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Abstract

This report is a collection of comments on the Read Paper of Fearnhead and Prangle (2011), to appear
in the Journal of the Royal Statistical Society Series B, along with a reply from the authors.

1 A universal latent variable representation (C. Andrieu, A. Doucet

and A. Lee)

Exact simulation to tackle intractability in model based statistical inference has been exploited in recent years
for the purpose of exact inference Beaumont (2003); Beskos et al. (2006); Andrieu and Roberts (2009); Andrieu
et al. (2010) (see Gouriéroux et al. (1993) for earlier work). ABC is a specialisation of this idea to the scenario
where the likelihood associated to the problem is intractable, but involves an additional approximation. The
authors are to be thanked for a useful contribution to the latter aspect. Our remarks to follow are presented in
the ABC context but apply equally to exact inference. A simple fact which seems to have been overlooked is
that sampling exactly Y ∼ f(y|θ) on a computer most often means that Y = φ(θ, U) where U is a random vector
of probability distribution D(·) and φ(·, ·) is a mapping either known analytically or available as a “black-box”.
The vector U may be of random dimension, i.e. D(·) may be defined on an arbitrary union of spaces (e.g. when
the exact simulation involves rejections), and is most often known analytically - we suggest to take advantage
of this latter fact. In the light of the above one can rewrite the ABC proxy-likelihood

p̃(y∗|θ) =

∫
Y

K(y, y∗)× p(y|θ)dy ,

in terms of the quantities involved in the exact simulation of Y

p̃(y∗|θ) =

∫
U

K (φ(θ, u), y∗)×D(u)du .
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In a Bayesian context the posterior distribution of interest is therefore

p̃(θ|y∗) ∝
∫
U

K (φ(θ, u), y∗)×D(u)du× p(θ) .

Provided that D(·) is tractable, we are in fact back to the usual, analytically tractable, “latent variable” scenario
and any standard simulation method can be used to sample θ, U . Crucially one is in no way restricted to the
usual approach where Ui

iid∼ D(·) to approximate the proxy-likelihood. In particular, for θ fixed, one can
introduce useful dependence between φ(θ, U1), φ(θ, U2), . . . e.g. using an MCMC of invariant distribution D(·)
started at stationarity Andrieu and Roberts (2009). The structure of p̃(θ, u|y∗) may however be highly complex
and sophisticated methods may be required. One possible suggestion is the use of particle MCMC methods
Andrieu et al. (2010) to improve sampling on the U−space, e.g. for a fixed value of θ estimate the proxy-
likelihood

∫
U
K (y∗, φ(θ, u)) × D(u)du unbiasedly using an SMC sampler Del Moral et al. (2006) targeting a

sequence of intermediate distributions between D(u) and K (φ(θ, u), y∗)×D(u) proportional to

Kj (φ(θ, u), y∗)×Dj(u)

for {Kj(·, ·), j = 1, . . . , n − 1} and {Dj(·), j = 1, . . . , n − 1} and plug such an estimate in standard MCMC
algorithms. Notice the flexibility offered by the choice of {Kj(·, ·)} and {Dj(·)} which can allow one to pro-
gressively incorporate both the dependence structure on U and the constraint imposed by K(·, ·). When φ(·, ·)
is known analytically, under sufficient smoothness conditions one can use an IPA Pflug (1996); Andrieu et al.
(2005) approach to estimate e.g. gradients with respect to θ

∇θ
∫
U

K (φ(θ, u), y∗)×D(u)du .

Again such ideas equally apply to genuine latent variable models and have the potential to lead to efficient exact
inference methods in otherwise apparently “intractable” scenarios.

2 Summary-free ABC (S. Barthelmé, N. Chopin, A. Jasra and S.S.

Singh)

We strongly believe that the main difficulty with ABC-type methods is the choice of summary statistics. Al-
though introducing summary statistics may be sometimes beneficial Wood (2010), in most cases this induces a
bias which is challenging to quantify. We thus welcome this important work on automatically choosing sum-
mary statistics. The fact remains that the optimality criterion proposed in the paper is a bit limiting; we want
to approximate a full posterior distribution, not simply the posterior expectation. In addition, the proposed
approach does not offer a way to monitor the bias induced by the optimal set of summary statistics, except by
numerically comparing many alternative summary statistics, which is potentially tedious.

