom on the

purifying space that gives the same density matrix. Picking a particular purification represents

a choice of gauge, while the set of (local) unitaries correspond to gauge transformations. The set

of all purifications of ρ can be thought of as a fibre associated to state ρ.

Gauge theories are constructed out of mathematical or physical objects that remain invariant un-

der the local gauge transformations, which form particular representations of a gauge symmetry

group G.

Gauging refers to mapping a global symmetry to a local symmetry in such a way as to typically

satisfy some ”minimal coupling” condition. Such a procedure is not unique, and in fact even

the minimal coupling principle is ambiguous to define precisely [108]. Generally it amounts

to replacing derivatives ∂x that do not transform under the local symmetry with covariant

derivatives depending on a gauge potential operator ∂x + iAx to construct a gauge-invariant

Lagrangian.

4.1.2 Global vs local symmetry for many body systems

Consider a multipartite system consisting of subsystems A1, A2, ...An with the Hilbert space

H = HA1 ⊗HA2 ⊗ ...⊗HAn . The compact (Lie) group G acts on each of the subsystems via a

unitary representation Ui that maps every group element to an operator Ui(g) ∈ B(HAi). On

the full system there is a global symmetry action given by the tensor product representation

U1(g)⊗ ...⊗ Un(g), where the same group element g ∈ G is applied to each subsystem. A local

symmetry action acts on the system with U1(g1)⊗ ...⊗Un(gn) where independent group elements

act on different subsystems. This can be viewed as a representation U on HA1 ⊗ ... ⊗ HAn
for the local symmetry group G × G × ... × G =: G×n. For this, we denote generically by

g := (g1, g2, ..., gn) group elements in G×n and write U(g) = U(g1)⊗ ...⊗ U(gn). Using similar

notation as in the previous chapters, the corresponding action on the space of operators in

B(HA1 ⊗ ... ⊗ HAn) is Ug. This allows to formalise what it means for a quantum process

E : B(H) −→ B(H) acting on this multipartite system to be globally or locally symmetric.

Definition 4.1.1. Globally and locally symmetric processes

(i) The quantum process E is globally symmetric if Ug ◦ E ◦ U†g = E for all g = (g, g, ..., g) with g a

group element in G.
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(ii) The quantum process E is locally symmetric if Ug ◦ E ◦ U†g = E where g = (g1, g2, ..., gn) holds for

all group elements gi ∈ G.

Remark: The global symmetry will be considered to be a tensor product representation of the

group G, while the local symmetry is a representation of the local symmetry group G×n. The

irreducible representations of G×n are tensor products of irreducible representations of G. For

example, if U1, U2,... Un are irreducible representations of G then U(g) = U1(g1)⊗ ...⊗Un(gn) is

an irreducible representation of G×n.

4.2 Gauging beyond Lagrangian formulations

Typically, gauging a physical theory assumes that the dynamics involved admits a Lagrangian

description. We make no such assumption. We describe gauging of globally symmetric quantum

processes, as described in quantum information theory in the language of completely positive

trace preserving operations. While this trivially includes dynamics given by a Hamiltonian or

Lagrangian, it goes much further in that the formalism of quantum operations can also describe

interactions with an environment. We will restrict to discrete systems, with the additional

remark that continuous systems can generally be expected to have discretised approximations

as lattice formulations.

Given a globally symmetric quantum process E on subsystems A1, A2, ..., An such that it is not

symmetric under the local group action, the goal is to extend it to a locally symmetric process Ẽ
acting on the subsystem and additional (”gauge fields”) systems.

The procedure for gauging globally symmetric quantum processes informally follows the

algorithm:

• Introduce ”static” background systems. Define a collection of systems acting as quantum

reference frames that encode relational data.

• Specify dynamics for the background systems. Define a globally symmetric quantum process

describing dynamics of the additional systems and how it transforms under the local

group action.

• Gauging the global symmetry. Perform a uniform average over the local symmetry group to

discard the relational data between subsystems.
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Figure 4.1: Lattice associated with multipartite systems undergoing a globally symmetric
dynamics.

Before delving into the technicalities of the gauging procedure, we assume for simplicity that the

multipartite system has an associated graph Γ = (V,E) whereas each subsystem corresponds to

a vertex x ∈ V and E denotes the set of edges connecting them with each link between vertices

x and y given by l = [x, y] ∈ E. Moreover each edge will have a direction, which may be

chosen arbitrarily but must remain fixed throughout the analysis. This is to ensure that relative

alignments between adjacent subsystems are viewed in a consistent way.

We introduce such a graph structure associated with the many body system in order to facilitate

the gauging procedure. This comes by analogy with lattice gauge systems, where the matter

systems live on the vertices of a graph and the additional degrees of freedom, the gauge fields,

are linked with the edges of the graph. The state of the gauge-matter system becomes invariant

under the local symmetry.

The formalism in Chapter 2, particularly the structure theorem for globally symmetric channels

on bipartite systems forms an important starting point for gauging of more general globally

symmetric dynamics on multipartite systems.

For that, we identify a particular class of such processes, that decomposes into 2-local terms
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which are invariant under the global symmetry.

Definition 4.2.1. A globally symmetric quantum process E : B(HA) −→ B(H′A) on multipartite

systemHA = HA1 ⊗ ...⊗HAn is called 2-symmetric if it can be written as:

E =
∑

{(lk,θk)}
c{(lk,θk)}χ

(l1,θ1) ⊗ χ(l2,θ2) ⊗ · · · ⊗ χ(lr,θr) (4.1)

with c{(lk,θk)} ∈ C, where we range over all ordered links l = [xy] ∈ E, between Ax and Ay, and where

χ(l,θ) is a θ-diagram term on Ax and Ay.

Recall from Theorem 2.4.1 each of the terms χ(l,θ) take the form χ(l,θ) =
∑

k Φλxk ⊗ Φ
λ∗y
k , where

{Φλxk }k and {Φλ
∗
y

k }k transform under the λ respectively λ∗ irreps of G. These operators have

associated a θ-diagram labelling the incoming and outgoing modes (and consequently the

multiplicities of λx respectively λ∗y). The present analysis is however independent on the

particular choice of these local irreducible tensor superoperators so that a θ diagram repre-

sentation is not essential1. For clarity we emphasize that the decomposition in equation 4.1 is

unambiguous for the terms where the edges l1, ..., lr have no common vertices. In contrast, if

two links share a vertex the tensor product should be understood as a composition of linear

maps on the common vertex. For example if l1 = [x → y] and l2 = [y → z] then the term

χl1,θ1 ⊗ χl2,θ2 =
∑

k,m Φλxk ⊗ Φ
λ∗y
k ◦ Φ

µy
m ⊗ Φ

µ∗z
m .

One can extend the definition of 2-symmetric processes to generators of the unitary evolution.

Definition 4.2.2. Let H be a Hamiltonian describing the dynamics of the multipartite system HA =

HA1 ⊗ ...⊗HAn . Then we say that its corresponding Liouville operator L(ρ) := [ρ,H] is 2-symmetric

if:

H =
∑

{l,θi}
H l1,θ1 ⊗ ...⊗H lr,θr

where each H li,θi acts on the system Ax⊗Ay corresponding to the link li and is an invariant operator (la-

belled by θi) under the global symmetry, i.e commutes with the group action [UAx(g)⊗UAy(g), H li,θi ] = 0

A particular example of a 2-symmetric process comes from the spin lattice model with pairwise

Heisenberg interactions H =
∑

lHl where Hl acts non-trivially only on subsystems Ax and

Ay linked by l. Each 2-local Hamiltonian term is Hl = cl(Xx ⊗ Xy − Yx ⊗ Yy + Zx ⊗ Zy) for

1For the present application only the λ-irrep symmetry breaking degree of freedom between the subsystems is
important.
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Figure 4.2: 3-symmetric channels.
Gauging k-symmetric processes that have higher order symmetry breaking interactions between
sites and requires additional quantum reference frames associated with k simplices. A structure
theorem describing globally symmetric processes on multipartite system consisting of three
or more subsystems leads to generalisations of θ-diagrams which correspond to intertwiners
between trivial representation and tensor products of three (or more) irreps λ1 ⊗ λ2 ⊗ λ3.

constant cl and Pauli operators X,Y, Z with subscript x or y if applied at the respective sites.

Each Hl is invariant under U ⊗ U for any unitary U ∈ SU(2) acting on the l = [xy]. Under this

dynamics, any state ρ will evolve according to Liouville’s equation d ρ
d t = L(ρ) = i[ρ,H]. In this

example the generator of the dynamics will be 2-symmetric as the Hamiltonian is constructed

out of globally invariant 2-local terms. In general however, the unitary evolution given by

ρ −→ eiHtρe−iHt will not give rise to a 2-symmetric process itself. However, it will be up to

a first order approximation in t, which is dominated then by the 2-symmetric generator since

eiHtρe−iHt = I + it[H, ρ] +O(t2).

Typically, a globally symmetric quantum process may not be 2-symmetric. In such cases the

decomposition into local terms might involve interactions involving three or more sites. One can

generalise the Definition 4.2.1 to k-symmetric processes and beyond. In order to describe such

terms that also involve three or more sites in a non-trivial way, one needs to take into account

not only the links between two sites but also polygons between multiple sites. To gauge such

processes will require additional reference frame systems associated with simplices between

three or more sites. Moreover a similar structure theorem for tripartite systems, will have more
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complicated features and additional multiplicities to account for. We analyse in the following

the gauging procedure for the restricted class of 2-symmetric processes. The general processes

could be treated in a similar manner, with the caveat that they will require additional quantum

reference frame systems.

4.2.1 I. Inclusion of background reference frame systems

We introduce an array of systems associated with every link l ∈ E and given by Hilbert spaces

Hl. Their role is to act as quantum reference frames encoding the relative alignment between

subsystems placed at the vertices connected by a given link.

Every Hilbert space Hl associated with the directed link l = [x → y] carries a representation

Wl : G×G −→ B(Hl) with the corresponding adjoint representationWl acting on operators on

Hl such that Wl(gx, gy) = L(gx)R(gy) where R, L are two distinct (commuting) representations

of G. These give the ”right” or ”left” group action such that R and L take on the group element

associated with the outgoing and incoming vertex respectively.

This gives a representation W : G×n −→ B(
⊗

l∈EHl) of the local symmetry group acting on all

the quantum reference frame systemsHl, where W =
⊗

l∈EWl with Wl acting trivially on all

but the link l.

There will always be a choice of systems Hl such that it encodes every group element g ∈
G perfectly in the sense that states associated to different group elements can be perfectly

discriminated. For infinite groups such a perfect encoding requires the systemsHl to be infinite-

dimensional, and it is realised by L2(G) the space of square integrable functions on the group

G . This encodes every group element h ∈ G to a state |h〉, which can be thought of in a

distributional sense as a wavefunction ψh(g) = δ(g − h) localised at the point h of the group

manifold. The set {|h〉}h∈G forms a set of perfectly distinguishable states. The right group action

maps R(gy)|h〉 = |hg−1
y 〉 and the left group action L(gx)|h〉 = |gxh〉.

Therefore, the quantum reference frames on the links are viewed asHl ∼= L2(G) with the group

action:

Wl(gx, gy)(|h〉〈h|) = |gxhg−1
y 〉〈gxhg−1

y | (4.2)

for all h ∈ G and any (gx, gy) ∈ G×G.
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The collection of systemsHl on the links provide the quantum reference frames for the group G,

however it is not necessary to make assumptions on the structure ofHl. So far we assumed that

Hl = L2(G), and indeed much of the discussions in future sections will rely on this, however it

is worth discussing here what happens when we relax such assumption. We may for instance

require thatHl are finite dimensional quantum reference frames for an infinite group G. In such

a case, we can no longer associate group elements g ∈ G with states |g〉 that can be perfectly

discriminated. The finite dimensionality will put constraints on how well one can encode group

elements and typically different group elements will correspond to states in B(Hl) that have a

non-zero overlap. However, the core feature that allows to gauge a globally symmetric channel

to one with local symmetry is how the quantum processes that describe the initial evolution of

systemsHl transform under the action of group elements applied to the vertices of the link l. As

such, one can devise a gauging procedure, even in those cases where the quantum reference

frame do not permit a perfect encoding of group elements.

Suppose that every group element h ∈ G will be encoded in some state σh ∈ B(Hl) (which may

have non-zero overlap with one another). Under the local symmetry group transformation with

g = (g1, g2, ..., gn) the states of the reference will be mapped to:

σh −→ σgxhg−1
y

(4.3)

for all h ∈ G and any gx and gy group elements applied locally on systems situated at vertices x

and y.

The above transformation property ensures that the state in Hl will carry information on the

relative alignment between systems at the vertices x and y. To illustrate how this occurs, we

restrict to the two systems at x and y who are initially in an arbitrary state ρxy. The initial state

in the system Hl is σe, state that encodes the identity element. Then under a local symmetry

transformation (ρxy ⊗ σe) g−→ Ug(ρxy)⊗ σgxg−1
y

. However the local group action on the system

Ax and Ay can be re-written as U(gx)⊗U(gy) = (U(gxg
−1
y )⊗ I)(U(gy)⊗U(gy). Then gxg−1

y gives

the relative alignment between system Ax and Ay after a local symmetry transformation and

this group element is encoded into the reference systemHl that changes into the state σgxg−1
y

.
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4.2.2 II. Dynamics on the reference frame system

The quantum reference frame systems Hl on the links become dynamical objects themselves.

As the states of the multipartite system A evolve under the quantum process E , similarly the

quantum reference frames will evolve according to a process that must be made explicit to

account for the additional degrees of freedom. This needs to satisfy two initial requirements:

• the processes on the quantum reference frames are invariant under the global symmetry

• the processes on eachHl must transform under the local symmetry in a particular way as

to encode the relative alignments between group elements applied to the systems at the

two vertices of the link l.

This suggests to define process gauge couplings that act on the links and respond to the local

symmetry in a particular way, analogous to the process modes that we introduced previously.

First, we make an additional remark on the notation used throughout the remainder of the

chapter. The total ”gauged” Hilbert space consists of systems and quantum reference frames

on the links Htot = HA1 ⊗ ...⊗HAn
⊗

l∈EHl. The local group action on the system and links

is given by Utot(g) = UA1(g1) ⊗ ... ⊗ UAn(gn)
⊗

l=[x→y]∈EWl(gx, gy) where group element gx

is applied to the system Ax and associated with the vertex x. We will denote Ug this group

action lifted on the space of superoperators S(Htot,Htot). For simplicity we will keep the same

notation Ug for the group action on the space of superoperators on the links alone which carry

the representation
⊗

l=[x→y]∈EWl(gx, gy).

Definition 4.2.3. A process gauge coupling, {A(l,λ)
jk } for a quantum reference frame on a link l

is a set of superoperators A(l,λ)
jk : B(Hl) → B(Hl) such that under the local symmetry action with

g = (g1, g2, ..., gn):

Ug[A(l,λ)
jk ] =

∑

m,n

vλ(g−1
x )jmv

λ(gy)nkA(l,λ)
mn , (4.4)

with vλ the λ-irrep of G and where x and y are the endpoints of the directed link l = [x→ y].

A process gauge coupling {A(l,λ)
jk } can be packaged into a compact notation A(l,λ) comprising of
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a matrix of superoperators onHl:

A(l,λ) =




A11 A12 · · · A1d

A21 A22 · · · A2d

...
...

...
...

Ad1 Ad2 · · · Add




(4.5)

where d is the dimension of the λ-irrep of the compact groupG. A local symmetry transformation

onHl that applies group element gx on subsystem Ax and gy on subsystem Ay acts on the matrix

objectA(l,λ) via right multiplication by vλ(gy) and left multiplication by vλ(g−1
x ), which are d× d

matrices. In compact form:

Ug[A(l,λ)] = vλ(g−1
x )A(l,λ)vλ(gy) (4.6)

Since we have restricted the present analysis to 2-symmetric processes, then it is sufficient

to explain how to introduce the dynamical degrees of freedom described by Hl for a general

bipartite (globally symmetric) superoperator term χ(l,θ) =
∑

k Φλxk ⊗ Φ
λ∗y
k acting non-trivially on

subsystems Ax and Ay connected by link l.

