
Further Towards Unambiguous Edge Bundling: Investigating
Power-Confluent Drawings for Network Visualization

Jonathan X. Zheng, Samraat Pawar, and Dan F. M. Goodman

Original Graph Power Graph Rou�ng Graph Confluent Drawing

Fig. 1. An illustration of our solution to the issues with the algorithm of Bach et al. [1], using their original example graph (Fig. 2 in [1]).
From left to right: a conventional node-link diagram with vertices arranged around a circle; its power graph decomposition, where
edges are compressed by grouping similar nodes together; our novel equivalent routing graph, where the nested structure of groups is
represented by a directed tree; the resulting confluent drawing, where original edges are threaded through the routing graph to form
bundled junctions.

Abstract— Bach et al. [1] recently presented an algorithm for constructing confluent drawings, by leveraging power graph decomposition
to generate an auxiliary routing graph. We identify two issues with their method which we call the node split and short-circuit problems,
and solve both by modifying the routing graph to retain the hierarchical structure of power groups. We also classify the exact type of
confluent drawings that the algorithm can produce as ‘power-confluent’, and prove that it is a subclass of the previously studied ‘strict
confluent’ drawing. A description and source code of our implementation is also provided, which additionally includes an improved
method for power graph construction.

Index Terms—Graph drawing, power graph decomposition, edge bundling, confluent drawing, optimization

1 INTRODUCTION

Confluent drawing is a graph drawing technique that eliminates cross-
ings by allowing edges to overlap, as long as the join is smooth. This is
analogous to junctions on a train track that allow carriages to switch di-
rections without stopping. The original definition (Dickerson et al. [2])
of a confluent drawing A for a graph G is:

• There is a one-to-one mapping between the vertices in G and A,
so that, for each vertex v ∈V (G), there is a corresponding vertex
v′ ∈ A, which has a unique point placement in the plane.

• There is an edge (vi,v j) ∈ E(G) iff there is a locally-monotone
curve (defined as having no self intersections or sharp turns) e′,
connecting v′i and v′j in A.

• A is planar. That is, while locally-monotone curves in A can share
overlapping portions, no two can cross.

Bach et al. [1] propose to construct such a drawing by converting a
power graph decomposition into an auxiliary routing graph. Then, for
each adjacency, the graph-theoretic shortest path through the auxiliary
graph is used as the sequence of control points for a B-spline [3].

• J. X. Zheng is with Imperial College London. Email: jxz12@ic.ac.uk
• S. Pawar is with Imperial College London.
• D. F. M. Goodman is with Imperial College London.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

This process is illustrated in Fig. 1; see Bach et al. [1] for detailed
background and definitions.

We find that the combination of splines and shortest paths intro-
duces problems not fully explored by the original authors, causing the
resulting drawings to violate the second and third conditions in the
above definition. We solve these problems, and identify the subclass of
confluent drawings the algorithm can produce as power-confluent. Our
solution guarantees that the second condition is always satisfied, but
still cannot guarantee the third, as discussed in Section 3. Source and
pseudocode for our implementation is provided in Section 2.1.

1.1 B-splines
We first identify issues regarding the use of B-splines (of degree p = 3
in the source code of [1], although it is not specified in the paper) for
interpolating control points. These were likely chosen because they
satisfy the convex hull property (which prevents crossings at shared
control points; see Jia et al. [4] for an example of poorly implemented
B-splines that do not satisfy this property). They also offer local control
(i.e. moving a control point only affects the surrounding p+ 1 seg-
ments), which guarantees that splines that share enough intermediate
control points will overlap. Local control is what makes it possible
for drawings to be confluent; with the right routing graph, it is possi-
ble for edges to share enough control points so that they produce the
overlapping portions that are required for a confluent drawing. Specifi-
cally, for two curves to be guaranteed to overlap they must share p or
more control points (see Section 1.1.1 for a proof with a more detailed
explanation).

There are two problems with using B-splines in this context. The first
is that splines that share fewer than p control points will not overlap, but
sharing even a single routing node should indicate a bundled junction.

ar
X

iv
:1

81
0.

