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Abstract—When sum-of-squares (SOS) programs are recast as
semidefinite programs (SDPs) using the standard monomial basis,
the constraint matrices in the SDP possess a structural property
that we call partial orthogonality. In this paper, we leverage partial
orthogonality to develop a fast first-order method, based on the
alternating direction method of multipliers (ADMM), for the solu-
tion of the homogeneous self-dual embedding of SDPs describing
SOS programs. Precisely, we show how a “diagonal plus low
rank” structure implied by partial orthogonality can be exploited
to project efficiently the iterates of a recent ADMM algorithm
for generic conic programs onto the set defined by the affine
constraints of the SDP. The resulting algorithm, implemented
as a new package in the solver CDCS, is tested on a range of
large-scale SOS programs arising from constrained polynomial
optimization problems and from Lyapunov stability analysis of
polynomial dynamical systems. These numerical experiments
demonstrate the effectiveness of our approach compared to
common state-of-the-art solvers.

Index Terms—Sum-of-squares (SOS), ADMM, large-scale op-
timization.

I. INTRODUCTION

Optimizing the coefficients of a polynomial in n variables,
subject to a nonnegativity constraint on the entire space Rn
or on a semialgebraic set S ⊆ Rn (i.e., a set defined by a
finite number of polynomial equations and inequalities), is
a fundamental problem in many fields. For instance, linear,
quadratic and mixed-integer optimization problems can be
recast as polynomial optimization problems (POPs) of the
form [1]

min
x∈S

p(x), (1)

where p(x) is a multivariate polynomial and S ⊆ Rn is a
semialgebraic set. Problem (1) is clearly equivalent to

max γ

s. t. p(x)− γ ≥ 0 ∀x ∈ S,
(2)

so POPs of the form (1) can be solved globally if a linear cost
function can be optimized subject to polynomial nonnegativity
constraints on a semialgebraic set.

Another important example is the construction of a Lyapu-
nov function V (x) to certify that an equilibrium point x∗ of
a dynamical system dx(t)

dt = f(x(t)) is locally stable. Taking
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x∗ = 0 without loss of generality, given a neighbourhood D
of the origin, local stability follows if V (0) = 0 and

V (x) > 0, ∀x ∈ D \ {0}, (3a)

−f(x)T∇V (x) ≥ 0, ∀x ∈ D. (3b)

Often, the vector field f(x) is polynomial [2] and, if one
restricts the search to polynomial Lyapunov functions V (x),
conditions (3a)-(3b) amount to a feasibility problem over
nonnegative polynomials.

Testing for nonnegativity, however, is NP-hard for polyno-
mials of degree as low as four [3]. This difficulty is often
resolved by requiring that the polynomials under consideration
are a sum of squares (SOS) of polynomials of lower degree. In
fact, checking for the existence (or lack) of an SOS represen-
tation amounts to solving a semidefinite program (SDP) [3]. In
particular, consider a polynomial of degree 2d in n variables,

p(x) =
∑

α∈Nn,|α|≤2d

pαx
α1
1 . . . xαn

n .

The key observation in [3] is that an SOS representation of
p(x) exists if and only if there exists a positive semidefinite
matrix X such that

p(x) = vd(x)TXvd(x), (4)

where

vd(x) = [1, x1, x2, . . . , xn, x
2
1, x1x2, . . . , x

d
n]T (5)

is the vector of monomials of degree no larger than d. Upon
equating coefficients on both sides of (4), testing if p(x) is an
SOS reduces to a feasibility SDP of the form

find X

s. t. 〈Bα, X〉 = pα, α ∈ Nn2d,
X � 0,

(6)

where Nn2d is the set of n-dimensional multi-indices with
length at most 2d, Bα are known symmetric matrices indexed
by such multi-indices (see Section II for more details), and
〈A,B〉 = trace(AB) is the standard Frobenius inner product
of two symmetric matrices A and B.

Despite the tremendous impact of SOS techniques in the
fields of polynomial optimization [4] and systems analysis [5],
the current poor scalability of second-order interior-point
algorithms for semidefinite programming prevents the use of
SOS methods to solve POPs with many variables, or to analyse
dynamical systems with many states. The main issue is that,
when the full monomial basis (5) is used, the linear dimension
of the matrix X and the number of constraints in (6) are
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N =
(
n+d
d

