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ABSTRACT 

 

PREVALENCE OF LOW-ENERGY AVAILABILITY AMONGST  

FEMALE PARALYMPIC ATHLETES 

 

by 

 

Alicia Gabriella DiFolco 

 

May 2019 

 

The prevalence of low-energy availability (LEA) in able-bodied female athletes 

has been extensively examined; however, research has yet to examine LEA in Paralympic 

athletes.  Therefore, the purpose of this study was to examine the risk of LEA and related 

symptoms including menstrual health, hormonal profiles, and bone mineral density 

(BMD) in female para-athletes. Female national para-athletes (n = 9) completed 7-day 

food and activity logs, Low Energy Availability in Females Questionnaire (LEAF-Q) and 

Eating Disorder Examination Questionnaire (EDE-Q), Dual energy X-Ray 

Absorptiometry (DXA) scans, and hormonal profile blood spot testing. LEAF-Q results 

suggested that 78% of athletes were considered “at-risk” for LEA, while energy 

availability calculations based on energy intake (EI) and exercise energy expenditure 

(EEE) suggested that none of the participants had LEA ( < 30 kcal.kg FFM-1.day-1). 

Menstrual dysfunction was reported in four participants who were also taking hormonal 

contraceptives. Hormonal blood spot tests suggested that progesterone was low in 67% of 

the participants (2.1 + 0.3 nmol/L), with no trends between those considered “at-risk” and 

“not at-risk” for LEA using LEAF-Q. Triiodothyronine (T3) and estradiol levels were 

within normal range for all participants. Insulin-growth factor (IGF-1) was elevated ( > 
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13.1-39.2 nmol/L) in 22% of athletes. Five participants (56%) had clinically low BMD in 

the hip regional score ( < -2 z-score), one of which reported a bone-related injury within 

the past year. Based on the LEAF-Q and DXA scans risk of LEA appears to be high; 

however, according to the EDE-Q and EA calculation risk of LEA appears to be low. 

This considerable discrepancy in the assessment tools suggests the need for further 

investigation using a larger sample size and a wide range of assessment tools to 

determine which are most effective for assessing energy availability in female para-

athletes. 
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I. INTRODUCTION 

 

Low Energy Availability (LEA) was initially described in female athletes as the 

Female Athlete Triad (Triad). The Triad consists of three interrelated conditions 

including energy deficiency, low bone mineral density, and menstrual dysfunction (1, 2, 

3). These conditions are each characterized on a spectrum ranging from optimal health to 

a disease state and range in symptoms and severity (2). In addition, any of these 

conditions may be experienced in solitude or in combination with one another to be 

diagnosed with the Triad. The Triad can lead to decreased athletic performance, increased 

risk for injury, and serious short and long-term health consequences. This highlights the 

need for early detection, diagnosis and treatment of these medical conditions amongst all 

female populations, particularly athletes (2, 4). While LEA had originally been seen as 

more common among the female athlete population, it became evident that “energy 

deficiency” also affects males as well. Therefore, an expansion of the Triad, referred to as 

Relative Energy Deficiency in Sport (RED-S), was recently introduced to include a 

broader spectrum of health and performance outcomes and further aspects of 

physiological functioning that result from an energy deficiency in both men and women 

(5, 6). RED-S results in impaired physiological functioning of hormonal and reproductive 

pathways including menstrual health, bone mineral density, protein synthesis, metabolic 

rate, immunity, and cardiovascular health (5, 6). 

EA is defined as energy intake (kcals) minus energy expended during exercise 

(kcals) divided by kilograms (kg) of fat-free mass (FFM). The amount of energy 

remaining after exercise energy expenditure is necessary to support basic metabolic and 

physiological functioning (7, 2). Thus, an athlete has low energy availability when they 
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fail to consume sufficient energy to support the energy expended in exercise, as well as 

the energy needed to support basic metabolic functioning. Although discrepancies exist in 

the literature (8), the low energy availability threshold is recognized as < 30 kcal.kg FFM-

1.day-1 in adult able-bodied females (4). While this definition is well established in the 

able-bodied population, it may be inappropriately applied to para-athletes. Differences in 

active muscle composition, mobility, metabolic systems including the reduction in 

sympathetic nervous system in athletes with paralysis, and other injury-related factors 

affect the ability to determine the proper LEA threshold in para-athletes (1, 9, 10). In 

addition, para-athletes may have varying energy requirements, different factors 

influencing bone health, and menstrual function compared to the able-bodied population, 

making this research even more vital (1, 10).  

Furthermore, para-athletes may have lower energy needs and intakes due to 

differences in body composition including a lower FFM and higher body fat (1). In a 

study comparing able-bodied and paraplegic subjects, fat free mass (FFM) and resting 

metabolic rate (RMR) were lower in the paraplegic group compared to the control 

subjects. However, after adjustments were made for FFM, RMR did not differ between 

the able-bodied and paraplegic groups, suggesting that metabolic activity may be similar 

for fat free mass components. Therefore, energy expenditure relative to muscle mass in 

the paraplegic population may similar to that of their able-bodied counterparts (9). 

In para-athletes, bone mineral density (BMD) varies in comparison to the able-

bodied population, making it difficult to determine the true cause of low BMD as it 

relates to energy availability. Specifically, skeletal loading is significantly reduced in 

some para-athletes, especially those with SCI, which can lead to disuse osteoporosis and 
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osteopenia that directly causes a decrease in BMD compared to their able-bodied 

counterparts. Therefore, the effects of LEA on bone in para-athletes has yet to be 

determined and needs further investigation with the consideration of baseline effects of 

the athlete’s underlying impairment (6). Menstrual dysfunction is another condition that 

leads to decreased BMD; however, the cause can be difficult to determine in the 

Paralympic population due to effects of the injury and trauma on the regulation of sex 

hormones. It is known that menstrual dysfunction can present itself in able-bodied 

athletes if they have LEA ( < 30 kcal.kg FFM-1.day-1). However, there is limited research 

examining the effects of low energy availability on menstrual health in para-athletes, 

separate to the injury-related effects (10). 

While research examining the prevalence of LEA has been extensively conducted 

in able-bodied female athletes, research has yet to examine para-athletes. Furthermore, 

current recommendations for able-bodied athletes may erroneously be applied to athletes 

with disabilities. As the Paralympic movement continues to grow, this research is 

warranted to provide assessment and treatment recommendations for the sports medicine 

team (physicians, trainers, coaches, dietitians, and other personnel), and coaches (1). 

Therefore, the purpose of this study was to examine the risk of low energy availability 

and related symptoms including menstrual health, hormonal disturbances, bone mineral 

density, and metabolic and physiological functioning amongst female Paralympic 

athletes.  
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II. LITERATURE REVIEW 

 

Introduction 

 

Paralympic sport originated from Dr. Ludwig Guttmann, a specialist in spinal 

injuries in Buckinghamshire, who used sport as an integral part of the treatment in 

paraplegic patients. From there, the exposure of para athletes and sport began, leading to 

the the first ever Paralympic games in 1960, held in Rome (11). Since this time, the 

Paralympic movement has expanded and grown exponentially into an internationally 

recognized elite sporting event that featured over 4300 athletes in the 2016 Summer 

Paralympic in Rio and a record number of athletes that competed in the 2018 Winter 

Paralympics (1, 6). This large increase in participation has necessitated the need for 

determining appropriate energy intake guidelines and reference ranges in order to ensure 

adequate energy availability for safe competition in sport. Additionally, further research 

will allow for early detection, diagnosis, and treatment of energy-deficient complications 

and issues to prevent injury and disordered eating behaviors.  

Paralympic athletes include those that have one of the following impairments:  

spinal cord injury (SCI), cerebral palsy (CP), brain injury, amputation, spina bifida, 

visual impairment, and Les Autres (other impairments such as dwarfism). A review of 

literature was conducted between September 2018-January 2019 using a variety of 

different literature outlets: PubMed, Journal of Sports Medicine, CWU Interlibrary Loan 

(ILLIAD), and other sport nutrition-related journals. Topics that were searched included, 

bone mineral density (BMD), menstrual function, low energy availability (LEA), 

Paralympic athletes, SCI, energy intake (EI), exercise energy expenditure (EEE), and 

total energy expenditure (TEE) in relation to para athletes with various forms of 
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impairment. Based on the limited research on this specific population, literature 

examining these topics in able-bodied athletes has been included as well.  

Energy Intake 

 Adequacy of energy intake for training, body composition, growth and 

development is very important. Additionally, energy intake must be measured to 

determine whether an individual is experiencing an energy balance, deficiency, or excess 

energy as it relates to energy expenditure. One of the greatest challenges is recording 

energy intake accurately by means of self-reported measures (6). This unveils the issue of 

accurately assessing an athlete’s energy status, as energy intake is a vital component of 

determining whether sufficient energy is available to support the cost of exercise and 

bodily functions needed for training and optimal performance. Additionally, this could 

lead to an inappropriate intervention for the athlete depending on if the athlete was found 

to have low-, moderate- or high- energy availability (12). Errors could exist in the form 

of participant underreporting or over-reporting of actual dietary intake, time period 

selected for the food record, variation amongst foods recorded, and inaccuracies of 

dietary analysis software programs that generate nutrient intake data. 

 In capturing dietary intake, different methods are available depending on the time, 

resources, and capabilities that are available to the researcher. Food frequency 

questionnaires (FFQ), dietary recalls, and food records are some of the most commonly 

used assessment methods in research. While FFQ’s are of great use when assessing 

nutrient status, it doesn’t provide information on timing of food, combinations of food at 

meals, and relies heavily on participant memory. Food records have been found to be the 

most preferred method for obtaining estimates of actual dietary intake (13). However, this 
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method also presents the most room for error in participant reporting, specifically under-

reporting, and accurately quantifying portion sizes of food, which can account for 10-

45% variability in energy intake. Some studies have noted that the longer the period of 

food recording is, the greater the likelihood of recording fatigue (14). However, this may 

be less likely when using athletes that are familiar with the practice of intricate daily food 

recording of metrics around training (13).   

 In a study done by Braakhuis et al. (15), food entry was completed using found to 

be another major source of error when assessing self-reported intake. From selecting the 

appropriate food item, entering in an accurate measurement and obtaining the appropriate 

nutritional content of each food item, there was great room for potential inaccuracies. In 

this study, 53 sport dietitians were instructed to enter in the dietary intake from four 7-

day food records, in which 3-5 dietitians would be assigned to each of the thirteen dietary 

records that were used in this study. After the coding and dietary assessment was 

generated, the statistical analysis found that the variability in nutrient intake between 

assessments for the same athlete was a direct result of different dietitians entering in the 

food log, indicating at times, substantial error associated with the coder.  

