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Abstract

Online, off-policy reinforcement learning algo-
rithms are able to use an experience memory to
remember and replay past experiences. In prior
work, this approach was used to stabilize train-
ing by breaking the temporal correlations of the
updates and avoiding the rapid forgetting of pos-
sibly rare experiences. In this work, we propose a
conceptually simple framework that uses an expe-
rience memory to help exploration by prioritizing
the starting states from which the agent starts act-
ing in the environment, importantly, in a fashion
that is also compatible with on-policy algorithms.
Given the capacity to restart the agent in states
corresponding to its past observations, we achieve
this objective by (i) enabling the agent to restart
in states belonging to significant past experiences
(e.g., nearby goals), and (ii) promoting faster cov-
erage of the state space through starting from a
more diverse set of states. While, using a good
priority measure to identify significant past transi-
tions, we expect case (i) to more considerably help
exploration in certain domains (e.g., sparse reward
tasks), we hypothesize that case (ii) will gener-
ally be beneficial, even without any prioritization.
We show empirically that our approach improves
learning performance for both off-policy and on-
policy deep reinforcement learning methods, with
most notable gains in highly sparse reward tasks.

1. Introduction

Online reinforcement learning (RL) algorithms have demon-
strated an impressive potential for tackling a wide range of
complex tasks, with the majority of their success primarily
being in simulated environments (Mnih et al., 2015; Lilli-
crap et al., 2016; Jaderberg et al., 2017; Silver et al., 2017).
Scaling up RL algorithms to learn control policies for real
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practical systems (e.g., robotic manipulation), nevertheless,
is often more difficult due to the sample inefficiency of these
algorithms. While richer, realistic environments facilitate
the transfer of learned policies to reality (Tan et al., 2018),
they are accompanied by increased cost of simulation. To
be able to explore and learn faster in such simulated envi-
ronments is, therefore, an important step towards bringing
the application of RL to real systems.

Experience replay (Lin, 1992) has recently gained popularity
in off-policy deep RL algorithms, such as Deep Q-Networks
(DQN) (Mnih et al., 2015), as a means to improve sample
efficiency over their on-policy counterparts. As such, on-
policy algorithms are often sample inefficient as past transi-
tions need to be thrown away soon, if not immediately, after
they are experienced. Moreover, sample efficiency is also
related to the ability to explore faster in complex domains.
Yet, developing a generic exploration method that can easily
be adapted to any RL algorithm remains an unsolved quest.

In this paper, we propose a conceptually simple and eas-
ily extendable framework that can, in principle, be applied
to any existing on-policy or off-policy RL algorithm. Our
approach is to prioritize over starting states from which an
agent starts acting in the environment. By starting from sig-
nificant regions that the agent has already encountered in its
past experience, our approach can help improve exploration
and, thus, sample efficiency in complex simulated domains.

Given the capacity to reset a simulator’s state to those corre-
sponding to agent’s past observations, we draw inspiration
from the idea of a restart distribution as in (Kakade & Lang-
ford, 2002) and propose a practical procedure for creating
and adapting such distribution based on agent’s past expe-
riences. We maintain a restart distribution through a buffer
from which an agent can draw starting states. By enabling
the agent to restart from important regions of the environ-
ment rather than from a fixed reset state or a randomly-
selected state from a designated set (as in most OpenAl
Gym domains), we aim to explore faster and show that this
particular approach is more effective in sparse reward tasks.
We achieve this by prioritizing over the agent’s past obser-
vations to identify important regions of the environment
for restarting the agent. This approach tends to go hand in
hand with diversifying the starting states that can also help
exploration through faster coverage of the state space.
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In this work, we present several variants for prioritizing start-
ing states. In each variant, we consider maintaining a fixed
proportion between sampling from our restart distribution—
specifically, a starting state buffer—and from the environ-
ment’s initial state distribution. The variants are as follows:

1. Our simplest variant is to store and sample states ran-
domly from a uniform distribution in the same fashion
as experience replay was used to handle transitions in
(Mnih et al., 2015). That is, we do not prioritize over
the buffered states, nor do we select what states to be
stored in memory. In this case, we hypothesize that
any performance improvement should be mainly due
to the diversification of the starting states that in turn
helps exploration via faster coverage of the state space.