)
and m =

(
n+2d
2d

)
, respectively, both of which

grow quickly as a function of n and d.
One strategy to mitigate the computational cost of optimi-

zation problems with SOS constraints (hereafter called SOS
programs) is to replace the SDP obtained from the basic
formulation outlined above with one that is less expensive
to solve using second-order interior-point algorithms. Facial
reduction techniques [6], including the Newton polytope [7]
and diagonal inconsistency [8], and symmetry reduction stra-
tegies [9] can be utilised to eliminate unnecessary monomials
in the basis vd(x), thereby reducing the size of the positive
semidefinite (PSD) matrix variable X . Correlative sparsity [10]
can also be exploited to construct sparse SOS representations,
wherein a polynomial p(x) is written as a sum of SOS
polynomials, each of which depends only on a subset of
the entries of x. This enables one to replace the large PSD
matrix variable X with a set of smaller PSD matrices, which
can be handled more efficiently. Further computational gains
are available if one replaces any PSD constraints—either the
original condition X � 0 in (6) or the PSD constraints
obtained after applying the aforemention techniques—with the
stronger constraints the PSD matrices are diagonally or scaled-
diagonally dominant [11]. These conditions can be imposed
with linear and second-order cone programming, respectively,
and are therefore less computationally expensive. However,
while the conservativeness introduced by the requirement of
diagonal dominance can be reduced with a basis pursuit
algorithm [12], it cannot generally be removed.

Another strategy to enable the solution of large SOS
programs is to replace the computationally demanding interior-
point algorithms with first-order methods, at the expense of
reducing the accuracy of the solution. The design of efficient
first-order algorithms for large-scale SDPs has recently recei-
ved increasing attention: Wen et al. proposed an alternating-
direction augmented-Lagrangian method for large-scale dual
SDPs [13]; O’Donoghue et al. developed an operator-splitting
method to solve the homogeneous self-dual embedding of
conic programs [14], which has recently been extended by
the authors to exploit aggregate sparsity via chordal de-
composition [15]–[17]. Algorithms that specialize in SDPs
from SOS programming exist [18], [19], but can be applied
only to unconstrained POPs—not to constrained POPs of the
form (2), nor to the Lyapunov conditions (3a)-(3b). First-order
regularization methods have also been applied to large-scale
constrained POPs, but without taking into account any problem
structure [20]. Finally, the sparsity of the matrices Bα in (6)
was exploited in [21] to design an operator-splitting algorithm
that can solve general large-scale SOS programs, but fails to
detect infeasibility (however, recent developments [22], [23]
may offer a solution for this issue).

One major shortcoming of all but the last of these recent
approaches is that they can only be applied to particular classes
of SOS programs. For this reason, in this paper we develop
a fast first-order algorithm, based on the alternating direction
method of multipliers, for the solution of generic large-scale
SOS programs. Our algorithm exploits a particular structural
property of SOS programs and can also detect infeasibility.
Specifically, our contributions are:

1) We highlight a structural property of SDPs derived from
SOS programs using the standard monomial basis: the
equality constraints are partially orthogonal. Notably,
the SDPs formulated by common SOS modeling tool-
boxes [24]–[26] possess this property.

2) We show how partial orthogonality leads to a “diagonal
plus low rank” matrix structure in the ADMM algorithm
of [14], so the matrix inversion lemma can be applied
to reduce its computational cost. Precisely, a system of
m × m linear equations to be solved at each iteration
can be replaced with a t× t system, often with t� m.

3) We demonstrate the efficiency of our method—available
as a new package in the MATLAB solver CDCS [27]—
compared to many common interior-point solvers (Se-
DuMi [28], SDPT3 [29], SDPA [30], CSDP [31], Mo-
sek [32]) and to the first-order solver SCS [33]. Our
results on large-scale SOS programs from constrained
POPs and Lyapunov stability analysis of nonlinear po-
lynomial systems suggest that the proposed algorithm
will enlarge the scale of practical problems that can be
handled via SOS techniques.

The rest of this work is organized as follows. To make this
paper self-contained, Section II briefly reviews SOS programs
and their reduction to SDPs. Section III discusses partial ortho-
gonality in the equality constraints of SDPs arising from SOS
programs, while Section IV shows how to exploit it to facilitate
the solution of large-scale SDPs using ADMM. Section V
extends our results to matrix-valued SOS programs. Numerical
experiments are presented in Section VI, and Section VII
concludes the paper.

II. PRELIMINARIES

A. Notation

The sets of nonnegative integers and real numbers are,
respectively, N and R. For x ∈ Rn and α ∈ Nn, the monomial
xα = xα1

1 xα2
2 · · ·xαn

n has degree |α| :=
∑n
i=1 αi. Given

d ∈ N, we let Nnd = {α ∈ Nn : |α| ≤ d} and R[x]n,2d be
the set of polynomials in n variables with real coefficients of
degree 2d or less. A polynomial p(x) ∈ R[x]n,2d is a sum-of-
squares (SOS) if p(x) =

∑q
i=1[fi(x)]2, for some polynomials

fi ∈ R[x]n,d, i = 1, . . . , q. We denote by Σ[x]n,2d the set of
SOS polynomials in R[x]n,2d. Finally, Sn+ is the cone of n×n
PSD matrices and Ir×r is the r × r identity matrix.