 Aside from variation between different “coders” inputting a food log into a 

dietary analysis program, there are also inaccuracies when food records are kept for 

shorter periods of time. Braakhuis et al. (15) also found that when 24-hour recalls were 

used to capture dietary intake versus a 3-day diet record, the variability was much greater 

in the 24-hour recall. However, there was a reduction in variability as the duration of the 

period of recording food was increased. This signifies the importance of capturing a 
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larger period of time for food record analysis to ensure that the nutrient analysis is more 

representative and reflective of actual dietary intake for each athlete. 

 In para-athletes, many studies assessed dietary intake at training camps in which 

the food was prepared for the athletes and attainment of nutritional information for foods 

was more readily available. Krempien and Barr (16) assessed the nutritional status of 32 

athletes with a SCI using two separate 3-day weighed food records to measure energy 

intake. One of those 3-days was during a training camp in which the food was prepared 

for athletes and the other 3-days once athletes returned home to get a more realistic 

depiction of typical dietary intake. There was no significant difference found between 

these recording periods. Intakes for the male and female athletes with a SCI in this study 

were comparable to recommendations for that of sedentary able-bodied individuals of 

comparable size and age. Women in this study reported an average consumption of 2,056 

± 458kcal/kg/day or 36 kcal/kg/day (2011). In another study examining intake and 

supplement use in Paralympic athletes, it was found that males consumed an average of 

2,092 kcal/day while females consumed an average of 1,602 kcal/day (17). Therefore, 

these studies suggest that there is some variation amongst this population of athletes, 

even within the same sport. It is hypothesized that the differences in impairment and 

body weight play a role in these intake variations. Additionally, timing of the study and 

reporting measures can cause noted differences as training regimen and dietary patterns 

can vary from in-season to off-season training. Regardless of the differences that may 

exist, dietary references and recommendations currently only exist for able-bodied 

athletes. Little research has examined appropriate reference ranges for macronutrient and 

micronutrient intake for the para-athlete population (16). Therefore, further research is 
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needed to examine energy needs for this population of athletes in order to determine the 

acceptability and adequacy of the para-athletes dietary intake that these other studies have 

reported.  

Exercise Energy Expenditure  

 Exercise energy expenditure (EEE) is defined as the amount of energy expended 

during physical activity (PA) (18). There are various means by which EEE has been 

captured in order to provide an accurate depiction of the energy cost for different forms 

of exercise endeavors. Heikura et al. (19) tracked exercise performed throughout the day 

via self-reported activity logs in their study examining low-energy availability (LEA) in 

able-bodied elite distance athletes. Exercise mode, duration and intensity measured by 

heart rate or perceived exertion ratings were included to most effectively determine the 

extent of physical activity recorded. Heart rate is useful for measuring exercise intensity 

as it increases proportionally and linearly to oxygen uptake (19, 20). In order to quantify 

this activity, metabolic equivalents (METs) were assigned to each activity that 

corresponds to the type and intensity of that activity (19, 21). In a study examining 

energy availability, Melin et al. (4) also used training logs, heart rate monitors, and 

assigned METs to determine EEE in elite endurance athletes. METs have been used for 

the purpose of quantifying estimates of physical activity energy expenditure.  

 Para-athletes pose a greater challenge in assessing EEE due to the differences in 

body composition, physiological responses to exercise, and sympathetic nervous system 

(SNS) activity. The reduced muscle mass that results from loss of limb functioning 

results in a diminished ability for physical activity and leisure time. The type of 

impairment and level of spinal lesion will also determine the level of physiological 
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system impairment as it relates to substrate utilization and energy expenditure in athletes 

with a SCI (22, 23). When testing VO2peak, athletes with a SCI had a lower peak output 

than their able-bodied counterparts (22). Additionally, athletes with tetraplegia had an 

even lower VO2 peak when compared with athletes with high and low level paraplegia 

on an incremental arm crank ergometer (22). These differences show that the EEE for 

any given exercise mode and intensity appears to be lower in athletes with SCI than able-

bodied athletes. Additionally, the level and completeness of SCI appears to be important 

in determining the potential energy expenditure during PA. Therefore, a distinguishment 

must be made when quantifying EEE in para-athletes versus able-bodied athletes (23). 

When comparing EEE in athletes with paraplegia and able-bodied athletes during 

structured basketball, the mean EEE was 6.5 kcal/min and 10.0 kcal/min, respectively 

(24, 25). Additionally, comparing EEE in tetraplegic rugby players versus able-bodied 

athletes a great discrepancy was found of 4.2 kcal/min and 16.0 kcal/min, respectively 

(26). These studies suggest a significantly lower EEE in para-athletes than that of able-

bodied athletes in these sports, along with tennis and other endurance sports (22). 

 While several physical activity compendiums have been developed for the general 

population of adults, wheelchair activities have formerly been excluded from such lists. 

In order to more accurately quantify EEE in wheelchair sports, Conger & Bassett (23) 

developed a comprehensive compendium of physical activity for wheelchair users with 

various impairments. Taking into account the differences in resting metabolic rate (RMR) 

and, thus, the definition of a MET value between able-bodied populations and wheelchair 

users, energy cost of activities were assessed using indirect calorimetry, and quantified 

with use of a body of previously published literature. A total of 63 different wheelchair 
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activities were identified and EEE was quantified and compared to similar activities 

performed by able-bodied athletes. The energy cost of exercise, recreation activities, and 

sport were found to be consistently lower (average 27%) in individuals who use 

wheelchairs than that of the general population. While these findings can be used as a 

resource for coding physical activity, much of the data was collected on small 

populations. Therefore, precautions should be taken when using this compendium as the 

determination of EEE in this population. Additionally, energy expenditure can vary 

between individuals depending on specific injury and a variety of other physiological 

factors. The compendium compiled the average data for similar activities so that the 

values would be generally applicable to the all wheelchair users. Further considerations 

should be made when determining the energy cost of activities amongst this population 

(23). 

Other methods that have been used to measure EEE in athletes with a SCI 

include: SenseWear Armbands (SWA), doubly labelled water (DLW), direct observation, 

accelerometers, and heart rate monitors (27). While there is currently no single “gold 

standard” for judging the validity of measurement tools for estimating PA, DLW has 

been considered the most accurate and precise method (28). However, depending on the 

specific population, accessibility to resources, form of physical activity, and research 

question the appropriate method for measurement may vary (22). 

Doubly labelled water (DLW) is a technique that quantifies EEE via CO2 

production by the difference in elimination of the two isotopes, 2H and 18O as body 

water and CO2. The SenseWear Armband (SWA) is a wireless activity monitor that 

quantifies EEE by integrating motion data from a 2-axis accelerometer and variables such 
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as skin temperature, galvanic skin response, and heat flux. When these two methods were 

used to assess changes in energy expenditure in SCI athletes during periods of sedentary 

activity and physical activity, the results found that DLW was able to detect the changes 

in energy expenditure between the two periods only. SWA, however, could not detect the 

changes from sedentary activity to PA, thus underestimating EEE in this population. 

DLW was able to detect a 15% increase in energy expenditure in SCI athletes when 

going from sedentary activity to PA, suggesting that this may be a more sensitive and 

accurate method of measurement (28). In another study, when the SWA was worn by SCI 

athletes during physical activity alone, it was found to overestimate EEE. This 

overestimation is thought to be caused by the fact that the SWA manufacturer’s 

algorithms and model are not based on the typical movements associated with wheelchair 

users in the predefined activity categories, rather able-bodied movements. Therefore, 

certain activities performed while wearing the SWA by wheelchair users are classified as 

being more strenuous than actual EEE (20, 28).  

Accelerometers are another device that have been used to aid in measuring 

physical activity energy cost. These movement sensors report the progress of frequency 

and intensity of exercise in ‘activity counts’ per unit time. These monitors have been 

compared to a variety of criterion laboratory measurements in people who use 

wheelchairs measured by oxygen output and indirect calorimetry to demonstrate validity. 

The two most commonly used accelerometers in research pertaining to physical activity 

in wheelchair persons are uni-axial and tri-axial. The most commonly used 

accelerometer, tri-axial, includes movement in the anteroposterior, mediolateral, and 

vertical axes. These tri-axial monitors have been placed on the wheels of the wheelchairs 
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or on the armrests. However, these positionings have been found to be flawed in 

estimating energy expenditure as they fail to predict moderate to intense physical activity 

during structured exercise and movement outside of the wheelchair (20). Some 

laboratories have placed accelerometers in parallel arrays at various anatomical locations 

to better monitor activity being performed. These monitors were primarily used for SCI 

and amputee populations, as well as those undergoing rehabilitation. These found to have 

92% specificity and sensitivity; however, were found to be more obtrusive and 

burdensome to participants that wore them during the study. Additionally, these monitors 

were only able to be used for durations < 48 hours due to the memory and battery life, 

which does not keep with the current requirements for length of wear of PA monitors (20, 

29). More precision can be gained if accelerometers are incorporated with self-report 

measures to understand specific personal and environmental barriers to exercise as are 

numerous for wheelchair athletes (20). 

The physical activity behavior of individuals who use wheelchairs as their 

primary source of locomotion is inherently difficult to measure due to the heterogeneous 

nature of the population, whereby different disability aetiologies responsible for the use 

of a wheelchair result in highly variable movement patterns. Therefore, accuracy and 

validity of the chosen measurement should be taken into account when determining EEE 

in para-athletes (22). 

Total Energy Expenditure/RMR 

 Total daily energy expenditure (TDEE) is the amount of energy expended 

throughout the entire day, comprised of the thermic effect of food (TEF), exercise energy 

expenditure (EEE), and resting metabolic rate (RMR) (9). It has been suggested that TEF 
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accounts for approximately 3-10% of energy expended; RMR, the main determinant of 

energy expenditure, accounts for approximately 65% of TDEE; and physical activity 

accounts for the remaining energy expended. Many studies have shown that 70-85% of 

the variation in RMR is explained by fat-free mass (FFM) (9, 30, 28). TDEE has been 

extensively studied in various populations of able-bodied athletes to assess the 

differences in energy expenditure between sedentary and active individuals. Recently, 

studies have started to investigate the differences in TDEE, specifically the RMR, 

between para-athletes and able-bodied controls. It has been well understood that para-

athletes of all injury levels have lower RMR levels and decreased EEE, resulting in an 

overall lower TDEE than their able-bodied counterparts. With diminished mobility and 

the physical limitations that exist for para-athletes, as well as the decreased FFM because 

of limb paralysis and inactivity, a lower TDEE is to be expected (9, 28). Additionally, 

some persons with SCI have a reduced sympathetic nervous system (SNS) available 

during exercise, subsequently reducing the peak physiological responses to that of their 

able-bodied counterparts. During a 24-hour testing period, resting metabolic rate values 

for those with SCI (C6-L3) have been reported ~1,879 kcal/day compared with ~2,365 

kcal/day for able-bodied matched controls (22). However, studies differ in their 

explanations and conclusions for such results. The specific subject group of para-athletes, 

as well as the method of assessment between studies should be closely examined when 

comparing results. 