It is perhaps useful to note there now exist ABC methods that do not use summary statistics, at least for
certain classes of models. The EP-ABC algorithm of Barthelmé and Chopin (2011) is a fast approximation
scheme for ABC posteriors based on constraints on the form ‖yi − y?i ‖ < ε. It is typically orders of magnitude
faster than Monte Carlo based ABC algorithm, whilst, in some scenarios, featuring an approximation error that
is smaller, due to the absence of summary statistics. It is currently limited however to models such that the yi
may be simulated sequentially using some chain rule decomposition.

For hidden Markov models, “exact” ABC inference (i.e. not relying on either summary statistics or an
approximation scheme) may be achieved as well, via the HMM-ABC approach of Dean et al. (2011); Dean
and Singh (2011) (see also McKinley et al. (2009)), which show that an ABC posterior may be re-interpreted
as the posterior of an artificial hidden Markov model, where the observations are corrupted with noise. This
interpretation makes the remark of Wilkinson (2008) even more compelling: without summary statistics, an
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ABC posterior may be interpreted as the correct posterior of a model where the actual data (as opposed to
the summary statistics) are corrupted with noise. For instance, the Ricker model example, and with some
adaptation for the Lokta-Volterra example of the read paper.

These two approaches already cover many ABC applications, and could be applied directly to three examples
of the read paper: g-and-k distributions (EP-ABC), Lokta-Volterra processes (EP-ABC, HMM-ABC with a
slight modification), and the Ricker model (HMM-ABC). We are currently working on extending this work
in other dependence structures for the observations and we hope that others will also join us in this effort of
removing summary statistics in ABC.

3 Inference on summary statistics: a mean or an end? (J. Cornebise

and M. Girolami)

We congratulate the authors for their excellent article. We would like to suggest consideration of cases where it
would make sense, from the perspective of statistical inference, to focus directly on p(θ|s), that is base inferences
on the pre-processed, summarized data s, rather than on the raw data yobs. Such a practice is standard in
fields such as statistical discriminant analysis, pattern recognition, machine learning and computer vision, where
pre-processing such as feature extraction (see e.g. Lowe, 2004), edge detection, and thresholding are routine,
or in medical signal processing (e.g. MRI), where inference occurs on pre-processed output of the medical
instrument. Wood (2010) focuses on qualitative descriptors of noisy chaotic dynamic systems presenting strong
dependence on the initial conditions, with applications to ecological models: the primary interest for the user
of these models are the characteristics of the trajectory (regularity, pseudo-period, maxima, extinction of the
population, . . . ), not its actual path.

θ

y

s
Intractable distri-
bution of interest
p(y|θ)

Monte Carlo approxi-
mation of p(s|θ)

Serves as a
proxy for

(a) Classical use of ABC: inference based on the raw
data y, the summary statistics s serve to compute a
Monte-Carlo estimate of p(s|θ) as a proxy for the in-
tractable likelihood p(y|θ).

θ

s

yAuxiliary simula-
tion variable

Monte Carlo
approximation
to intractable
distribution of
interest p(s|θ)

(b) Possible complementary use of ABC: inference
based on the summarized data s, the raw data y serves
as an intermediate simulation step.

Figure 1: Graphical representation of the two possible uses of ABC: the roles of the data y and of the summary
s are inversed. Plain lines represent distributions from which it is easy to sample; Annotated dashed lines
represent logical relations.

Statistically speaking, as illustrated in the DAG of Figure 1, this is nothing but shifting the model one layer
down the hierarchical model, permuting the role of y and s as auxiliary simulation variable and variable of inter-
est, with the advantage of removing the proxy approximation: the summary statistics are not an approximation
anymore, but the actual focus of interest. This is reminiscent of discriminative–generative modelling (see e.g.
Xue and Titterington (2010) and Hopcroft et al. (2010)). The choice of those statistics then becomes either a
modelling problem based on domain specific expertise or, drawing further the comparison with computer vision,
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a matter of sparse base construction as recently developed in compressed sensing (Candès and Wakin, 2008).
The only remaining layer of approximation is that of density estimation by the kernel K. Unfortunately,

this kernel density estimation is only asymptotically unbiased, and is biased for finite sample size, the MH ratio
in ABC-MCMC (Fearnhead and Prangle, 2011, Table 2) cannot be cast in the Expected Auxiliary Variable of
Andrieu et al. (2007) extending Andrieu and Roberts (2009), not yet available but summarized in Andrieu et al.
(2010), Section 5.1.