09
94

8v
4

 [
cs

.C
G

]
 2

 S
ep

 2
01

9

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

Fig. 2. Examples to show how the direction of node splitting can affect
the graph K2,2. The first column shows a standard situation where a split
is required to make edges overlap, the second shows the correct split,
and the third shows that if the node is split the other way, then the edges
{a,c} and {b,d} are falsely introduced.

The authors recognized this, calling it the ‘crossing artifact’ [1, Fig. 4],
and fixed it by splitting routing nodes into two: one for incoming
and one for outgoing edges. The intuition behind this splitting is
correct, as it introduces another shared control point that tightens the
bundle, merging the crossed edges into a junction. However, their exact
description contains an ambiguity in the context of undirected graphs,
as it is not specified how to identify edges as incoming or outgoing.
This is problematic as an incorrect split may introduce errors into the
resulting drawing, as illustrated in Fig. 2. We resolve this ambiguity,
and the following related problem, in Section 2.

The second problem is also caused by local control but has an
opposite result: that splines will always overlap if they share p or more
control points. For some routing graphs, such as the examples shown
in Fig. 4, splines may overlap so as to create the visual impression
that extra edges, not present in the original graph, exist. This violates
the second condition in the confluent definition. We find that such a
routing graph can result from the power-to-routing graph conversion,
as explained in Section 1.2.

1.1.1 Spline specifics
This section explains the construction of B-splines in more detail, and
may be skipped if the reader is not interested in the more technical
details. A good introduction to B-splines and their decomposition into
segments can be found in Sederberg [3].

We first prove that splines of degree p must share at least p control
points to overlap. A B-spline is a parametric curve that interpolates a
number of control points by summing up contributions from a basis
function for each (Fig. 3). As a consequence, the spline is constructed
as a series of polynomial curves, known as segments, which each
satisfy the local control property, meaning that each segment is affected
by the basis functions of only the surrounding p+ 1 control points.
These basis functions are continuous, so at the exact point at which two
segments join (known as a knot) the curve cannot simultaneously be
affected by the two furthest control points affecting the segments on
either side. The remaining control points at the knot are therefore the
last p control points of the left segment, which overlap with the first p
control points of the right segment. This proof is illustrated in Fig. 3.
As a result, splines used must be quadratic (p = 2) for node splitting
(Fig. 2) to work as intended.

The values of knots determine the parametric intervals over which
the segments span, and the above proof assumes a ‘uniform’ knot vector,
where uniform is defined as having knots spaced along even parametric
intervals. This ensures that splines with overlapping control points
also have overlapping knots. To additionally ensure that splines are
connected to the first and last control point, the knot vector must also
be ‘open’, i.e. it contains p repeated knots at each end. However, there
are two ways of doing this: the first retains the same total number of
knots, for example a quadratic spline (p = 2) with 4 control points
and the standard knot vector 〈0,1,2,3,4〉 becomes 〈0,0,1,2,2〉, which

Fig. 3. Examples of two open uniform B-splines and their basis functions
below. Control points are spaced evenly along the x-axis such that knots
(vertical lines) align with their associated segments. The top spline is
quadratic (degree p = 2), while the bottom is cubic (p = 3). In both, the
left- and rightmost basis functions go to zero at the middle knot, and
so another curve that shares the middle p control points is guaranteed
to overlap exactly at that knot. Note that the sum of basis functions
must always add up to one, so to attach a curve to its endpoints, the
final control point is repeated p times. The curves there are also slightly
transparent, to match the corresponding repeated basis functions.

eventually reduces to a Bézier curve [3]. The second appends p−
1 knots at either end, where 〈0,1,2,3,4〉 becomes 〈0,0,1,2,3,4,4〉,
effectively duplicating the first and last control points. This second
method is illustrated in Fig. 3.