Buchholz et al. (9) used indirect calorimetry and found that RMR was 

significantly higher (14%) in the control group than the paraplegic group, remaining 

significant when adjusted for age, weight, fat mass, and hormonal parameters. However, 
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this difference was reduced to < 2% when adjusted for FFM. The best single predictor of 

RMR was FFM, which accounted for 83% of the variation in RMR in control subjects 

and 70% of the variation in paraplegics. These findings led to the conclusion that the 

metabolic activity of the fat-free body is similar in both able-bodied and paraplegic 

individuals, agreeing with the findings of Liusuwan et al. (31) that concluded there was 

no difference in RMR when adjusted for lean tissue mass (LTM) in children with SCI 

(2004). However, Pelly et al. (30) found that lean-tissue mass (LTM) in able-bodied 

versus paraplegic participants, expended less energy. Athletes with SCI, for instance, 

expended an average of 25 + 13 kJ/kg LTM more than able-bodied controls. The 

explanation for this was that the energy expended from LTM at rest is influenced by the 

metabolic activity of the viscera rather than skeletal muscle, thus, the level of injury 

greatly influences the result. In this specific study, the majority of para-athletes that were 

tested had a lesion lower than T10 which includes LTM from the lower extremities that 

likely contribute to a lower proportion of the REE. Therefore, considerations should be 

made in regards to the level of injury/lesions of the para-athletes included in studies 

examining TDEE and the influence of RMR as it relates to FFM/LTM (2017). In general, 

the higher the level of spinal cord lesion, the greater the loss of function (22). In a recent 

review, Broad and Juzwiak (32) suggested that the Cunningham equation is a suitable 

method for calculating RMR when indirect calorimetry is not available, in the para-

athlete population as it provided the most accurate REE estimate when compared to 

indirect calorimetry.  

 When examining the differences in TEF between para-athletes and able-bodied 

counterparts, Buchholz et al. (9) found that there was no significant difference between 
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the two groups. TEF was measured with indirect calorimetry for 120 minutes after the 

consumption of a mixed liquid meal consisting of 30% fat, 55% carbohydrate, and 15% 

protein. This is similar to other studies that found no significant difference between TEF 

in relation to TDEE in SCI athletes (33). Therefore, it can be concluded that with the 

current research on able-bodied and para-athletes, TDEE and RMR present the area of 

most variance between the two groups, largely related to differences in FFM and exercise 

capabilities. Further research is warranted in order to more accurately assess the energy 

expenditure of para-athletes. 

Female Athlete Triad 

The suggested cutoff values for low-energy availability in able-bodied individuals 

is < 30 kcal/kg body weight. There have been extensive studies conducted to better 

support this threshold as a diagnostic tool for determining energy status in athletes of all 

sports. However, no research has been performed in Paralympic athletes, therefore, this 

able-bodied threshold may not be applicable to this population of athletes regardless of 

the observable differences between the two. LEA has long been associated with a 

condition known as the Female Athlete Triad (Triad), coined in 1993 (34). The Triad has 

been characterized by three conditions including, LEA, low bone mineral density (BMD), 

and menstrual dysfunction or hypothalamic amenorrhea. These conditions were known to 

occur along a spectrum of optimal health to disease and may be experienced in solitude in 

conjunction with one another in a female athlete (6). In this syndrome, LEA was defined 

as being an energy deficit with or without disordered eating. Upon continuation of 

research, scientific evidence found that the aetiological factor underpinning the Triad was 

an energy deficiency relative to the balance between dietary energy intake (EI) and the 
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energy expenditure required to support homoeostasis, health, activities of daily living, 

growth and sporting activities. Therefore, in 2007, the International Olympic Committee 

(IOC) expanded on the definition of the Triad by making the claim that this clinical 

phenomenon was not a triad inclusive to just three symptoms, but rather a syndrome 

resulting from relative energy deficiency, thus introducing a new term (1, 6). 

Relative Energy Deficiency in Sport  

Relative Energy Deficiency in Sport (RED-S), introduced by the International 

Olympic Committee, expands on the Female Athlete Triad and includes a broader 

spectrum of health and performance outcomes that result from an energy deficiency in 

both genders. In the IOC Consensus statement, RED-S was defined as, “impaired 

physiological function including, but not limited to, metabolic rate, menstrual function, 

bone health, immunity, protein synthesis, cardiovascular health caused by relative energy 

deficiency (6).” Other physiological functions associated with energy deficiency in RED-

S include, endocrine, skeletal, hematological, gastrointestinal, and central nervous system 

alterations. Psychological disturbances, such as depression have also been found to be a 

cause of disordered eating and caused by LEA in athletes (6) While disordered eating is 

responsible for a large proportion of LEA cases, other unintentional causes include 

knowledge deficit in relation to energy needs in sport, inability to track energy intake (EI) 

and over-exercise. While prevalence varies across genders and sports, there has been 

minimal research efforts examining the the validity of the LEA threshold ( < 30kcal/kg 

FFM) in the para-athlete population. Methodological differences must exist between 

studies done on able-bodied athletes and those done in the para-athlete population in 

order to account for differences in body composition related to injury/disability versus 
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energy status. Additionally, these results necessitate the urgency that must be placed in 

further examining the prevalence in the para-athlete population to determine thresholds 

specific to this group for prevention and treatment guidelines to be constructed. 

 For example, in a study examining energy availability in endurance athletes, 

Melin et al. (35) used food and activity logs, heart rate monitors, questionnaires, bicycle 

ergometer, transvaginal ultrasound, and reproductive blood testing to determine 

prevalence of LEA amongst able-bodied athletes. Results found that 8 of the 40 

participants were categorized into the LEA ( < 30 kcal/kg FFM) category, while the 

remaining participants had optimal (N = 15) or reduced (N = 17) energy availability 

according to the measurements used (35). In para-athletes, BMD and reproductive 

function may not be measured and compared to similar reference values due to the effects 

of the athlete’s injury or disability on those parameters, independent of energy status. 

Heikura et al. (19) also examined energy availability in elite distance runners with the 

purpose of investigating the RED-S and Triad diagnostic tools, while also providing a 

cross-sectional report on measurements assessing LEA. The methods included DXA 

scans, food/activity logs, blood plasma to test reproductive and metabolic function, and 

questionnaires assessing dietary behaviors. Results found that 37% of females presented 

with amenorrhea (AME) and low BMD and 40% of males had low testosterone (TES) 

(14.8 ± 3.6 nmol/L) according to the diagnostic tools. Additionally, self-reported records 

of food intake and activity logs showed that 25% of males and 31% of females had LEA ( 

< 30kcal/kg FFM). The most significant finding from this study found that those same 

individuals with AME and low TES had 4.5x more training absences related to bone 

injuries due to LEA. While it was concluded that there are difficulties in measuring EA 
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with 100% accuracy, these findings present further proof of the need for testing and 

determining appropriate prevention measures to ensure athletes are safely competing 

(19). The results from this study as well as the multitude of others done on able-bodied 

athletes present evidence that LEA is prevalent among elite and competitive athletes, 

further increasing risk of injuries during sport. Therefore, determining risk of LEA in this 

population is even more warranted in order to determine appropriate nutrient 

recommendations for these athletes to help reduce further risk of injuries during 

competition and training. 

Disordered Eating 

 Disordered eating (DE) has been defined as irregular eating behaviors that may or 

may not warrant a diagnosis for a specific eating disorder, being more descriptive in 

nature. It has been established that LEA is caused by a discrepancy between an athlete’s 

dietary intake and the amount of total energy expended during exercise and required to 

support basic physiological functioning for optimum health. This diminished energy 

intake has been found to be caused by intentional or unintentional calorie restriction (6). 

As current guidelines for total energy, carbohydrate, and fluid provisions are based on 

data from able-bodied athletes, there is a limited evidence base for nutritional 

recommendations specific to SCI and para-athletes (22). This makes it difficult to 

determine nutrient recommendations for this population, leading to a lack of resources 

and knowledge imparted into para-athletes regarding appropriate energy intake to sustain 

optimal performance. Additionally, there is limited research regarding eating attitudes 

and behaviors of para-athletes as a whole (36). For this reason, unintentional causes of 

disordered eating or energy deficiency amongst this population of athletes is an 
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anticipated risk. However, there is also reason to believe that intentional disordered 

eating amongst para-athletes is an even greater risk due to the psychological 

consequences of their injury or disability, as well as the fear of gaining weight due to an 

increased focus on weight control. Additionally, the presence of constraining physical 

impairments may cause an athlete to manipulate energy intake to ensure that they 

comfortably fit in their sport chair and can perform at the optimum performance level that 

is desired (1).   

Eating Behaviors and Attitudes 

 Eating behaviors vary greatly between individuals, dependent on nutrition 

knowledge, access to food, physical mobility to purchase and prepare food, and attitudes 

about dietary intake and weight. In a study assessing dietary intake of Canadian SCI 

athletes, it was found that macronutrient and micronutrient consumption was adequate for 

the majority of nutrients. With the exception of fiber and sugar intake, SCI athletes met 

the majority of recommendations pertaining to energy intake to support energy 

expenditure. However, this study noted the fact that these recommendations are for able-

bodied individuals and may not be appropriate reference ranges for those with physical 

impairments, such as those with SCI. When comparing energy intake across genders, it 

was also found that female SCI athletes had a significantly lower energy intake than the 

male SCI athletes of comparable age, injury, and activity level (17). Goosey-Tolfrey et al. 

(37) also found that male wheelchair athletes had significantly higher energy (2060 + 904 

vs. 1520 + 342 kcal) and protein (90 + 29 vs. 64 + 17g) intakes compared with their 

female counterparts of similar mean physical characteristics. The average of the male and 

females’ energy intake as a group was also found to be 40% less than the 
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recommendations for their able-bodied counterparts (2010). While it is known that para-

athletes have a decreased energy expenditure compared to these athletes, these decreased 

intake behaviors should draw attention and be further examined to determine if para-

athletes have a greater restriction to dietary intake (6). 

 In a study done on elite athletes with SCI in Canada, eating behaviors and 

attitudes were examined using a self-reported food log, anthropometric data, and the 

Three Factor Eating Questionnaire (TFEQ). These methods were used to better assess 

cognitive dietary restraint, hunger, and disinhibition in these athletes. Cognitive dietary 

restraint has been defined as being intentional monitoring of food and beverage intake by 

an individual in attempts to manipulate and control energy intake to achieve a desired 

body composition. There have been no other reported studies that have examined this in 

SCI athletes. Results found that the cognitive dietary restraint scores for men were 

significantly higher than those for women, while the disinhibition and hunger scores were 

lower. Krempien and Barr (16) noted that these scores represent a unique behavior among 

the male SCI athletes reflecting cognitive dietary restraint with a low susceptibility to 

hunger and satiety cues than that of their able-bodied counterparts. Females had similar 

restraint scores as those of young women; however, only 3 females were represented in 

this study. Conclusions drawn from these results show the many factors that greatly affect 

eating behaviors and attitudes surrounding food for SCI athletes, and the reality that 

dietary restraint to achieve desired body weight may be a trend (2012). While there is still 

extensive research that needs to be done to examine eating behaviors and attitudes of 

para-athletes, considerations of this dietary restraint should be made when assessing 

needs of para-athletes. 
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Other reasons that may lead to intentional dietary restriction in para-athletes 

include the desire to comfortably fit within their sport chair or prosthetics and to maintain 

functional mobility that excessive weight gain may disallow. In terms of knowledge 

surrounding nutritional requirements and energy intake specific to this population, the 

lack of resources and reference values set may lead to unknowingly consuming 

inadequate nutrition. Lastly, physical setbacks such as, difficulty swallowing, inability to 

purchase and prepare food independently, and food aversions caused by medication or 

physiological disturbances may all be factors that can alter this populations intake 

patterns (36, 32). Because the nutrient density of food choices needs to be optimal for 

these athletes to meet their recommended vitamin and mineral intakes, a closer evaluation 

of the dietary choices available to athletes at national-team events is warranted. 