4 Parametric estimation of the summary statistics likelihood (J. Cor-

nebise, M. Girolami and I. Kosmidis)

We would like to draw attention to the work of Wood (2010) which is of direct relevance to ABC despite it
having been largely overlooked in the ABC literature. In Section 1.2 of the current paper the authors note that
K ((S(y)− sobs)/h) is a Parzen-Rosenblatt density kernel. As has already been suggested in e.g. Del Moral
et al. (2011) one can simulate R observations y1, . . .yR for a given value of θ and use the corresponding
nonparametric kernel density estimate

∑
rK ((S(yr)− sobs)/h) /(Rhd) for p(sobs|θ). Wood (2010) suggests the

synthetic likelihood by invoking the assumption of multivariate normality such that sobs ∼ N (µθ,Σθ). Plug-in
estimates of µθ and Σθ are obtained by the empirical mean µ̂Rθ and covariance Σ̂Rθ using the simulated statistics
S(y1), . . . S(yR) yielding a parametric density estimate N (sobs; µ̂

R
θ , Σ̂

R
θ ). This synthetic likelihood can then

be used in an MCMC setting analagous to MCMC-ABC – and can similarly be used in IS-ABC and SMC-
ABC settings. The convergence rate of the variance of the parametric density estimate is independent of the
dimension of the summary statistics, which is in contrast to the nonparametric rate which suffers from the curse
of dimensionality. This lower variance could improve mixing of the MCMC algorithm underpinning ABC, as
already demonstrated in the pseudo-marginal approach to MCMC of Andrieu and Roberts (2009).

Of course Wood (2010) does not offer an automatic choice of the summary statistics: the user selects a
(possibly large) set of summary statistics based on doman knowledge of the problem. This is similar to the way
Section 3 offers to select the “transformations” f(y), which are the first round of summary statistics. However,
the relative weighting of each statistic is automatically inferred via the corresponding variance estimate. Could
such a feature be of benefit in Semi-automatic ABC?

The assumption of multivariate normality on the distribution of the summary statistics plays a critical role
in Wood’s approach. He justifies it by: i) choosing polynomial regression coefficients as summary satistics
and, most interestingly, ii) uses a pilot run to improve the normality of the statistics by quantile regression
transformations – a preliminary step conceptually similar to the pilot ABC run of Section 3.

We conjecture that such transformations could allow for the use of parametric density estimation within
Semi-automatic ABC, possibly benefitting from the increased convergence rate and making use of the variance
of the sampled statistics. Additionally, we wonder if Theorem 4 could be modified to study the optimality of
such transformed Gaussian statistics.

5 Automatic tuning of pseudo-marginal MCMC-ABC kernels (A.

Lee, C. Andrieu and A. Doucet)

We congratulate the authors on a structured contribution to the practical use of ABC methods. We focus here
on the conditional joint density

π̄X,Y |Θ(x, y|θ) = πY |Θ(x|θ)π̄Y |X(y|x),

which is central to all forms of ABC. Here x and y denote the simulated and observed data or summary statistics
in ABC and π̄X|Θ = πY |Θ. In the article, π̄Y |X(y|x) = K[(y − x)/h] and π̄Y |Θ(y|θ) =

∫
π̄X,Y |Θ(x, y|θ)dx 6=

πY |Θ(y|θ) leads to the approximation. While neither π̄Y |Θ(y|θ) nor πY |Θ(x|θ) can be evaluated, the ability to
sample according to πY |Θ(·|θ) allows for rejection, importance and MCMC sampling according to π̄Θ,X|Y (·|y).
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Algorithm 1 Rejuvenating GIMH-ABC
At time t, with θt = θ:

1. Sample θ′ ∼ g(·|θ).

2. Sample z1:N ∼ π⊗NY |Θ(·|θ′).

3. Sample x1:N−1 ∼ π⊗(N−1)
Y |Θ (·|θ).

4. With probability

min

{
1,
π(θ′)g(θ|θ′)
π(θ)g(θ′|θ) ×

∑N
i=1 1Bh(zi)(y)

1 +
∑N−1
i=1 1Bh(xi)(y)

}
set θt+1 = θ′. Otherwise set θt+1 = θ.