Under the local symmetry, χ(l,θ) transforms non-trivially as:

χ(l,θ) −→
∑

k,m,n

vλmk(gx)vλ
∗
(gy)nkΦ

λx
m ⊗ Φ

λ∗y
n =

∑

m,n

vλmn(gxg
−1
y )Φλxm ⊗ Φ

λ∗y
n . (4.7)

To gauge the diagram terms χ(l,θ) the process on the additional degrees of freedom must

transform in such a way as to counteract the matrix coefficients terms that depend on the local

group elements in the above.

First we make explicit the background process involving the additional quantum reference

frame systemHl:

χ(l,θ) −→ χ′(l,θ) := χ(l,θ) ⊗A =

(∑

k

Φλxk ⊗ Φ
λ∗y
k

)
⊗Al (4.8)

where Al :=
∑

λ dλ
∑

kA
(l,λ)
kk and the summation is over all irreps λ of G with dimension dλ

and over all diagonal components of the matrix of process gauge couplings A(l,λ). A can be

thought of as a background scalar, that is invariant under the global symmetry and makes

the quantum reference frame on the link l into dynamical objects. Directly from Definition
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4.2.3 it follows that Al is globally symmetric Ug[Al] =
∑

λ dλ
∑

k,m,n v
λ(g−1)kmv

λ(g)nkA(l,λ)
mn =

∑
λ dλ

∑
mn δmnA

(l,λ)
mn = Al where we used that the irreducible representation vλ is unitary so

∑
k v

λ(g−1)mkv
λ(g)kn = (vλ(g−1)vλ(g))mn = δmn.

Therefore χ′(l,θ) is symmetric under the global group action but transforms non-trivially under

the local symmetry.

4.2.3 III. Gauging globally symmetric processes to local symmetry

The final step involves promoting the global symmetry to a local symmetry. Once the back-

ground quantum reference frames and process mode couplings are explicitly introduced then

we discard the relative alignments by averaging over the local group action. Explicitly this

mapping is achieved by:

χ(l,θ) G−→ χ̃(l,θ) := G[χ′(l,θ)] (4.9)

where G denotes the G− twirling over the local group G×n and is given by:

G[χ′(l,θ)] =

∫

G×n
Ug[χ′(l,θ)]dg. (4.10)

The G-twirling operation projects onto the symmetric subspace, herein the locally symmetric

superoperators then the gauged superoperator G[χ(l,θ)] is locally symmetric since for all h ∈ G×n

we have Uh[G[χ(l,θ)]] = Uh[G[χ′(l,θ)]] =
∫
G×n UhUg[χ′(l,θ)]dg =

∫
G×n Ug[χ′(l,θ)]dg, where the last

equality follows from the invariance of Haar measure under multiplication by group elements.

In terms of the process gauge couplings, the gauging map takes a simple form:

G[χ(l,θ)] = (Φλx)T · A(l,λ) ·Φλ∗y =
∑

n,m

Φλxm ⊗ Φ
λ∗y
n ⊗A(l,λ)

mn .

where Φλx denotes the vector of process modes {Φλxk }
dim(λ)
k=1 and similarly on system at y.
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A quick check shows that indeed the gauging map takes the above form:

G[χ′(l,θ)] =
∑

µ

dµ

∫

G×n
Ug[
∑

k,j

Φλxk ⊗ Φ
λ∗y
k ⊗A

(l,µ)
jj ]dg (4.11)

=
∑

µ,k,m,n
j,m′,n′

dµ

∫

G×n
vλ(gx)mkv

λ∗(gy)nkΦ
λx
m ⊗ Φ

λ∗y
n ⊗

(
vµ(g−1

x )jm′v
µ(gy)n′j

)
A(l,µ)
m′n′dg

=
∑

k,m,n
j,m′,n′

dµ

(∫

G×2

(
vλ(gx)mkv

µ(g−1
x )jm′v

µ(gy)n′jv
λ∗(gy)nk

)
d gxd gy

)
Φλxm ⊗ Φ

λ∗y
n ⊗A(l,µ)

m′n′

where the last line follows from the fact we act with the local group averaging operation on

a term that acts non-trivially only on sites x and y (and the joining link between them). The

integration in the brackets can be done independently as each of the terms are dependent on

either gx or gy but not both. Therefore we have that:

∫

G
vλ(gx)mkv

µ(g−1
x )jm′dgx =

∫

G
vλ(gx)mkv

µ(gx)∗m′jd gx = d−1
λ δµ,λδkjδmm′ (4.12)

where the last equality follows from Schur orthogonality of the matrix coefficients. Similarly we

also have:

∫

G
vµ(gy)n′jv

λ∗(gy)nkdgy =

∫

G
vµ(gy)n′jv

λ(gy)
∗
nkdgyd gx = d−1

λ δµ,λδkjδnn′′ (4.13)

By substituting back into the equation 4.12 above we obtain the gauged version of the superop-

erator term χ(l,θ). We have that:

G[χ(l,θ)] =
∑

k,m,n
j,m′n′

d−1
λ δkjδmm′δnn′Φ

λx
m ⊗ Φ

λ∗y
n ⊗A(l,λ)

m′n′ (4.14)

=
∑

n,m

Φλxm ⊗ Φ
λ∗y
n ⊗A(l,λ)

mn

Finally, linearity ensures that any 2-symmetric quantum process E can be gauged into G(E),

which is invariant under the local symmetry acting on the subsystems and additional quantum

reference frames. The gauging procedure described in this section can then be summarised by

the following theorem.

Theorem 4.2.4. Given a 2-symmetric quantum operation E : B(HA) −→ B(HA′) on a multipartite
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system then it can be gauged into a quantum operation G(E) given by:

G[E ] =
∑

{(lk,θk)}
c{(lk,θk)}χ̃

(l1,θ1) ⊗ χ̃(l2,θ2) ⊗ · · · ⊗ χ̃(lr,θr). (4.15)

where for each i, χ̃(li,θi) = G[χ(li,θi)] =
∑

m,n Φλxm ⊗Aµmn ⊗ Φ
λ∗y
n is the corresponding gauged superop-

erator acting only on the subsystems joined by the link li.

Example 4.2.5. Suppose that the Hilbert spaceHl has a set of perfectly distinguishable basis states {|g〉}
encoding group elements. Let the background scalar specifying the process on the quantum reference

frames be given by Al(σ) = |e〉〈e| for any σ ∈ B(Hl) and every link l and irrep λ, where |e〉 is

the encoding of the identity element of G. Then under the local symmetry Ug[Al] = |gxg−1
y 〉〈gxg−1

y |.
Moreover, the local symmetry group average of the superoperator χ(l,λ) ⊗Al will be given by:

χ(l,λ) −→ χ(l,λ) ⊗A (4.16)

G−→
∫

G×2

∑

k

Ugx [Φλxk ]⊗ Ugy [Φ
λ∗y
k ]⊗ |gxg−1

y 〉〈gxg−1
y |d gxd gy

=
∑

m,n

Φλxm ⊗ Φ
λ∗y
n ⊗ Lmn

where the operator Lmn :=
∫
g v

λ
mn(g)|g〉〈g|d g ∈ B(hl) arises from the invariance of the Haar measure

under group multiplication and a change of variables in the above integration. In this particular example

the gauge couplings take the from A(l,λ)
mn (σl) = Lmn for any σl ∈ B(Hl).

4.3 Gauge fixing

In the context of gauge theory one can also consider the reverse process of gauging, namely

fixing a gauge to map a local gauge symmetry to a global one. A gauged theory allows for

many different physical configurations, all of which are related by gauge transformation and

describe the same physics. Choosing a particular gauge removes the redundancy in the physical

description that comes from the local gauge symmetry and is a convenient procedure to simplify

calculations. For example in classical electromagnetism gauge fixing amounts to a particular

choice of representative from all equivalent potentials. The choice itself often takes into account

the practical physical problem of interest. In quantum field theory additional problems appear

in that it becomes necessary to fix a gauge to avoid dealing with sums of integrals over all field
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configuration that leads to undefined objects.

We discuss in the following how gauge fixing can be introduced in the formalism. We will

assume that the quantum reference frame can perfectly encode group elements in the basis

{|g〉}g∈G. When dealing with gauged locally symmetric quantum operations, the procedure

of fixing a particular gauge can be viewed as a pre- and post-selecting the reference frames

onto particular group elements. As with the usual gauge theory formulations, the construction

presented here is not necessarily unique.

In the same spirit as in the previous section, we illustrate gauge fixing for a two lattice site with

subsystems Ax and Ay linked together by l, which contains the reference frame Hl. Suppose

that the quantum process Ẽ ∈ S(HAx ⊗HAy ⊗Hl) is invariant under the local group action such

that U(gx,gy)[Ẽ ] = Ẽ .

For any group elements h1, h2 ∈ G we pre- and post-select on the systemHl before and after the

quantum process E such that we map:

Ẽ −→ Ẽh1,h2 = (id⊗Πh2) ◦ Ẽ ◦ (id⊗Πh1) (4.17)

where Πh(σ) = |h〉〈h|σ|h〉〈h| is the projection onto the state |h〉 for any σ ∈ B(Hl). This achieves

the role of breaking the G×2 symmetry action to a global symmetry only.

Under the local group action:

U(gx,gy)[Ẽh1,h2 ] = Ẽ(gxh1g
−1
y ,gxh2g

−1
y ) (4.18)

for any gx, gy ∈ G. This follows immediately from local invariance of E . Explicitly for any

τ ∈ B(HAx ⊗HAy ⊗Hl) we get:

U(gx,gy)[Ẽh1,h2(τ)] = U(gx,gy) ◦ (id⊗Πh2) ◦ Ẽ ◦ (id⊗Πh1) ◦ U†(gx,gy) (4.19)

= U(gx)⊗ U(gy)〈h2|Ẽ
(
〈h1|U†(gx,gy)(τ)|h1〉 ⊗ |h1〉〈h1|

)
|h2〉(U †(gx)⊗ U †(gy))⊗ |gxh2g

−1
y 〉〈gxh2g

−1
y |.

However as Ẽ is invariant under U(gx,gy) it follows that 〈h2|Ẽ(〈h1|U†(gx,gy)(τ)|h1〉⊗|h1〉〈h1|)|h2〉 =

〈h2|U†(gx,gy)(Ẽ(U(gx,gy)(〈h1|U†(gx,gy)(τ)|h1〉 ⊗ |h1〉〈h1|)))|h2〉. Therefore the local group actions on
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Ax and Ay will cancel out in the above equation in order to give:

U(gx,gy)[Ẽh1,h2 ] = 〈gxh2g
−1
y |Ẽ(〈gxh1g

−1
y |τ |gxh1g

−1
y 〉 ⊗ |gxh1g

−1
y 〉〈gxh1g

−1
y |)|gxh2g

−1
y 〉 ⊗ |gxh2g

−1
y 〉〈gxh2g

−1
y |

which is exactly the expansion of equation 4.18. Moreover, the operation Ẽh1,h2 obtained after

pre and post-selecting with group elements h1 and respectively h2 is invariant under the local

symmetry if and only if the following conditions hold:

gxh1g
−1
y = h1 and gxh2g

−1
y = h2 (4.20)

Therefore this implies that U(h1gyh
−1
1 ,gy)[Ẽh1,h2 ] = Ẽh1,h2 where gyh2h

−1
1 = h2h

−1
1 gy. For the case

where h1 = h2 = h the constraint is trivially satisfied for all gy ∈ G. The symmetry has been

broken from a local symmetry to a global symmetry, up to a re-alignment of the local subsystems

corresponding to h ∈ G. Equivalently,

U(hgh−1,g)[Ẽh,h] = Ẽh,h (4.21)

and moreover since Ugx,gy [Ẽh,h] = Ẽh,h holds if and only if gx = hgyh
−1 it follows that indeed

the largest isotropy group of Ẽh,h is G (global symmetry) and not G×G (local symmetry) as was

the case for the initial process Ẽ .

Typically pre and post selection is a trace decreasing operation so fixing the gauge in the manner

described above will result in a trace decreasing quantum channel that is invariant under the

global symmetry. This does not pose a significant issue as we will illustrate by revisiting the

example 4.2.5, which describes the gauging of a bipartite superoperator diagram term χl,λ with

process gauge coupling superoperators given by state preparation. The gauged term acting on

both systems and quantum reference frame took the form:

G(χl,λ) =
∑

m,n

Φλxm ⊗ Φ
λ∗y
n ⊗

∫
vλmn(g)|g〉〈g|d g (4.22)

Suppose we pre and post select the gauged term by projecting the quantum reference frame
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onto the fixed state |h〉. Then we will obtain:

(id⊗Πh) ◦G(χl,λ) ◦ (id⊗Πh) =
∑

m,n

Φλxm ⊗ Φ
λ∗y
n ⊗

∫
〈h|vλmn(g)|g〉〈g|h〉d g|h〉〈h| (4.23)

=
∑

m,n

Φλxm ⊗ Φ
λ∗y
n ⊗ vλmn(h) |h〉〈h| (4.24)

This is invariant under the (global) group action U(gx,gy) where gx = gh−1 and gy = h−1g for all

g ∈ G. If h = e, the identity element then we find that id⊗Πe ◦Gχl,λ ◦ id⊗Πe = χl,λ ⊗ |e〉〈e|, a

particular case in which gauge fixing is trace preserving since vλmn(e) = δmn for all λ. But even

in general, while the resulting quantum channel after gauge fixing will be trace decreasing, the

relevant features remain, particularly the local process modes involved are not affected and up

to an overall realignment according to group element h they couple just as in the initial gauged

term G(χl,λ).

4.4 Examples of gauge theories revisited: a quantum information the-

ory perspective

This purpose of this section is to illustrate the wide applicability of the gauging method that we

have presented. In particular cases, it recovers well-known methods for gauging lattice gauge

theories [109] or gauging quantum states [107]. These correspond to quantum channels that are

unitary or state preparation respectively. The analysis presented goes much further than unitary

dynamics and states, in that it allows to gauge essentially any globally symmetric quantum

process allowed.

4.4.1 U(1) symmetry

Consider the abelian group G = U(1), whose irreducible representations are one-dimensional

and labelled by λ = n for all integers n ∈ Z.

The building blocks for processes on bipartite systems on Ax and Ay that are invariant under

the global U(1) symmetry are of the form χ(l,n) = Φnx ⊗ Φ−ny where the local process modes

transform under the U(1) symmetry principle as Uφ[Φnx ] = einφΦnx and Uφ[Φ−ny ] = e−inφΦ−ny

for any angle φ ∈ S1 ∼= U(1). (These superoperators give rise to any 2-symmetric quantum
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process. More general globally symmetric operations will contain terms acting non-trivially on

3 or more sites. For U(1) these take a simpler form χ∆ = Φnx ⊗Φmy ⊗Φ−(n+m)z for any triangle

∆ = (x, y, z) with similar generalisations for more interactions. For simplicity the following

discussion will also involve only 2-site interactions constructed out of superoperators of the

form χ(l,n).)

I. Introduce quantum reference frameHl on link l and its local group transformation

For a directed link l = [x→ y] joining subsystems Ax and Ay we associate quantum reference

frames Hl spanned by orthogonal basis states {|m〉}m∈Z. Every group element φ ∈ S1 can be

encoded in a coherent state on the circle:

|φ〉 = (2π)−1
∑

m∈Z
e−imφ|m〉. (4.25)

These form an orthonormal set of eigenvectors for the self-adjoint operator φ̂ =
∫
S1 φ|φ〉〈φ|dφ,

which is canonically conjugate to the angular momentum in the z-direction. In a distributional

sense 〈φ|θ〉 = δ(φ− θ) the coherent states perfectly encode all group elements of U(1). Under

the de-synchronised local group action they transform according to:

W l
(gx,gy)(|φ〉〈φ|) = |gx + φ− gy〉〈gx + φ− gy| (4.26)

for all gx, gy ∈ U(1).