Questionnaires that Assess LEA Risk  

 Many questionnaires have been created over the years to identify risk factors, 

behaviors, and attitudes that are representative of disordered eating and symptoms 

associated with LEA, aside from clinical evaluation only. The Low Energy Availability 

in Females Questionnaire (LEAF-Q) was designed specifically for female athletes to 

assess physiological symptoms of energy deficiency including reproductive function, 

gastrointestinal health, menstruation, and bone health. A study was done on 84 Swedish 

athletes in order to evaluate the use of this screening tool for qualitative use in research. 

Results found that the LEAF-Q had an acceptable sensitivity, specificity, and internal 

consistency, indicating that it is a useful screening tool in the identification of female 

athletes at risk for energy deficiency and associated symptoms of LEA (35). Since then, 

further studies have used the LEAF-Q to assess risk of energy deficiency in a variety of 
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sports. Heikura et al. (19) used the LEAF-Q to assess self-reported amenorrhea for their 

study examining low energy availability in female elite runners. Athletes were grouped 

into eumenorrheic and amenorrheic categories based on reproductive functioning. The 

results showed a significantly higher LEAF-Q score, indicating higher risk of LEA in the 

amenorrheic group versus the eumenorrheic group, denoting the sensitivity of the LEAF-

Q in identifying reproductive function. The authors concluded that qualitative screening 

tools may provide a more accurate representation of an athlete’s long-term energy 

availability status and the more sensitive way to diagnose LEA than measuring EA using 

self-reported intake logs (2018).  

Greater difficulty has been found in identifying a screening tool to assess risk 

factors associated with LEA in para-athletes, specifically.  Type of injury, date of onset, 

and use of contraceptives are all factors that would need to be considered when assessing 

menstrual function and BMD in this population. However, eating behaviors and attitudes 

for para-athletes may be motivated be factors specific to their injury, such as, concern of 

fitting into sport chair/prosthesis or discomfort of eating before training or competition. 

Therefore, screening tools for able-bodied athletes may not be as effective by itself in this 

unique population of athletes.  These considerations should be addressed when 

determining a screening tool to best assess eating behaviors and attitudes, menstrual 

function, and bone mineral density in the para-athlete. Krempien and Barr (36) chose to 

use the three-factor eating questionnaire (TFEQ), a 51-item scale, in order to assess 

eating behaviors in SCI athletes. The TFEQ is used to assess three different aspects of 

eating attitudes and behaviors associated with food including, cognitive dietary restraint, 

disinhibition, and hunger. This scale was chosen based on the findings that the TFEQ 
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restraint scale has good internal consistency and test-retest reliability with good stability 

over a 12-month period (38). However, there remains doubt regarding the number and 

nature of the specific dimensions within this questionnaire, and thus, has not been used as 

frequently as other screening tools in more recent studies (38).  

 A questionnaire that has been deemed an instrument of choice and gold standard 

in identifying eating disorder behaviors, is referred to as the eating disorder examination 

questionnaire (EDE-Q). This tool is a comprehensive assessment of specific disordered 

eating attitudes and behaviors that is appropriate in length for use in self-report measures. 

In comparison to the eating disorder inventory (EDI), which was thought to be a more 

comprehensive assessment, the EDE-Q was determined to be more appropriate and 

validated as a screening tool due to the length (39). The EDE-Q has four subscales 

including dietary restraint, eating concern, weight concern, and shape concern. The 

average score of each subscale is determined. A score of > 4 is deemed “at-risk,” while 

scores < 4 are considered “not at-risk” for eating disorder behavior. The questions within 

this questionnaire are applicable to both the able-bodied and para-athlete population; 

however, further research is needed to determine specificity, reliability, and validity of 

the EDE-Q in the para-athlete population. Additionally, there is limited evidence for the 

efficacy of all self-reported questionnaires, therefore, considerations should be made 

when using these qualitative screening tools to determine risk of LEA (6). 
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Bone Mineral Density 

Low bone mineral density (BMD) is commonly associated with energy deficiency 

and puts female athletes, specifically, at increased risk for osteopenia and osteoporosis. In 

addition, low bone mineral density can increase the risk of bone related injuries such as 

bone and stress fractures, especially in athletes. According to the ACSM (18), low BMD 

is defined by z scores between -1.0 and -2.0 with the presence of other risk factors. The 

International Society for Clinical Densitometry (ISCD) defines abnormal BMD as being 

< 2.0 for all able-bodied pre-menopausal women and males. In the para-athlete 

population, however, there have not been established thresholds defining low BMD in 

relation to injury or impairment. In individuals with SCI, regardless of activity level, 

disuse osteopenia/osteoporosis is common due to reduced skeletal loading over time. 

Females in general are at greater risk for low BMD due to the progressive decline in bone 

mass associate with estrogen loss after menopause. Therefore, in female para-athletes, 

these two factors lead to particular vulnerability for diminished bone health and increased 

risk for low energy fracture (1). While exercise has been shown to increase BMD in the 

able-bodied population, the effect of exercise on para-athletes has been examined 

minimally. It is known that BMD loss occurs until the end of 1 or 2 years post-injury and 

does not return to normal in these athletes; however, higher BMD scores have been found 

in upper extremities of para-athletes versus their able-bodied counterparts (40). 

In a study examining male wheelchair basketball players, Goktepe et al. (40) 

compared paraplegic athletes to paraplegic sedentary subjects in order to examine the 

effects of physical training on BMD in these paraplegic athletes. DXA scans of the 

radius, hip, and spine were assessed in order to determine site specific impacts. Results 
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found an increase in BMD in the lumbar region of the athletes; however, not significant. 

In the proximal femur region, both groups were found to have reduced BMD, which 

supports literature stating that the femur isn’t exposed to direct stress during physical 

activity in a wheelchair. Higher BMD scores in the radius were found in both groups; 

however wheelchair players had significantly higher BMD’s than sedentary paraplegic 

subjects. These results coincide with the results of Jones et al. (41) comparing physically 

active individuals with SCI to their healthy counterparts and finding that SCI subjects had 

higher arm BMD values. Additionally, the lumbar region was found to be normal in both 

groups, while the proximal femur region was lower in SCI athletes. The findings in 

Goktepe et al. (40) support similar findings in which BMD of the legs, trunk, and entire 

body in wheelchair athletes that return to sports activity after injury were higher than 

those that delayed physical activity. However, other studies have suggested that physical 

activity (wheelchair basketball) was not associated with a better preserved bone density 

below the injury level when compared to sedentary SCI patients (40, 1).  

Osteoporosis was found to be present in 100% of SCI individuals within the 

paralyzed extremities (42). One study aimed at examining the effects of physical activity 

on BMD and whether these activities play a role in the prevention of osteoporosis in male 

SCI athletes. Among subjects there were no significant differences in BMD based on 

level of injury, sport, and age. In arms, BMD (g/cm2) was greater in wheelchair athletes 

than AB athletes (0.856 + 0.050, 0.896 + 0.056, respectively); however, significantly 

lower BMD was found in legs of wheelchair (WC) athletes (WC: 1.052 + 0.179, 

AB:1.373 + 0.091). The period since injury was found to be negatively correlated with 

BMD in legs (r = -0.549, P < 0.01), body trunk (r = -0.414, P < 0.05), and whole body (r 
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= -0452, P < 0.05). Conversely, the earlier the individual returned to sport after injury, 

the higher the BMD in legs, body trunk, and entire body. This study concluded that the 

early sports rehabilitation regularly following the injury is useful in preventing bone loss 

in wheelchair athletes with SCI (43). 

Aside from physical activity, research has also examined the impact of 

micronutrient intake on BMD in athletes with SCI. Calcium and vitamin D are 

micronutrients associated with bone health and have been found to be diminished in the 

diet of SCI athletes (36). In a study examining Vitamin D status and effects of 

supplementation on SCI athletes, Pritchett et al. (44) found that only 26% of participants 

had sufficient Vitamin D status at the beginning of the study. Once the supplementation 

intervention was started, the protocol resulted in a 167%, 66% and 21% increase in 

25(OH)D concentrations in athletes that were deficient, insufficient, and sufficient, 

respectively. Over half of these participants were found to have improved handgrip 

strength once levels were restored as well. Whether or not that has a direct effect on 

BMD in these athletes has yet to be examined; however, some research has reported that 

low Vitamin D status is associated with increased incidence of decreased bone density 

(44). Furthermore, there have been no studies conducted on female para-athletes who 

have been hypothesized to be at greater risk for low BMD and greater risk of 

osteoporosis, due to their injury or impairment. In para-athletes, BMD will largely 

depend on baseline effects of of the individual’s underlying injury or disability, therefore, 

considerations should be made when determine LEA based on BMD in this population 

(6). The research conducted in para-athletes as it relates to BMD points to the need for 
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reference standards and diagnostic criteria to be specified for this population in order to 

assess risk of LEA. 

Menstrual Function 

 Low energy availability has been found to play a causal role in menstrual 

dysfunction induced by over-exercise and undernutrition. Originally seen as one of the 

components of the female athlete triad, menstrual dysfunction has been found to be 

directly affected by energy availability, and in turn, directly influences bone health (1). It 

is well documented that menstrual dysfunction can have negative health consequences 

including increased risk of the number of cardiovascular risk factors and premature 

osteopenia and osteoporosis (3). Menstrual dysfunction has been identified as the 

development of oligomenorrhea, primary amenorrhea, or secondary amenorrhea. 

Oligomenorrhea is defined as nine or less menstrual periods in one-year, primary 

amenorrhea refers to the first menstrual period beginning at > 15 years of age, and 

secondary amenorrhea being the cessation of menses for > 3 months. However, these 

definitions are those determined for able-bodied athletes only (1). Athletes that 

experience amenorrhea have also been found to have a lower energy availability than that 

of eumenorrheic athletes and non-athletic controls. The probability of developing 

menstrual dysfunction as energy availability dropped below 30kcal/kg FFM was found to 

be around 50% (45). While menstrual health has been largely examined in able-bodied 

athletes, there is a paucity of research in the para-athlete population surrounding the 

effects of exercise-induced menstrual dysfunction. Due to the nature of the disability or 

injury in the para-athlete population, menstrual function may vary from the norms of the 
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general athlete and may be multifactorial and related to the disability itself, training 

changes due to the nature of adaptive sports competition, or both (1).  