B. General SOS programs

Consider a vector of optimization variables u ∈ Rt, a
cost vector w ∈ Rt, and note that any polynomial pj(x) ∈
R[x]n,2dj whose coefficients depend affinely on u can be
written as pj(x) = gj0(x)−

∑t
i=1 uig

j
i (x) for a suitable choice

of polynomials or monomials gj0, . . . , g
j
t ∈ R[x]n,2dj . We

consider SOS programs written in the standard form

min
u, s1,...,sk

wTu

s. t. sj(x) = gj0(x)−
t∑
i=1

uig
j
i (x) ∀j = 1, . . . , k,

sj ∈ Σ[x]n,2dj , j = 1, . . . , k.

(7)
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Note that any linear optimization problem with polynomial
nonnegativity constraints on fixed semialgebraic sets can be
relaxed into an SOS program of the form (7). For instance,
when S ≡ Rn problem (2) can be relaxed as [3]

min
γ,s

− γ

s. t. s(x) = p(x)− γ,
s ∈ Σ[x]n,2d.

(8)

Similarly, the global stability of the origin for a polynomial
dynamical system such that f(0) = 0 may be established
by looking for a polynomial Lyapunov function of the form
V (x) = −

∑t
i=1 uigi(x), where g1(0) = · · · = gt(0) = 0.

With D ≡ Rn, and after subtracting xTx from the left-hand
side of (3a) to ensure strict positivity away from the origin [5],
suitable values ui can be found via the SOS feasibility program

find u, s1, s2

s. t. s1(x) = −xTx−
t∑
i=1

uigi(x),

s2(x) =

t∑
i=1

uif(x)T∇gi(x),

s1, s2 ∈ Σ[x]n,2d.

(9)

It can be checked that SOS programs arising from polynomial
nonnegativity constraints over fixed semialgebraic sets, such
as Lasserre’s relaxations of constrained POPs [4] and SOS
relaxations of local Lyapunov inequalities [2], [34], can also
be recast as in (7) by adding extra polynomials to represent
the SOS multipliers introduced after applying the Positivstel-
lensatz [2].1

To simplify the exposition in the rest of this work, instead
of (7) we will consider the basic problem

min
u, s

wTu

s. t. s(x) = g0(x)−
t∑
i=1

uigi(x),

s ∈ Σ[x]n,2d.

(10)

All of our results extend to (7) when k > 1, as well as to SOS
programs with additional linear constraints on u, because each
of s1, . . . , sk enters one and only one equality constraint.

C. SDP formulation
The SOS program (10) can be converted into an SDP upon

fixing a basis to represent the SOS polynomial variables. The
simplest and most common choice to represent a degree-2d
SOS polynomial is the basis vd(x) of monomials of degree
no greater than d, defined in (5). As discussed in [3] and [35],
the polynomial s(x) in (10) is SOS if and only if

s(x) = vd(x)TXvd(x) =
〈
X, vd(x)vd(x)T

〉
, X � 0. (11)

Let Bα be the 0/1 indicator matrix for the monomial xα in
the outer product matrix vd(x)vd(x)T, i.e.,

(Bα)β,γ =

{
1 if β + γ = α

0 otherwise,
(12)

1Adding extra polynomials is clearly undesirable; an extended manuscript
(https://arxiv.org/abs/1708.04174) discusses how they can be avoided.

where the natural ordering of multi-indices β, γ ∈ Nnd is used
to index the entries of Bα. Then,

vd(x)vd(x)T =
∑
α∈Nn

2d

Bαx
α. (13)

Upon writing gi(x) =
∑
α∈Nn

2d
gi,αx

α for each i = 0, 1, . . . , t,
and representing s(x) as in (11), the equality constraint in (10)
becomes∑

α∈Nn
2d

(
g0,α −

t∑
i=1

uigi,α

)
xα =

〈
X, vd(x)vd(x)T

〉
=
∑
α∈Nn

2d

〈Bα, X〉xα. (14)

Matching the coefficients on both sides yields

g0,α −
t∑
i=1

uigi,α = 〈Bα, X〉, ∀α ∈ Nn2d. (15)

We refer to (15) as the coefficient matching conditions [21].
The SOS program (10) is then equivalent to the SDP

min
u

wTu

s. t. 〈Bα, X〉+
t∑
i=1

uigi,α = g0,α ∀α ∈ Nn2d,

X � 0.

(16)

As already mentioned in Section I, when the full monomial
basis vd(x) is used to formulate the SDP (16), the size of X
and the number of constraints are, respectively, N =

(
n+d
d

)
and m =

(
n+2d
2d

)
. The size of SDP (16) may be reduced (often

significantly) by eliminating redundant monomials in vd(x)
based on the structure of the polynomials g0(x), . . . , gt(x);
the interested reader is referred to Refs. [6]–[9].

III. PARTIAL ORTHOGONALITY IN SOS PROGRAMS

For simplicity, we re-index the coefficient matching condi-
tions (15) using integers i = 1, . . . ,m instead of the multi-
indices α. Let vec : SN → RN2

map a matrix to the stack of
its columns and define A1 ∈ Rm×t and A2 ∈ Rm×N2

as

A1 :=

 g1,1 · · · gt,1
...