In practice this second method makes the rendered curve hug its
path through the routing graph closer than the first. In the case of cubic
splines (p = 3), this means that edges come sufficiently close to look
bundled, even though the above proof demonstrates that the degree
must be p = 2 for curves to fully overlap (unless routing nodes are
split twice to guarantee three shared control points). This appears to
be the choice of the original authors [1] in their provided source code.
The benefit of cubic splines is that they are C2 continuous, i.e. have no
sudden jumps in curvature, and having this extra smoothness is more
aesthetically pleasing. Regardless, for all figures here except for Fig. 3
we use quadratic splines, and with the first method of joining to end
points.

Note that drawing a spline for every edge is not the only way to
render the graph, and also introduces a great deal of redundancy due
to the large amount of overlap between edges. If a purely confluent
drawing is desired, then it is not necessary to redraw overlapping
segments. Allowing bundles to be relaxed [1, Fig. 18] is, however, a
useful option that rendering each edge does provide.

1.2 Short-circuits
Here we will explain why routing edges through their graph-theoretic
shortest paths in the routing graph can introduce false adjacencies. A

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

Fig. 4. Examples of how absent edges can appear to exist. Top: a toy
example of a hypothetical routing graph that causes edges {a,d} and
{c,b} to both erroneously appear to exist. We use two intermediate rout-
ing nodes because that is the minimum number of shared control points
required for quadratic splines to overlap (Section 1.1.1). Bottom: an
example of a power graph decomposition that causes a similar ambiguity,
where c appears connected to b because the edge {b,d} causes a short-
circuit through the nested structure of power groups (represented by blue
boxes), causing {a,b} to be routed through the wrong direction. The
correct direction that would not cause an issue is shown as a dashed line
along the top. Note that every power group in this example is intentionally
redundant for illustrative purposes; a full version of this example can be
seen in Fig. A1.

power graph is an extension to the conventional node-link diagram, that
compresses the number of edges by grouping similar vertices together
into power groups, and merging edges among group members that
share the same target vertex into a single power edge instead (see the
leftmost two drawings in Fig. 1). This is then converted into a routing
graph by (a) connecting the members of each power group to a routing
node corresponding to the group, and (b) connecting pairs of routing
nodes whose corresponding power groups are connected by power
edges (see [1, § 3.1] for more detail). Since the original edges do not
exist anymore in this auxiliary graph, they are instead drawn back on
top by finding the graph-theoretic shortest path between the vertices on
either end of the edge, using the nodes on this path as the control points
for a B-spline. However, because (a) and (b) both result in edges in
the routing graph, with nothing to differentiate between them, this can
cause a short-circuit effect, that potentially introduces false adjacencies
into the resulting drawing, as shown in Fig. 4.

This effect can be explained as follows. The structure of groups
within a power graph can be represented as a tree, where groups are
represented by branches and vertices by leaves. Trees are geodetic (i.e.
there exists a unique shortest path between any pair of vertices), but the
connections introduced by power edges can act like bridges between
branches, to invalidate this and produce ambiguity either in the choice
of path (if the shortest paths are equal) or in which edges exist at all,
by routing splines in the wrong direction entirely. The bottom row in
Fig. 4 shows a simple example of how this can happen. While it may
seem as if our counter-example is contrived and should not ever appear
due to the redundant nested structure of power groups, a similar pattern
arises from the optimal decomposition of a clique (see Fig. A1). The
key detail here is that only one power edge should ever be traversed for
any given adjacency, which is guaranteed by our solution, described in
the following section.

2 HIERARCHICAL ROUTING

The solution to these problems is to retain the hierarchical structure of
power groups as a directed tree, with all routing edges directed towards
the leaves. We then add the power edges back, except as a special type
of edge that is incoming at both ends (the purpose of which will soon
be made clear). If we finish by discarding the root of the tree, we are
left with the exact same routing graph as before, except now with all
routing edges explicitly directed (Fig. 5, middle column). Note that this
also means all adjacency information is now preserved in the routing