II. Add a quantum process acting onHl that is invariant under the global symmetry

The simplest process on the quantum reference frames is the depolarizing channelA(σl) = |0〉〈0|
where every state σl ∈ B(Hl) is mapped into the coherent state for φ = 0. This process is

invariant under the global symmetry but non-trivial under the local symmetry.
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III. Gauging the global U(1) symmetry to a local symmetry

Gauging of the globally symmetric superoperator χ(l,n) = Φnx ⊗ Φ−ny involves a local group

averaging to de-synchronize the relative alignment of system x and y.

χ(l,n) −→ G[χ(l,n)] =

∫

U(1)×U(1)
ein(gx−gy)Φnx ⊗ Φ−ny ⊗ |gx − gy〉〈gx − gy|d gxd gy. (4.27)

However (translation) invariance of the Haar measure for U(1) leads to:

G(χ(l,n)) = Φnx ⊗ Φ−ny ⊗
∫

S1

einφ|φ〉〈φ|dφ = Φnx ⊗ Φ−ny ⊗∆n (4.28)

where ∆n =
∑

m∈Z |m+ n〉〈m|.

Discussion

What if instead of A(σl) = |0〉〈0|, we would choose the process on the reference frames to be

A(σl) = |φ0〉〈φ0| – this is a valid process that is also invariant under the global symmetry? In

such a case the gauging procedure gives an additional phase G[χ(l,n)] = Φnx ⊗ Φ−ny ⊗ einφ0∆n.

What about gauge fixing a locally symmetric process of the form in equation 4.28 by pre and

post-selecting on a fixed group element φ0? This will map χ(l,n) to a globally symmetric term

χ̃φ0 = Φnx ⊗ Φ−ny ⊗ einφ0 |φ0〉〈φ0|. One way of interpreting this is that by fixing the gauge to be

φ0 we break the local symmetry to a global symmetry and an additional phase factor depending

on the choice of gauge emerges.

In some ways this is reminiscent of the Bohm-Aharonov effect whereas a choice of non-zero

gauge gives rise to an observable effect.

4.4.2 Unitary dynamics for a lattice gauge theory

We consider the unitary dynamics for a lattice gauge theory described in terms of the Kogut-

Susskind Hamiltonian approach. The aim is to illustrate how this well-known formalism

connects with the gauging procedure we developed. A full treatment on lattice gauge theories

or their Hamiltonian formulation is beyond the goals of this thesis, and can be found in many

excellent accounts [4].
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Consider a 2D square lattice Γ = (V,E) with a Hamiltonian describing nearest-neighbour

interactions given by H =
∑

xN(x) +
∑

x,ε∼xK(x, ε), where ε ∼ x denotes summation over

vertices linked to x situated at an ε distance apart. The termN(x) :=
∑

k a
†
k(x)ak(x) corresponds

to the local particle density observable at site x and the kinetic term corresponds to a hopping

interaction between neighbouring sites and is given by the hermitian operator:

K(x, ε) :=
∑

k

a†k(x + ε)ak(x) + a†k(x)ak(x + ε). (4.29)

The operators a†k(x) and ak(x) correspond to the creation or annihilation of particle in mode

k at site x. At every site in the lattice there is an associated d-dimensional Hilbert space

Hx = spanC{|k〉x}k. We assume that there is an irreducible representation U of a compact

group G acting on eachHx with matrix coefficients uij(g) for i, j = 1, ..., d and g ∈ G. The full

Hilbert space H is the Fock space, generated by the creation operators {a†k(x)}x∈V,k acting on

a fiducial state |Ω〉. Under the group action, the creation operators transform irreducibly as

a†k(x)
U(g)−→∑

j ukj(g)a†j(x). Under the local group action, the transformation U(gx) is applied at

site x, and collectively we denote this by Ug acting on operators where g = (..., gx, ...).

The Hamiltonian is invariant under the global action where we apply the same group ele-

ment gx = g at every site ∀x ∈ V . The unitary evolution generated by the Hamiltonian

E(ρ) = e−iHtρeiHt, for any ρ ∈ B(H) is therefore globally symmetric so that Ug[E ] = E for

g = (g, g, .., g, ..). The particle number operator N =
∑

xN(x) is also invariant under the local

symmetry, however the hopping potential is not.

As previously done, to gauge dynamics to a local symmetry we introduce Hilbert spaces Hl
associated with the edges of the lattice. Each Hl is spanned by a set of perfectly distinguish-

able states encoding group elements {|g〉l}g∈G which transform under the local group action

according to U(gx,gy)(|g〉〈g|l) = |gxgg−1
y 〉〈gxgg−1

y |l on the link l joining sites x and y.

For simplicity, we gauge the generator L(ρ) = −i[H, ρ] of the unitary dynamics. The first term

of the Hamiltonian N is locally symmetric and the kinetic term is mapped under the gauging

procedure to:

K(x, ε) −→ K̃(x, ε) =
∑

mn

a†m(x)⊗ Lmn(l)⊗ an(x + ε) + h.c (4.30)

where the link operator Lmn(l) =
∫
G umn(h)|h〉〈h|d h acts on the spaceHl that connects sites x
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Figure 4.3: Lattice gauge theory
Subsystems are located at the vertices of the lattice, while quantum reference frames on the links.
The generators {Ja} of the local group action at a subsystem A1 act non-trivially on the vertex
as well as the 4 directed links surrounding it (yellow radial arrows). Gauss’ law is satisfied if
the state of the system is a symmetric state, ρ = G(ρ), under the full local symmetry. Within a
fully symmetric scenario, the only observables that can be measured are those that are invariant
under the symmetry group. Wilson loops (e.g. the red-loop shown) are defined purely on the
reference frames, and are examples of such measurable observables.

and x + ε. Under the local gauge transformation the link operators are mapped to Ug(Lmn) =
∑

j,k umj(gx+ε)ukn(g−1
x )Ljk.

Finally the gauged process is generated by L̃ = L0 + iLK − iLK∗ , where L(ρ) = −i[Ñ , ρ] with

Ñ = N ⊗ id acting trivially on the gauge degree of freedom on the links and kinetic terms

LK(ρ) = i
∑

x≡ε K̃(x + ε)ρ and LK∗(ρ) = i
∑

x≡ε ρK̃(x + ε) for ρ ∈ B(H⊗l∈EHl) state acting

on the lattice sites and the links.

The process Ẽ generated by L̃ is locally symmetric and describes the gauged dynamics at every

lattice site.

4.4.3 Gauging quantum states

In this subsection we restrict the formalism for gauging quantum channels to quantum states,

and therefore illustrate how previous work on gauging (pure) quantum states in [107] fits into
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the general framework developed here. The work in [107] was motivated by tensor network

approaches applied to quantum field theories and quantum chemistry. Their aim was to study

tensor network states in the context of systems with gauge symmetry and apply gauging of

quantum states to projected entangled pair states (PEPS) thus obtaining a toy model to study

the phase diagrams of a Z2 gauge theory. For a multipartite pure state |ψ〉 ∈ HA1 ⊗ ...HAn which

is invariant under the global group action U1(g)⊗ U2(g)⊗ ...⊗ Un(g)|ψ〉 = |ψ〉 for all g ∈ G the

gauging prescription in [107] maps |ψ〉 to a locally invariant state P (|ψ〉 ⊗⊗l∈E |e〉l) acting on

the vertices and the links, where P is the projector onto the physical subspace (i.e the trivial

representation of the local group) with P =
∫
UA1(g1)⊗ ...⊗ UAn(gn)

⊗
l=[x→y]∈EWl(gx, gy)dg.

Recall that we have denoted by Wl(gx, gy) = L(gx)R(gy) the left and right action of G acting on

Hilbert space L2(G) associated with the links so if e denotes the identity group element then

Wl(gx, gy)|e〉l = |gxg−1
y 〉l. Therefore the gauging map given in [107] is:

|ψ〉 −→
∫
Ug|ψ〉

⊗

l=[x→y]

|gxg−1
y 〉dg (4.31)

Now we apply the gauging prescription described in Section 4.2 to the case where the quantum

process E is state preparation i.e E : 1 −→ |ψ〉〈ψ|. Thus formally the gauging map is of the form:

G(|ψ〉〈ψ|) =

∫
Ug|ψ〉〈ψ|U †g

⊗

l=[x→y]

|gxg−1
y 〉〈gxg−1

y dg (4.32)

where g = (g1, ..., gn) and integration is over the group G× ...×G. At this stage, the above holds

any pure state |ψ〉there is no extra assumption whether |ψ〉 is 2-symmetric or not. However to

make the connection between the formalism here and the gauging procedure for quantum states

in [107] we do not need to go further and specify what the gauge coupling processes are for

this particular channel. The invariance property of Haar measure under group translations is

enough to ensure that equation 4.31 and 4.32 are equivalent and give the same gauging map.

For completeness, we mention that the 2-symmetric assumption would allow to evaluate

equation 4.32. What does a 2-symmetric state look like? For any three vertices i, j, k let ρijk be

the marginal state on these three subsystems Ai, Aj and Ak, that is ρijk = Tr ¯i,j,k(|ψ〉〈ψ|) where

we trace all but the subsystems i, j, k. Then ψ is 2-symmetric if equivalently for any triplet of

vertices the marginal state ρijk acts trivially on at least one subsystem. In other words ρijk must

be either of ρij ⊗ I/dAk , ρjk ⊗ I/dAi or ρik ⊗ I/dAj .
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4.5 Connections between resource theories and Gauss’s law

For gauge theories, the physically allowed states are those invariant under the local symmetry

(i.e the gauge-invariant states). Gauging a global symmetry, as we have seen in the previous

sections, involves introducing additional degrees of freedom described by quantum reference

frames, together with their associated dynamical process and transformation under the local

group symmetry. The total Hilbert space for the systems and QRFs is:

Htot = HA1 ⊗ ...⊗HAn
⊗

l=[x→y]

Hl. (4.33)

Only a small subset of all states in Htot are physical since gauging is meant to introduce

mathematical redundancies in the description, with the intent to map the global constraints to

more tractable local ones. The physical quantities are those that remain unchanged under the

gauge transformations. In our set-up, |ψ〉 ∈ Hphys ⊂ Htot belongs to the physical Hilbert space if

Utot(g)|ψ〉 = |ψ〉 (4.34)

for all g ∈ G×n, where the local symmetry Utot = U ⊗W acts on both the subsystems Ax (the

”matter” systems) and the quantum reference framesHl (the ”gauge fields”).

An alternative description involves the generators of the symmetry. For a compact connected

Lie group, the exponential map exp : g −→ G is surjective and therefore representations of the

group can be given in terms of representations of the Lie algebra. Therefore we can say:

Ux(gx) = ei
∑
cQc(x)θc(gx) (4.35)

Wl=[x→y](gx, gy) = L(gx)R(gy) = ei
∑
c E
−
c θc(gx)+E+

c θc(gy) (4.36)

where θc(g) ∈ R and Qc(x) ∈ B(HAx), E−c , E+
c ∈ B(Hl) are Hermitian operators that satisfy

the commutation relations for generators of the Lie algebra representations: [E−a , E
+
b ] = 0,

[E±a , E
±
b ] = i

∑
c fabcE

±
c and [Qa, Qb] = i

∑
c fabcQc, where fabc are the structure constants of g.

The number of generators is the dimension of the Lie group.
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Therefore it follows that the generator at each site x of the local symmetry is given by:

G(x) =
∑

c


Qc(x) +

∑

l∈E
∀y:l=[y→x]

E−c (l) +
∑

l∈E
∀y:l=[x→y]

E+
c (l)




The operator G(x) acts non-trivially only on the Hilbert spaceHAx associated with vertex x and

the links that connect x, that is on the space
⊗

y:l=[xy]

Hl. Therefore G :=
∑

xG(x) is the generator

of the local symmetry Utot acting onHtot.

Therefore the constraint in equation 4.34 that |ψ〉 belongs to the physical subspace can be

equivalently cast in terms of the generators so |ψ〉 ∈ Hphys then

G|ψ〉 = |ψ〉 (4.37)

which implies that the physical states satisfy G(x)|ψ〉 = |ψ〉 for all vertices x associated to

subsystem Ax. This is a generalised form of Gauss’s law.

In the context of classical electrodynamics, which is a classical U(1) gauge theory, Gauss’s law

relates the electric charge distribution with the electric field.

Example 4.5.1. For an abelian group G = U(1) any representation has a single generator. Moreover the

generators for the left and right representations are the same up to an overall minus signE−(l) = −E+(l)

for any link l. Therefore on a square lattice of spacing 2ε horizontally and 2ε′ vertically the physical states

must satisfy:

J(x)|ψ〉 = 0 (4.38)

where J(x) = E(x+ ε)−E(x− ε) +E(x+ ε′)−E(x− ε′)−Q(x). In the continuous limit ε, ε′ −→ 0

we get the Gauss law in the usual form (∇E(x)−Q(x))|Ψ〉 = 0 relating the divergence of the electric

field E at point x with the local charge density Q(x) .

From the resource-theoretic perspective, Gauss’s law coincides with the statement that one can

only freely prepare states which are invariant under the local symmetry constraints.

In the resource theory of asymmetry (and similarly quantum reference frames) the ’free states’ of

the theory are those that are invariant under the symmetry constraints. An information-theoretic

result states that under the local group symmetry, any state ρ cannot be distinguished from its
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G-twirled state G[ρ] i.e from its projection on the invariant subspace:

G[ρ] =

∫

G×n
Ug[ρ] g. (4.39)

In the resource theory of asymmetry for a local gauge symmetry group G, the free states of the theory

coincide with the set of all convex mixtures of pure quantum states |Ψ〉〈Ψ| that obey the generalized

Gauss’s Law. The set of free operations within the resource theory coincide with the set of all locally

gauge-invariant processes.

4.6 Further discussion

In this chapter we gave a procedure to gauge any general quantum process with global symmetry

to a local symmetry at the expense of introducing additional degrees of freedom. To do so

we leveraged on the structure of globally symmetric quantum channels on bipartite systems,

which was developed in Chapter 2. The gauging analysis assumed a particular property that

the processes involved must be 2-symmetric with the caveat that generalisations dealing with

channels built out of local terms involving three or more subsystems can be treated in a similar

way.

Typically in quantum field theories the Lagrangian describing the physical systems are truncated

to a reasonable approximation that deals with the energy regimes of interest. This is related to

the so-called UV cut-off in which higher order terms in the Lagrangian are suppressed.

Our restriction to the 2-symmetric processes should be viewed in an analogous way, only that in

this case it is the higher order symmetry breaking interactions between three or more sites that

are suppressed.

The construction we gave is certainly not unique. However it follows the same spirit as the

minimal coupling principle in that no local symmetry breaking degrees of freedom of the globally

symmetric processes are ignored and the gauged process contains all the information about

the initial dynamics. Setting the ”gauge field” to zero amounts to setting the gauge coupling

processes Aλmn = δmnA for all m,n and irrep λ. This recovers exactly the initial globally

symmetric process E . By contrast, suppose that one did not introduce the additional background

degrees of freedom and projected the global symmetry to a local symmetry by directly averaging
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E over the local symmetry group. The resulting process would also be invariant under the local

symmetry, however all the initial symmetry breaking degrees of freedom would be lost and the

only remaining information refers to the diagrams θ = (a, ã)
0−→ (b, b̃) with λ = 0 contained in

E .

The analysis presented does not explicitly rely on the existence of a an asymptotic classical

regime, and the quantum reference frames need not be infinite dimensional so as to perfectly

encode elements of a compact Lie group. However it is still the case that some choice of group

action must be made, even when Hl are finite-dimensional. It will be the case, that gauging

particular quantum processes will necessarily result in a loss of information, as not all modes

can be supported by a finite-sized reference. A trivial example is that gauging channels that

are also locally symmetric does not require an infinite dimensional quantum reference frame.

Therefore there will be limitations in how well the gauged dynamics reproduces the initial

globally symmetric dynamics when some choice of gauge is made. Many other interesting

features relating to use of finite dimensional reference frames on the links may also emerge.

A fundamental question in a gauge field theory concerns which measurements are allowed by

the physics? Wilson loops correspond to gauge-invariant observables defined on the quantum

reference frames, associated with links that form a closed path. However it was shown in [110]

that relativistic causality places constraints on the measurements of Wilson loops.