The calibration of noisy ABC is then immediate. If ỹ ∼ π̄Y |X(·|y), then marginally ỹ ∼ π̄Y |Θ(·|θ∗) since
y ∼ πY |Θ(·|θ∗) for some θ∗ ∈ Θ. Inference using π̄ with Y = ỹ is then consistent with the data generating
process although π̄Θ|Y (·|ỹ) may not be closer to πΘ|Y (·|y) than π̄Θ|Y (·|y).

The tractability of π̄Θ,X|Y , whose unavailable marginal π̄Θ|Y (·|y) is of interest puts ABC within the domain
of pseudo-marginal approaches (Beaumont, 2003; Andrieu and Roberts, 2009), and the grouped-independence
Metropolis-Hastings (GIMH) algorithm has been used in Becquet and Przeworski (2007). We present two novel
MCMC-ABC algorithms based on recent work (Andrieu et al., 2012), and for simplicity restrict ourselves to
the case π̄Y |X(y|x) ∝ 1Bh(x)(y), where 1Bh(x) is the indicator function of a metric ball of radius h around x.
These algorithms define Markov chains solely on Θ.

In the GIMH algorithm with N auxiliary variables, the state of the chain is (θ, x1:N ) where x1:N :=

(x1, . . . , xN ) and at each iteration we propose new values (θ′, z1:N ) via θ′ ∼ g(·|θ) and z1:N ∼ π⊗NY |Θ(·|θ′).
Algorithm 1 presents an alternative to GIMH with the crucial difference in step 3, where GIMH would use the
previously simulated values of x1:N instead of sampling N − 1 new ones. This algorithm can have superior
performance to the GIMH algorithm in some cases where the latter gets ‘stuck’. Algorithm 2 involves a random
number of simulations instead of fixed N , adapting the computation in each iteration to the simulation prob-
lem at hand. Data is simulated using both θ and θ′ until a ‘hit’ occurs. It can be verified that the invariant
distribution of θ is π̄Θ|Y (·|y) for both algorithms. The probability of accepting the move θ → θ′ after step 1 in
Algorithm 1, as N →∞, approaches

min

{
1,
π̄Θ|Y (θ′|y)g(θ|θ′)
π̄Θ|Y (θ|y)g(θ′|θ)

}
.

For Algorithm 2, this probability is exactly

min

{
1,
π(θ′)g(θ|θ′)
π(θ)g(θ′|θ)

}
× π̄Y |Θ(y|θ′)
π̄Y |Θ(y|θ) + π̄Y |Θ(y|θ′)− π̄Y |Θ(y|θ)π̄Y |Θ(y|θ′) .

Regarding the “automatic” implementation of ABC, Algorithm 1 could automate the use of N processors on a
parallel computer or Algorithm 2 could be used to automatically adapt computational effort to the target of
interest.

6 A new perspective on ABC (J.-M. Marin and C.P. Robert)

In this discussion paper, Fearnhead and Prangle do not follow the usual perspective of looking at ABC as a
converging (both in N and h) approximation to the true posterior density (Marin et al., 2011b). Instead, they
consider a randomised (or noisy) version of the summary statistics

sobs = S(yobs) + hx , x ∼ K(x)
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Algorithm 2 1-hit MCMC-ABC
At time t, with θt = θ:

1. Sample θ′ ∼ g(·|θ).

2. With probability 1−min
{

1, π(θ′)g(θ|θ′)
π(θ)g(θ′|θ)

}
, set θt+1 = θ and go to time t+ 1.

3. Sample zi ∼ πY |Θ(·|θ′) and xi ∼ πY |Θ(·|θ) for i = 1, . . . until y ∈ Bh(zi) and/or y ∈ Bh(xi).

4. If y ∈ Bh(zi) set θt+1 = θ′ and go to time t+ 1.

5. If y ∈ Bh(xi) set θt+1 = θ and go to time t+ 1.

and they derive a calibrated version of ABC, i.e. an algorithm that gives “proper" predictions, but only for
the (pseudo-)posterior based upon this randomised version of the summary statistics. This randomisation
however conflicts with the Bayesian paradigm in that it seems to require adding pure noise to (and removing
information from) the observation to conduct inference. Furthermore, Theorem 2 is valid for any value of h. We
thus wonder at the overall statistical meaning of calibration, since even the prior distribution (corresponding
to h = +∞) is calibrated, while the most informative (or least randomised) case (ABC) is not necessarily
calibrated. Nonetheless, the interesting aspect of this switch in perspective is that the kernel K used in the
acceptance probability, with bandwidth h,