Fig. 5. An illustration of the solution to both the node splitting and short-
circuit ambiguities (Section 2). We use the same example graph as
in [1, Fig. 2] and here Fig. 1, shown in a radial layout to emphasize
the tree structure of power groups. The leftmost graphs are a power
graph (top), and a tree that represents the hierarchy of power groups
(bottom), but without power edges. The middle column contains the
resulting routing graphs without node splitting (top) and with (bottom,
split indicated in red). Note that these do not include or require the root
of the tree. The final column displays the resulting bundled layouts.

graph, such that the original graph can be recovered.
To draw the adjacency edges back on top, we can now forgo any

shortest path calculations. Instead, for each power edge, we perform a
depth-first search for all child leaf nodes starting from both ends of the
power edge, and concatenate the path to each leaf from one end to the
reversed path to each leaf from the other end. Every concatenated path
is then used as the sequence of control points for a spline. These paths
are now guaranteed to be unique because the routing graph is effectively
a tree, due to power edges being incoming at both ends to prevent their
traversal. Since only the one correct power edge is traversed for each
spline, the short-circuit problem described in Section 1.2 is alleviated.

Imposing this directionality on the routing graph also fixes the node
splitting ambiguity in Section 1.1, guaranteeing that the split occurs
in the correct direction. This works because every routing node is
the boundary between two sides of a biclique, equivalent to a single
bundled junction; the explicit direction of routing edges now encodes
the orientation of the bundle itself. This entire process is illustrated in
Fig. 5, and pseudocode for the resulting algorithm can be seen in Fig. 8.

2.1 Implementation
To aid future work, here we complete the description for the algorithms
used in the current paper1, and also provide pseudocode for the benefit
of the reader. Note that the following description is specific to undi-
rected graphs; we explain the changes required for directed graphs in
Section 2.1.2.

2.1.1 Improved power graph decomposition
Here we outline our power graph generation algorithm, which includes
one improvement from the one used by Bach et al. [1], originally devel-
oped by Dwyer et al. [5]. The algorithm works by also taking advantage
of the fact that the hierarchy of power groups can be represented as a
tree, with vertices as the leaves. It therefore first initializes every vertex
as the sole member of a trivial power group—known as a module—and
initializes a set of neighbours for each module based on the edges of
the graph. It then greedily merges pairs of modules at a time, picking
the merge that eliminates the most edges at each step, until no more
edges can be eliminated. The number of eliminated edges for any given
merge is given by

κ∩(m,n) = |N(m)∩N(n)| (1)
1Source code is available at www.github.com/jxz12/pconfluent.

www.github.com/jxz12/pconfluent

Name (|E|) Best |P| (|G|) Worst |P| (|G|)
only κ∩ κ∩ and κ4 only κ∩ κ∩ and κ4

florentine (20) 11 (4) 11 (4) 11 (6) 11 (5)
karate (78) 28 (13) 28 (13) 30 (15) 29 (13)

southern (89) 30 (17) 27 (21) 37 (16) 30 (18)
dolphins (159) 82 (29) 81 (30) 87 (28) 83 (30)
lesmis (254) 74 (39) 72 (41) 79 (39) 72 (42)

football (613) 282 (83) 278 (84) 289 (83) 286 (84)
netsci (914) 355 (187) 338 (184) 371 (189) 341 (186)

Fig. 6. Some experimental results comparing the quality of resulting
power graphs with and without our additional heuristic (Section 2.1),
taking the best and worst scores over 25 runs. |E| is the number of
edges in the original graph, compressed into |P| power edges and |G|
power groups; shaded boxes indicate the best score between the two
methods. Adding our new heuristic produces the best or joint best
results in all graphs, and also improves the consistency of the output,
with a better worst result in all cases. Note that the variation between
runs in our implementation is due to a pseudorandom order of iteration
through candidate merges (Fig. 7, line 4). The networks are, from
top to bottom, Italian families linked by marriage [6], members of a
karate club [7], women meeting at social events [8], interactions between
bottlenose dolphins [9], co-occurrence of characters in the musical Les
Misérables [10], American football games between US colleges [11], and
coauthorships of scientists working on network theory [12].

where m and n are modules and N are their neighbour sets. This is
almost the same as nedges(m,n) in [5], except as a positive score rather
than a negative penalty. See Dwyer et al. [5] for detailed background
and definitions.