Therefore it would be of interest to extend the formalism presented herein to allow for causal

structures in order to connect with the wide area of tools on quantum measurements in an

information theoretic setting. Such a long term goal may well give insights into delineating the

physical content from the mathematical redundancies in gauge theories.
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Chapter 5

Beyond Noether’s Theorem

Conservation laws play an essential role in all areas of modern physics. In classical physics

Noether’s theorem fully quantifies how conserved currents emerge from global continuous

symmetries of the dynamics. In quantum mechanics, Schrodinger’s equation implies directly

that the expectation value of an observable commuting with the Hamiltonian remains constant

in time. Therefore the dynamics of closed quantum system incorporates Noether’s theorem at

a fundamental level. However, for general quantum processes there is a breakdown between

conservation laws and symmetries. In [34], Marvian and Spekkens show that under an open

system dynamics the consequences of symmetry are no longer fully captured by conservation

laws in the sense that in order to characterise state transitions ρ −→ σ under a (non-unitary) sym-

metric dynamics E then the necessary and sufficient conditions cannot be described only by the

expectation value of the generators of the symmetry. In such cases novel measures of asymmetry

need to be introduced, and in [14] it is shown that to fully characterise state transitions under

symmetric dynamics a set of infinite entropic conditions are required. Whenever dissipative

phenomena comes into play, both in the classical and quantum world there is a departure from

Noether’s theorem as these types of systems cannot be described via a stationary action integral.

Baez gives in [111] a generalisation for classical Markov processes showing that an observable

commutes with the Hamiltonian if and only if both its expectation value and standard deviation

are constant in time. Dynamics of quantum systems are generally described by completely

positive trace preserving maps – which may be viewed as arising from a unitary interaction with

an environment that is discarded afterwards. In such a scenario, Noether’s charges no longer

capture all the consequences of the symmetric dynamics and describing state transformation
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requires introducing a set of information-theoretic measures [34]. Moreover, the general neces-

sary and sufficient conditions for state transformations under symmetry constraints involve an

infinite set of entropic conditions [14].

This prompts the main question we address in this chapter: How robust are conservation laws

under a general symmetric quantum process? We aim to explore the divide between conservation

laws and symmetry. Specifically we quantify the trade-off relations between loss of purity

(decoherence) and violations of conservation laws for systems that undergo a symmetric general

quantum process. This is a difficult task to tackle in general terms because there is no a priori

control over the degrees of freedom that are lost by decoherence nor is it easily determined

which ones are relevant for the symmetry in question. One can show that small perturbations

from a symmetric unitary dynamics lead to small deviations from conservation laws, while the

converse is not always true and involves additional subtleties. However, for particular types

of symmetry (that involves no multiplicities, for example a spin system under the defining

representation of the rotation group) the conservation laws are robust under a symmetric open

system dynamics.

Moreover there are fundamental limits to how much a conservation law is violated under a

quantum channel subject to a continuous symmetry constraint. In particular for spin systems, we

give the maximal deviations from conservation laws achievable under any symmetric dynamics

under SU(2).

5.1 Noether’s charges and symmetric dynamics

Let H be a d-dimensional quantum system carrying a representation U : G −→ B(H) of the

compact Lie group G. We will consider general quantum channels that are invariant under

this symmetry principle. These are CPTP operations E : B(H) −→ B(H) with Ug ◦ E ◦ U†g = E
where Ug(·) = U(g)(·)U(g)† for any g ∈ G. The connection between Lie groups and Lie algebras

is established via the exponential map exp : g −→ G. This is a diffeomorphism between a

neighbourhood of 0 ∈ g and a neighbourhood of the identity element in G; for matrix Lie groups

it is given directly in terms of exponentiation of matrices.

To every finite-dimensional representation U of a Lie group there is a unique corresponding

Lie algebra representation RU : g −→ gl(H) where gl(H) denotes the space of linear maps onH
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Figure 5.1: Symmetric operations vs charge conserving operations.

endowed with a Lie bracket structure given by the commutator. The Lie algebra representation ρ

has n generators which we denote by J1, J2, ..., Jn, where n is the dimension of the Lie group G.

These can be thought of as the image of the generators of the Lie algebra g under ρ and satisfy

the same commutation relations:

[Ji, Jj ] =
∑

k

fijkJk (5.1)

where fijk are the structure constants for g. As per the physics convention we will assume that

the generators are Hermitian, so that the exponentiation carries an extra factor of i.

It is worth mentioning at this point that conversely, a Lie algebra representation only gives

rise to a representation for the component of the group G that is connected to the identity.

The exponentiation map gives a one-to-one correspondence between the representations of the

Lie algebra and Lie groups whenever the latter are simply connected. For example the group

of rotations SO(3) and SU(2) have isomorphic Lie algebras so(3) = su(2) however any even

dimensional irreducible representation of the Lie algebra does not lift to a representation of the

full group SO(3) with two distinct connected components, which only has odd dimensional

irreducible representations.

The statement that a quantum operation E onH is invariant under the symmetry principle has

an equivalent formulation in the algebraic setting. E is symmetric if and only if for all generators
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Jk with k ranging from 1 to n it holds that:

[Jk, E(X)] = E([Jk, X]) (5.2)

for any operator X ∈ B(H).

The major feat of Noether’s theorem has been to associate generators of the symmetry with

conserved charges. A quantum process E for which the generators {Jk}k are conserved is one

for which the expectation value of any Jk with respect to the initial state ρ and final state E(ρ)

remains unchanged for all states ρ:

〈Jk〉ρ = 〈Jk〉E(ρ) or equivalently Tr(Jkρ) = Tr(JkE(ρ)). (5.3)

There are many subtleties that arise with Noether’s theorem as applied to quantum field theory

or even classical field theory. For instance, Noether’s charges need not necessarily form a Lie

algebra, leading to anomalies. This is however beyond the aims of this chapter.

5.2 Quantifying deviations from conservation laws

Expectation values for the generators are typically not necessarily constant under a symmetric

quantum process that is not unitary. In the following we consider a quantum operation E on

systemH and a set of observables (charges) {Jk}nk=1. For now, we make no assumption that the

observables form a Lie algebra or that there is an underlying symmetry principle.

We introduce several measures to quantify how much the expectation values of these observables

change under the dynamics specified by E , and in effect probing quantitatively the departure

from a conservation law under a general quantum process.

The directional deviation for the expectation value of the observable Jk with respect to the state

ρ ∈ B(H) is given by

∆Jk(ρ, E) := Tr((E(ρ)− ρ)Jk). (5.4)

For multiple charges, one may be equally interested in the deviation from a conservation law

for all of them. Therefore, we also define the global deviation from conservation law as the l2 norm
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of the directional deviations for all generators:

∆l2(ρ, E) :=
n∑

k=1

|∆Jk(ρ, E)|2, (5.5)

which is additionally motivated by the fact that l2 norm is rotationally invariant. It holds that

∆l2(ρ, E) = 0 if and only if the expectation values of all generators are conserved.

Although both ∆Jk and ∆l2 are state-dependent, it is straightforward to use these quantities to

define state-independent measures. First, we can quantify the worst-case deviation by considering

the maximal violation of the conservation law over all possible states,

∆max(E) := sup
ρ

∆l2(ρ, E). (5.6)

Another way to quantify the violation in a state-independent way is to use average deviation,

∆(E) :=

∫
∆l2(|ψ〉〈ψ|, E) dψ (5.7)

where we integrate with respect to the induced Haar measure on the space of pure states.

Recall that any quantum operation E has a (non-unique) Kraus decomposition E(ρ) =
∑

iAiρA
†
i

with
∑

iA
†
iAi = I. Using this notation, the directional deviation ∆Jk(ρ, E) takes the form of:

∆Jk(ρ, E) = Tr
∑

i

ρ
(
A†iJkAi − Jk

)

= Tr
∑

i

ρ
(
A†iAiJk +A†i [Jk, Ai]− Jk

)

= Tr
∑

i

ρA†i [Jk, Ai]. (5.8)

We can thus view the directional deviation of a generator Jk as the expectation value of an

observable Qk:

∆Jk(ρ, E) = Tr(ρQk), Qk :=
∑

i

A†i [Jk, Ai], (5.9)

which depends on the both the generator Jk and the Kraus operators describing a given quantum

operation E . It is straightforward to check that Qk is indeed hermitian.
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This leads to a compact formulation for the average deviation:

∆(E) =
1

d(d+ 1)

(∑

k

Tr(Qk)
2 + Tr(Q2

k)

)
. (5.10)

This follows from the following argument involving the second moment of the random variable

Tr(Qk|ψ〉〈ψ|). Using the definitions introduced in this section we have:

∆(E) =
∑

k

∫
(TrQk|ψ〉〈ψ|)2dψ. (5.11)

However, since

(TrQk|ψ〉〈ψ|)2 = Tr(Qk ⊗Qk)(|ψ〉〈ψ| ⊗ |ψ〉〈ψ|), (5.12)

we can use a general expression (see for instance [112]):

∫
|ψ〉〈ψ|⊗ndψ =

(d− 1)!

(d+ n− 1)!

∑

π∈Sn
Pπ, (5.13)

with Pπ denoting representations of the symmetric group, i.e., permutations. For n = 2 the only

permutations are identity and transposition (swap). Therefore, Eq. (5.11) becomes

∆(E) =
∑

k

(d− 1)!

(d+ 1)!

(
Tr(Q⊗2

k ) + Tr(PSWAPQ
⊗2
k )
)
, (5.14)

which directly implies equation (5.10).

5.3 Quantifying openness of a quantum system

Every quantum process can be realised by a unitary evolution on an extended system including

an environment followed by tracing out the extra degrees of freedom. We review some measures

that quantify how far is the process from a unitary dynamics.
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5.3.1 Definitions and properties

Worst-case scenario: The diamond norm

The diamond norm is often used in quantum information as a measure of distinguishability of

quantum channels, not least because it carries an operational interpretation.

For a superoperator E the diamond norm is defined by

||E||� := sup
A∈B(K⊗H)

||(id⊗ E)(A)||1 (5.15)

where id is the identity superoperator acting on the auxiliary Hilbert spaceK and ||A||1 := Tr(
√
A†A)

is the the Schatten 1-norm. The diamond norm introduces a distance measure on the set of

superoperators, and therefore on quantum channels.

It has the following operational meaning as the optimal probability of distinguishing between

two given channels. More precisely, given a single use of a quantum channel chosen uniformly

at random to be either E or F , the aim is to maximise the probability of guessing the correct

choice p = 1
2 + ||E−F||�

4 .

Average-case scenario: Unitarity

Finally, we need to characterise how much the dynamics generated by a given quantum channel

E deviates from the closed unitary dynamics. To this end we will employ the notion of unitarity,

originally introduced in [113] as a way to quantify how well a quantum channel preserves purity

on average. Unitarity u of a quantum channel E is defined by

u(E) :=
d− 1

d

∫
Tr

(
E
(
ψ − I

d

)2
)
dψ, (5.16)

where the integral is over all pure states ψ = |ψ〉〈ψ| distributed according to Haar-measure. The

unitarity represents the output purity over all input pure states with the identity component

substracted. It is defined in such a way, as opposed to just the average output purity of the

channel, because we want to distinguish for instance between a map that sends all states to a

fixed pure state E(ρ) = |0〉〈0|Tr(ρ) and a unitary dynamics. As defined, unitarity then satisfies

u(E) ≤ 1 with equality if and only if the operation is a unitary, and can be efficiently estimated
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using a process similar to randomized benchmarking [113]. A useful characterization of the

unitarity of E involves the unital part of L(E). Namely, if one chooses the first element of the

orthonormal basis defining the Liouville representation to be T1 = I/
√
d, then the unitarity can

be expressed as:

u(E) =
1

d2 − 1
Tr(Lu(E)†Lu(E)), (5.17)

where Lu(E) is the Liouville matrix restricted to acting on the remaining d2 − 1 dimensional

space spanned by {Ti}d2i=2.

Every quantum channel E acting on H has a Stinespring dilation given by an environment

systemHE and an isometry V : H −→ H⊗HE such that:

E(ρ) = TrE(V ρV †). (5.18)

This representation is unique only up to a local isometry acting on system HE . The comple-

mentary channel Ẽ : B(H) −→ B(HE) describes the information flow from the system into the

environment and is defined by:

Ẽ(ρ) = TrS(V ρV †) (5.19)

where the partial trace above is taken over the main system with Hilbert spaceH.

The following lemma presents an alternative formula for the unitarity, in terms of the purities

of both the channel E and its complementary Ẽ acting on the identity. This does not appear in

previous work on unitarity.

Lemma 5.3.1. The unitarity of the quantum channel E acting on a d-dimensional Hilbert space is given

by:

u(E) =
d

d2 − 1

(
dTr(Ẽ(I/d)2)− Tr(E(I/d)2)

)
(5.20)

where Ẽ is the corresponding complementary channel.

Proof. The unitarity of a quantum channel E can be written in terms of the purity of its Choi

operator JE and as shown in [113] it is given by u(E) = d
d2−1

(
dTr(J2

E )− Tr(E(I/d)2)
)
. We just

need to compute Tr(J2
E ) in terms of the complementary channel. The Choi operator is given by

JE = 1
d(E ⊗ IS)(

∑
i,j |i〉〈j| ⊗ |i〉〈j|) where |i〉 is an orthonormal basis for systemHS . Therefore
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in terms of the isometry V : H −→ H⊗HE we have that:

Tr(J2
E ) =

1

d2

∑

i,j

Tr(E(|i〉〈j|)E(|j〉〈i|) (5.21)

=
1

d2

∑

i,j,m,n

〈n|E(|i〉〈j|)|m〉〈m|E(|j〉〈i|)|n〉

=
1

d2

∑

i,j,m,n

〈j|V †|m〉〈n| ⊗ IEV |i〉〈i|V †|n〉〈m| ⊗ IEV |j〉

=
1

d2

∑

j,m,n

〈j|V †|m〉〈n| ⊗ IEV V †|n〉〈m| ⊗ IEV |j〉

=
1

d2

∑

j,m

〈j|V †|m〉〈m| ⊗ TrS(V V †)V |j〉

=
1

d2

∑

j

〈j|V †IS ⊗ TrS(V V †)V |j〉

=
1

d2
Tr(V †IS ⊗ TrS(V V †)V ) =

1

d2
Tr(Ẽ†(Ẽ(I))).

The above allows to re-write the unitarity as u(E) = d
d2−1

(
Tr(Ẽ†(Ẽ(I/d))− Tr(E(I/d)2)

)
. Sup-

pose that |em〉 is an orthonormal basis for the environmentHE , then we have:

Tr(Ẽ†Ẽ(I/2)) =
∑

m,n

Tr(Ẽ†(|em〉〈en|)〈em|Ẽ(I/d)|en〉) (5.22)

=
∑

m,n,j

〈j|Ẽ†(|em〉〈en|)|j〉〈em|Ẽ(I/d)|en〉

=
∑

m,n

〈en|Ẽ(I)|em〉〈em|Ẽ(I/d)|en〉

= dTr(Ẽ(I/d)2).

Substituting this into the unitarity formula we get the required result.

5.3.2 Symmetry constraints

Symmetry constraints impose extra structure that gives a simple operational formulation for

the unitarity of a symmetric quantum process E . For any such channels the Kraus operators

transform as irreducible tensor operators and therefore we can label them by j,m, α with j

labels the j-irrep in U ⊗ U∗ of multiplicity α, and m a vector component that ranges from 1 to

the dim(j). Therefore any symmetric channel under the adjoint action of U on superoperators
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admits a Kraus decomposition of the form:

E(ρ) =
∑

j,m,α

Aj,m,αρA
†
j,m,α (5.23)

where
∑

j,m,αA
†
j,m,αAj,m,α = I and they transform as U(g)Aj,m,αU(g)† =

∑
m′ v

j
m′m(g)Aj,m′,α

for all g ∈ G.