 The majority of the research that has been performed on SCI athletes in regards to 

the effects of the disability or injury on menstruation has concluded that there are no 

significant long-term effects regarding reproductive function in these individuals. In fact, 

many women with SCI have had successful and healthy pregnancies, while those with 

complete quadriplegia have reported fewer pregnancies than those with incomplete 

paraplegia that began in adulthood (1, 46). Amenorrhea was present in 41% of women in 

a retrospective study in SCI individuals; however, in the majority of these cases, it was 

transient amenorrhea lasting an average of 7.96 + 10.9 months, comparable to findings 

from another study in which menstruation resumed in an average of 5-months post-injury 

(1, 47). Of those women that were amenorrheic, 10 of the 53 participants in this study 

were able to conceive and carry out healthy pregnancies. The results found that 

pregnancy rate was significantly higher in women who experienced the injury at a 

younger age, while level of injury did not seem to draw correlations with duration of 

amenorrhea or occurrence of pregnancy (47). However, it should be noted that these 

studies did not include the athlete cohorts from this population of individuals, which 

present heightened consequences given the greater energy expenditure and potential LEA 

in athletes versus sedentary SCI individuals (1).   

Elevated prolactin levels, known as hyperprolactinemia, have been found to affect 

the pattern of menstruation in the general population of women. Elevated prolactin levels 

are normal in pregnant women, especially following birth so that milk production occurs 

and the baby can feed; however, has also been found in women with SCI following 
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injury. Prolactin has been thought to be elevated in the acute phase of SCI injury due to 

its proposed importance in coping with stress and trauma. In a study examining the 

effects of hyperprolactinemia on amenorrhea in this population, it was found that SCI 

women with amenorrhea also had the highest levels of prolactin, proposing a possible 

correlation with hyperprolactinemia and amenorrhea. Authors concluded that acute 

amenorrhea (6-month period post trauma) following SCI is due to a transient increase in 

prolactin as part of the neurochemical response to the stressful situation (48).  

 The use of oral contraceptives (OCs) and hormonal contraceptives (HCs) has also 

been an under-researched area of interest as it related to menstrual function and hormonal 

markers in athletes. Research has indicated that 40.2% of Norwegian athletes and 27.6% 

of American athletes use OCs. Some of the proposed reasons have included the difficulty 

in having a menstrual cycle during sport competition and the correlated side-effects that 

exist with menstruation. Martin et al. (49) studies the prevalence of these contraceptives 

and their effects on the menstrual cycle in elite athletes. Results found that HC use in 

elite athletes (45.6% with 69% being combined with OCs) was significantly higher than 

that of the general population in the United Kingdom. Nearly one third of combined OC 

users were able to manipulate menstruation length and frequency in attempts to avoid it 

during training or competition periods to diminish the negative side-effects associated 

(2018). These results from able-bodied elite athletes point to a potential concern of this 

same behavior amongst the Paralympic population. Due to the added difficulties in 

mobility and discomfort experienced by para-athletes, the desire to manipulate and 

control timing and duration of cycle may be heightened in this population. Additionally, 
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when testing for LEA in this population, the use of OCs should be considered as 

hormonal parameters may be skewed depending on the specific OC used. 

Hormonal Function 

The effects of LEA on hormonal functioning is an area that has been studied 

extensively in able-bodied athletes. Heikura et al. (19) examined these effects on both 

male and female elite distance athletes to assess the extent to which LEA contributes to 

altered hormone levels. In males, it has been found that low testosterone (TES) and 

metabolic hormone have been correlated in athletes with LEA; however, not below the 

clinical range. Therefore, Heikura et al. (19) obtained blood samples for insulin, TES for 

males, estradiol (E2) for females, triiodothyronine (T3), and insulin-like growth factor 

(IGF-1). Results found that of males with low TES, 60% were found to have had a 

history of > 2 stress fractures. Additionally, females that were amenorrheic and males 

with low TES were found to have significantly lower sex hormone and T3 concentrations 

compared with eumenorrheic and normal TES participants (19). When participants were 

characterized as “high-risk” based on the RED-S and the Triad cumulative assessment 

tools, significantly lower T3 concentrations were also seen in both genders. This is in line 

with findings from Loucks et al. (34) who concluded that LEA is the main reason for the 

suppression of metabolic and reproductive function in females. In a more recent study, it 

was found that reciprocal effects have been seen in males as well. Tenforde et al. (50) 

reported that many studies performed on elite endurance-trained male athletes have found 

a 40% reduction in TES and 43% reduction in sperm counts following “overtraining,” 

compared with baseline values. 



31 
 

 RED-S, referred to as, “impaired physiological functioning caused by relative 

energy deficiency,” has shown to have potential harmful hormonal effects associated with 

the aetiological factor of LEA. Many studies looking at female athletes in LEA states 

have found decreases in insulin and IGF-1, alterations in thyroid function, and elevations 

in cortisol. Much of this has been explained by the body’s need to conserve the limited 

energy available for the important bodily functions or to use as energy reserves for vital 

processes, thus, disallowing for energy needed for hormonal and reproductive functions 

(6). In a study examining the dose-response relationship between energy availability and 

markers of bone turnover in menstruating women, it was found that estradiol was 

unaffected by energy restriction until the restriction became severe ( < 20 kcal/kg 

FFM/day). Additionally, IGF-1, T3, and leptin declined significantly at energy 

availability < 30 kcal/kg FFM in these females; however, approached an asymptotic limit 

at < 20 kcal/kg FFM compared with values at 45 kcal/kg FFM, which represents a 

balanced energy availability. LH pulsatility was also abruptly disrupted at a threshold of 

energy availability < 30 kcal/kg FFM, referred to as LEA. Thus, these findings show that 

a dose-response relationship may exist between metabolic and reproductive hormones 

and energy availability (51). 

Koehler et al. (52) examined effects of alterations in short-term EA manipulation 

through diet and exercise on hormonal parameters in 6 male habitual exercisers. LEA was 

not found to significantly affect T3, testosterone, or IGF-1 levels; however, did reduce 

leptin and insulin levels compared to baseline. However, the relationship between LEA 

state and disruptions to endocrine function in both male and female athletes is largely 

variable and likely to be subject to within- and between- participant variability with more 
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research needed (6). Additionally, endocrine and hormonal reference ranges specific to 

individuals with paraplegia in all its forms is needed as this population may have 

alterations based on impairment or injury in addition to differences in energy availability.   

 Currently, ranges for metabolic and reproductive hormones have only been 

established for able-bodied individuals. According to the American Board of Internal 

Medicine (53), current reference values are as follows: estradiol (F) 10-180 pg/mL, (M) 

20-50 pg/mL; progesterone (F-follicular) .02-.9 ng/mL, (F-luteal) 2-30 ng/mL, (M) .12-.3 

ng/mL; testosterone (F) 18-54 ng/dL, (M) 291-1100 ng/dL; SHBG (F) 18-144 nmol/L, 

(M) 10-57 nmol/L; cortisol (8am) 5-25 ug/dL, (4pm) < 10 ug/dL; IGF-1 (Ages 16-24) 

182-780 ng/mL, (Ages 25-39) 114-492 ng/mL; fT3  2.3-4.2 pg/mL. These reference 

ranges are used in clinical settings of various sorts based on a wide array of research and 

literature (2019). However, clinical cutoffs may not be applicable for elite athletes of any 

sort in assessing LEA (19). Therefore, considerations should be made when comparing 

and assessing metabolic and reproductive hormone levels of able-bodied and para-

athletes. 

Conclusions 

Paralympic athletes are a population of individuals that have very unique and 

differing energy requirements dependent upon the nature of the injury or impairment and 

the different levels of exercise and training involved in para-sports. Additionally, BMD, 

menstrual functioning, dietary intake, and hormonal parameters can be drastically altered 

in comparison to their able-bodied counterparts because of the impairment. Able-bodied 

athletes have been researched and examined extensively in regards to energy availability 

and the effects of LEA on these various body processes. However, very minimal research 
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has been performed on para-athletes as it relates to energy intake and the effects of this 

energy availability on reproductive, metabolic, and skeletal processes. The prevalence of 

LEA in the Paralympic population has not been examined and para-athletes could 

potentially be at great risk for the various implications associated with LEA as discussed 

in this review. As this population of athletes continues to grow and expand worldwide, it 

is imminent that standards be set specific to the nature of the injuries or impairments. 

Currently, standards and reference ranges for able-bodied athletes may be erroneously 

applied and used for para-athletes, making it difficult to actually assess these individuals 

accurately. 

 Future research is needed to examine the differing energy requirements, 

micronutrient and macronutrient intake, for para-athletes based on exercise expenditure, 

additional supplementation needed for injury or impairment, and specific nutrients that 

are lacking in their diet. Additionally, more accurate research in a controlled environment 

is needed to better assess the caloric intake and energy expenditure of these athletes. 

Much research has examined these two factors based on self-report measures and the 

assignment of METS; however, many inaccuracies exist in these methods so greater 

specificity is needed to more accurately determine energy availability. BMD is another 

area in which no reference ranges exist for para-athletes in regards to z-scores and 

fracture risk. Studies with larger sample sizes of para-athletes are needed to determine an 

average BMD reference range from DXA scan results.  Metabolic and reproductive 

hormone reference ranges have also not been established for the para-athlete population, 

making it difficult to determine the actual effects of energy availability on reproductive 

function. In conclusion, much more research is needed in this growing population of 
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athletes to determine effects of LEA on various physiological functions and determine 

reference values and standards that can be used for diagnostic and treatment purposes for 

Paralympic athletes.   
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III. METHODS 

Participants 

Participants were recruited by word of mouth and emails sent to the coaches of 

various para- national, and collegiate level teams. Eleven para-athletes ( > 18 years old) 

from the US Olympic Committee (USOC) Paralympic program, Canadian Institute of 

Sport as well as the wheelchair basketball and track teams at the University of Illinois 

were recruited for this study. Inclusion criteria were as follows: presence of a physical 

disability, and the use of a wheelchair as the sole form of locomotion. Exclusion criteria 

included subjects who were currently pregnant, experiencing menopause or were post-

menopausal and/or had current injuries preventing them from engaging in their normal 

training. Participants were informed about the study design before signing an informed 

consent. Approval for this study was granted by Central Washington University Human 

Subjects Review Committee.  

Study Design  

In a descriptive study design taking place at a training camp at the University of 

Illinois Urbana-Champaign (Urbana, IL) and Daytona Beach, FL, questionnaires, blood 

testing, body composition, and bone density measures were collected from each 

participant on the day of testing. Responses were scored and analyzed to determine 

overall risk of low energy availability components, including menstrual health, bone 

mineral density, and energy availability based on dietary intake and physical activity 

logs. 