2. An obvious extension is then to consider sampling
starting states from regions with high expected learning
progress as measured by the temporal-difference (TD)
error, similar to the way transitions are prioritized in
prioritized experience replay (Schaul et al., 2016).

3. Particularly suited for tackling domains with (signifi-
cantly) sparse rewards, we consider a last prioritization
scheme in which we use an episodic starting state
buffer to store, only, those states that belong to ex-
perientially high-rewarding trajectories (i.e., trajecto-
ries that achieve higher returns than previously expe-
rienced). This is similar in spirit to the criterion used
by Oh et al. (2018) for selecting trajectories to imitate.
We show that such an episodic buffer can be crucial in
achieving robust learning from even an individual good
experience, specifically beneficial for on-policy meth-
ods which cannot straightforwardly adopt experience
replay to reuse past transitions.

We evaluate our proposed framework, as applied to both
on-policy and off-policy algorithms, on numerous simulated
physical environments, consisting of robotic manipulation
tasks with sparse rewards and robotic locomotion tasks with
dense rewards. Our results show improved performance on
these domains, with the most significant improvements in
sparse reward domains. In our study, we always evaluate
the agent’s performance based on the original starting state
distribution, as we assume this to be the metric of interest.

2. Related Work

The idea of directly influencing the starting states distribu-
tion to learn good policies in RL has already drawn attention
in the past (Kakade & Langford, 2002; Kormushev et al.,
2011). Most notably, Kakade & Langford (2002) studied the
notion of exploiting access to a generative model (Kearns
et al., 2002) of the environment to allow training on a restart
distribution (i.e., a fixed, proposal initial state distribution)

different from that of the environment. If properly chosen,
this is proven to improve learning performance on the orig-
inal starting state distribution. Nevertheless, no practical
procedure is given to choose this new distribution, only sug-
gesting to use a more uniform one over the state space. Also,
enabling any such distribution assumes a priori knowledge
of what constitutes a valid state. In our work, we provide a
practical procedure for creating and adapting a starting state
distribution during the training without such knowledge.

To improve learning of model-free RL algorithms, Popov
et al. (2017) proposed to use expert demonstrations by mod-
ifying the starting state distribution to be uniform among
the states visited by the provided trajectories. More re-
cently, and concurrent to our work, Salimans & Chen (2018)
reported achieving high levels of performance on the infa-
mous Montezuma’s Revenge ATARI game by restarting a
standard deep RL agent from designated starting states, man-
ually extracted from a single expert demonstration. These
works resemble our episodic starting state buffer with a
major difference being that, in our case, the agent progres-
sively updates its buffered best trajectories and samples
starts from them, thereby not relying on expert demonstra-
tions or manually-designated starts.

Recent work in curriculum for RL presents a method for
adaptive generation of curricula in the form of starting state
distributions that start close to the goal state and gradually
move away with agent’s progress (Florensa et al., 2017).
This method considers a specific class of goal-oriented tasks
with clear goal states and assumes a priori access to such
states. Contrary to this work, our framework is generally
not limited to domains with clear goal states and does not
require any prior knowledge of the task. Nevertheless, a
similar behavior to curriculum generation in this manner
could potentially emerge when using our approach with an
appropriate priority measure, whereby any encounter of a
goal state would bias the starting state distribution toward it.

Furthermore, in this work we provide an alternative per-
spective on how past experience can be harvested to assist
learning, and remarkably, in a fashion that is compatible
with both off-policy and on-policy learning algorithms. This
is in contrast to the perspective of replaying past experience
to improve the performance of RL agents (Lin, 1992; Mnih
et al., 2015; Schaul et al., 2016), an approach that cannot
straightforwardly be adopted by on-policy algorithms.

3. Background
3.1. Preliminaries

We consider the RL framework (Sutton & Barto, 1998;
Szepesvari, 2010) in which a learning agent interacts with
a stochastic environment over a sequence of discrete time
steps in the standard fashion: at each time step, the agent
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chooses an action based on its current state, to which the
environment responds with a reward and the next state. We
model the environment as a Markov decision process (MDP)
which comprises: a state space S, an action space A, a start-
ing state distribution with density p;(s1) = Pr{S; = s1},
a state transition kernel p(s’|s,a) = Pr{Siy1 = §'|S: =
s, Ay = a}, and an expected immediate reward function
r(s,a,s") = E[Ri41|S: = s, Ay = a, S = §'], for all
5,8 €S,ac A,s1 €8 CS.