. . .
...

g1,m · · · gt,m

 , A2 :=

vec(B1)T

...
vec(Bm)T

 . (17)

In other words, A1 collects the coefficients of polynomials
gi(x) column-wise, and A2 lists the vectorized matrices Bα
(after re-indexing) in a row-wise fashion. Finally, let S+ be the
vectorized positive semidefinite cone, such that vec(X) ∈ S+
if and only if X � 0, and define

A := [A1, A2] ∈ Rm×(t+N
2),

b := [g0,1, . . . , g0,m]
T ∈ Rm,

c :=
[
wT, 0, . . . , 0

]T ∈ Rt+N
2

,

ξ :=
[
uT, vec(X)T

]T ∈ Rt+N
2

,

K := Rt × S+ .
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(a) (b) (c)

Fig. 1: Sparsity patterns for (a) AAT, (b) A1AT
1 , and (c) A2AT

2 for problem
sosdemo2 in SOSTOOLS [24].

Then, noticing from the definition of the trace inner product
of matrices that 〈Bm, X〉 = vec(Bm)Tvec(X), we can re-
write (16) as the primal-form conic program

min
ξ

cTξ

s. t. Aξ = b,

ξ ∈ K.

(18)

The key observation at this stage is that the rows of the
constraint matrix A are partially orthogonal. We show this
next, assuming without loss of generality that t < m; in
fact, very often t � m in practice (cf. Tables I and III in
Section VI).

Proposition 1: Let A = [A1, A2] be the constraint matrix in
the conic formulation (17) of a SOS program modeled using
the monomial basis. The m×m matrix AAT is of the “diagonal
plus low rank” form. Precisely, D := A2A

T
2 is diagonal and

AAT = D +A1A
T
1 .

Proof: The definition of A implies AAT = A1A
T
1 +A2A

T
2 ,

so we need to show that A2A
T
2 is diagonal. This follows

from the definition (12) of the matrices Bα: if an entry of
Bα is nonzero, the same entry in Bβ , α 6= β, must be zero.
Upon re-indexing the matrices using integers i = 1, . . . , m
as explained above and letting ni be the number of nonzero
entries in Bi, it is clear that vec(Bi)

Tvec(Bj) = ni if i = j,
and zero otherwise. Thus, A2A

T
2 = diag(n1, . . . , nm). �

In essence, Proposition 1 states that the constraint sub-
matrices corresponding to the matrix X in the SOS decomposi-
tion (11) are orthogonal. This fact is a basic structural property
for any SOS program formulated using the usual monomial
basis. It is not difficult to check that Proposition 1 also
holds when the full monomial basis vd(x) is reduced using
any of the techniques implemented in any of the modeling
toolboxes [24]–[26].

Remark 1: In general, the product A1A
T
1 has no particular

structure, and AAT is not diagonal except for very special
problem classes. For example, Figure 1 illustrates the sparsity
pattern of AAT, A1A

T
1 , and A2A

T
2 for sosdemo2 in SOS-

TOOLS [24], an SOS formulation of a Lyapunov function
search: A2A

T
2 is diagonal, but A1A

T
1 and AAT are not. This

makes the algorithms proposed in [18], [19] inapplicable, as
they require that AAT is diagonal.

Remark 2: Using the monomial basis to formulate the
coefficient matching conditions (15) makes the matrix A
sparse, because only a small subset of entries of the matrix
vd(x)vd(x)T are equal to a given monomial xα. In particular,
the density of the nonzero entries of A2 is O(n−2d) [21].

However, the aggregate sparsity pattern of SDP (18) is dense,
so methods that exploit aggregate sparsity in SDPs [15]–[17],
[36] are not useful for general SOS programs.

IV. A FAST ADMM-BASED ALGORITHM

Partial orthogonality of the constraint matrix A in conic
programs of the form (18) allows for the extension of a first-
order, ADMM-based method proposed in [14]. To make this
paper self-contained, we summarize this algorithm first.

A. The ADMM algorithm

The algorithm in [14] solves the homogeneous self-dual
embedding [37] of the conic program (18) and its dual,

max
y,z

bTy

s. t. ATy + z = c.

z ∈ K∗,

(19)

where the cone K∗ is the dual of K. When strong duality
holds, optimal solutions for (18) and (19) or a certificate of
primal or dual infeasibility can be recovered from a nonzero
solution of the homogeneous linear systemzs

κ

 =

 0 −AT c
A 0 −b
−cT bT 0

ξy
τ

 , (20)

provided that it also satisfies (ξ, y, τ) ∈ K × Rm × R+ and
(z, s, κ) ∈ K∗×{0}m×R+. The interested reader is referred
to [14] and references therein for more details. Consequently,
upon defining

u :=

ξy
τ

 , v :=

zs
κ

 , Q :=

 0 −AT c
A 0 −b
−cT bT 0

 , (21)

and introducing the cones C := K × Rm × R+ and C∗ :=
K∗×{0}m×R+ to ease notation, a primal-dual optimal point
for problems (18) and (19) or a certificate of infeasibility can
be computed from a nonzero solution of the homogeneous
self-dual feasibility problem

find (u, v)

s. t. v = Qu,

(u, v) ∈ C × C∗.
(22)