Note that m cannot be fully ‘absorbed’ when merging with n if either
N(m) 6⊂ N(n), or m is a leaf of the tree i.e. a vertex. If both cannot be
absorbed, then a new module is created that adopts m and n as children
and takes away N(m)∩N(n) as its neighbour set. If only one, say m,
cannot be absorbed, then m is adopted by n, and any shared neighbours
are removed from m. If both can be absorbed, then one adopts the
children of the other and the other is removed, and the operation is truly
a full merge. Also note that this is done in the original description by
always generating a new parent module, and removing either child if
their neighbour sets become empty.

However, measuring the reduction in edges is not the only metric
that a greedy algorithm can use to judge the quality of any given merge.
Only using one heuristic often results in many merges with the same
score, and so the choice of merge may be arbitrarily chosen from many
candidates, some of which may lead directly to local optima. In such
situations it can be useful to include additional heuristics to further
discriminate between choices. This is not explicitly mentioned in [5],
but is implemented in their provided source code, where they include
two other metrics: the total number of modules after the merge, and the
number of times power group boundaries are crossed by power edges.

We instead introduce a heuristic that can roughly capture the effects
of both, and is simpler to calculate: a penalty for the number of edges
that could not be merged. This is defined by

κ4(m,n) = |N(m)4N(n)| (2)

where 4 denotes the symmetric difference, i.e. any unshared neigh-
bours, between the two sets. This effectively measures the number of
edges that cannot ever be merged from that side in future iterations,
because only top level modules are considered for merging. It captures
the number of modules because a new parent module is only added if
both children have unshared neighbours. It also captures the effect of
edges crossing group boundaries, because any unshared edges must
cross the boundary of its new parent module after the merge. Reward-
ing the first heuristic and punishing the second leaves us with a total
score of

Algorithm 1: GREEDY POWER GRAPH DECOMPOSITION

inputs :graph G = (V,E)
output :modules M = set of pairs (C,N)

1 M←{(/0, N(v)) | v ∈V}
2 do
3 κbest← 0
4 foreach pair of modules {m,n} ∈Mtop×Mtop
5 κbest←max(κ(m,n), κbest)

6 MERGE({m,n}best)
7 while κbest > 0

Fig. 7. Pseudocode for the greedy heuristic power graph construction in
Section 2.1. Each module consists of a set of children C, and a set of
neighbours N. The score function κ is from Equation (3), and the merge
operation on line 6 is described in Section 2.1, where any new module is
parented to its merged children by adding them to its set of children C.
In practice, we maintain a redundant super-module whose children are
the top level modules Mtop on line 4.

Algorithm 2: POWER-CONFLUENT DRAWING

inputs :modules M = set of pairs (C,N)
output :drawing A

1 V ← /0, E← /0, P← /0
2 foreach module m = (Cm,Nm) ∈M
3 V ←V ∪m
4 E← E ∪{(m,c) | c ∈Cm}
5 P← P∪{(m,n) | n ∈ Nm}
6 foreach vertex v ∈V
7 if |N+(v)| ≥ 2 and |N−∗(v)| ≥ 2
8 SPLIT(v)

9 A← /0
10 X← LAYOUT((V, E ∪P))
11 foreach power edge p = {i, j} ∈ P
12 Qi ← paths ∈ (V,E) from leaves to i
13 Q j← paths ∈ (V,E) from j to leaves
14 A← A∪{ SPLINE(Xq) | q ∈ Qi×Q j}

Fig. 8. Pseudocode for our conversion from a set of power graph modules
to a rendered drawing, described in Section 2. Note that the edges on
line 4 are ordered pairs, while those on line 5 are unordered. This allows,
on line 7, for N+ to indicate a set of outgoing neighbours, and N−∗ a set of
incoming neighbours plus any connected by power edges in P. The split
operation on line 8 then moves N+ and N−∗ to separate routing nodes,
as in Figure 5. In practice we use a shorter edge length between split
routing nodes, and so for line 10 use a force-directed layout algorithm
that can embed edge lengths [13]. The specifics of the spline function
on line 14 are outlined in Section 1.1.1.