In general, the agent’s decision-making procedure is char-
acterized by a stochastic policy 7(als) = Pr{A; = a|S; =
s}. In case of parameterized policies, such as those rep-
resented by artificial neural networks, we denote the pol-
icy by 7(als, @) where 8 € R is the vector of policy pa-
rameters, and where typically d < |S|. The agent uses
its policy to interact with the MDP to sample a trajectory
Hy.p = S1,A1,Rs, ..., S, A, Rpy1 where T is the tra-
jectory’s horizon, which is in general a random variable.
Throughout this paper we assume that 7 is finite, and that
terminations could occur either due to terminal states in
episodic tasks (i.e., concrete episodes) or due to an arbitrary
condition, such as timeouts, as could be the case for both
continuing and episodic tasks (i.e., partial episodes).

3.2. Assumptions

Several of our discussions in this paper are considered un-
der the more generic assumption of learning from partial
episodes and, therefore, are only relevant to bootstrapping
methods. This includes, for instance, any algorithm that uses
TD learning, such as Sarsa, Q-learning, and most actor-critic
methods. Nevertheless, the main proposition of this paper
applies also to Monte Carlo (non-bootstrapping) methods,
in which case the episodes are strictly concrete.

We assume access to the capacity to restart the agent in
states corresponding to its past observations—generally the
case given a natural and common type of simulator of the
environment. As in (Kearns et al., 2002), our assumption
is considerably weaker than having knowledge of the envi-
ronment’s model. However, similar to (Kakade & Langford,
2002), it is a stronger assumption than having only irre-
versible experience, where the agent must follow a single
trajectory without the ability to reset to obtain another tra-
jectory from another state. Note that our assumption on
reversibility is weaker than having knowledge of the MDP’s
starting state distribution.

Lastly, we assume throughout this paper that the agent’s
observations are non-aliased (Whitehead & Ballard, 1991).
While such aliasing is generally problematic for RL agents,
in our case it can further hurt performance of the agent
under the original starting state distribution, as it can bias the
agent’s policy towards behaviors that may be less suitable
for the more frequently-occurring underlying true state.

4. Prioritized Starting States

In this work, assuming access to the capacity to restart the
agent in states corresponding to its past observations (as
stated in Section 3.2), we propose using a starting state
buffer from which the agent can prioritize and draw states
to restart from in the next episode. We consider several
variants of prioritization of starting states and present a
generic and practical procedure for continual evolution of
the starting state distribution for improved sample efficiency.
Our main contribution is a flexible framework for gradu-
ally increasing the diversity of the starting states by storing
the agent’s previously encountered states in a buffer and
enabling prioritized sampling of starting states.

4.1. Motivation

In control problems it is known that even finding an op-
timal partial policy, i.e., a policy that is optimal for the
relevant states but can specify arbitrary actions for the irrel-
evant ones,' using an on-policy trajectory-sampling control
method in general requires exploring all state-action pairs an
‘infinite’ number of times (Sutton & Barto, 1998). Similarly,
a known problem with policy gradient methods is that the
original performance metric, which is what we ultimately
seek to optimize, is insensitive to policy improvement at un-
likely states despite the fact that policy improvement at these
unlikely states might be necessary in order for the agent to
achieve near-optimal performance (Kakade & Langford,
2002). For such cases, the diversification of starting states
can indeed help better explore the state space beyond the
originally reachable states.

In sparse reward environments, where the odds of stumbling
upon an informative experience could be significantly low,
it is critical for the agent to be able to maximally utilize its
good experiences. Using the proposed approach, such trajec-
tories can be recorded and used for sampling starting states,
effectively increasing the chances of experiencing success.
Moreover, a curriculum of starting states can be generated
in this way from past experience by prioritizing the stored
states. Employing the past experiences in this manner is
especially important in on-policy learning methods which
cannot straightforwardly use experience replay and which
currently discard all recent experiences immediately after
performing a single or multiple iterative updates.

4.2. Role of starting states in the performance objective

In this section, we concern ourselves with the following
question: “How does modifying the starting state distribu-
tion affect the original performance metric and, ultimately,
the learned policy?”.