It was shown in [14] that (22) can be solved using a
simplified version of the classical ADMM algorithm (see
e.g., [38]), whose k-th iteration consists of the following
three steps (PC denotes projection onto the cone C, and the
superscript (k) indicates the value of a variable after the k-th
iteration):

û(k) = (I +Q)−1
(
u(k−1) + v(k−1)

)
, (23a)

u(k) = PC
(
û(k) − v(k−1)

)
, (23b)

v(k) = v(k−1) − û(k) + u(k). (23c)

Practical implementations of the algorithm rely on being able
to carry out these steps at moderate computational cost. We
next show that partial orthogonality allows for an efficient im-
plementation of (23a) when (22) represents an SOS program.
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B. Application to SOS programming

Each iteration of the ADMM algorithm requires: a pro-
jection onto a linear subspace in (23a) through the solution
of a linear system with coefficient matrix I +Q; a projection
onto the cone C in (23b); and the inexpensive step (23c). The
conic projection (23b) can be computed efficiently when the
cone size is not too large. On the other hand, Q ∈ St+N2+m+1

and m = O(n2d) is extremely large in SDPs arising from SOS
programs. For instance, an SOS program with polynomials of
degree 2d = 6 in n = 16 variables has a PSD variable of
size N = 969 and m = 74 613 equality constraints. This
makes step (23a) computationally expensive not only if I+Q
is factorized directly, but also when applying the strategies
proposed in [14]. Fortunately, Q is highly structured and, in the
context of SOS programming, the block-entry A has partially
orthogonal rows (cf. Propositions 1 and 2). As we will now
show, these properties can be taken advantage of to achieve
substantial computational savings.

To show how partial orthogonality can be exploited, we
begin by noticing that (23a) requires the solution of a linear
system of equations of the form I −AT c

A I −b
−cT bT 1

û1û2
û3

 =

ω1

ω2

ω3

 . (24)

After letting

M :=

[
I −AT

A I

]
, ζ :=

[
c
−b

]
,

and eliminating û3 from the first and second block-equations
in (24) we obtain

(M + ζζT)

[
û1
û2

]
=

[
ω1

ω2

]
− ω3ζ. (25a)

û3 = ω3 + cTû1 − bTû2. (25b)

Applying the matrix inversion lemma [39] to (25a) yields[
û1
û2

]
=

[
I − (M−1ζ)ζT

1 + ζT(M−1ζ)

]
M−1

[
ω1 − cω3

ω2 + bω3

]
. (26)

Note that the first matrix on the right-hand side of (26)
only depends on problem data, and can be computed before
iterating the ADMM algorithm. Consequently, all that is left
to do at each iteration is to solve a linear system of equations
of the form [

I −AT

A I

] [
σ1
σ2

]
=

[
ω̂1

ω̂2

]
. (27)

Eliminating σ1 from the second block-equation in (27) gives

σ1 = ω̂1 +ATσ2, (28a)

(I +AAT)σ2 = −Aω̂1 + ω̂2. (28b)

It is at this stage that partial orthogonality comes into play:
by Proposition 1, there exists a diagonal matrix P such that
I +AAT = I +A1A

T
1 +A2A

T
2 = P +A1A

T
1 . Recalling from

Section III that A1 ∈ Rm×t with t � m for typical SOS
programs (e.g., t = 3 and m = 58 for problem sosdemo2

in SOSTOOLS), it is therefore convenient to apply the matrix
inversion lemma to (28b) and write

(I +AAT)−1 = (P +A1A
T
1 )−1

= P−1 − P−1A1(I +AT
1P
−1A1)−1AT

1P
−1.

Since P is diagonal, its inverse is immediately computed.
Then, σ1 and σ2 in (28) are found upon solving a t× t linear
system with coefficient matrix

I +AT
1P
−1A1 ∈ St, (29)

plus relatively inexpensive matrix-vector, vector-vector, and
scalar-vector operations. Moreover, since the matrix I +
AT

1P
−1A1 depends only on the problem data and does not

change at each iteration, its preferred factorization can be
cached before iterating steps (23a)-(23c). Once σ1 and σ2 have
been computed, the solution of (24) can be recovered using
vector-vector and scalar-vector operations.

Remark 3: In [14], system (27) is solved either through a
“direct” method based on a cached LDLT factorization, or
by applying the “indirect” conjugate-gradient (CG) method
to (28b). Both these approaches are reasonably efficient, but
exploiting partial orthogonality is advantageous because only
a smaller linear system with size t × t need be solved, with
t ≤ m and typically t � m. Indeed, to solve (27), when
sparsity is ignored, each iteration of our method requires
O(t2+mN2+mt) floating-point operations (flops), compared
to O((t + N2 + m)2) flops for the “direct” method of [14]
and O(ncgm

2 +mN2 +mt) flops for the “indirect” method
with ncg CG iterations.2 Of course, practical implementations
of the methods of [14] exploit sparsity and have a much lower
complexity than stated, but the results in Section VI confirm
that the strategy outlined in this work remains more efficient.