K((s− sobs)/h) ,

need not behave like an estimate of the true sampling density since it appears in the (randomised) pseudo-model.
As clearly stated in the paper, the ABC approximation is a kernel convolution approximation. This type

of approximation has been studied in the approximation theory litterature. Typically, Light (1993) introduces
a technique for generating an approximation to a given continuous function using convolution kernels. Also,
in Levesley et al. (1996), it is constructed a class of continuous integrable functions to serve as kernels asso-
ciated with convolution operators that produce approximations to arbitrary continuous functions. It could be
eventually promising to adapt some of the techniques introduce in these papers.

Overall, we remain somehow skeptical about the “optimality" resulting from this choice of summary statistics
as (a) practice—at least in population genetics (Cornuet et al., 2008)—shows that proper approximation to
genuine posterior distributions stems from using a number of summary statistics that is (much) larger than the
dimension of the parameter; (b) the validity of the approximation to the optimal summary statistics used as
the actual summary statistics ultimately depends on the quality of the pilot run and hence on the choice of the
summary statistics therein; this approximation is furthermore susceptible to deteriorate as the size of the pilot
summary statistics grows; (c) important inferencial issues like model choice are not covered by this approach
and recents results of ours (Marin et al., 2011a) show that estimating statistics are likely to bring inconsistent
solutions in this context; those results imply furthermore than a naïve duplication of Theorem 3, namely based
on the Bayes factor as a candidate summary statistic, would be most likely to fail.

In conclusion, we congratulate the authors for their original approach to this major issue in ABC design
and, more generaly, for bringing this novel and exciting inferential method to the attention of the readership.

7 On the consistency of noisy ABC (C.P. Robert)

A discussion paper on the fast-growing technique of ABC techniques is quite timely, especially when it addresses
the important issue of summary statistics used by such methods. I thus congratulate the authors on their
endeavour.

While ABC has been gradually been analysed from a (mainstream) statistical perspective, this is one of
the very first papers performing a decision-theoretic analysis of the factors influencing the performances of the
method (along with, e.g., Dean et al., 2011). Indeed, a very interesting input of the authors is that ABC is
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considered there from a purely inferential viewpoint and calibrated for estimation purposes. The most important
result therein is in my opinion the consistency result in Theorem 2, which shows that noisy ABC is a coherent
estimation method when the number of observations grows to infinity. I however dispute the generality of the
result, as explained below.

In Fearnhead’s and Prangle’s setting, the Monte Carlo error that is inherent to ABC is taken into account
through the average acceptance probability, which collapses to zero when h goes to zero, meaning that h = 0

is a suboptimal choice. This is a strong (and valid) point of the paper because this means that the “optimal"
value of h is not zero, a point repeated later in this discussion. The later decomposition of the error into

trace(AΣ) + h2

∫
xTAxK(x)dx+

C0

Nhd

is very similar to error decompositions found in (classical) non-parametric statistics. In this respect, I do fail to
understand the argument of the authors that Lemma 1 implies that a summary statistics with larger dimension
also has larger Monte Carlo error: Given that π(sobs) also depends on h, the appearance of hd in eqn. (6) is
not enough of an argument. There actually is a larger issue I also have against several recent papers on the
topic, where the bandwidth h or the tolerance ε is treated as a given or an absolute number while it should be
calibrated in terms of a collection of statistical and computational factors, the number d of summary statistics
being one of them.

When the authors consider the errors made in using ABC, balancing the Monte Carlo error due to simulation
with the ABC error due to approximation (and non-zero tolerance), they fail to account for “the third man" in
the picture, namely the error made in replacing the (exact) posterior inference based on yobs with the (exact)
posterior inference based on sobs, i.e. for the loss of information due to the use of the summary statistics at the
centre of the Read Paper. (As shown in Robert et al., 2011, this loss may be quite extreme as to the resulting
inference to become inconsistent.) While the remarkable (and novel) result in the proof of Theorem 3 that

E{θ|E[θ|yobs]} = E[θ|yobs]

shows that sobs = E[θ|yobs] does not loose any (first-order) information when compared with yobs, hence is
“almost" sufficient in that weak sense, Theorem 3 only considers a specific estimation aspect, rather than full
Bayesian inference, and is furthermore parameterisation dependent. In addition, the second part of the theorem
should be formulated in terms of the above identity, as ABC plays no role when h = 0.