I'The states that are unreachable from any of the MDP’s desig-
nated starting states and under any optimal policy.
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In order to answer this, we consider the case for tabular
and approximate solution methods separately. In tabular
methods, the learned values at each state are decoupled from
one another such that an update at one state affects no other.
Let us now consider the control problem in which the agent’s
goal is to maximize its value from the set of environment’s
starting states. As per the principle of optimality (Sutton
& Barto, 1998), a policy achieves the optimal value from
a state s, if and only if, for any state s’ reachable from s,
the policy achieves the optimal value. Therefore, by letting
the agent to also start in states outside the designated set,
we are, in principle, warranted to better optimize for the
original set through better optimizing for the states that are
reachable from the original set.

On the contrary, with approximation, an update at one state
could affect many others as, by assumption, we have far
more states than weights. Thus, making one state’s estimate
more accurate often means making others’ less accurate
(Sutton & Barto, 1998). Now let us consider, for instance,
the prediction problem of approximating the action values
of a given policy using a common loss function:

L(w) = Z p(s) Z m(als) {qﬂ(s, a) — G- (s, a|w)} 2.

seS acA

As shown, the overall loss is weighted according to the (dis-
counted) state distribution p(s)—which in episodic tasks
depends on the policy as well as the starting state distribu-
tion. In effect, this results in the approximation of the value
function to be more accurate at states that have higher visita-
tion density. The same rationale holds for the approximate
control methods, such as policy gradient algorithms (Sutton
et al., 2000) and DQN. We established that, for approximate
methods, changing the starting state distribution to a more
diverse one, as in our case, could indeed bias the objective
function. But does it result in different optimal policies?
Unfortunately, the policy that maximizes our new objec-
tive within some restricted class of policies may potentially
have poor performance according to the original objective.
By using a parameterization that well affords the domain’s
underlying complexity, we may presume that an optimal
policy that maximizes the modified objective—i.e., one with
a more diverse set of starts—will too maximize the original
objective. While this assumption may seem impractical for
large-scale problems, considering the relative simplicity of
the current domains of interest with respect to the common
high-capacity parametric representations (Li et al., 2018), it
is often admissible (see, e.g., (Florensa et al., 2017)).

4.3. Methods

For the set of buffered states S; at training step i and the
set of environment’s starting states S;, where typically
|S1| < |S], we enable sampling starting states from the

increasingly more diverse set S; U Sy instead of the conven-
tional approach of sampling from the fixed, original set S;.
Assuming no prior knowledge of the environment’s model,
the original set of starting states S; and the corresponding
density p; are unknown. Nevertheless, as we assume access
to a generative model of the environment, we can therefore
sample on demand from the original starting state distribu-
tion. By maintaining a balance between sampling starting
states from a distribution p} over S} and the original dis-
tribution p; over S1, we can ensure to further diversify the
starting states by effectively sampling from a new distribu-
tion g} that encompasses both p; and p}. We achieve this
by sustaining a fixed ratio between the experienced states
originating from the environment’s starts and the buffered
ones. Hence, this ratio is a hyperparameter of our approach.

We believe that when the problem domain is considered
simple for the learning algorithm—e.g., most continuous
control benchmarks with reward shaping (Ng et al., 1999)
for many deep RL methods (Duan et al., 2016; Tavakoli
et al., 2018)—this ratio would then need to be selected to fa-
vor more experiences from the environment’s starting states,
in order to let the agent focus the majority of its estimator’s
resources on optimizing for the original performance metric.
Therefore, in our dense reward experiments in Section 5.2
we only let 10% of the overall experiences to stem from the
buffered starts (i.e., ratio of 10%). However, in more chal-
lenging, sparse reward tasks (see Section 5.1), we find that
increasing this ratio can significantly improve performance.
We now describe the two memory types considered in this
paper, namely flat and episodic starting state buffers.

4.3.1. FLAT STARTING STATE BUFFER

Our flat starting state buffer simply follows the exact same
mechanism as the experience replay memory in (Mnih et al.,
2015), with the sole difference being that we store emulator
states (i.e., crucially not observations) as opposed to tran-
sitions. More specifically, same as the experience replay
of (Mnih et al., 2015), our flat buffer has a fixed capacity
and stores the most recently-encountered states, without any
selection criteria.