Dietary Intake and Training logs 

Dietary intake and activity was recorded by participants for seven consecutive 
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days. Participants were instructed to maintain their typical dietary habits and training 

during the seven days. Participants were provided education via a training video by a 

registered dietitian nutritionist (RDN) educating subjects on how to complete the food 

log, including details regarding portion sizes, timing, and detailed descriptions of food 

items consumed. The video included both verbal and visual instructions for completing 

the food log. Upon completion of the food journal, the RDN reviewed the food journals 

and had an opportunity to clarify any questions pertaining to food portions/intake from 

subjects. The RDN then entered all food intake for each participant into a nutrient 

analysis software program (Elizabeth Stewart Hands and Associates (ESHA Food 

Processor), Salem, OR). Daily energy (kcals) and macronutrient (carbohydrates (grams), 

fiber (grams), protein (grams), and fat (grams)) intake over the seven days were analyzed 

using ESHA Food processer. 

Energy Expenditure was assessed using an activity diary undertaken 

simultaneously with the food diary and was analyzed in conjunction with energy intake to 

assess energy availability. The process used for calculating EA is shown in Table 1 based 

on Heikura et al. (19). 
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Table 1: Method for assessing EA based on food/activity logs (EI – EEE)/ FFM = EA 

Energy Intake (EI) • 7-day consecutive food log completed by all 

participants to reflect dietary intake most 

representative of typical diet. 

• Household weights, scales, and measures 

used to record accurate portions sizes of 

meals (instructions included within 

food/activity log) 

• Training video educating participants how to 

properly complete food log and importance of 

being precise 

• RDN estimated total EI by analyzing food 

logs with dietary analysis software (ESHA).  

Exercise Energy Expenditure (EEE) • Estimate EEE using 7-day training log where 

exercise description, training duration, and 

intensity is recorded. Athletes encouraged to 

maintain normal routine during this time. 

• Assign each exercise endeavor and training 

an energy cost (kcals/kg/hr) using a 

compendium of activities performed by 

wheelchair users, that represents the intensity 

and type of that activity (Conger & Bassett 

2011). 

• Multiply the energy cost for each training 

session by the duration of the session to yield 

EEE. 

• REE was found using the Cunningham 

prediction equation and divided by 24 to get 

hourly REE (Cunningham, 1991). 

• Subtract REE from tEEE so that only the 

additional energy cost of exercise is included 

in the EEE 

• Use this EEE value in the equation above 

Energy Availability (EA) cutoff 

values 
• Low EA: < 30 kcal.kg FFM-1.day-1 

• Moderate EA: 30-45 kcal.kg FFM-1.day-1 

• Optimal EA: > 45 kcal.kg FFM-1.day-1 

Fat-free mass (FFM) • Fat-free mass was obtained from DXA scans. 

Note: METs = metabolic equivalents, tEEE = total EEE. [Table adapted from Heikura, 

I.A., Uusitalo, A.L.T., Stellingwerff, T., Bergland, D., Mero, A.A. and Burke, L.M. 

(2018). “Low Energy Availability Is Difficult to Assess but Outcomes Have Large 

Impact on Bone Injury Rates in Elite Distance Athletes.” International Journal of Sport 

Nutrition and Exercise Metabolism 28(4): 403-411.] 
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Questionnaires 

Participants completed the Low Energy Availability in Females Questionnaire 

(LEAF-Q). This questionnaire gathers information from subjects regarding their injuries, 

gastrointestinal and reproductive function. Specifically, it is comprised of thirty items 

distributed around six areas which include injuries and illness over the last year, 

dizziness, cold sensitivity, gastrointestinal function, and past and present menstrual 

dysfunction (35). Test-retest reliability was found to be 0.79 within a two week timespan 

(35). Participants who score > 8 are considered at risk for the Triad while participants 

scoring < 8 are considered low risk. In the present study, the LEAF-Q was used to 

determine risk of low-energy availability based on this scoring system. This tool has been 

validated for correctly identifying energy availability, reproductive function and bone 

health in endurance female athletes and thus is an appropriate tool to be used when 

screening athletes for the Triad (35).  

Bone Mineral Density and Anthropometrics 

Participant’s weight was measured to the nearest 0.1 kg using a modified digital 

scale in which participants sat directly on the scale for measurement. Athletes were 

instructed to wear loose-fitting, lightweight indoor clothing with no metal or reflective 

material and no shoes. Length was measured with subjects in a supine positon on a firm 

surface with the participant’s soles of their feet against the wall. The measured length 

was verbally reported to the participant and if the measurement differs by more than 2 cm 

than what the subject believed her height to be, the measurement procedure will be 

repeated. 

Dual energy X-ray absorptiometry (DXA) (General Electric, Lunar iDXA) was 
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used to assess fat-free, fat and bone mass. The scans performed included a whole body 

scan, a lumbar/femur scan, as well as a hip scan on each participant to determine bone 

mineral density (BMD) at these various sites. These sites have been chosen in order to 

differentiate the whole body BMD from other key sites, as para-athletes may present with 

a normal whole body z-score, regardless of a low hip or lumbar BMD. Z-scores 

calculated using a reference database for an able-bodied population as there are currently 

no references for individuals with spinal cord injury. This test was performed in the 

morning with subjects in fasted and resting states. The subjects lay on the scanning table 

and remained stationary during the several one-minute scans. DXA testing was 

performed by a DXA specialist who has been trained in radiology. DXA is considered a 

precise measurement and the gold standard for determining BMD (2, 54). Radiation 

exposure is low for DXA compared to other x-rays (55). All participants were also given 

pre-testing instructions for the DXA scan to certify that requirements for an accurate scan 

was adhered to and to further inform the athlete on the procedure of the scan.  

Menstrual Function 

If a participant suspected that they were pregnant, a pregnancy test was 

administered to the athlete at the start of testing. A component of the LEAF-Q is aimed at 

addressing and assessing reproductive function in these female athletes. Subjects were 

asked to identify menstrual patterns and history such as age of menarche, current or past 

menstrual irregularities, and number of menstrual cycles during the year. The 

questionnaire also identified if the subject was currently using forms of birth control 

which may influence menses.  A pre-screening form was also administered to participants 

prior to receiving the questionnaires, to further address menstrual status. Participants 
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answered questions regarding use of oral contraceptives and dietary behaviors influenced 

by comfort and performance during sport. 

Blood Samples 

Blood samples were obtained using a finger stick to examine whole blood for 

estradiol, T3 and IGF-1. Estradiol is the primary female sex hormone. T3 is a thyroid 

hormone, which can be responsible for menstrual irregularities. Insulin-like Growth 

Factor (IGF-1) is also a hormone in which irregular levels may indicate menstrual 

dysfunction. The blood spot method was used to analyze each of these hormonal 

parameters. This method has been shown to provide valid and reliable data with the 

following correlation value: IGF-1 (R = 0.88), T3 (R = 0.82), and estradiol (R = 0.86). 

The blood spot test was sent to ZRT Laboratories (Beaverton, OR) to be analyzed. Phase 

of the menstrual cycle was noted but not controlled for in this study. 

Disordered Eating Behaviors  

 The Eating Disorder Examination Question (EDE-Q) version 6.0 was used to 

assess the eating behaviors of all subjects. This is a self-reported version of the original 

Eating Disorder Examination (EDE) which requires a structured clinical interview by a 

trained professional. The EDE-Q widely used in clinical and research settings worldwide 

(56). The self-questionnaire assesses the behaviors and attitudes related to disordered 

eating and eating disorders over the last 28 days. The questionnaire consists of 4-

subscales including dietary restraint, eating concern, weight concern, and shape concern. 

There are 22 attitudinal questions that can be rated 0-6 by the participant. The EDE-6 is 

scored in the same way as the EDE. Scores are determined by summing the ratings from 

all questions pertaining to a specific subscale and then dividing it by the total number of 
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items within the subscale. To find the overall score, all of the subscale sums are totaled 

up and then divided by the value of four which is the total number of subscales. 

According to the recommendations from the EDE interview, a mean global score of 4.0 

has been used to identify disordered eating. However, there is evidence suggesting that 

subjects may have a global score lower than 4.0 and still be diagnosed with an eating 

disorder (56). For the present study, this scoring system was applied. Participants with a 

global score of > 4 were classified as “at-risk” and those with scores of < 4 classified as 

“not at-risk” for disordered eating behaviors. Test-retest reliably has been found to be 

between 0.81-0.94 (57). 

Subject’s results were kept confidential. Subjects’ names were initially linked 

with their results. This allowed researchers to inform the subject if they may be at 

increased risk for disordered eating and to provide the appropriate medical referrals for 

further assessment. This was performed in a confidential setting. Once all subjects had 

been informed of their increased risk, researchers removed the names of subjects from 

any data and identified subjects by a coded number system only. This ensured that no 

identifiable information was saved with the data. Referral information was offered to all 

subjects regardless of risk, and outside referrals were made by the USOC as necessary. 

Statistical Analysis 

 Data were reported as mean + standard deviation (SD) for dietary intake, blood 

measures, BMD, and calculated EA and all were reported descriptively. BMD was 

quantified via: Z > -1, normal BMD, Z < -1, a trend for low BMD; and Z < -2, clinically 

low BMD. Frequencies were used to describe percentage of athlete’s “at risk” for LEA 
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using the LEAF -Q and LEA calculations. Further statistical analysis was not warranted 

with the data that was collected. The significance was set at p < .05.  
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IV. RESULTS 

N = 9 para-athlete participants completed the study. Two participants were 

excluded due to inconclusive DXA scans and incomplete dietary intake and exercise logs, 

therefore, eight participants’ data were reported. Descriptive characteristics including 

body composition, exercise energy expenditure (EEE) and dietary intakes are displayed 

in Table 2. Energy intake (kcal) and macronutrient (carbohydrate, protein, fat and fiber) 

intake, as well as EEE and EA are averages for the 7-day period.  

Table 2. Participant (n = 9) descriptive characteristics and dietary and training data  

 Participants 

 1 2 3 4 5 6 7 8 9 
Age (years) 27 29 21 32 24 19 24 25 41 

Height (in) 64 51 57 59 64 56 54 64 70 

Weight (kg) 44.0 36.8 42.0 42.3 54.5 55.1 34.1 57.0 64.5 

Injury level T-12 T-4 T-10 L1-L2 L2-L3 L3-L4 L-5 T-11 N/A 

Years Injured 22 29 18 32 19 19 24 15 7 

Body Fat (%) 29.0 20.3 31.6 34.3 39.7 34.5 33.6 37.3 28.2 

Energy (kcals/day) 1661 2026 1807 1679 1286 1975 1263 1941 2168 

CHO (g/kg/day) 4.6 4.5 2.8 4.4 2.3 3.6 4.2 3.9 3.9 

PRO (g/kg/day) 1.9 3.7 2.7 1.7 1.3 1.6 1.3 1.9 1.6 

Fat (% kcal/day) 34 43 47 36 39 41 34 29 33 

Fiber (g) 30 24 9 17 21 15 10 21 22 

LEAF-Q score 3 15 12 9 8 2 9 12 12 

EEE (kcals/day) 110 78 113 41 191 580 40 233 549 

EA (kcal.kg FFM1.day-1) 49 67 59 59 33 40 54 49 41 

Note. Values are presented as means + SD. CHO = Carbohydrate; PRO = Protein; LEAF-Q = Low 

Energy Availability in Females Questionnaire (35); EEE = Exercise Energy Expenditure; EA = 

Energy Availability. 