κ(m,n) = w∩κ∩(m,n)−w4κ4(m,n) (3)

where w∩ and w4 determine the relative weight of either heuristic.
For example, to construct a modular decomposition, w4 may be set to
infinity to forbid any module boundary crossings. We find that setting
w∩ = 10 and w4 = 1 works well in practice; these are the parameters
used for the table of results in Fig. 6. The improvements are small, but
are consistently better and with less variance.

It is important to note that this is still a simple greedy heuristic,
which does not make any guarantees about the quality of the final result.
The original method in [5] gives the option to somewhat alleviate this,
by optionally maintaining a priority queue of the best configurations
seen so far, along with some dynamic programming to prevent re-
evaluating configurations already seen. A further exploration of this
extended algorithm is out of scope for this paper, and Dwyer et al. [5]
additionally note that the qualitative improvement that results from
including this priority queue is minimal.

Our final change involves bringing down the complexity of neigh-
bour set intersection to O(E) using hash sets, which reduces the com-
plexity of the algorithm down slightly to O(|V |3|E|). Pseudocode for
the above described algorithm can be seen in Fig. 7. Pseudocode for the
subsequent routing graph and B-spline generation process, described in
Section 2, can be seen in Fig. 8.

2.1.2 Directed graphs
The definition for a directed confluent drawing is almost the same as
the undirected case, except with the caveat that any given path can
only ‘flow’ in one direction. This is analogous to preventing trains on
tracks from crashing into each other. Formally, for a directed confluent
drawing B, this is extra condition [2] is:

• Locally monotone curves in B may share some overlapping por-
tions, but the edges sharing the same portion of a track must all
have the same direction along that portion.

This means that directed graphs lead to a slightly different power-to-
routing graph conversion, where the description in [1] says “The only
difference is that we create—as necessary—two junctions for each
group, one for incoming and one for outgoing edges.” Here we will
elaborate on this short description, as simply adding another routing
node when its corresponding group has both incoming and outgoing
edges is not enough to guarantee that all portions will only flow in
one direction. This is because any power edges at a power group
are propagated down the hierarchy, so that even if flows are correctly
directed into separate junctions at one group, they may still clash further
down the tree. Therefore, all descendants of any such group must
also have two routing nodes: one for outgoing edges (flowing up the
hierarchy) and one for incoming edges (flowing down the hierarchy).

Our description of the power graph construction algorithm is also
easily applied to directed graphs, by splitting neighbour sets into incom-
ing and outgoing edges. This is how the original algorithm is described
by Dwyer et al. [5]. In other words, the formulations for the heuristics
instead become

κ∩(m,n) = |N+(m)∩N+(n)|+ |N−(m)∩N−(n)|, (4)

κ4(m,n) = |N+(m)4N+(n)|+ |N−(m)4N−(n)| (5)

where N+ is a set of outgoing edges, and N− a set of incoming edges.

3 DISCUSSION

Here we will discuss the third condition in the confluent definition,
which requires planarity. Unfortunately, the original method does not
offer any guarantee of planarity due to the use of a force-directed
method to lay out the graph. While the authors do recognize this, and
make the distinction that their drawings are ‘non-planar confluent’, the
loss of this condition means that almost any drawing, with or without
curved edges, satisfies a now-trivial definition. There also exist graphs
that have been proven to not admit any confluent drawing [2], and so
it is impossible for any algorithm to produce confluent drawings for
general graphs. However, the planarity condition can be relaxed in
the context of finding a drawing that reduces the number of crossings,
for example in layered confluent drawings [14]. Bach et al. [1] do
not explicitly address this question, but in practice the approach can
greatly reduce the number of crossings, making it a practical method to
enhance readability.