In this case, the distribution p! over the buffered states
S; at training step 4 could simply be uniform (similar to
how Mnih et al. (2015) sample transitions to replay from
their experience replay) or, alternatively, it could be biased
towards important regions as identified by an appropriate
priority measure, such as the state-value estimation’s TD-
error (van Seijen & Sutton, 2013; Schaul et al., 2016). We
experiment with both these variants. When using TD-error
prioritization, we calculate the probability of sampling states
in the same way as proposed by Schaul et al. (2016) for
calculating the probability of sampling transitions, and using
their proportional prioritization scheme.
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It is important to note that prioritization of starting states
does not introduce learning bias in the same way as prioriti-
zation in the context of experience replay. For experience
replay, biasing the sampling of buffered transitions directly
alters the perceived state transition and reward distributions
in a stochastic environment. This, however, is not the case
for our approach, as the introduction of bias on the choice
of starting state distribution does not change the perceived
transition probabilities of the MDP, and as the experienced
transitions are still sampled directly from the environment
instead of a buffer.

We can further diversify the agent’s experience by prema-
turely terminating the trajectories that originate from the
buffered states after a short, fixed horizon. Doing so is
possible for bootstrapping methods via partial-episode boot-
strapping (PEB) (Pardo et al., 2018), where the agent con-
tinues to bootstrap from early terminations, thus allowing it
to learn long-term policies from short, partial episodes. In
our experiments in Section 5.2, we consider a short, fixed
horizon of 10 steps for when interactions originate from
buffered starts and compare its performance against having
full-length interactions (i.e., using the environment’s default
time limit of 1000 steps, as specified in OpenAl Gym).

4.3.2. EPISODIC STARTING STATE BUFFER

In our episodic starting state buffer, we apply a trajectory-
centric selection criterion for storing states based on their
corresponding episodic return. Specifically, we only allow
storage of those states that belong to experientially high-
rewarding trajectories (i.e., those that achieve higher returns
than previously experienced). In this way, the buffered
states have an implicit prioritization associated with them
(i.e., that of their selection criterion) which we hypothesize
to be useful for sampling starts in sparse reward domains.

Without any further considerations, storing trajectories in
this manner could significantly hurt agent’s learning per-
formance by biasing its experiences towards very specific
regions in the state space. To elucidate this, consider, e.g., a
multi-goal environment in which the agent’s goal is different
in each episode. Given the fact that the goal is part of the
(emulator) state, sampling starts from buffered, single-goal
episodic experiences could, potentially, cause the entirety of
the episodic buffer to be filled with trajectories of a single
goal. To address this, we consider a hierarchical approach
for storage and sampling of starting states. In particular,
for storage, we consider our episodic buffer to have a fixed
capacity for the number of main trajectories (i.e., those
starting from an environment’s initial state), as well as the
number of per-main-trajectory’s sub trajectories (i.e., those
starting from a state within a main one). We sample starts
from our episodic buffer in the following fashion: first we
sample a main trajectory class from the stored ones, then

Figure 1. The two sparse reward manipulation environments in our
experiments: FetchReach (left) and Thrower (right).

we sample a sub trajectory from the chosen main class, and
ultimately we sample a state from the chosen sub trajectory.
To make this clear, in our multi-goal domain example, us-
ing this hierarchical approach, all sub episodic trajectories
from a main class will have the same goal, as they all have
branched off from the same main episodic trajectory of a
fixed goal throughout. This structure allows us to more effec-
tively control the maximum number of buffered trajectories
with a similar nature (e.g., with the same goal).

Moreover, to maintain episodic return as a comparable mea-
sure across main and sub trajectories for enforcing our stor-
age criterion, we consider sub trajectories to consist of two
segments: (i) sub episodic states and rewards for an interac-
tion episode that initiated at a buffer-sampled start, and (ii)
all states and rewards from the originating trajectory up to
the state that was used to initiate the sub episode. Effectively,
the latter serves as an augmentation that links a sub trajec-
tory to an environment’s starting state. Using this augmenta-
tion allows us to standardize sub episodic returns by assimi-
lating full-length episodic returns. However, to achieve this,
one last remaining consideration is then to account for the
commonly-used, often fixed, episodic time limit 7". In par-
ticular, we need to ensure that the time limit is accordingly
shortened for sub episodic interactions. To do so, we keep
track of the episodic time step ¢ associated with each state
from a buffered trajectory, where ¢t € {0, ...,7'—1}. Having
this information about a buffer-sampled initial state enables
us to shorten the maximum length of the sub episodic in-
teractions to ensure the augmented sub trajectories do not
exceed the time limit 7". In other words, for a buffer-sampled
starting state s; with the original episodic time step ¢, we
enforce a horizon of h = T" — ¢ for the resulting sub episode.