We can similarly express the complementary channel Ẽ of E in terms of the above Kraus

operators. The environment systemHE has an orthonormal basis that we label correspondingly

by {|j,m, α〉}j,m,α which has dimension equal to the number of Kraus operators. ThenHE with

the isometry V : H −→ H⊗HE given by V =
∑

j,m,α |j,m, α〉 ⊗Aj,m,α is a Stinespring dilation

with E(ρ) = TrEV ρV
†. Therefore the complementary channel (which will be also symmetric)

will take the form of:

Ẽ(ρ) =
∑

j,m,j′,m′

|j,m, α〉〈j′,m′, α′|Tr(ρA†j′,m′,α′Aj,m,α). (5.24)

Since the Kraus operators form a system of irreducible tensors this implies that in particular they

are orthogonal with respect to the Hilbert-Schmidt inner product, but not necessarily normalised.

Equivalently this means that Tr(A†j′,m′,αAj,m,α) = δjj′δmm′Tr(A†j,m,αAj,m,α). Therefore we get

the following

Ẽ(I/d) =
∑

j,m,α

1

d
|j,m, α〉〈j,m, α|Tr(A†j,m,αAj,m,α) (5.25)

with the corresponding purity given by:

Tr(Ẽ(I/d)2) =
1

d2

∑

j,m,α

Tr(A†j,m,αAj,m,α)2. (5.26)

We can denote by Ej,m,α := A†j,m,αAj,m,α which forms a POVM giving rise to the following

probability distribution p(j,m, α) = Tr(A†j,m,αAj,m,α)/d. This allows a compact formulation for

unitarity, that takes into account the symmetry constraints on E as described in terms of Kraus

operators. Therefore we obtain:

u(E) :=
d2

d2 − 1

∑

j,m,α

p(j,m, α)2 − dTr(E(I/d)2)

d2 − 1
. (5.27)
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Figure 5.2: Spin polarization of an environment.
Under a symmetric open systems dynamics, the expectation values of the angular momentum
can either decrease or increase. A rotationally symmetric channel that achieves maximal inver-
sion of polarisation will have a complementary symmetric channel that maximally increases
spin.

5.4 Maximal deviations from conservation laws for spin systems

Can angular momentum increase under symmetric dynamics? Suppose for example that the

generators of the symmetry in question are the spin angular momenta S = (Sx, Sy, Sz) along

Cartesian coordinates x, y, z acting on a qubit system. An initial state of the qubit system

takes the form ρ = 1
2(I + P · S) where P is the spin polarization (or equivalently the Bloch

vector for single qubit systems). Any symmetric quantum operation E can only change the

magnitude of the polarization vector and not the angles relative to the coordinate system such

that P
E−→ P′ = f1P holds for any P. There are fundamental limitations that bounds the

values of f1 to the interval f1 ∈ [−1
3 , 1]. The extremal channel that gives a factor of f1 = −1/3

corresponds to the optimal approximate universal NOT operation:

E− 1
3
(ρ) =

I
4

+
3

4
(σXρσX + σY ρσY + σZρσZ) . (5.28)

However, every symmetric quantum operation can be realised by a symmetric unitary operation
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acting on the initial system and an environment in a symmetric state. Additionally, the expecta-

tion values of the angular momenta are conserved under symmetric unitary dynamics. It follows

that the environment that implements E−1/3 becomes heavily polarised. The complementary

channel Ẽ−1/3 captures the flow of angular momenta from the qubit system into the environment.

While Ẽ−1/3 is a symmetric channel the expectation value of the spin increases by 4/3 so that for

any ρ with 〈S〉ρ = 1 then 〈Senv〉Ẽ−1/3(ρ) = 4
3 . Therefore, while Ẽ−1/3 is symmetric, the expectation

value of the angular momentum increases. Alternatively this example also illustrates that the

angular momentum operators are not asymmetry monotones.

Quantifying how much can spin angular momentum be reversed under a symmetric dynamics

is equivalent to determining the maximal deviation from a conservation law. The two concepts

are different facets of the same coin and allow for a characterisation (at least for particular

types of symmetries) of what is the maximal departure from Noether’s theorem when we allow

symmetric open system dynamics.

In this section, particularly subsections and we fully describe the set of extremal symmetric

channels for spin systems. The analysis extends to symmetries for general (Lie) groups G, as

long as the operator spaces have a multiplicity-free decomposition.

Further, such an analysis will be useful in both determining the maximal spin reversal, or

equivalently the maximal deviation from a conservation law as well as a quantitative trade-offs

between decoherence from unitary dynamics and deviations from conserved quantities.

5.4.1 Simplex representation of symmetric channels with multiplicity-free irreducible

decomposition of the operator space

In here we show that the Liouville representation for particular types of symmetries takes on a

simple characterisation where every symmetric channel corresponds to a vector in a complex

vector space with the set of all symmetric channels forming a simplex.

If E ∈ S(H,K) is symmetric with respect to unitary representations U and U ′ of group G acting

onH and K respectively, then equivalently its Liouville matrix L(E) commutes with the group

action:

(U ′ ⊗ (U ′)∗)(g)L(E) = L(E)(U ⊗ U∗)(g) (5.29)

for all g ∈ G. Because of the above relation, the Liouville matrix takes on a block structure with
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each block corresponding to a irreducible representation (and its multiplicity space) that appears

in the decomposition of both U ⊗ U∗ and U ′ ⊗ (U ′)∗. Without loss of generality these tensor

representations decompose respectively asH⊗H∗ ∼=
⊕

λHλ⊗Cmλ andK⊗K∗ ∼=
⊕

λHλ⊗Cnλ

where the group acts trivially on the multiplicity spaces, and Hλ are carrier spaces for the

λ-irreducible representations that appear in each decomposition. Then Schur’s lemma implies

that the Liouville operator acts non-trivially only on the multiplicity spaces:

L(E) =
⊕

λ

I(λ) ⊗ Lλ (5.30)

where λ ranges over all irreps that appear in both U ⊗ U∗ and U ′ ⊗ (U ′)∗ with Lλ a non-trivial

nλ ×mλ matrix with mλ and nλ the dimension of the multiplicity space of the λ irrep in U ⊗ U∗

and U ′ ⊗ (U ′)∗ respectively.

We focus on quantum channels E : B(H) −→ B(K) where the unitary representation U and U ′ of

the groupG act onH andK such that both B(H) and B(K) have multiplicity-free decompositions

into irreducible components. Under such constraints, for any symmetric E its Liouville matrix

L(E) is block diagonal and each block is proportional to the identity. For example this occurs for

the group SU(2), wheneverH and K carry irreducible representations.

Theorem 5.4.1. Let G be a group with U and U ′ unitary representation of the Hilbert spacesH and K
of dimension dH respectively dK. Suppose that B(H) and B(K) have multiplicity-free decompositions

into irreps. Then if E ∈ S(H,H) is a symmetric operation the following hold:

i) The Liouville representation of E has the form:

L(E) =
⊕

λ

fλ I(λ) (5.31)

for some complex coefficients fλ ∈ C, where λ labels the irreducible representations in U ⊗U∗ and I(λ) is

the identity acting on the subspace of dimension dim(λ).

ii) With respect to a complete basis of irreducible tensor operators1 {T λk }λ,k and {Sµm}µ,m for B(H)

respectively B(K) then the symmetric operation E acts on a state ρ ∈ B(H) as:

E(ρ) =
I
dK

+
∑

λ

fλr
λ · Sλ (5.32)

1Note that the irreducible tensor operators must be chosen in such a way as to transform according to the same
matrix coefficients. Otherwise the λ-block in L(E) will not be the identity matrix but rather a unitary (corresponding
to the isomorphism between λ-irrep subspaces of B(H) and B(K)).
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where the vector of coefficients rλ is defined by rλk := Tr(ρ(T λk )†) such that ρ = I
dH

+
∑

λ rλ ·Tλ.

Proof. i) Since B(H) and B(K) have a multiplicity free decomposition into irreps then in equation

(5.30) the operators Lλ are one-dimensional as they act on the multiplicity space and therefore

correspond to a single complex number fλ. Hence the Liouville operator L(E) is given by:

L(E) =
⊕

λ

fλ Iλ (5.33)

where λ ranges over all irreps that appear in both U⊗U∗ and U ′⊗U ′∗. Note that L(E) is a d2
H×d2

K

matrix which is zero when restricted to linear maps betweenHλ andHµ with non-isomorphic

representations λ 6= µ.

ii) From the definition of the Liouville representation L(E)|A〉〉 = |L(E(A))〉〉 and its block

structure in equation (5.30) for symmetric operations E it follows that in such a case it maps the

irreducible tensor operator basis {T λk }λ,k for B(H) and {Sλk }λ,k for B(K) accordingly such that

E(T λk ) = fλS
λ
k for all λ and k. More generally it follows that any symmetric operation E , where

B(H) and B(K) have a multiplicity-free decomposition into irreps takes the form:

E(ρ) =
∑

λ

fλ

(∑

k

Tr((T λk )†ρ)Sλk

)
(5.34)

for any ρ ∈ B(H).

The above result implies that to any symmetric operation E ∈ S(H,K) one can associate a vector

of complex coefficients f := (..., fλ, ...) with dimension equal to the number of irreps common for

the decompositions of B(H) and B(K). We emphasize that the coefficients fλ are associated with

the whole λ-irrep subspace, so they are independent on the particular choice of the orthonormal

operator basis. In this sense they are uniquely associated to the given symmetric channel E .

The identity operator in B(H) and B(K) are symmetric under the group action so they span the

trivial subspaces. Since the decomposition is multiplicity free it follows that E(I) = f0I. For

trace preserving operations we get f0 = 1.

For the group G = SU(2) it is always the case that there is a choice of a complete set of hermitian

irreducible tensor operators so that in this case L(E) is hermitian and the coefficients fλ are

real. Moreover, imposing complete positivity on E leads to a set of convex inequalities on the

coefficients fλ such that {f(E) : E symmetric} forms a simplex.
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Figure 5.3: SU(2)-invariant qutrit channels.
For a qutrit H with 1-irrep of SU(2) the operator space decomposes B(H) ∼= 0 ⊕ 1 ⊕ 2. Any
symmetric operation has a Liouville representation with three diagonal blocks and acts as a
multiple of identity on the corresponding subspaces. The coordinates f1 and f2 correspond
to the 1-irrep respectively 2-irrep blocks. The set of all channels is determined by the allowed
regions for f1 and f2 as imposed by the CPTP conditions and is the convex hull of three extremal
channels. Contour plot shows unitarity levels for the corresponding channels.

Example 5.4.2. For a qutrit H ∼= C3 carrying the 1-irrep of SU(2) there are three extremal channels

Φ0, Φ1 and Φ2 which are respectively characterised by the parameters f0 = (1, 1), f1 = (1
2 ,−1

2) and

f2 = (−1
2 ,

1
10). Note that f0 corresponds to the identity channel – the only symmetric unitary operation.

5.4.2 Liouville representation of extremal SU(2)-symmetric channels

We consider SU(2) irreducibly symmetric channels E : B(Hj1) −→ B(Hj2) with highest weights

(half integers) j1 and j2 labelling the respective irreducible representations. Denote by C(j1, j2)

the set of all such symmetric channels. Then there is a full characterisation of the extremal points

of C(j1, j2) – these have been previously analysed in [114]. In the last section 5.6.1 of this chapter

we give an overview of that work by setting it in an information-theoretic language and give

simplified proofs. We summarise those results in the following.

Theorem 5.4.3. Let Φ : B(Hj1) −→ B(Hj2), where Hj1 and Hj2 carry irreducible representations

V j1 and V j2 of SU(2) with dimensions 2j1 + 1 respectively 2j2 + 1. The set of all such symmetric

quantum operations C(j1, j2) has 2 max(j1, j2) + 1 extremal points Φl ∈ S(Hj1 ,Hj2), each labelled by
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l ∈ {|j1 − j2|, |j1 − j2|+ 1, ..., j1 + j2} such that:

Φl(|j1, n〉〈j1,m|) =

l∑

k=−l
〈j2,m− k; l, k|j1,m〉〈j2, n− k; l, k|j1, n〉|j2, n− k〉〈j2,m− k| (5.35)

where {|j1,m〉}j1m=−j1 and {|j2,m〉〉}j2m=−j2 are orthonormal basis forHj1 andHj2 respectively.

However since the input and output spaces carry irreducible representations j1 and j2 of

SU(2) this means that the decomposition of the operator spaces into irreducible components

is multiplicity free and therefore the previous results on the structure of the corresponding

Liouville representation holds.

For each extremal channel Φl there is a corresponding unique vector f l of real coefficients.

Therefore each of the vectors f l represent the extremal points that form a simplex in Rd, where

d = 2min(j1, j2). Since we have a full characterisation of the channels Φl then we can give closed

form formulas for the vectors f l in terms of Clebsch-Gordan coefficients. In doing so, we will

make use of the Wigner-Eckart theorem.

Theorem 5.4.4. Let {T λk }k,λ and {Sλk }λ,k be complete sets of orthonormal irreducible tensor operators

for B(Hj1 and B(Hj2). Then the extremal channels Φl ∈ S(Hj1 ,Hj2) are:

Φl(ρ) =
∑

λ

f lλ

(∑

k

Tr((T λk )†ρ)Sλk

)
(5.36)

where the coefficients f lλ of the vector f l corresponding to channel Φl take the form:

f lλ =
〈j1||T λ||j1〉
〈j2||Sλ||j2〉

l∑

s=−l

〈j1, j2 + s;λ, 0|j1, j2 + s〉
〈j2, j2;λ, 0|j2, j2〉

〈j2, j2; l, s|j1, j2 + s〉2. (5.37)

To simplify the exposition, we prove this theorem at the end of the present chapter in section

5.6.2

5.4.3 Unitarity of SU(2)-symmetric dynamics

For symmetric operations acting on an irreducible space under SU(2), it follows that the unitarity

admits a simple formula. Suppose thatHJ carries the J-irrep of dimension 2J + 1. Since SU(2)
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is simply connected, there is a one-to-one correspondence with representations of the Lie algebra

su(2) such that the symmetry on HJ has the generators {Jx, Jy, Jz}. In physical terms these

correspond to angular momentum operators onHJ along the three Cartesian axis.

Any symmetric operation E : B(HJ) −→ B(HJ) acting on such a system admits Kraus operators

{Aj,m}where j labels irreps in B(HJ) with j ∈ {0, 1, ..., 2J} and the vector component label is

an integer m ∈ [−j, j]. For SU(2) the commutation relations with the generators take the form:

[Jz, Aj,m] = mAj,m

[J±, Aj,m] =
√

(j ∓m)(j ±m+ 1)Aj,m±1 (5.38)

where in the above we have defined the ladder operators J± := Jx±iJy. Therefore the directional

deviations are given by

∆z(ρ, E) =
∑

j,m

mTr(ρA†jmAjm) (5.39)

∆±(ρ, E) =
∑

j,m

√
(j ∓m)(j ±m+ 1)Tr(ρA†j,mAj,m±1)

where ∆x = (∆+ + ∆−)/2 and ∆y = (∆+ −∆−)/2i. More specifically we have that

∆z(ρ, E) =
∑

j,m

p(j,m|ρ)m =
∑

m

p(m|ρ)m = 〈Qz〉ρ, (5.40)

where p(m|ρ) =
∑

j p(j,m|ρ) =
∑

j Tr(Ej,mρ) is the probability distribution for the measure-

ment on state ρ and Ej,m = A†j,mAj,m.

In the case of irreducible SU(2) symmetric operations we have that E is always a unital channel,

and the decomposition is multiplicity free so that the unitarity becomes simply:

u(E) =
1

d2 − 1


d2

∑

j,m

p(j,m)2 − 1


 (5.41)

where we recall that the probability is p(j,m) = p(j,m| I/d) = Tr(A†j,mAj,m)/d. Additionally,

this can be interpreted as the measurement probability distribution of output state of the comple-

mentary channel acting on the maximally mixed state, that is p(j,m) = Tr(Ẽ(I/d)|j,m〉〈j,m|).

We can think of this as describing the coherent flow of information into the environment.
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Alternatively, p(j,m) can be related to the coefficients for E in the Liouville representation.

