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EDITORIAL COMMENT

TORward a Molecular Convergence Point g
in Pulmonary Arterial Hypertension -

With mTOR*

Bradley A. Maron, MD,»" Martin R. Wilkins, MD®

ulmonary arterial hypertension (PAH) is a se-

vere cardiopulmonary disease that is charac-

terized by an obliterative vasculopathy
affecting distal pulmonary arterioles. Historically
regarded as a disease of increased pulmonary arterial
vasoconstriction, it is now clear that vascular remod-
eling in PAH is far more complex. Fibrosis, apoptosis
resistance, proliferation, and a tendency toward
glycolytic cellular metabolism are key endopheno-
types observed in pulmonary artery endothelial cells,
pulmonary artery smooth muscle cells (PASMCs),
pericytes, and adventitial fibroblasts of patients
with PAH (1). Even in monogenic subtypes (e.g.,
BMPR2 mutation), interplay between these mecha-
nisms contributes to the wider PAH histopathopheno-
type, particularly plexogenic and hypertrophic
vascular lesions. Realization that PAH is due ulti-
mately to multiple overlapping molecular pathways
has led to a strategic shift in the therapeutic approach
clinically. Indeed, several lines of evidence suggest
that targeting multiple different signaling pathways
simultaneously is optimal for improving outcome in
patients with PAH (2).
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Despite these advances, PAH remains a morbid
disease with a significant impact on longevity,
quality of life, and health care expenditure (3).
Arguably, there has been no major progress in the
treatment of PAH for 13 years. The 14 PAH-specific
drugs approved by the U.S. Food and Drug Admin-
istration modulate the same 3 key pathways,
namely the endothelin-1, prostacyclin I,, and nitic
oxide pathways, and attempts at targeting novel
pathways to date have experienced a high failure
rate in early-phase clinical studies. One possible
explanation for this failure relates to the inter-
relatedness, convergence, and divergence of
signaling pathways that determine PAH endophe-
notypes (4).

The mammalian target of rapamycin (mTOR) is a
protein kinase that consists of 2 functional multi-
protein complexes. First, mTORC1 contains the
functional subunit Raptor, is rapamycin sensitive,
controls apoptosis resistance, and regulates vascular
smooth muscle cell growth. Second, mTORC2 con-
tains the functional subunit Rictor, is (generally)
insensitive to rapamycin, regulates cellular adeno-
sine triphosphate stores, and exerts effects on
cellular metabolism and growth. Goncharova et al.
(5) was among the first to report on the relevance of
mTOR to patients with PAH and identified mTORC2-
dependent activation of mTORC1 by oxidant stress
as a principal cause of vascular remodeling. Subse-
quent studies identified mTORC1 regulation in
PASMCs by hypoxia, aldosterone, and other PAH
mediators (6), mTORC1 activation in pathogenic
right ventricular remodeling (7), and the potential
therapeutic utility of mTORC1 inhibition (with ever-
olimus) in patients (8). Thus, a pressing need
emerged to clarify the respective roles of mTORC2
and mTORC1 in PAH because each is associated with
numerous important biological effects. However,
definitive data on this problem have remained
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elusive owing, in part, to complex and redundant
molecular cross-talk between mTORC1 and mTORC2
and the unavailability of mTORC2-selective
inhibitors.

SEE PAGE 744

In this issue of JACC: Basic to Translational
Science, Tang et al. (9) address this important issue
in a report leveraging smooth muscle cell-specific
conditional knockout Raptor (Raptors™”/7) and
Rictor (Rictor™ /") mice, as well as mTORS™~~ and
endothelial cell-specific conditional knockout
Rictor®¢”~ mice as controls. The authors provide
comprehensive data using multiple methods to
confirm successful cell-specific genetic modifications
in vivo, and they carefully profile the histological,
mechanistic, and functional consequences. The in-
clusion of quality control experiments verifying
gene ablation and its effects is vital to initial reports
introducing such disease models; indeed, the cur-
rent effort is well within recent guidelines for opti-
mizing scientific rigor in PAH (10). Although the
experimental approach using bespoke transgenic
models was intended to permit analyses comparing
differences in mTORC1 and mTOR2 biofunctionality
on vascular remodeling, the study casts a wider light
on molecular hinge points that lie hidden between
important pathways in PAH, with important poten-
tial translational relevance.