Lastly, we consider prioritizing over the buffered trajectories
based on their corresponding episodic returns. To do so, we
calculate the probability of sampling a trajectory 7 as

P(r) fou, — 0t (1)
T) = =

ZVkED(Glg:lk —d+e)
where § = min(0, minyrep G§;, ). Gt denotes the

undiscounted, episodic return of trajectory k£ with length
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Figure 2. Mean test success rate (line) with standard error (shaded area) on our custom FetchReach environment, for PPO (left; 10 random
seeds) and DDPG (right; 5 seeds) with and without our episodic buffer. We consider the performance of our method over a range of ratio
hyperparameters. Test evaluations are performed every 200 and 2,000 steps for PPO and DDPG, respectively, and last for one episode.

li, < T from episodic buffer D, € is a small positive constant
that prevents not sampling stored trajectories with minimum
return, and J is used as an offset variable to enable handling
negative returns. We apply this procedure hierarchically, to
first sample a main set and then to sample a sub trajectory
from the chosen set. For sampling a main set, we use the
highest possible return across the set’s stored trajectories as
representative of the set’s priority. Finally, after selecting a
trajectory, we consider uniform sampling of a state from it.

S. Experiments

In this section, we evaluate the performance of our proposed
framework of prioritized starting states on a range of simu-
lated physical environments using MuJoCo (v1.5) (Todorov
et al., 2012), and empirically demonstrate the following:

1. Our framework can be easily adopted by any on-policy
or off-policy RL algorithm through maintaining a start-
ing state buffer. We empirically show this using one
popular method from each category: on-policy Proxi-
mal Policy Optimization (PPO) (Schulman et al., 2017)
and off-policy Deep Deterministic Policy Gradient
(DDPG) (Lillicrap et al., 2016).

2. We illustrate that our proposed episodic starting state
scheme (described in Section 4.3.2) can prove highly
effective (even crucial in certain cases) in sparse reward
domains. We demonstrate this on two custom robotic
manipulation tasks with sparse rewards, adapted from
the OpenAl Gym collections (Brockman et al., 2016).

3. Lastly, we evaluate our flat starting state buffer on a
representative subset of the continuous control bench-
marks with dense rewards from (Duan et al., 2016).
We show that different variants of our approach can
improve learning performance, with the performance
improvement margin widening as the domains become
more complex for the baseline algorithm.

We dedicate the entirety of Section 5.1 to Point 2, and illus-
trate Points 1 and 3 in Sections 5.1.1 and 5.2, respectively.

Throughout our experiments, we use the OpenAl Baselines
(Hesse et al., 2017) implementation of PPO and DDPG, and
generally with the same hyperparameter settings reported,
respectively, in (Schulman et al., 2017) and (Lillicrap et al.,
2016), unless stated otherwise. When using PPO, we al-
ways use partial-episode bootstrapping (Pardo et al., 2018),
which improved performance in all cases. Throughout our
experiments, we use the same discount factor of 0.99.

5.1. Sparse Reward Environments

In this section, we evaluate the performance of our episodic
starting state buffer (described in Section 4.3.2). To do so,
we consider two simulated, robotic manipulation tasks from
OpenAl Gym: FetchReach and Thrower (see Figure 1).

Throughout the experiments in this section, ¢ = 1078
is used for Equation 1. We begin sampling states from
the buffer after 10,000 and 1,000 training steps, and use
the main trajectory capacity of 100 and 50 episodes in
FetchReach and Thrower, respectively. We use the same
sub trajectory capacity of 10 in both domains.

For the DDPG agent, we use the same network size of three
hidden layers and 64 units at each layer for both the actor
and the critic, where we inject the action vector at the second
layer of the critic network. We use a Polyak-averaging
coefficient of 0.99 for updating the target (different from
0.999 used in (Lillicrap et al., 2016)). We use the same
learning rate of 10~2 for both the actor and the critic, a batch
size of 256, and an adaptive parameter noise (Plappert et al.,
2018b) for exploration, with the same hyperparameters set
in the OpenAl Baselines implementation of DDPG.