Recall from section 5.4.2 that any symmetric channel E has an associated vector of 2J coefficients

f(E) = (f1, ..., f2J). The Liouville representation is block diagonal on each irrep in j ⊗ j∗ that

decomposes B(H) into irreducible subspaces and moreover fj = Tr(A†jmAjm) is independent of

m. The unitarity for an SU(2) - irreducibly symmetric channel can be recast as:

u(E) =
1

d2 − 1




2J∑

j=1

(2λ+ 1)f2
j


 . (5.42)

5.4.4 Maximal spin reversal under symmetric dynamics

The spin polarisation P is a vector whose components are the expectation values of the spin

operators along the three spatial components of Cartesian axis S = (Sx, Sy, Sz).

For a spin-1/2 particle the spin operators are related to the Pauli matrices such that S = ~
2σ,

which transforms irreducibly under the action of SU(2) according to the fundamental irreducible

representation of SO(3). The spin polarisation cannot be universally reversed such that P −→
−P for all states under a valid CPTP map E . However, the optimal approximate UNOT operation

maps P −→ −1
3P so that we can say that for spin-1/2 particle the maximal spin reversal can be

achieved by a factor of 1
3 .

How much can higher dimensional spins be universally reversed under a symmetric dynamics?

What is the maximal spin reversal for quantum operations between different spin systems?

These questions, while of interest on their own, are connected with the maximal deviations

from conservation laws under a symmetric dynamics. The connection lies in the fact that the

symmetric channels that achieves maximal spin reversal will also give the maximal deviation

from a conservation law and vice-versa. We address these questions using the previous results

on extremal channels with SU(2) irreducible symmetry.

For higher dimensional spin j system with Hilbert space Hj , the spin operators in Cartesian

coordinates Sx, Sy, Sz are observables in B(Hj) that satisfy the same commutation relations as

the Pauli matrices. These can also be viewed as generators in the su(2) Lie algebra representation

corresponding to the unitary J-irrep of SU(2) onHj . The Pauli matrices transform as gσg† =

V 1(g)σ for all g ∈ SU(2) where V 1 is the 1-irrep of SU(2) . Therefore the spin operators

S(j) = (Sx, Sy, Sz) will similarly transform as V j(g)S(V j(g))† = V 1(g)S for all g ∈ SU(2) where
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V j is the unitary j-irrep onHj .

For any state ρ ∈ B(Hj) we can define the spin polarisation vector P(ρ) = (Px(ρ), Py(ρ), Pz(ρ))

to be the expectation values of the spin operator along the cartesian axis. That is Pa(ρ) := Tr(Saρ)

for a ∈ {x, y, z}.

Under a symmetric quantum operation E : B(Hj1) −→ B(Hj2) we ask what is the maximal spin

reversal factor f such that P
E−→ −fP? Equivalently for any ρ ∈ B(Hj1)

Tr(E(ρ)S(j2)) = −fTr(ρS(j1)) (5.43)

and the aim is to determine a symmetric channel E for which f is maximised. The spin opera-

tors span the 1-irrep subspace in the decomposition of B(Hj1) respectively B(Hj2) into irreps.

According to the results section 5.4.1 and theorem 5.4.1, the λ-irrep component is mapped under

E into the λ-irrep component in a rigid way with some scaling coefficient fλ for each irrep λ.

Therefore, we have with this notation that −f = f1 where f1 is the coefficient corresponding to

the 1-irrep subspace.

Any symmetric E can be written as a linear combination of extremal channels:

E(ρ) =
∑

l

plΦl(ρ) (5.44)

where pl ≥ 0 and
∑

l pl = 1. Each extremal channel is associated with a vector of coefficients f l

with f l1 corresponding to the 1-irrep. Suppose that f corresponds to E , then its 1-irrep coefficient

is f1 =
∑

l plf
l
1. The aim is to minimise f1 (equivalently maximise f = −f1) over all probability

distributions. In effect, we are optimizing over a convex region and therefore the minimum will

be attained on the boundary. In this case it will be given by one of the extremal points so that:

f = max(−f1) = min{pl}
∑

l

plf
l
1 = f lmax

1 (5.45)

for some lmax. We show in the appendix that lmax = j1 + j2 and summarise the result in the

following theorem.

Theorem 5.4.5. The maximal spin polarisation reversal is achieved by an SU(2)- irreducibly extremal

channel E = E(j1+j2) : B(Hj1) −→ B(Hj2) and therefore for any state ρ the sign of the expectation value
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Figure 5.4: Maximal spin reversal under symmetric dynamics for 1/2-spin particle and j-spin
particle.

of spin angular momentum is reversed by a factor of

P(E(ρ)) = − j2
j1 + 1

(2j2 + 1)

(2j1 + 1)
P(ρ). (5.46)

If the input and output systems have the same dimension j1 = j2 then then maximal spin reversal takes

the simple form:

P(E(ρ)) = − j

j + 1
P(ρ). (5.47)

It follows that the maximal spin reversal is achieved by the extremal channel that requires the

largest environment. Indeed, for every extremal channel Φl, its minimal Stinespring dilation

(and thus the number of Kraus operators) has dimension 2l+1. Consequently, this means that the

larger the environment, the more spin can be reversed. Note that in the ”classical” macroscopic

limit j1 = j2 = j −→ ∞we get f −→ −1 so that indeed spin can be perfectly reversed. While

for finite dimensional systems perfect reversal of spin is not allowed by quantum theory, the

above results give fundamental limits on maximal spin reversal under any valid symmetric

quantum process.

Similarly, one can ask what is the maximal scaling of the spin polarisation vector for any fixed

state and what covariant operation achieves the maximal spin amplification factor

A := maxpl
∑

l

plf
l
1 (5.48)
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As before, the maximum is attained on the boundary, and in the appendix we show that the

extremal channel Φ|j1−j2| achieves this and compute the factor f |j1−j2|1 .

Theorem 5.4.6. The maximal spin amplification under E : B(Hj1) −→ B(Hj2) is achieved by an SU(2)-

irreducibly covariant extremal channel E = Φ(|j1−j2|) such that for any state ρ the expectation value the

spin angular momentum scales by a factor of either:

i) if j1 > j2

A =
j2
j1

(5.49)

ii) if j2 < j1

A =
j2 + 1

j1 + 1
(5.50)

iii) if j1 = j2 then A = 1 where

P(ρ)
E−→ P(E(ρ)) = AP(ρ). (5.51)

Both of these results are derived in full detail in the last section of this chapter, respectively in

subsections 5.6.3 and 5.6.4 and are a consequence of theorem 5.4.4.

5.4.5 Maximal deviation for spin angular momentum conservation

The results from the previous sections can be directly used to determine deviations from

conservation laws of spin angular momentum. While we have defined quantifiers to probe

this for operations with the same input and ouput system, the generalisation to different

systems is straightforward. Let E : B(Hj1) −→ B(Hj2) be a symmetric quantum operation

and suppose that the generators of the j1 irrep onHj1 and respectively j2 irrep onHj2 . These

generators correspond to spin angular momentum operators Sx, Sy, Sz for the input system

respectively Tx, Ty, Tz for the output system. Then the deviation along direction k ∈ {x, y, z}
from a spin conservation law for the symmetric dynamics E acting on initial state ρ is given

by ∆k(ρ, E) = Tr(E(ρ)Tk)− Tr(ρSk). Suppose that f corresponds to the diagonal factors in the

Liouville representation of E . Then since the spin operators transform as the 1-irrep of SU(2)

it follows that for all ρ ∈ B(H) we have E(Sk) = f1Tk, and since this is hermitian f1 ∈ R and

therefore Tr(E(ρ)Tk) = f1Tr(ρSk) so that:

∆k(ρ, E) = (f1 − 1)Tr(ρSk) (5.52)
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Which means that the average deviation will be:

∆(E) = (f1 − 1)2
∑

k

∫
〈ψ|Sk|ψ〉2dψ = (f1 − 1)2 3

2j1(2j1 + 1)
(5.53)

We have seen that f1 ∈ [f
|j1−j2|
1 , f j1+j2

1 ]. Notice that the maximum deviation ∆(E) will be

achieved by the minimal negative value possible for f1. It follows that:

∆(E) =

(
1 +

j1
j2 + 1

√
j2(j2 + 1)(2j1 + 1)

j1(j1 + 1)(2j2 + 1)

)2

3

2j1(2j1 + 1)
(5.54)

Equivalently, maximal deviation from a conservation law for spin system is achieved by a

symmetric operation that maximally reverses spin.

In this case it is interesting to compare the average deviation from a conservation law with the

unitarity given in equation (5.42) and we investigate in the following section the relationship

between these two quantities.

5.5 Trade-off relations between unitarity and deviation from conser-

vation laws

Building up on the results developed so far in this chapter we address the core question

of interest, namely how to quantify the departure from conservation laws under symmetric

dynamics subject to environment interactions. How robust to errors are conservation laws?

We expect the deviations from conservation laws to be small under a symmetric dynamics that

approximates unitary dynamics within a small error. Intuitively this is analogous to the classical

case, where a small amount of dissipation has only a small effect on the the departure from

conservation laws. Does the converse also hold in the quantum setting ? In other words if

we measure small errors in the conservation laws what does this say about the unitarity of

the dynamics? A first step towards analysing this is to characterise those symmetric quantum

operation for which conservation laws hold exactly but are not unitary.

In particular notice that ∆(ρ, E) = 0 if and only if all generators are conserved i.e ∆k(ρ, E) = 0.

Whenever E is a symmetric unitary process U , then Noether’s theorem ensures that we have

∆(ρ,U) = 0 for all ρ ∈ B(H). In general, even if E is a symmetric operation but not unitary, then

150



we expect ∆(ρ, E) 6= 0. Small perturbations from a unitary dynamics should result in small

corrections to the conservation laws. Our aim is to characterise when each of the following two

qualitative statements hold:

• If E is close to a symmetric unitary then the deviation from a conserved law ∆(ρ, E) is

small for all ρ.

• If the deviation ∆(ρ, E) is small then E is close to a symmetric unitary.

5.5.1 Dynamics that approximates symmetric unitary have approximate conserva-

tion laws

We consider Hilbert systems H that carry a representation of a Lie group that has generators

J1, ..., Jn. Given any symmetric unitary U it commutes with the generators of the symmetry and

∆k(ρ,U) = 0 so that we can write for all quantum operations E : B(H) −→ B(H):

|∆k(ρ, E)| = |∆k(ρ, E)−∆k(ρ,U)| = |Tr((U − E)(ρ)Jk)|.

For any two matrices A and B, Hølder’s inequality holds for the Schatten p-norms such that

|〈A,B〉| ≤ ||A||1||B||∞. Therefore from the above we get the following upper bound for all k

and ρ:

|∆k(ρ, E)| ≤ ||(U − E)(ρ)||1||Jk||∞ (5.55)

≤ ||U − E||♦||Jk||∞ (5.56)

where the last inequality is state-independent and follows directly from the definition of the

diamond norm.

Recall that the deviation from a conservation law is ∆l2(ρ, E) =
∑

k |∆k(ρ, E)|2 and it follow

from the above that it has a state-independent upper bound:

∆(ρ, E) ≤ ||U − E||2�
∑
||Jk||2∞. (5.57)

Since the bound does not depend on the state ρ then it holds equally well for the maximal and

average deviations from a conservation law under the dynamics given by E . We summarise
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these in the following lemma.

Lemma 5.5.1. Given an operation E : B(H) −→ B(H), where the Hilbert spaceH carries a Lie group

representation with generators {J1, ..., Jn}. Then for any symmetric unitary U :

∆(E) ≤ ∆max(E) ≤ ||U − E||2�

(
n∑

k=1

||Jk||2∞

)
(5.58)

The above analysis tells us that for any dynamics E that is difficult to distinguish from a

symmetric unitary then all the conservation laws hold within a small threshold error.

If E is a channel that approximates a symmetric unitary dynamics such that ||U − E||2� ≤ ε for

some small ε > 0, then lemma 5.5.1 above implies that the deviation from the conservation law

is also small such as ∆(E) ≤ Cε), where C is a constant determine by the operator norm of the

generators. In essence approximations of symmetric unitary dynamics lead to approximate

version of Noether’s theorem.

In the next subsection we determine under what conditions does the converse hold, meaning that

we are determining when approximate conservation laws lead to small amount of decoherence,

under a symmetric open system dynamics.

5.5.2 When do conservation laws hold (beyond unitary dynamics)?

Clearly it holds true that for symmetric unitary evolutions the generators of the symmetries are

conserved, but what about non-unitary symmetric dynamics for which the conservation laws

hold? In the following we explain how this situation may occur.

We use the following result from theorem 4.25 in [115]: Let Φ : B(H) −→ B(H) be a unital CPTP

map such that it has Kraus decomposition Φ(X) =
∑

iAiXA
†
i for any X ∈ B(H). Then it holds that

Φ(X) = X if and only if [X,Ai] = 0 for all i.

Suppose E is a symmetric channel; we want to characterise E for which all the charges Jk are

conserved and therefore satisfy ∆l2(ρ, E) = 0 for all states ρ ∈ B(H). Equivalently, Tr(ρJk) =

Tr(E(ρ)Jk) for all k and all ρ ∈ B(H). Correspondingly, the adjoint channel E† that represents E
in the Heisenberg picture satisfies E†(Jk) = Jk for all k. Note that if E is a CPTP map then E† is

CP and unital.
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Recall that any symmetric channel E admits a Kraus decomposition {Aj,m,α}j,m,α where j

labels irreps in B(H) of multiplicity α and vector component m. Then it follows that E†(X) =
∑

j,m,αA
†
j,m,αXAj,m,α. If in addition E† is trace-preserving (or equivalently E is unital) then the

result stated above applies directly. Therefore E†(Jk) = Jk holds if and only if [Aj,m,α, Jk] = 0

for all j,m, α and k.

Since from symmetry considerations the Aj,m,α form irreducible tensor operators the com-

mutation relation implies that E contains only those Kraus operators that transform trivially

and therefore j = 0 (and consequently m = 0). In conclusion, for unital symmetric channels

conservation laws hold if and only if E takes the form:

Econserved(ρ) =
∑

α

A0,αρA
†
0,α (5.59)

where each Kraus operator A0,α commutes with the group action and satisfies
∑

αA
†
0,αA0,α =

∑
αA0,αA

†
0,α = I.

The above consideration fully work out the case of when conservation laws hold for a unital

symmetric dynamics E . In general it may also be possible for conservation laws to hold for

non-unital operations, but a full characterisation of the dynamics for which this happens remains

open.

Whenever B(H) contains a single trivial subspace then there is no symmetric channel other

than identity for which conservation laws hold. This is the case for instance whenH carries an

irreducible representation of SU(2).

The following provides an example of a non-unitary symmetric dynamics E for which all con-

servation laws relevant for the symmetry hold. This illustrates that probing conservation laws

for a physical realisation of a symmetric dynamics is not always sufficient to decide if there are

decoherence effects present.

Example 5.5.2. Consider a two qubit system where the first qubit transforms under the 1/2-irrep of

SU(2) and the second transforms trivially. The conserved charges generating the symmetry are the spin

operators on the first system. Let EAB(ρ⊗ σ) := ρ⊗ EB(σ). This is covariant under the symmetry, the

conservation laws hold for all states, however it is not a unitary operation as we are free to choose any

CPTP EB on system B.

As we shall see in the next section, there are particular types of symmetries which guarantee a
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certain robustness to conservation laws. In such cases, approximate conservation laws hold if

and only if the dynamics is close to a unitary symmetric evolution.

5.5.3 Spin systems: approximate deviations from conservation laws lead to approx-

imate symmetric unitary dynamics

In this subsection we will restrict to SU(2) symmetry given by the j-irrep of dimension d = 2j+1

action on H and we probe for conservation of spin along the directions given by a cartesian

reference frame. Then, as described in Section 5.4.2 any symmetric channel E will be described

entirely by the coefficients fλ for λ an irrep in j ⊗ j∗. Therefore E has an associated vector of

2j coefficients f(E) = (f1, ..., f2j). Recall that the Liouville representation is block diagonal on

each irrep in j ⊗ j∗ that decomposes B(H) into irreducible subspaces and we have seen that the

unitarity of such a channel is given by:

u(E) =
1

d2 − 1

(
2j∑

λ=1

(2λ+ 1)f2
λ

)
. (5.60)

Similarly the average deviation was evaluated in section ?? to be:

∆(E) = (f1 − 1)2C(d) (5.61)

for a constant factor C(d) = 3
d(d−1) .