 

Dietary Intake and Exercise Energy Expenditure 

 Participants consumed an average of 1951 + 724 kilocalories. For carbohydrate 

(CHO) intake, 22% of athletes consumed below the recommended intake range of 3-12 

g/kg/day for athletes, while the overall average CHO intake of all participants fell within 

the lower-end of the range (3.8 + 0.8 g/CHO/kg/day). Protein intake was adequate 
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amongst this group of athletes (2.0 + 0.8 g/kg/day), with all athletes consuming within or 

above the recommended intake range (1.2-2.0 g/kg/day) (58). Fiber intake amongst this 

population was below the recommended intake range for females (25-35g/day) with only 

one participant falling within the recommendation and an overall average intake of 19 + 7 

g/day. 

 Exercise energy expenditure varied between participants based on sport, training 

days, and season periodization. Using Conger & Bassett’s compendium of energy costs 

for individuals that use wheelchairs (23), the average energy cost from exercise 

expenditure was 215 + 208 kcal/day, showing a wide variance between participants. The 

sports represented in this study track & field (n = 7) and basketball (n = 2).  

Energy Availability 

Calculated EA using energy intake and exercise energy expenditure was 

computed for each day and averaged over the 7-day period (Table 1). No participants 

were found to have LEA according to EA cutoff values ( < 30 kcal.kg-1 FFM-1.day-1), 

three participants were considered to have moderate EA (30-45 kcal.kg FFM-1.day-1), 

while the remaining participants (n = 6) had optimal EA ( > 45 kcal.kg FFM-1.day-1) 

according to reported intake and exercise. The average EA amongst this population was 

50 + 11. However, daily fluctuations of EA existed for each participant, with some 

participants having a calculated EA of < 30 kcal.kg FFM-1.day-1 during the 7 days, 

signifying LEA. Nevertheless, average EA for all days were reported in order to get a 

more comprehensive and accurate depiction of EA for each athlete.  

Qualitative Questionnaires 
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LEAF-Q scores suggested that 78% of participants were “at-risk” (11 + 2) while 

the average overall score also represented an “at-risk” score (9 + 4) for LEA based on 

menstrual history and physiological symptoms of insufficient energy intake. The EDE-Q 

suggested that one subject was “at-risk” for disordered eating behavior according to the 

four subscales within: Restraint, Eating Concern, Shape Concern, and Weight Concern. 

The overall average EDE-Q global score was 1.7 + 2.0. The subscale that the participant 

scored lowest in was, “shape concern,” while the highest subscale score was in, “dietary 

restraint.” However, that participant was considered “not at-risk” according the LEAF-Q 

score and had optimal EA according to EA calculation involving dietary intake, exercise 

energy expenditure and fat-free mass. 

BMD and Reproductive/Metabolic Function  

 Eight participants (89%) reported current birth control use. Menstrual dysfunction 

was reported in four participants (45%) who were also taking hormonal contraceptives. 

Menstruation in these individuals was identified as being inconsistent, irregular, and/or 

cessation of menstruation for > 6 months.  

BMD, reproductive and metabolic hormone levels are summarized for each 

participant in Table 3. Two participants had insufficient blood to analyze metabolic 

parameters. Reproductive profiles suggested that progesterone was low according to the 

reference range for the premenopausal luteal phase ( < 10.5-71.6 nmol/L) in 67% of the 

participants (2.1 + 0.3 nmol/L), with no trends between those considered “at-risk” and 

“not at-risk” for LEA according to LEAF-Q. However, menstrual cycle phase was 

unaccounted for in this study and, therefore, these participants may have been within 

normal limits depending on the specific phase each was in at time of blood collection. 
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Triiodothyronine (T3) and estradiol were within normal range for all participants. Insulin-

like growth factor (IGF-1) was elevated ( > 13.1-39.2 nmol/L) in 22% of athletes, with 

those identified as “not at-risk” according to LEAF-Q being within normal limits. The 

overall average IGF-1 for this group was 32.1 + 11.3 nmol/L. 

Three DXA scans were attempted on all participants including whole body, 

lumbar (spine), and hip/femur scans. The spinal scans were not usable, as most subjects 

had metal rods in this region making it difficult for the software to distinguish between 

bone and metal, thus skewing the results for whole body scans as well. Therefore, hip z-

scores were reported for all participants. There was two participants (22%) with a score 

of  Z > -1, indicating normal BMD, and two participants (22%) with a BMD trending 

towards low (Z < -1). Five participants (56%), however, had clinically low BMD in the 

hip regional score (Z < -2 z-score), one of which reported a bone-related injury within the 

past year. 
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Table 3. Metabolic and reproductive hormone concentrations, bone density, and energy 

availability for each participant. 
 Participants 

 1 2 3 4 5 6 7 8 9 

Reproductive   

Estradiol (pg/mL) 

Progesterone (nmol/mL) 

55 

0.7 

12 

0.7 

54 

0.8 

49 

0.6 

21 

0.5 

35 

0.6 

56 

11.7 

13 

7.1 

101 

15.6 

Metabolic           

IGF-1 (nmol/L) 

T3 (pg/mL) 

35.3 

2.5 

34.3 

2.5 

20.3 

3.4 

27.8 

2.6 

53.7 

2.7 

31.2 

3.3 

25.6 

2.6 

43.2 

3.2 

17.3 

3.2 

Bone Characteristics          

 Whole body BMD (g/cm2) 

Hip z-score 

0.9 

-2.2 

1.0 

-2.7 

1.5 

-1.0 

1.3 

-0.1 

1.4 

-2.1 

1.0 

-0.9 

0.9 

-3.3 

0.9 

-2.4 

1.1 

-1.6 

Injury level T-12 T-4 T-10 L1-L2 L2-L3 L3-L4 L5 T-11 N/A 

Note. Values are presented as means + SD. IGF-1 = insulin- like growth factor; T3 = triiodothyronine; 

N/A = not available; BMD = bone mineral density; z-score = age-matched reference value for BMD; 

EA= energy availability; FFM = fat-free mass. BMD reference values: Z < -2, clinically low; Z < -1, 

trend for low; Z > 1, normal [9]. 
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V. DISCUSSION 

This is the first study to examine the risk of low energy availability and related 

symptoms including: menstrual health, hormonal disturbances, bone mineral density, 

metabolic and physiological functioning, and nutrient intake amongst female national 

level Paralympic athletes. The primary findings suggest that prevalence of EA varied 

depending upon the assessment tool used to determine risk or presence of LEA amongst 

this population. Based on EA calculation and EDE-Q, risk of LEA appears to be low, 

while based on LEAF-Q and DXA scans, risk of LEA appears to be high. Qualitative and 

quantitative measures showed considerable discrepancies that must be considered when 

interpreting the results. 

Assessing energy intake accurately presents many opportunities for error. Heikura 

et al. (19) examined EA among elite able-bodied (AB) male and female distance runners 

and suggested that calculated EA via dietary and exercise recording is challenging and 

lacking in sensitivity as a diagnostic tool for the presence of LEA (19). While food 

records have been found to be the most preferred method of obtaining estimates for actual 

dietary intake, it also presents the most room for error in participant reporting, 

specifically under-reporting, and inaccurately quantifying portion sizes of food which 

may account for 10-45% variability in energy intake (14). Additionally, this could lead to 

an inappropriate nutrition intervention for the athlete depending on whether the athlete 

was found to have low-, moderate- or high- energy availability (12). However, this may 

be less likely when using athletes that are familiar with the practice of intricate daily food 

recording of metrics around training (13).  In the present study, specificity of dietary 

intake and training throughout the day and exact measurements varied between 
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participants, with some providing details of each food item and portion size, and others 

providing vague and indefinite descriptions and measurements. Conger & Bassett (23) 

provide the only known compendium of energy costs for individuals using wheelchairs. 

Therefore, the exercise mode in the compendium that most closely resembled that of 

which was recorded during training was used to estimate exercise energy expenditure for 

each participant. Despite these challenges in self-reporting, clarifying questions were 

asked to each participant by the investigator in order to most accurately assess intake 

(portion sizes, food brands, ingredients used in prepared meals, etc.) and expenditure in 

order to provide strong estimations that could be used to determine energy availability. 

When examining the EA calculated from self-reported food and training logs, two 

participants were considered to have moderate EA (30-45 kcal.kg FFM-1.day-1), while the 

other six participants were considered to have optimal EA ( > 45 kcal.kg FFM-1.day-1). 

While extensive research has been conducted in AB elite athletes, this is the first study to 

examine EA in Paralympic athletes. Heikura et al. (19) found that 11 female participants 

had LEA and 24 females had moderate EA, while no females had optimal EA when using 

calculated EA. The authors also found that measured EA was poorly correlated with other 

factors known to be associated with LEA including reproductive, metabolic, and bone 

health. While the current study didn’t employ correlations due to the small sample size, 

no trends were observed among the participants with moderate EA versus optimal EA as 

it related physiological symptoms associated with LEA. These results are similar to other 

studies that also failed to find an association between dietary EA and physiological 

indices of LEA in female athletes (35, 52). 
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 The average caloric intake of participants within this study was 1951 + 724 

kcals/day. This is very similar to findings from a study by Krempien and Barr (16) 

assessing 32 Canadian athletes with SCI, of which 8 were female, using two separate 3-

day food records to determine dietary intake. Average caloric intake of the females when 

eating at a training camp was 2,056 + 458 kcals/day, while average intake when 

recording food consumed at home was 1,927 + 510 kcals/day. While no significant 

differences were found in dietary intake between these females at training camps versus 

at home, these results show a similar caloric intake as was found from the female para-

athletes from the current study. In another study examining supplement use and intake in 

Paralympic athletes, it was found that females consumed an average of 1,602 kcals/day, 

which is slightly less than the present study (17). It can be seen that there is a range of 

variation amongst this population and has been hypothesized that differences in injury, 

body weight and disability play a role in these intake variations. Additionally, training 

regimens and dietary patterns can vary from in-season to off-season and between 

individuals (16, 17).  