Due to the deterministic, off-policy nature of DDPG, all
our test evaluations using this agent are performed using the
greedy policy (i.e., without any added noise for exploration).
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For the PPO agent, we generally use a lower learning rate of
10~* across all our experiments (including in Section 5.2),
with the exception of the Thrower experiments for which the
default learning rate of 103 from (Schulman et al., 2017)
has worked well. In our preliminary experiments, we found
lowering of the learning rate to generally help stabilize the
performance of PPO on these domains.

5.1.1. FETCH REACHING ENVIRONMENT

In this section, we evaluate the performance of on-policy
PPO and off-policy DDPG agents on a custom FetchReach
environment from the OpenAl Gym’s multi-goal collec-
tion (Plappert et al., 2018a), with and without our proposed
episodic starting state buffer. FetchReach is a robotic manip-
ulation domain based on a simulated model of the existing,
Fetch robotic arm. In each episode, the agent’s task is to con-
trol its 4 controllable joints in order to move the gripper to a
target position, with the target being randomly sampled at
the start of each new episode. Agent’s observations include
both the full state of the robot as well as the randomized,
3-dimensional goal position. We modified this task so as to
eliminate the possibility of initialising the environment in an
already solved state. This domain features a fixed time limit
of 50 steps and has no terminal states. The agent receives a
penalty of -1 for any step spent outside the goal region (i.e.,
gripper not at target), and zero otherwise.

To study the impact of our ratio hyperparameter in domains
with sparse rewards, we evaluate the performance of our
agents over a range of ratios for sampling states from the
proposed episodic starting state buffer. Specifically, we
experimented with ratios 10%, 20%, 40%, and 60%.

Our results are shown in Figure 2. While the baseline PPO
performs significantly better than the baseline DDPG on this
task, in all cases, using our episodic buffer improves learn-
ing performance. For both agents, we observed that higher
ratios (i.e., sampling more often from our starts buffer) was
beneficial to the learning performance, with the ratio of 60%
offering best performance for DDPG, and the ratio of 40%
to achieve fastest learning curve for PPO.

It is important to note that, for both agents in our experi-
ments here, we use the same exact implementation of our
episodic starting state buffer, with no specific considerations
for either of the agents, regardless of their off-policy or on-
policy nature. This supports our claim that our approach
could be generally adopted by any RL algorithm.

5.1.2. THROWER ENVIRONMENT

Next, we evaluate the performance of our proposed episodic
starting state buffer on a custom, sparse reward Thrower
domain from OpenAl Gym (see Figure 1 (right)). Our mod-
ified version of this task makes it particularly challenging as

Thrower
1.0 A
0.8
0.6 — PPO
! —— PPO + episodic starts
0.4
N /
0.0
0 2500000

Figure 3. Mean test success rate (line) with standard error (shaded
area) on our custom Thrower environment for PPO (42 random
seeds) with and without our episodic buffer. While the majority
of the baseline PPO instances (different random seeds) fail to
learn from the significantly rare, good experience of throwing
the ball in the goal region (i.e., green area in Figure 1 (right)),
our approach enables every instance to achieve a 100% success
rate. Test evaluations are performed every 2,000 environment steps
during training and last for 8 episodes each time.

the agent only receives a reward of 1 for successfully throw-
ing the ball in the goal region, and 0 otherwise. Moreover,
the agent incurs a small torque penalty upon motion. The
task terminates as soon as the ball hits the goal or the table,
or upon reaching the time limit of 100 steps.

We evaluate our proposed method as applied to the PPO
algorithm and contrast it to a standard PPO baseline. We
train the agents for 2.5M steps. Due to the complexity of this
environment, the probability of the ball impacting the goal
during initial exploration is very low, thus we only consider
random seeds which have had an instance of the ball hitting
the goal in their first 50,000 training steps and use an entropy
coefficient of 0.02 to encourage exploration. We evaluate
the agents for 8§ episodes every 2,000 training steps. Due
to the policy’s stochasticity and the task’s complexity, we
mark an evaluation round a ‘success’ as long as at least one
of the 8 trial episodes results in the ball impacting the goal.