Theorem 5.5.3. Suppose that E is an SU(2)-irreducible covariant operation for which the average

deviation from spin conservation is upper bounded by ∆(E) ≤ ε2C(d) for some small ε > 0. Then the

unitarity of E is:

u(E) = 1−O(ε) (5.62)

Proof. We aim to show that if ∆(E) ≤ ε2C(d) for some small ε then unitarity of E is close to

1. We have equivalently that |f1 − 1| ≤ ε, and therefore f1 = 1 + O(ε). However the vertex

(1, 1, ..., 1) ∈ Rd−1 forms an extremal point of the simplex of covariant operations and represents

the identity channel. Moreover we can show from the exact formulas for the SU(2) extremal

channels that |fk| ≤ 1 for all k and if f1 = 1 then the only valid CPTP channel is the identity.

Then (for any ε ≤ 1
j(2j+1) ) the hyperplane f1 = 1− ε separates the vertex (1, 1, ..., 1) from the rest

of the d− 2 extremal points, which we will denote by the vectors x1, ...,xd−2. Suppose that the
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line that connects each extremal point xl with (1, 1, ..., 1) intersects the hyperplane at point yl.

The latter satisfies ylk = 1− ε1−xlk
1−xl1

. Any covariant channel with coordinates f = (f1, f2, ..., fd−1)

for which |f1 − 1| ≤ ε will lie in the simplex generated by (1, 1, ..., 1) and the points yl for l

ranging from 1 to d− 2. Since the factors 1−xlk
1−xl1

are constant and fixed by the dimension of the

system, this implies that necessarily f = (1−O(ε), ..., 1−O(ε)). Hence the unitarity is close to

one u(E) = 1−O(ε).

The lemma above illustrates that some form of robustness of conservation laws may be expected

even in the presence of decoherence for particular types of symmetries. In such cases small

deviations from conservation laws imply that the symmetric dynamics involved is approximately

unitary. Generally however t here are significant limitations when the operator spaces contain

trivial subspaces with dimension greater than one as we have shown in the preceding section.

5.6 Supplementary Results

This section contains some supplementary results and calculations that have been used in the

present chapter.

5.6.1 Extremal irreducible SU(2)-symmetric channels

We focus on the group SU(2) acting irreducibly on the input and output Hilbert spaces and

describe the extremal points of the set of symmetric channels under this group action. These

have been examined in detail in previous literature under the name of EPOSIC channels [114].

The results in this subsection provide an overview of that work and we give alternative simpler

proofs for some of the results, by casting it into a quantum-information friendly notation.

Consider a covariant quantum channel Φ : B(Hj1) −→ B(Hj2) whose input and output spaces

carry irreducible representations of SU(2) labelled by the highest weights j1 and j2 respectively.

Recall that all irreducible representations of SU(2) are indexed by highest weights that are half

integer numbers i.e 0, 1/2, 1, 3/2, ... and the carrier spaces correspond every possible dimension.

The input spaceHj1 has dimension 2j1+1 andHj2 has dimension 2j2+1. If we denote byUj1 and

Uj2 the corresponding representations associating to every group element g an operator acting

on Hj1 and Hj2 respectively then since Φ is SU(2)-covariant it satisfies Uj2(g)Φ(ρ)Uj2(g)† =
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Φ(Uj1(g)ρUj1(g)†) for all g ∈ SU(2). We will denote by C(j1, j2) the convex set of all such

SU(2) symmetric quantum channels. The corresponding Choi matrix J(Φ) : Hj1 ⊗ Hj2 −→
Hj1 ⊗Hj2 defined via J(Φ) := Id⊗ Φ(|vec(I)〉〈vec(I)|) satisfies the covariance relation given by

[Uj1(g)⊗ U∗j2(g), J(Φ)] = 0 for all g ∈ SU(2). Moreover it satisfies the trace-preserving property:

Tr2(J(Φ)) = I. The problem of characterising the extremal points of C(j1, j2) is equivalent to

determining the extremal operators J [Φ] that satisfy the covariance property.For now we focus

on the latter.

Recall the Clebsch-Gordan decomposition of a tensor product of SU(2) irreps into irreducible

components:

j1 ⊗ j2∗ ∼= j1 ⊗ j2 ∼=
j1+j2⊕

l=|j1−j2|
l (5.63)

where each irrep appears with multiplicity at most one. This will be a crucial point of the

analysis. Any Choi operator will act on the tensor product spaceHj1 ⊗Hj2 , and we will show

that for every l-irrep in the unique decomposition above there is an associated extremal point in

the space of operators onHj1 ⊗Hj2 that commute with the group action j1 ⊗ j∗2 .

The following lemma is a straightforward extension of Schur’s lemma that is useful to char-

acterise the structure of operators that commute with a given group action on the input and

output spaces.

Lemma 5.6.1. Suppose that V1 and V2 are representations of SU(2) where each irreducible component in

the decomposition of V1 and V2 has multiplicity one. Then any operator J : V1 −→ V2 that commutes

with the group action is a linear combination of projectors onto each irrep appearing in both V1 and V2.

Proof. By assumption, V1 =
⊕

µ Vµ and V2 =
⊕

λ Vλ decompose into irreps, each appearing

at most once. Then if we restrict J to each irreducible subspace we get Jµ,λ : Vµ −→ Vλ with

J =
⊕

λ,µ Jµ,λ. Because the decomposition is semisimple it means that each Jµ,λ commutes with

the (restricted) group action. By Schur’s lemma this implies that Jµ,λ ∝ δµ,λI. Therefore J is a

linear combination of projectors onto each irrep that appears in both V1 and V2.

Definition 5.6.2. For every integer |j1 − j2| ≤ l ≤ j1 + j2 we define the orthogonal projection

Πl : Hj1 ⊗Hj2 −→ Hj1 ⊗Hj2 onto the l-irrep in the decomposition of j1 ⊗ j∗2 .

Since each Πl projects onto the l-irrep that has dimension 2l+ 1 then Tr2(Πl) = 2l+1
2j1+1I. Therefore

because any projector is a positive operator Πl ≥ 0, we can construct Choi operators Jl :=
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2j1+1
2l+1 Πl that correspond to valid quantum channels (i.e CPTP) Φl : B(Hj) −→ B(Hj). In total

there will be 2 min(j1, j2) + 1 different covariant quantum channels Φl and the following result

shows that they fully characterise the extremal points.

Theorem 5.6.3. Any Choi operator J that satisfies the covariance property [Uj1(g)⊗U∗j2(g), J ] = 0 can

be written as a unique convex combination of the Choi operators Jl for |j1−j2| ≤ l ≤ j1+j2. Equivalently

{Φl : l ∈ [|j1 − j2|, j1 + j2], l ∈ Z} are the extremal points of the set C(j1, j2) of SU(2)-covariant

operations.

Proof. We have that J : Hj1⊗Hj2 −→ Hj1⊗Hj2 with the input and output carrying the Uj1⊗U∗j2
representation of SU(2) that decomposes into irreducible components according to Eqn 5.63.

Moreover J commutes with the group action so according to Lemma 5.6.1 we have that any

Choi operator can be written as J =
∑

l plJl. By the uniqueness of Choi representation, the same

result holds for the corresponding quantum channels.

There is a natural symmetry-adapted orthonormal basis for Hj1 and Hj2 which is given by

angular momentum states {|j1,m〉,−j1 ≤ m ≤ j1} and {|j2,m〉,−j2 ≤ m ≤ j2}. Moreover the

dual states correspond to |j∗,m〉 = (−1)j−m|j,−m〉 for any j and m. This gives the action of the

intertwiner between the j-irrep and j∗-irrep of SU(2) and allows a simple characterisation for

the projection Πl defined previously.

From coupling of angular momentum states we have that:

|l, k〉 =
∑

m,m′

〈j1,m; j2,m
′ |l, k〉|j1,m〉|j∗2 ,m′〉 (5.64)

with −l ≤ k ≤ l form an orthonormal basis for the l-irrep in the decomposition of j1 ⊗ j∗2 where

the coupling Clebsch-Gordan coefficients are real due to the choice of phase (i.e the standard

Condon-Shortley) for the dual states. Then the projection Πl onto the l-irrep subspace in the

decomposition of j1 ⊗ j∗2 takes the form of:

Πl =
l∑

k=−l
|l, k〉〈l, k| (5.65)

Then, by taking into account the connection with the dual states and the Clebsch-Gordan

expansion for states expressed in equation 5.64 we can re-write the projector Πl in terms of the
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standard angular momentum basis states inHj1 ⊗Hj2 .

Πl =
∑

m,n,m′,n′

l∑

k=−l
〈j1,m; j2,m

′ |l, k〉〈j1, n; j2, n
′ |l, k〉(−1)2j2−(m′+n′)|j1, n〉|j2,−n′〉〈j1,m|〈j2,−m′|

(5.66)

To simplify the expressions we can make use of the symmetries for the Clebsch-Gordan coeffi-

cients, namely that: 〈j1,m; j2,m
′ |l, k〉 = (−1)j2−m

′
√

2l+1
2j+1〈j2,−m′; l, k|j1,m〉 together with the

selection rule stating this CGC is non-zero if and only if m+m′ = k. Then above expression for

the projection gives the extremal Choi operators Jl:

Jl =
∑

m,n

l∑

k=−l
〈j2,m−k; l, k|j1,m〉〈j2, n−k; l, k|j1, n〉 |j1, n〉〈j1,m|⊗ |j2, n−k〉〈j2,m−k|. (5.67)

Equivalently, the extremal CPTP channels take the following simple form in terms of their action

on the symmetry-adapted basis:

Φl(|j1, n〉〈j1,m|) =

l∑

k=−l
〈j2,m− k; l, k|j1,m〉〈j2, n− k; l, k|j1, n〉|j2, n− k〉〈j2,m− k| (5.68)

where l ranges from |j1−j2| to j1+j2 giving rise to 2min(j1, j2)+1 different points corresponding

to the full set of extremal covariant channels. Equivalently we can write down for each extremal

channel Φl a set of 2l + 1 Kraus operators Alk :=
∑

n〈j2, n − k; l, k|j1, n〉 |j2, n − k〉〈j1, n| for

−l ≤ k ≤ l.

5.6.2 Simplex representation of irreducibly symmetric extremal channels – A proof

of Theorem 5.6.2

As before, let {T λk }k,λ and {Sµk }k,λ be irreducible tensor operator basis for B(Hj1) and B(Hj2)

respectively. We have that Φl(T
λ
k ) = f lµS

µ
k δµ,λ for any l, λ, µ and k. The vector f l has entries

f lλ with λ ranging from 1 to min(2j1, 2j2); for λ = 0 trace preserving condition implies that

f l0 = 1
2j2+1 is constant for all covariant channels so we will not include it further into the vector

definition of f l.

With respect of the angular momentum states that form basis for Hj1 and Hj2 for any λ-irrep

there exists m′, n′ and k labels such that 〈j2, n′|Sλk |j2,m′〉 6= 0. Therefore we can conveniently
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re-write each coefficient as:

f lλ =
〈j2, n′|Φl(T

λ
k )|j2,m′〉

〈j2, n′|Sλk |j2,m′〉
(5.69)

where we re-iterate that at the core of our previous analysis is that the quantity above is

independent of m′, n′ and k and this followed solely as a consequence of covariance of Φl. The

numerator can be written in an equivalent form by a basis expansion 〈j2, n′|Φl(T
λ
k )|j2,m′〉 =

∑
m,n〈j1, n|T λk |j1,m〉〈j2, n′|Φl(|j1, n〉〈j1,m|)|j2,m′〉. Therefore, by using the specific action of Φl

on angular momentum states given in we obtain that:

f lλ =
∑

m,n

〈j1, n|T λk |j1,m〉〈j2, n′|Φl(|j1, n〉〈j1,m|)|j2,m′〉
〈j2, n′|Sλk |j2,m′〉

=

j1∑

n,m=−j1

l∑

s=−l

〈j1, n|T λk |j1,m〉
〈j2, n′|Sλk |j2,m′〉

〈j2,m− s; l, s|j1,m〉〈j2, n− s; l, s|j1, n〉δn′,n−sδm′,m−s

=

l∑

s=−l

〈j1, n′ + s|T λk |j1,m′ + s〉
〈j2, n′|Sλk |j2,m′〉

〈j2,m′; l, s|j1,m′ + s〉〈j2, n′; l, s|j1, n′ + s〉 (5.70)

To simplify the above expression further we can employ the Wigner-Eckart theorem which says

that the matrix elements of an irreducible tensor operators depends on the vector component

labels only trough the Clebsch-Gordan coefficients. In particular:

〈j2, n′|Sλk |j2,m′〉 = 〈j2,m′;λ, k|j2, n′〉〈j2||Sλ||j2〉 (5.71)

where 〈j2||Sλ||j2〉 is the reduced matrix element which is independent of n′,m′ or k. We can

also write down Wigner-Eckart for the T λk irreducible operator. This leads to the following form

for the vector of coefficients for the extremal channel labelled by l:

f lλ =
〈j1||T λ||j1〉
〈j2||Sλ||j2〉

l∑

s=−l

〈j1,m′ + s;λ, k|j1, n′ + s〉
〈j2,m′;λ, k|j2, n′〉

〈j2,m′; l, s|j1,m′+s〉〈j2, n′; l, s|j1, n′+s〉 (5.72)

In particular, since the above factor has no dependence on the labels m′, n′ and k then we

can take without loss of generality k = 0, m′ = n′ = j2 such that we obtain a much simpler

expression:

f lλ =
〈j1||T λ||j1〉
〈j2||Sλ||j2〉

l∑

s=−l

〈j1, j2 + s;λ, 0|j1, j2 + s〉
〈j2, j2;λ, 0|j2, j2〉

〈j2, j2; l, s|j1, j2 + s〉2 (5.73)
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5.6.3 Maximal reversal of spin polarization for spin j systems

We will consider a particular case when the input and output spaces have the same dimension

and both carry the same irrep j of SU(2). Therefore, by using the specific form that the extremal

channels take for j1 = j2 = j we obtain the following:

f lλ =
l∑

s=−l

〈j, j + s;λ, 0|j, j + s〉
〈j, j;λ, 0|j, j〉 (〈j, j; l, s|j, j + s〉)2 . (5.74)

We characterise the range of values that the coefficient f lλ for λ = 1 takes while varying over all

extremal channels l. These factors correspond to how much the spin polarization can scale (up

or down) under a symmetric operation. We show that − j
j+1 ≤ f l1 ≤ 1 where the upper bound

is attained for l = 1, the identity channel and the lower bound is attained for l = 2j which

corresponds to the extremal channel with the maximal number of Kraus operators. From the

general formula for f lλ above we have that:

f l1 =

l∑

s=−l

〈j, j + s; 1, 0|j, j + s〉
〈j, j; 1, 0|j, j〉 (〈j, j; l, s|j, j + s〉)2 . (5.75)

We can evaluate the Clebsch-Gordan coefficients above since they are much simplified by our

particular choice of irrep λ = 1. We have that 〈j,j+s;1,0|j,j+s〉〈j,j;1,0|j,j〉 = j+s
j and also that (〈j, j; l, s|j, j +

s〉)2 = (2j+1)!(2j+s)!(l−s)!
(2j−l)!(l+2j+1)!(l+s)!(−s)! is non-zero for s ≤ 0 resulting in the following form for the

coefficient associated with spin:

f l1 =
(2j + 1)!