 One participant met the fiber intake recommendation for females aged 18-50 

years old according to the Dietary Guidelines for Americans (25-35 g/day) in this para-

athlete population, while the remainder fell below (58). The average intake amongst the 

group was 19 + 7 g/day. While other AB studies examining energy availability found 

greater fiber intake among individuals that were amenorrheic or had disordered eating 

behavior, there was no correlation to that found within this study as 89% of participants 

had inadequate fiber intake already (19, 59). One proposed reason for this increase in 

fiber intake among female athletes is thought to be for the appetite suppression effect that 



51 
 

fiber can have on an athlete’s appetite when consumed, decreasing caloric intake 

typically. Additionally, in AB studies, active females have been found to have low energy 

density diets, high in water-rich foods such as fruits and vegetables, high in fiber, and low 

in fat (59). However, this was not a trend found in this study. 

 The current study suggested that progesterone was low in 67% of participants, 

while estradiol was within normal limits for each participant. However, phase of the 

menstrual cycle was not controlled for at the time of the blood spot test, therefore, lower 

values for progesterone could be explained by fluctuations of this hormone throughout 

the cycle. In a study examining, relationship between energy availability and markers of 

bone turnover in menstruating women, estradiol was not affected by energy restriction 

until the restriction became severe ( < 20 kcal.kg FFM-1.day-1), which is consistent with 

our findings as no participants had severe energy restriction (51). IGF-1 was elevated in 

25% of participants, while T3 was within normal limits in the current study. Loucks and 

Thuma (51) found that IGF-1 and T3 significantly declined at an energy availability 

threshold of < 30 kcal.kg FFM-1.day-1; however, approached an asymptomatic limit at < 20 

kcal.kg FFM-1.day-1. The cause of elevation of IGF-1 in two of our participants was 

unidentifiable and unspecified. It should be noted that the reference ranges used to 

compare hormonal and metabolic parameters were based on an able-bodied population. 

These clinical cutoffs may not be applicable for elite athletes in assessing LEA, including 

Paralympic athletes as these athletes are all very different as it relates to specific injury, 

sport and energy needs (19). In addition, the relationship between EA status and 

disruptions to endocrine function in both male and female athletes is subject to within- and 

between- participant variability with more research needed (6).   
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 Menstrual function in this group was abnormal for four of the participants (44%) 

ranging in reasons that were unspecified to cessation of menses for > 6 months. Of those 

with menstrual abnormalities, one participant had primary amenorrhea (cessation of 

menses for > 3 months), two participants had secondary amenorrhea (cessation of menses 

for > 6 months), and one participant also stated that menstrual changes were noticed 

relative to training load (bleed fewer days, menstruation ceasing, etc.). However, 89% of 

participants in this study were using some form of hormonal contraceptive, with only one 

participant reporting no use. In AB athletes, research has indicated that of 430 elite 

athletes, 49.5% were using hormonal contraceptives and 69.8% had used them at some 

point. Proposed reasons for this use was related to difficulty in having a menstrual cycle 

during certain training and competition periods, along with the associated side-effects that 

exist with menstruation. Elite athletes were also able to manipulate menstruation length 

and frequency in attempts to avoid it during training or competition to diminish the 

adverse side-effects (49). These menstrual concerns in AB athletes are only further 

amplified in Paralympic athlete population due to the added difficulties of mobility. 

Therefore, menstruation patterns should be examined carefully, as abnormal menstruation 

and hormonal parameters are likely masked by contraceptive use within these athletes.  

 Whole body, hip, and spine scans were chosen in order to get an overall depiction 

of BMD in the different regions within these athletes. BMD was quantified via: Z > −1, 

normal BMD; Z < −1, a trend for low BMD; and Z < −2, clinically low BMD (60). In this 

study, whole body scans and spine scans were inconclusive as the placement of metal 

equipment skewed the scores and made the data unreliable for all participants. Therefore, 

the hip region was the most accurate scan to assess BMD; however, it was limited to just 
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one region and gave only a partial depiction in these athletes. Five participants (56%) had 

clinically low hip BMD (Z < -2) one of which reported a bone-related injury within the 

past year, and wo participants had a BMD trending towards low (Z < -1.0). Remarkably, 

only two of the three participants with moderate EA (lowest in the sample) had low hip 

BMD based on these z-scores. In contrast, Melin et al. (35) reported only 5% of elite, AB 

female athletes that had low BMD in the hip region, while 45% of female athletes had 

impaired bone health overall. Another study examining effect of sport on BMD in male 

wheelchair athletes found that BMD was related to the time period since injury, with 

lower BMD found in those with a longer period since injury. Thus, the earlier return to 

sport following injury also promoted increase in BMD in those athletes (43).  

 Therefore, when assessing BMD values in relation to low-energy availability in 

the para-athlete population, it is important to decipher whether low BMD is an indicator 

of LEA risk or rather a factor of impairment in these athletes. Previous studies performed 

in this population have found correlations between lower BMD in areas most affected by 

the SCI, indicating a probable higher association between BMD and injury rather than 

LEA (40, 43). Therefore, given that low BMD is common in most individuals with SCI, 

regardless of diet quality or energy intake, diagnostic criteria may need to be altered 

when assessing risk of LEA in para-athletes. 

 In the two questionnaires used as qualitative measures for determining risk for 

LEA, within subject variability was present. According to the LEAF-Q, 78% of 

participants were “at risk” for LEA based on a score > 8. While no other known studies 

that have used the LEAF-Q in para-athletes, Heikura et al. (19) found that LEAF-Q 

scores differed in eumenorrheic and amenorrheic AB athletes. Amenorrheic individuals 
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had an average score of 8.3 + 3.7 while eumenorrheic individuals had an average score of 

12.8 + 4.8. This significantly higher LEAF-Q score in the eumenorrheic group led 

authors to conclude that LEAF-Q was an appropriate tool for assessing risk of the Female 

Athlete Triad. This supported the findings from a previous study done on 84 Swedish 

athletes to assess the effectiveness of this screening tool. Results found that LEAF-Q had 

an acceptable sensitivity, specificity and internal consistency, considering it to be a useful 

tool in the identification of females at risk for energy deficiency and associated 

symptoms of LEA (35).  However, no trends existed between estimated energy 

availability and LEAF-Q scores in the current study. The differences in risk factors 

associated with LEA in female para-athletes make it difficult to use screening tools, such 

as LEAF-Q in identifying risk of LEA. Menstrual history and function, contraceptive use, 

and GI function assessed on this screening tool may be more related to the injury, rather 

than actual LEA. Therefore, the LEAF-Q should be used with caution with this 

population of athletes. While menstrual dysfunction was largely related to higher risk 

scores, it was largely the result of injuries related to overuse of the upper body in para-

athletes rather than bone-related injuries, and contraceptives that cease menstrual cycles 

for a duration of time.  

 In contrast to the LEAF-Q, the EDE-Q results found only one participant to be at-

risk for disordered eating and potential LEA in this study. While it doesn’t directly 

determine risk of low energy availability, this questionnaire has been considered an 

instrument of choice when identifying behaviors surrounding eating disorders. Out of the 

four subscales within the EDE-Q, participants scored highest in the “shape concern” 

category. While an average global score of > 4 is deemed at-risk for eating disorder 
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behavior, the average score amongst our participants were 1.8 + 2.0 showing great 

variability and a low risk for these behaviors in this para-population. However, when 

asked if participants restricted caloric intake due to concern of fitting into sport chair or 

due to discomfort that may be felt when eating before activity, five participants reported 

restricting due to discomfort before activity, while three reported restricting due to 

concern of fitting into sport chair. This was an interesting finding based on the low EDE-

Q scores that assess risk of disordered eating behaviors. Mond et al. (61) used this tool in 

a large sample of women from Australia, aged 18-42 years. Similar to our study, the 

mean global score for all subscales was 1.5 + 1.3, with the highest subscale score in the 

“shape concern” category. Another study involving a community-based sample of young 

women found a mean global score of 0.9 + 0.8, with the highest subscale score also being 

“shape concern” (62). In the para-athlete population specifically, this higher score 

regarding body weight or shape could have also been attributed to concern of fitting into 

their sport chair during competition, as that was a mentioned concern of participants 

within this study. This small sample size makes it difficult to determine the effectiveness 

of this tool within this population, therefore, more research is needed to determine 

whether this tool is useful for para-athletes. 

Limitations 

The most practical limitation of this study was the small sample size. Only 9 

participants completed the study, which may not be representative of the status of female 

Paralympic athletes. However, the heterogeneity of this population in terms of 

impairment should be noted.  Other limitations included the use of self-reported food 

logs, as they were vague in some instances, without precise portion size measurements 
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recorded. Exercise descriptions were difficult to quantify using the Conger & Bassett (23) 

compendium of energy costs of physical activities. Training sessions included a variety 

of different activities that were not included in the compendium, therefore, the most 

comparable activity was used to quantify each exercise in order to report an estimate of 

EEE.  

When examining blood spot tests for hormonal and reproductive functioning, 

participants were unable to clearly define what phase they were in due to the 

contraceptive devices and / or sporadic nature of their menstrual cycle. This made it 

difficult to determine whether they were within or outside of the range for estradiol and 

progesterone. Using only one region (hip) out of the three DXA scans performed to 

determine BMD didn’t give the most accurate depiction of each participants’ bone 

characteristics in the various parts of their body, specifically around the site of injury or 

impairment. 
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VI. CONCLUSIONS 

Considerable discrepancies existed between the results from the questionnaires 

and EA calculations in assessing risk of low-energy availability. Additionally, 

quantitative screening tools, such as the DXA scan and blood spot tests used in this study, 

may be difficult to use as diagnostic measures when assessing LEA with this population. 

Studies that use DXA to examine the bone characteristics of para-athletes should consider 

the sources of error that may obscure the integrity of the BMD measurements. This study 

concluded that when calculating EA based on dietary intake and EEE, no LEA existed 

within this group of female para-athletes. However, a greater risk for LEA was suggested 

when using BMD and results from LEAF-Q to determine risk. With very limited studies 

assessing EA in para-athletes, there is a lack of assessment tools specific to para-athletes 

that isolate symptoms merely associated with LEA (63). Therefore, further research and 

screening tools validated specifically for this population is warranted in order to better 

determine the energy availability of Paralympic athletes.  

Practical Applications 

 Low energy availability is a concern in female athletes. The International 

Olympic Committee (IOC) have recognized the impacts of energy status on physiological 

processes and support the that energy deficiency may contribute to menstrual 

dysfunction, impaired bone health, reproductive and hormonal imbalance, and more. 

With differing energy requirements, bone health, and menstrual function, the ability to 

identify LEA may require different assessments. This study shows the difficulty of using 

screening tools created for AB athletes for para-athletes. The variations in this population 

may be multifactorial and attributable to the characteristics of the disability itself, 
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differences in training due to the nature of adaptive sports competition, or a combination 

of both. Nevertheless, there is a need for more screening tools that can help to distinguish 

between symptoms associated with LEA rather than the injury in order to more 

accurately determine prevalence of LEA in this population. 
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