Our results are shown in Figure 3. We find that using our
episodic buffer, our approach can enable PPO to learn ro-
bustly across 42 unique seeds, whereas for 80% of the exper-
iments, the original PPO completely fails to learn the task,
with the failed seeds instead learning to balance or drop the
ball so as to minimize the accumulated torque penalties.

5.2. Dense Reward Environments

Here, we evaluate the performance of our flat starting state
buffer (described in Section 4.3.1). For this purpose, we
consider a representative subset of the simulated, robotic
locomotion domains with dense rewards from OpenAl Gym,
namely HalfCheetah, Walker, and Humanoid.
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Figure 4. Mean test performances of our flat starting state buffer as applied to PPO (over 5 random seeds). We compare uniform sampling
(blue graphs) against the TD-error prioritized variant of our approach (orange graphs) with v = 0.4 (determines extent of prioritization).
We also compare our approach using a short horizon for interactions originating from the buffered starts (dashed graphs) against using the
default time limit of 1000 steps (solid graph). For all these experiments, we use a ratio of 10% and a buffer capacity of 20,000 states.

We only consider PPO in our experiments here, as it has
been shown to generally achieve high levels of performance
across the continuous control benchmarks. We run PPO with
a lower learning rate than that reported in (Schulman et al.,
2017) which appeared to perform more stably across the
considered tasks and achieved much higher performance
levels on the Humanoid domain for the baseline PPO agent.
Once again, we use PPO with partial-episode bootstrap-
ping as our baseline. This is due to the fact that the time
limits in our benchmarks here are not environmental termi-
nations and, thus, a bootstrapping agent such as PPO should
continue to bootstrap from such terminations. Doing so
improves the performance of PPO on the domains here, and
enables experimenting with shorter horizons (or time limits)
when starting from a buffer-sampled starting state. When
not explicitly indicated the horizon, the agent is using the
default time limit of 1,000 steps for interactions originating
from the buffered starting states.

For all variants of our approach in this experiment, we use
the ratio of 10% and a buffer capacity of 20,000 states. As
described in Section 4.3.1, for prioritizing the buffered states
in our method, we adopted the proportional prioritization
scheme from (Schaul et al., 2016), indeed without the im-
portance sampling correction, and with the prioritization
hyperparameters o = 0.4 and ¢ = 1075 (where « deter-
mines how much prioritization is used and e prevents the
edge-case of states not being resampled once their corre-
sponding TD-error is zero).

Our experimental results in Figure 4 illustrate that sampling
starting states from the agent’s past experiences can exhibit
performance improvements, even in domains with dense,
shaped rewards. Notably, on the Humanoid domain, which
is the most complex domain among those considered in
this section, we see that using our flat starting state buffer
offers the most significant improvements. Particularly, the
variants with the shortened horizon of 10 steps (dashed
graphs) achieve the best performance on HalfCheetah and

Humanoid. Note that, this variant of our approach effec-
tively experiences highest diversification of starting states,
as per our ratio hyperparameter which sustains a fixed pro-
portion of states experienced from the environment’s start-
ing states and those originating from our buffer-sampled
starts, thereby achieving higher sampling density of starts
from our buffer. While using a shorter horizon seems to
significantly improve performance in at least one domain
(i.e., Humanoid), we note that the difference between our
TD-prioritized and uniform flat starting state buffers are not
significant enough across the tasks here to be conclusive.

6. Conclusion and Future Work

In this work, we proposed a framework of prioritized starting
states from which an agent can start acting in the environ-
ment. We achieve this by maintaining a buffer of agent’s
previously-encountered states from which we enable priori-
tized sampling of starting states. Our proposed framework
can be easily adopted by any existing off-policy or on-policy
RL algorithm. We applied our method on two popular RL al-
gorithms, on-policy PPO and off-policy DDPG, and showed
empirically that different variants of our approach can effec-
tively improve upon the performance in almost all domains.
Furthermore, we demonstrated how our approach can be
used to robustly learn in problem domains that are char-
acterized with sparse rewards, where a single informative
trajectory can be of vital importance to the learning progress,
especially of significance for on-policy algorithms which
cannot straightforwardly adopt experience replay.

In future work, we aim to explore other prioritization signals
for identifying significant states from the buffered ones. We
believe it would be interesting to extend our framework
to existing methods for intrinsic motivation and curiosity
(Schmidhuber, 2010; Bellemare et al., 2016; Pathak et al.,
2017) to further help in sparse reward tasks.
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