V. MATRIX-VALUED SOS PROGRAMS

Up to this point we have discussed partial orthogonality for
scalar-valued SOS programs, but our results and the algorithm
proposed in Section IV extend also to the matrix-valued case.

Given symmetric matrices Cα ∈ Sr, we say that the
symmetric matrix-valued polynomial

P (x) :=
∑
α∈Nn

2d

Cαx
α

is an SOS matrix if there exits a q × r polynomial matrix
H(x) such that P (x) = H(x)TH(x). Clearly, an SOS matrix
is positive semidefinite for all x ∈ Rn. It is known [40] that
P (x) is an SOS matrix if and only if there exists a PSD matrix
Y ∈ Sl+ with l = r ×

(
n+d
d

)
such that

P (x) = (Ir ⊗ vd(x))
T
Y (Ir ⊗ vd(x)) . (30)

Similar to (10), we consider the matrix-valued SOS program

min
u

wTu

s. t. P (x) = P0(x)−
t∑

h=1

uhPh(x),

P (x) is SOS,

(31)

2More details can be found in an extended version of this work, available
at https://arxiv.org/abs/1708.04174.
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where P0(x), . . . , Pt(x) are given symmetric polynomial ma-
trices. Using (30), matching coefficients, and vectorizing, the
matrix-valued SOS program (31) can be recast as a conic
program of standard primal-form (18), for which the following
proposition holds.

Proposition 2: The constraint matrix A in the conic pro-
gram formulation of the matrix-valued SOS problem (31)
has partially orthogonal rows, i.e., it can be partitioned into
A =

[
A1A2

]
such that A2A

T
2 is diagonal.

Proof: First, introduce matrices Cα(u), affinely dependent
on u, such that

P0(x)−
t∑

h=1

uhPh(x) =
∑
α∈Nn

2d

Cα(u)xα.

By virtue of (13), the SOS representation (30) of P (x) can be
written as

P (x) =
∑
α∈Nn

2d

〈Y11, Bα〉 . . . 〈Y1r, Bα〉
...

. . .
...

〈Yr1, Bα〉 . . . 〈Yrr, Bα〉

xα,
where Yij ∈ SN , i, j = 1, . . . , r is the (i, j)-th block of matrix
Y ∈ Sl+. Then, the equality constraints in (31) require

Cα(u) =

〈Y11, Bα〉 . . . 〈Yr1, Bα〉
...

. . .
...

〈Yr1, Bα〉 . . . 〈Yrr, Bα〉

 , ∀α ∈ Nn2d. (32)

Upon vectorization, this set of affine equalities can be written
compactly as [

A1 A2

] [ u
vec(Y )

]
= b (33)

for suitably defined matrices A1, A2 and a vector b.
The matrix A1 depends on the matrices Cα(u), and gene-

rally has no particular structure. Instead, A2 has orthogonal
rows, hence A2A

T
2 is diagonal. To see this, let ei ∈ Rr be the

standard unit vector in the i-th direction and define

Ei := ei ⊗ IN ∈ Rl×N ,

so ET
i Y Ej = Yij selects the (i, j)-th N × N block of

Y . Moreover, let (Cα)ij denote the (i, j)-th element of the
matrix Cα. The linear equalities (32) require that, for all
i, j = 1, . . . , r and all α ∈ Nn2d,

〈ET
i Y Ej , Bα〉 = (Cα)ij . (34)

Vectorization of the left-hand side yields

vec(Bα)T(ET
j ⊗ ET

i )vec(Y ) = (Cα)ij .

It is then not difficult to see that the rows of the matrix A2

in (33) are the vectors vec(Bα)T · (ET
j ⊗ ET

i ) for all triples
(α, i, j) (the precise order of the rows is not important). To
show that A2A

T
2 is diagonal, therefore, it suffices to show that,

for any two different triples (α1, i1, j1) and (α2, i2, j2),

0 = vec(Bα1
)T(ET

j1 ⊗ E
T
i1)(Ej2 ⊗ Ei2)vec(Bα2

)

= vec(Bα1
)T(ET

j1Ej2 ⊗ E
T
i1Ei2)vec(Bα2

), (35)

where the second equality follows from the properties of the
Kronecker product. To show (35), we invoke the properties of
the Kronecker product once again to write

ET
i Ej = (eTi ej)⊗ IN =

{
IN , if i = j,

0, otherwise,
(36a)

vec(Bα)Tvec(Bβ) =

{
nα, if α = β,

0, otherwise,
(36b)

where nα is the number of nonzeros in Bα. It is then clear
that (35) holds if, and in fact only if, (α1, i1, j1) 6= (α2, i2, j2).
Consequently, A2A

T
2 is diagonal. �

Proposition 2 reveals an inherent structural property of
SDPs derived from matrix-valued SOS programs using the
monomial basis, and the algorithm of Section IV applies
verbatim because the conic program representation of scalar-
and matrix-valued SOS programs has the same general form.