If I concentrate more specifically on the mathematical aspects of the paper, a point of the utmost importance
is that Theorem 2 can only hold at best when θ is identifiable for the distribution sobs. Otherwise, some other
values of θ satisfy p(θ|sobs) = p(θ0|sobs). Considering the specific case of an ancilary statistic sobs clearly
shows the result cannot hold in full generality. Therefore, vital assumptions are clearly missing to achieve a
rigorous formulation of this theorem. The call to Bernardo and Smith, 1994 is thus not really relevant in this
setting as the convergence results therein require conditions on the likelihood that are not necessarily verified
by the distribution of sobs. We are thus left with the open question of the asymptotic validation of the noisy
ABC estimator—ABC being envisioned as an inference method per se—when the summary variables are not
sufficient. Obtaining necessary and sufficient conditions on those statistics as done in Marin et al. (2011a) for
model choice is therefore paramount, the current paper obviously containing essential features to achieve this
goal.

In conclusion, I find the paper both exciting and bringing both new questions and new perspectives to the
forefront of ABC research. I am thus unreservedly seconding the vote of thanks.

7



8 On selecting summary statistics by post-processing (M. Sedki and

P. Pudlo)

We congratulate the authors for their interesting and stimulating paper on ABC. Our attention was drawn
to the regression building the new statistics in Section 3. Fearnhead and Prangle point similarities with the
post-processing proposed by Beaumont et al. (2002). But they defend their algorithm on its ability to select
an efficient subset of summary statistics. The main idea here is certainly to bypass the curse of dimensionality.
E.g., in population genetics, a large number of populations commonly induce more than a hundred summary
statistics with the DIYABC software of Cornuet et al. (2008).

Apart from Blum (2010), the widely used post-processing of Beaumont et al. (2002) has been little studied
theoretically, although it significantly improves the accuracy of the ABC approximation. Actually, Beaumont
et al. (2002) replace the θ’s kept in the rejection algorithm with the residuals of a regression learning θ on the
summary statistics. In the model choice settings (see, e.g., Robert et al., 2011), this post-processing uses a
logistic regression predicting the model index, see Beaumont (2008). In both cases, it attempts to correct the
discrepancy between the observed dataset and the simulated ones accepted by the ABC algorithm. We were
intrigued by what would happen when postponing the variable selection criterion proposed in this paper until
this post-processing.

Although a more detailed study is needed, we implemented two experiments: (a) one with a parameter
estimation in the Gaussian family and (b) one with a model choice in the first population genetics example
of Robert et al. (2011). We ran the classical ABC algorithm and used a Bayesian information criterion (BIC)
during the local linear regression to select the relevant statistics. Then, we scanned once again the whole
reference table drawn from the prior to find the nearest particles to the observation, considering only the subset
of statistics selected by BIC. We ended with a local linear regression on this new set of particles. Numerical
results are given in Figure 2 and show that applying BIC during Beaumont et al. (2002)’s post-processing is a
promising idea.

−4 −2 0 2 4

(a)

θ

True
ABC without BIC
ABC after BIC

without BIC with BIC correct values (with IS)

Model 2
Model 1

(b)

po
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0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2: (a) Posterior density estimates in the first example. Prior over θ is Unif(−5, 5), while X is a Gaussian
vector of dimension 20, with independant components, Xi|θ ∼ N (θ, 1). Summary statistics are S1 = mean(X1:20),
S2 = median(X1:20), S3 ∼ Unif(−5, 5) and S4 ∼ N (0, 1). Applying BIC here impoves the posterior density estimates
by removing S3 and S4. (b) The model choice problem which is described in Robert et al. (2011) might be summed up
the following way: considering three populations, we have to decide whether population 3 diverged from population 1
(Model 2) or 2 (Model 1). Among 24 summary statistics, BIC selects the two summary statistics LIK31 and LIK32 (see
Tab. S1 of Robert et al. (2011)) which estimates genetic similarities between population 3 and the two other ones.
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