The central findings of the study are 4-fold (9).
First, the authors observed that Rictors™”~ mice, but
not RaptorM”7~ or mTORSM”~ mice, tended to
develop mild pulmonary hypertension and pulmo-
nary arterial remodeling spontaneously (i.e.,
without hypoxia stimulation). Second, RictorS™~-
mice were protected from hypoxia-induced pulmo-
nary hypertension, albeit to a lesser degree
compared with the mTORS™~~ or RaptorS™~~ strains.
This finding confirms a contribution from both
mTORC1 and mTORC2 to mTOR-mediated changes
in PASMC structure and function specifically, as
similar results were not observed in Rictor®~~ mice.
Third, basal (unstimulated) pulmonary arterial levels
of platelet-derived growth factor receptor (PDGFR) o
and B (PDGFRa and PDGFRp) were increased signif-
icantly in Rictor™~- mice without an attendant in-
crease in activated levels of the classical Rictor
target, protein kinase B (Akt). This provocative
observation, in turn, implies functional conse-
quences of Rictor inhibition via alternative, Akt-
independent pathways in PASMCs. Furthermore,
identifying Rictor-PDGFR in vascular remodeling is
particularly meaningful, as PDGFR is already
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implicated in the pathogenesis of PAH and a bona
fide molecular target of the tyrosine kinase inhibitor
imatinib. Fourth, the combination of rapamycin with
imatinib was superior to monotherapy with either
drug alone at attenuating right ventricular pressure
assessed invasively in a hypoxia-angioproliferative
model of PAH.

These exciting data (9) provide a unique
perspective on mTOR biology in PAH, and, in turn,
beg several potentially important additional
avenues of investigations. For example, the
mechanism(s) underlying spontaneous pulmonary
hypertension and protection against hypoxia-
induced pulmonary hypertension by Rictor inhibi-
tion remain unresolved. It is possible that nutrient
bioavailability, neurohumoral regulation, mechani-
cal stress, and other biologically dynamic de-
terminants of mTOR activation in PAH not analyzed
specifically in the study by Tang et al. (9) tilt
mTORC1/2 bioactivity to modulate different pheno-
types. The precise molecular mechanism by which
forkhead box O3 (FOX03A) accounts for differential
mTORC1/2 bioactivity in PAH, too, was not fully
investigated in this report, nor were other candidate
intermediaries linking mTORC2 with PDGFR in
PASMCs. It is important to address this topic
further because of the promiscuity of FOX03A, the
complex relationship between Akt and Raptor/Rictor
(de)activation, and the potential relevance of the
Akt-FOXO3A-mTOR axis to other diseases with
overlapping pathobiology as PAH and targeted by
imatinib, such as solid tumor cancer (11). Also, the
molecular or pathophysiologic etiology of poly-
cythemia in the mTORSM”~ mice was not studied in
depth. Thus, analyzing further off-target effects of
mTOR gene modification may glean additional in-
sights into opportunities and limits related to
modulating this pathway for therapeutic indications
in the future.

Overall, these findings (9) profile in new detail the
contributions of mTOR, mTORC1, and mTORC2 to
pulmonary vascular remodeling and provide
compelling data identifying mTORC2 as a molecular
convergence point regulating 2 important, inter-
secting, druggable pathways: rapamycin to target
mTORC1 and imatinib to target PDGFRa/PDGFR{.
Armed with this new knowledge, further study
might provide an insight into the inter individual
variation in clinical response to imatinib treatment.
Tang et al. thus provide important mechanistic data
that would support revisiting tyrosine kinase inhi-
bition as a promising therapy (12,13). In conclusion,
the current research provides a fresh view of the role
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of mTOR in PASMC remodeling and offers welcomed
evidence in support of an emerging paradigm shift
that emphasizes interconnected pathways for
optimizing basic, translational, and clinical knowl-

edge in PAH.
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