Furthermore, it is easy to see that a planar routing graph can always
lead to a planar drawing, as long as we are careful to avoid cross-
ings at routing nodes (which is always possible because every routing
node is simply a single junction). If we assume that there are no re-
dundant routing edges without adjacencies routed through them, this
means that the complete confluent definition can be satisfied if and
only if the routing graph is also planar. This naturally implies a new
subset of confluent drawings, much like the ∆-confluent [15] or strict
confluent [16] subclasses, which can be found only through a planar
power-to-routing graph conversion. We suggest naming such drawings
as power-confluent.

Fig. 9. An example of a strict confluent drawing that cannot be reverse-
engineered into a valid power graph, unless power group boundaries are
allowed to overlap. On the left is the confluent drawing (with junctions
marked by transparent blue circles), and on the right is a power graph that
shows all possible groupings. Since there are six junctions, at least six
power groups are required in the corresponding power graph; however,
there is a maximum of four that will not overlap, as there can only be one
for each ‘corner’ of the ‘tetrahedron’. This is due to the middle vertex
of each ‘corner’ sharing junctions with all three surrounding it, which
means that grouping any of the three valid pairings will block out the
other two. Note that the graph itself is not necessarily impossible to draw
in a power-confluent manner, but that this particular drawing could never
result from the algorithm presented in this paper.

The definition of strict confluent drawing has only the additional
restriction that there can be at most one smooth path between vertices,
and there cannot be any paths from a vertex to itself [16]. For the
power-confluent case, because the mapping of edges to power edges is
surjective [17], each edge can only correspond to a single path through
the power graph hierarchy, and therefore also through the routing graph
behind the confluent drawing. Every power-confluent drawing without
self-loops is therefore also strict confluent. The reverse is not true,
because another condition of power graphs is that groups must be
disjoint [17], i.e. their boundaries may not overlap. There is a family
of confluent drawings that cannot result from power graphs unless this
condition is broken, for example the tetrahedron-like structure in Fig. 9.
Power-confluent is therefore a strictly stronger condition than strict
confluent.

3.1 Future Work

Further directions could involve developing methods to find power-
confluent drawings, by guiding the search algorithm towards solutions
that produce planar routing graphs. Methods such as Monte Carlo or
A* search may prove useful for either finding such drawings, or just
improving the greedy search presented here.

On the theoretical side, it may be the case that relaxing the non-
overlapping group boundary condition, as explored by Ahnert [18],
could result in an equivalent classification to strict confluent drawing.
We leave the potential proof or refutation of this equivalence as an open
question, along with determining the exact relationship between power
decomposition and confluent drawing in general.

To finish on a practical note, a more tailored layout algorithm than
standard force-directed methods will be necessary for the algorithm
to become a truly practical tool, as we find that layouts can often
become tangled and unreadable. The layout function (Fig. 8, line 10) is
currently only given the routing graph as input, but may benefit from
extra information, such as which edges are power edges and which are
hierarchical. An effective radial layout that can avoid crossings, like the
one shown in Fig. 5 but automatic, may also offer a superior solution.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers whose comments
helped to improved this paper.

REFERENCES

[1] B. Bach, N. H. Riche, C. Hurter, K. Marriott, and T. Dwyer, “Towards
unambiguous edge bundling: Investigating confluent drawings for net-
work visualization,” IEEE Transactions on Visualization and Computer
Graphics, vol. 23, no. 1, pp. 541–550, 2017.

[2] M. Dickerson, D. Eppstein, M. T. Goodrich, and J. Y. Meng, “Confluent
drawings: visualizing non-planar diagrams in a planar way,” Journal of
Graph Algorithms and Applications, vol. 9, no. 1, pp. 31–52, 2005.

[3] T. W. Sederberg, “An introduction to B-spline curves,” 2005.
[4] Y. Jia, M. Garland, and J. C. Hart, “Social network clustering and visu-

alization using hierarchical edge bundles,” Computer Graphics Forum,
vol. 30, no. 8, pp. 2314–2327, 2011.

[5] T. Dwyer, C. Mears, K. Morgan, T. Niven, K. Marriott, and M. Wal-
lace, “Improved optimal and approximate power graph compression for
clearer visualisation of dense graphs,” in 2014 IEEE Pacific Visualization
Symposium, pp. 105–112, IEEE, 2014.