VI. NUMERICAL EXPERIMENTS

We implemented the algorithm of [14], extended to take
into account partial orthogonality in SOS programs, as a new
package in the open-source MATLAB solver CDCS [27].
Our implementation, which we refer to as CDCS-sos, solves
step (23a) using a sparse permuted Cholesky factorization of
the matrix in (29). The source code can be downloaded from
https://github.com/oxfordcontrol/CDCS.

We tested CDCS-sos on a series of SOS programs and
our scripts are available from https://github.com/zhengy09/
sosproblems. CPU times were compared to the direct and indi-
rect implementations of the algorithm of [14] provided by the
solver SCS [33], referred to as SCS-direct and SCS-indirect,
respectively. In our experiments, the termination tolerance
for CDCS-sos and SCS was set to 10−3, and the maximum
number of iterations was 2 000. Since first-order methods
only aim at computing a solution of moderate accuracy, we
assessed the suboptimality of the solution returned by CDCS-
sos by comparing it to an accurate solution computed with
the interior-point solver SeDuMi [28]. Besides, to demonstrate
the low memory requirements of first-order algorithms, we
also tested the interior-point solvers SDPT3 [29], SDPA [30],
CSDP [31] and Mosek [32] for comparison. All interior-point
solvers were called with their default parameters and their
optimal values (when available) agree to within 10−8. All
computations were carried out on a PC with a 2.8 GHz Intel®

Core™ i7 CPU and 8GB of RAM; memory overflow is marked
by ** in the tables below.

A. Constrained polynomial optimization

As our first numerical experiment, we considered the con-
strained quartic polynomial minimization problem

min
x

∑
1≤i<j≤n

(xixj + x2ixj − x3j − x2ix2j )

s. t.
n∑
i=1

x2i ≤ 1.

(37)

We used the Lasserre relaxation of order 2d = 4 and the parser
GloptiPoly [25] to recast (37) into an SDP.
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TABLE I: CPU time (in seconds) to solve the SDP relaxations of (37). N is the size of the largest PSD cone, m is the number of constraints, t is the size
of the matrix factorized by CDCS-sos.

Dimensions CPU time (s)
n N m t SeDuMi SDPT3 SDPA CSDP Mosek SCS-direct SCS-indirect CDCS-sos
10 66 1 000 66 2.6 2.1 1.6 2.5 0.8 0.4 0.4 0.4
12 91 1 819 91 12.3 7.0 5.7 4.0 2.4 0.7 0.8 0.7
14 120 3 059 120 68.4 24.2 18.1 13.5 6.5 1.7 1.7 1.4
17 171 5 984 171 516.9 129.6 97.9 75.8 38.1 4.6 4.4 3.5
20 231 10 625 231 2 547.4 494.1 452.7 374.2 178.9 10.6 10.6 8.5
24 325 20 474 325 ** ** 2 792.8 2 519.3 1 398.3 32.0 31.2 22.8
29 465 40 919 465 ** ** ** ** ** 125.9 126.3 67.1
35 666 82 250 666 ** ** ** ** ** 425.3 431.3 216.9
42 946 163 184 946 ** ** ** ** ** 1 415.8 1 436.9 686.6

TABLE II: Terminal objective value from interior-point solvers, SCS-direct,
SCS-indirect and CDCS-sos for the SDP relaxation of (37).

n †Interior-point solvers SCS-direct SCS-indirect CDCS-sos
10 −9.11 −9.12 −9.13 −9.10
12 −11.12 −11.10 −11.10 −11.11
14 −13.12 −13.09 −13.09 −13.12
17 −16.12 −16.09 −16.09 −16.06
20 −19.12 −19.17 −19.17 −19.08
24 −23.12 −23.04 −23.04 −23.15
29 ** −28.17 −28.18 −28.17
35 ** −34.05 −34.05 −34.08
42 ** −41.21 −41.21 −41.05

Table I reports the CPU time (in seconds) required by each
of the solvers we tested to solve the SDP relaxations as the
number of variables n was increased. CDCS-sos is the fastest
method in all cases. For large-scale POPs (n ≥ 29), the
number of constraints in the resulting SDP is over 40, 000,
and all interior-point solvers (SeDuMi, SDPT3, SDPA, CSDP
and Mosek) ran out of memory on our machine. The first-
order solvers do not suffer from this limitation, and for POPs
with n ≥ 29 variables our MATLAB solver was approximately
twice as fast as SCS. This is remarkable considering the SCS
is written in C, and is due to the fact that t� m, cf. Table I,
so the cost of the affine projection step (23a) in CDCS-sos
is greatly reduced compared to the methods implemented in
SCS. Figure 2(a) illustrates that, for all test problems, CDCS-
sos was faster than both SCS-direct and SCS-indirect also in
terms of average CPU time per 100 iterations (this metric
is unaffected by differences in the termination criteria used
by different solvers). Finally, Table II shows that although
first-order methods only aim to provide solutions of moderate
accuracy, the objective value returned by CDCS-sos and SCS
was always within 0.5% of the high-accuracy optimal value
computed using interior-point solvers. Such a small difference
may be considered negligible in many applications.