(2j − l)!(l + 2j + 1)!

l∑

s=0

(j − s)(2j − s)!(l + s)!

j(l − s)!s! . (5.76)

It turns out that the above expression can easily be evaluated in terms of products of binomial

coefficients so that:

f l1 =

(
l + 2j + 1

l

)−1
(

l∑

s=0

(
2j − s
l − s

)(
l + s

s

)
− (l + 1)

j

(
2j − s
l − s

)(
l + s

s− 1

))
. (5.77)

We can compute each of the two sums above separately by using combinatorial identities
∑l

s=0

(
2j−s
l−s
)(
l+s
s

)
=
(
l+2j+1

l

)
and

∑l
s=0

(
2j−s
l−s
)(
l+s
s−1

)
=
(
l+2j+1
l−1

)
to obtain a closed form formula
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for the coefficients:

f l1 = 1− l + 1

j

(
l + 2j + 1

l − 1

)(
l + 2j + 1

l

)−1

(5.78)

= 1− l(l + 1)

2j(j + 1)
(5.79)

Therefore, under any SU(2) symmetric operations the spin polarisation can either remain the

same (whenever l = 0, a channel that corresponds to the identity), decrease for 0 ≤ f l1 ≤ 1 or

get inverted for f l1 ≤ 0. However, in this particular scenario the spin polarization will never

increase. The maximal spin polarisation reversal will therefore be given by:

f2j
1 = − j

j + 1
. (5.80)

5.6.4 Maximal spin polarisation reversal under symmetric operations on spin sys-

tems j1 −→ j2

More generally, we consider symmetric operations E : B(Hj1) −→ B(Hj2) where Hj1 and Hj2
carry the 2j1 +1 and 2j2 +1 dimensional irreducible representations of SU(2). The spin operators

for H1 are denoted by S1 and for H2 by T1. The components of these spin operators both

transform as an irreducible tensor operators for the 1-irrep in B(Hj1) respectively B(Hj2). The

aim is to determine the maximal factor f such that approximately reverses spin polarisation

P1
E−→ P2 = −fP1 for all input states ρ ∈ B(Hj1) where P1 = Tr(S1ρ) and P2 = Tr(T1E(ρ)).

The symmetric operation E , in terms of the extremal channels Φl for l ∈ {|j1 − j2|, ..., j1 + j2}
decomposes as:

E =

j1+j2∑

l=|j1−j2|
plΦ

l. (5.81)

As in the previous case, the minimisation of the coefficient f1 =
∑

l plf
l
1 corresponding to the

1-irrep is attained for one of the extremal channels lmax so that −f = minpl
∑

l plf
l
1 = f lmax

1 .

In Section 5.4.2 we derived the exact form for the coefficients f lλ that characterise the extremal

channel. For λ = 1 we have obtained previously that:

f l1 =
〈j2||S1||j2〉
〈j1||T 1||j1〉

∑

s

〈j1, j2 + s; 1, 0|j1, j2 + s〉
〈j2, j2; 1, 0|j2, j2〉

〈j2, j2; l, s|j1, j2 + s〉2. (5.82)
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The 1-irrep subspace in B(Hj1) and B(Hj2) will spanned by the spin operator components which

transform as irreducible tensor operators. The reduced matrix elements will be independent

on the vector label component and since there is a single 1-irrep in the decomposition of the

corresponding spaces, then the ratio 〈j2||S
1||j2〉

〈j1||T 1||j1〉 does not depend on the particular operator basis.

For this we use Wigner-Eckart together with the standard form for irreducible tensor operators

S1
0 and T 1

0 to evaluate a particular matrix element. Then we get that:

〈j2||S1||j2〉 =
〈j2,m|S1

0 |j2,m〉
〈j2,m; 1, 0|j2,m〉

=

√
3√

2j2 + 1
(5.83)

so that the ratio of the reduced matrix element of S1 to T1 is
√

2j1+1
2j2+1 .

Using this result together with binomial expansions for the Clebsch-Gordan coefficients involved

we can arrive at a closed form formula for f l1. First notice that one of the terms in the above equa-

tion for f l1 has a simple expression 〈j2, j2; l, s|j1, j2 + s〉2 = 2j1+1
2j2+1

(
1+j1+j2+l
j1−j2+l

)−1(j1+j2+s
l+s

)(
l−s

j1−j2−s
)
.

Remark that for the coefficients to be non-zero we need that−l ≥ s ≥ l and j1− j2−s ≥ 0 where

we recall that l takes one of the positive values in the set {|j1 − j2|, |j1 − j2|+ 1, ..., j1 + j2}.

Therefore, using the binomial expression the coefficients f l1 will become:

f l1 =

√
j2(j2 + 1)(2j1 + 1)

j1(j1 + 1)(2j2 + 1)

(
1 + j1 + j2 + l

j1 − j2 + l

)−1 j1−j2∑

s=−l

j2 + s

j2

(
j1 + j2 + s

l + s

)(
l − s

j1 − j2 − s

)
(5.84)

where in the summation only terms for which the two binomials exist contribute i.e j1 − j2 −
s ≥ 0. These correspond exactly to non-zero values of the relevant CGC in the previous

summation. Changing the dummy summation variable from s to w = s + l we have the

alternative formulation:

f l1 =

√
j2(j2 + 1)(2j1 + 1)

j1(j1 + 1)(2j2 + 1)

(
1 + j1 + j2 + l

j1 − j2 + l

)−1 j1−j2+l∑

w=0

j2 − l + w

j2

(
j1 + j2 − l + w

w

)(
2l − w

j1 − j2 + l − w

)
.

To compute the above we make use of the following combinatorial property:
∑a

w=0

(
a+b+w
w

)(
c−w
a−w

)
=

(1+a+b+c)!
a!(1+b+c)! =

(
1+a+b+c

a

)
for c ≥ a and similarly

∑a
w=0w

(
a+b+w
w

)(
c−w
a−w

)
= (1+a+b+c)!(1+a+b)

(a−1)!(2+b+c)! =
(

1+a+b+c
a

)a(1+a+b)
2+b+c for a 6= 0 and c ≥ a; if a = 0 the latter sum clearly becomes zero. Now this

means the coefficients are given by:

f l1 =

√
j2(j2 + 1)(2j1 + 1)

j1(j1 + 1)(2j2 + 1)

(
j2 − l
j2

+
(j1 − j2 + l)(1 + j1 + j2 − l)

2j2(1 + j2)

)
(5.85)
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Simplifying things a little more:

f l1 =

√
j2(j2 + 1)(2j1 + 1)

j1(j1 + 1)(2j2 + 1)

(
j1(j1 + 1) + j2(j2 + 1)− l(l + 1)

2j2(1 + j2)

)
(5.86)

For the different extremal channels with l from |j2 − j1| to j1 + j2 the maximal value is attained

for the closest valid value of l to j1−j2+1
2 . The minimal value in turn will always be attained by

lmax = j1 + j2 which gives:

− f = f j1+j2
1 = − j1

j2 + 1

√
j2(j2 + 1)(2j1 + 1)

j1(j1 + 1)(2j2 + 1)
. (5.87)

This corresponds to the extremal channel that requires the largest environment. Indeed, for

every extremal channel Φl, its minimal Stinespring dilation (and thus the number of Kraus

operators) has dimension 2l + 1. Consequently, this means that the larger the environment, the

more spin can be reversed. Note that in the ”classical” macroscopic limit j1 = j2 = j −→∞ we

get f = 1 so that indeed spin can be perfectly reversed. While for finite dimensional systems

perfect reversal of spin is not allowed by the theory, the above results give fundamental limits

on maximal spin reversal under any valid symmetric quantum process.

Similarly the analysis can also give how much spin angular momentum can increase under a

symmetric operation. This will also be achieved by one of the extremal channels, by similar

convexity arguments as for spin reversal. Therefore the maximal value for f l1 is attained for

l = |j1− j2|, which also corresponds to the extremal channel requiring the least number of Kraus

operator and thus has minimal dimension of the environment.We have two cases: i) if j1 ≥ j2
then

f
|j1−j2|
1 =

√
j2(j1 + 1)(2j1 + 1)

j1(j2 + 1)(2j2 + 1)
(5.88)

and ii) if j1 ≤ j2 then:

f
|j1−j2|
1 =

√
j1(j2 + 1)(2j1 + 1)

j2(j1 + 1)(2j2 + 1)
(5.89)
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Chapter 6

Conclusion

Symmetries provide structure to physical theories. In the context of quantum information, sym-

metry principles have found many applications to quantum speed limits, quantum metrology,

quantum thermodynamics.

In this thesis we have explored these structures in order to provide a framework with which

to analyse quantum operations under the presence of a symmetry principle. This has led to a

diagrammatic decomposition of quantum operations in terms of process modes, superoperators

that transform irreducibly under the group action. In Chapter 2 we develop this formalism by

extending the resource theory of asymmetry techniques introduced by Marvian and Spekkens

to quantum operations. Particularly, we give a model-independent analysis of the minimal

symmetry-breaking resources required to implement arbitrary quantum operations and show

how they are related to coordinates on a process orbit. The core result gives a structure theorem

for bipartite quantum channels that are invariant under a global symmetry.

Techniques from information theory have recently been successfully applied to other areas

such as condensed matter and high energy physics. One particular issue of interest is studying

entanglement in the context of quantum field theory. There are significant challenges to overcome

because the local structure of such theories makes it difficult to separate the physical state space

as determined by Gauss’s laws into a tensor product structure. The notion of entanglement is

highly dependent on a relative choice of such a multipartite tensor product and therefore it suits

a resource theoretic formulation. Hence there are increasing motivations to connect traditional

Largrangian methods with the formalism of information theory.
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In Chapter 4 we focussed on addressing the question of how quantum operations with a global

symmetry can be gauged to a local symmetry. Based on the decomposition of symmetric

channels acting on bipartite system we provide an information-theoretic perspective on gauging

general quantum processes. The work presented herein is a step towards bridging the traditional

Lagrangian viewpoint with quantum information theory approaches. It contributes to this aim

by showing how traditional Lagrangian symmetry techniques can be greatly generalised to

arbitrary quantum processes and can be reformulated in terms of purely information-theoretic

concepts such as quantum reference frames, completely positive trace preserving maps, pre-

and post- selection.

As emphasized, gauging physical theories is not a unique procedure. Can we however formulate

a minimal coupling principle for gauging quantum channels? Intuitively, our formulation keeps

track of all the local symmetry breaking degrees of freedom existing between subsystems in

such a way that the gauged channel can recover the initial globally symmetric dynamics. When

the additional quantum reference frame systems are finite-dimensional this places constraints

on the recoverability of the initial channel. A set of physically motivated conditions that single

out a particular gauging map (or procedure) would play a similar role to a minimal coupling

principle. For example one can show for a bipartite system, that the difference in mutual

information between subsystems of the gauged and un-gauged dynamics given access to the

internal quantum reference frames is related to the difference in the local asymmetry measure. It

should be expected that the (physical) information content of the gauged and un-gauged theory

are the same. However we leave these lines of investigation for future work.

The other application of the process mode formalism looks at optimal multiple use of coherence

resources from a reservoir to implement target operations on a system under a global symmetric

dynamics as generated by conservation of total energy. We show that under U(1) symmetry

constraints, the catalytic coherence protocol is essentially the unique protocol that allows for

arbitrary repeatability in the use of the same coherence reservoir to implement a particular task.

There are several directions in which one may extend the framework we have presented in

this thesis, particularly in connection with the application of gauging quantum channels. First

one may further develop structure theorems for symmetric channels on multipartite systems

analogous with the main result in section 2.4 on the decomposition of symmetric channels on

bipartite systems. Such results will find application in gauging quantum channels beyond the

restriction to 2-symmetric processes to include those that have non-trivial symmetry breaking
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relations between three or more subsystems, whilst maintaining a global symmetry constraint.

Second, one can extend the diagrammatic notation to a consistent graphical calculus with the

aim of simplifying generalisations beyond the bipartite scenario.

Finally in Chapter 5 we discuss the trade-off between irreversibility and conservation laws under

a symmetric dynamics. We show that if the dynamics is a small perturbation of a symmetric

unitary evolution then conservation laws hold approximately within a small error. This rises

the question whether detecting deviations from conserved quantities in a system undergoing

a symmetric quantum process can give a quantitative estimate on the amount of decoherence

present. For particular symmetries given by irreducible representations of SU(2) we discover

a certain robustness to conservation laws in that a small deviation from them implies that the

unitarity (a measure of how much on average a process deviates from a unitary evolution) is

close to one. An open direction to explore is if these results, particularly the fundamental bounds

on deviations from conservation of spin angular momentum have any applications in mitigating

the noise in quantum computations subject to symmetry constraints.

In contrast with the early literature on quantum reference frames, the applications in Chapter 3

and 4 involve the notion of quantum reference frames in a dynamical way. We are interested

in not only using the quantum reference frames to implement a symmetry-breaking quantum

operation and respectively to encode relational data, but more importantly in how these systems

evolve in a way that is compatible with the task required. This is an essential aspect that can

lead to misinterpretation of results that require the use of dynamical quantum reference frames

rather than a quantum system in a particular token state.

Of course, in the case of gauging quantum processes the dynamical features of the quantum

reference frames appear naturally. We have not discussed much the philosophical implications

of gauging dynamics by introducing additional systems given by Hilbert spaces associated

with each link. Should we view the background quantum reference frames as physical systems

themselves? Are they simply convenient mathematical redundancies ? When we restrict our

formalism to unitary interaction governed by gauge symmetries acting on a lattice then the role

of the interaction mediators – gauge fields – is played by the quantum reference frames. An

open direction to explore is how to view the Aharonov-Bohm effect, both for U(1) but also for

the more subtle non-abelian symmetries, within the perspective developed here. The Aharanov-

Bohm [116] effect illustrates a measurable physical effect in the form of relative phase shifts in

the wavefunctions of two electrons moving in opposite directions in a region outside of a long
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cylindrical selenoid. In such an experiment, there is no electric or magnetic potential outside

of the cylinder, however there are non-zero potentials. This quantum mechanical phenomena

suggests that the electrons in a region with no electric or magnetic fields can be affected by the

electromagnetic potential. Different choices of gauges for the potential lead to distinct relative

phase shifts, which marks a departure from classical electromagnetism where the gauge degrees

of freedom correspond to redundancies in the physical description. The model describing

the Aharanov-Bohm effect involves a Hamiltonian description, which could be mapped to

the quantum-information type of formalism we developed for gauge theories. It would also

be of interest to investigate connections between this effect and the types of measurements

physically accessible in a gauge field theory, particularly from the point of view we developed

here where the role of the gauge fields is taken by fully quantum mechanical system – the

quantum reference frames. More specifically, is there an effect analogous to Aharonov-Bohm for

irreversible quantum processes, and if so does it have additional features? While it is unlikely

this will answer the ontological question regarding the physical content of gauge fields, it has

the potential to open novel information theoretic questions on gauge theories in general.
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[41] Johan Åberg. Fully quantum fluctuation theorems. arXiv:1601.01302, 2016.

[42] Philippe Faist, Frédéric Dupuis, Jonathan Oppenheim, and Renato Renner. The minimal

work cost of information processing. Nature Communications, 6, 2015.

[43] Fernando GSL Brandão, Michał Horodecki, Nelly Ng, Jonathan Oppenheim, and

Stephanie Wehner. The second laws of quantum thermodynamics. Proceedings of the

National Academy of Sciences, 112(11):3275–3279, 2015.

[44] Sai Vinjanampathy and Janet Anders. Quantum thermodynamics. Contemporary Physics,

57(4):545–579, 2016.

[45] Matteo Lostaglio, David Jennings, and Terry Rudolph. Thermodynamic resource theories,

non-commutativity and maximum entropy principles. New Journal of Physics, 19(4):043008,

2017.
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[77] V. Bužek, M. Hillery, and R. F. Werner. Optimal manipulations with qubits: Universal-not

gate. Physical Review A, 60:R2626–R2629, 1999.

[78] Mehdi Ahmadi, David Jennings, and Terry Rudolph. The wigner–araki–yanase theorem

and the quantum resource theory of asymmetry. New Journal of Physics, 15(1):013057, 2013.

[79] Iman Marvian and Robert W Spekkens. An information-theoretic account of the wigner-

araki-yanase theorem. arXiv preprint arXiv:1212.3378, 2012.
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