[6] R. L. Breiger and P. E. Pattison, “Cumulated social roles: The duality of
persons and their algebras,” Social Networks, vol. 8, no. 3, pp. 215–256,
1986.

[7] W. W. Zachary, “An information flow model for conflict and fission in
small groups,” Journal of Anthropological Research, vol. 33, no. 4, pp. 452–
473, 1977.

[8] A. Davis, B. B. Gardner, M. R. Gardner, and W. L. Warner, Deep South:
A sociological anthropological study of caste and class. University of
Chicago Press, 1941.

[9] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M.
Dawson, “The bottlenose dolphin community of Doubtful Sound features
a large proportion of long-lasting associations,” Behavioral Ecology and
Sociobiology, vol. 54, no. 4, pp. 396–405, 2003.

[10] D. E. Knuth, The Stanford GraphBase: a platform for combinatorial
computing. ACM Press New York, 1993.

[11] M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical Review E, vol. 69, no. 2, p. 026113, 2004.

[12] M. E. J. Newman, “Finding community structure in networks using the
eigenvectors of matrices,” Physical Review E, vol. 74, no. 3, p. 036104,
2006.

[13] J. X. Zheng, S. Pawar, and D. F. M. Goodman, “Graph drawing by stochas-
tic gradient descent,” IEEE Transactions on Visualization and Computer
Graphics, 2018 (in press).

[14] D. Eppstein, M. T. Goodrich, and J. Y. Meng, “Confluent layered draw-
ings,” in 12th Int. Symp. Graph Drawing, pp. 184–194, Springer, 2004
(preliminary version, full version available at arXiv:cs/0507051.

[15] D. Eppstein, M. T. Goodrich, and J. Y. Meng, “Delta-confluent draw-
ings,” in 13th Int. Symp. Graph Drawing, pp. 165–176, Springer, 2006
(preliminary version, full version available at arXiv:cs/0510024).

[16] D. Eppstein, D. Holten, M. Löffler, M. Nöllenburg, B. Speckmann, and
K. Verbeek, “Strict confluent drawing,” Journal of Computational Geome-
try, vol. 7, no. 1, pp. 22–46, 2016.

[17] L. Royer, M. Reimann, B. Andreopoulos, and M. Schroeder, “Unravel-
ing protein networks with power graph analysis,” PLoS Computational
Biology, vol. 4, no. 7, e1000108, 2008.

[18] S. E. Ahnert, “Generalised power graph compression reveals dominant
relationship patterns in complex networks,” Scientific Reports, vol. 4,
no. 4385, 2014.

a b

c d

e

a b

c d

e

a

c d

b e

a b

c d

e

a b

c d

e

a b

c d

e

(i)

(ii)

(iii)

(iv)

a b

c d

e

Fig. A1. A full example of Fig. 4, bottom, without any redundant power
groups. (i): an example of the power graph in the same layout as Fig. 4,
where the nested structure of groups comes from a clique structure. (ii)
top: a conventional node-link layout of the graph, bottom: the same
power graph as in (i), but using the same layout as above. (iii) left: the
resulting routing graph from the method of Bach et al. [1], right: the
resulting drawing when splines take their shortest paths through this
routing graph. This results in the edge {a,b} being routing downwards
through the wrong direction, which causes the edge {c,b} to falsely
appear to exist. The edge {a,e} also has two equal-length shortest
paths, either through the line shown or downwards through b, albeit this
specific case can easily be prevented by only preventing original nodes
from being used as intermediate control points, as the original authors
appear to have done in [1, Fig. 2(c)] for the edge {u,w}. (iv) left: the
result of using our new method (Section 2) of retaining the hierarchical
structure of power groups through directed edges, right: the resulting
drawing where {a,b} is routed through the three correct upward routing
nodes. The previously incorrect routing is marked by a dashed line.

	Introduction
	B-splines
	Spline specifics

	Short-circuits

	Hierarchical routing
	Implementation
	Improved power graph decomposition
	Directed graphs

	Discussion
	Future Work