B. Finding Lyapunov functions

In our next numerical experiment, we considered the pro-
blem of constructing Lyapunov functions to verify local
stability of polynomial systems, i.e., we solved the SOS
relaxation of (3a)-(3b) for different system instances. We used
SOSTOOLS [24] to generate the corresponding SDPs.

In the experiment, we randomly generated polynomial dyn-
amical systems ẋ = f(x) of degree three with a linearly stable
equilibrium at the origin. We then checked for local nonlinear
stability in the ball D = {x ∈ Rn :

∑n
i=1 x

2
i ≤ 0.1} using a

quadratic Lyapunov function of the form V (x) = xTQx and
Positivstellensatz to derive SOS conditions from (3a) and (3b)
(see e.g., [2] for more details). The total CPU time required

Fig. 2: Average CPU time per 100 iterations for the SDP relaxations of: (a)
the POP (37); (b) the Lyapunov function search problem.

by the solvers we tested are reported in Table III, while
Figure 2(b) shows the average CPU times per 100 iterations
for SCS and CDCS-sos. As in our previous experiment, the
results clearly show that the iterations in CDCS-sos are faster
than in SCS for all our random problem instances, and that
both first-order solvers have low memory requirements and are
able to solve large-scale problems (n ≥ 29) beyond the reach
of interior-point solvers.

C. A practical example: Nuclear receptor signalling

As our last example, we considered a 37-state model of
nuclear receptor signalling with a cubic vector field and an
equilibrium point at the origin [41, Chapter 6]. We verified
its local stability within a ball of radius 0.1 by constructing
a quadratic Lyapunov function. SOSTOOLS [24] was used
to recast the SOS relaxation of (3a)-(3b) as an SDP with
constraint matrix of size 102 752 × 553 451 and a large PSD
cone of linear dimension 741. Such a large-scale problem
is currently beyond the reach of interior-point methods on a
regular desktop computer, and all of the interior point solvers
we tested (SeDuMi, SDPT3, SDPA, CSDP and Mosek) ran
out of memory on our machine. On the other hand, the first-
order solvers CDCS-sos and SCS managed to construct a valid
Lyapunov function, with our partial-orthogonality-exploiting
algorithm being more than twice as fast as SCS (148 s vs.
≈ 400 s for both SCS-direct and SCS-indirect).

VII. CONCLUSION

In this paper, we proved that SDPs arising from SOS
programs formulated using the standard monomial basis pos-
sess a structural property that we call partial orthogonality.
We then demonstrated that this property can be leveraged
to substantially reduce the computational cost of an ADMM
algorithm for conic programs proposed in [14]. Specifically,
we showed that the iterates of this algorithm can be projected



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2018.2886170, IEEE
Transactions on Automatic Control

8

TABLE III: CPU time (in seconds) to solve the SDP relaxations of (3a)-(3b). N is the size of the largest PSD cone, m is the number of constraints, t is the
size of the matrix factorized by CDCS-sos.

Dimensions CPU time (s)
n N m t SeDuMi SDPT3 SDPA CSDP Mosek SCS-direct SCS-indirect CDCS-sos

10 65 1 100 110 2.8 1.8 2.0 2.6 0.7 0.2 0.2 0.3
12 90 1 963 156 6.3 4.9 3.5 1.0 2.1 0.3 0.3 0.4
14 119 3 255 210 36.2 16.3 44.8 2.6 5.5 0.8 0.7 0.6
17 170 6 273 306 265.1 78.0 204.7 9.5 26.9 1.3 1.3 1.1
20 230 11 025 420 1 346.0 361.3 940.5 40.4 112.5 3.1 3.0 2.4
24 324 21 050 600 ** ** 8 775.5 238.4 632.2 15.1 6.6 5.1
29 464 41 760 870 ** ** ** ** ** 17.1 16.9 14.3
35 665 83 475 1260 ** ** ** ** ** 67.6 57.1 37.4
42 945 164 948 1806 ** ** ** ** ** 133.7 129.2 92.8

efficiently onto a set defined by the affine constraints of the
SDP. The key idea is to exploit a “diagonal plus low rank”
structure of a large matrix that needs to be inverted/factorized,
which is a direct consequence of partial orthogonality. Nume-
rical experiments on large-scale SOS programs demonstrate
that the method proposed in this paper yield considerable
savings compared to many state-of-the-art solvers. For this
reason we expect that our method will facilitate the use of
SOS programming for the analysis and design of large-scale
systems.
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