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Abstract –Spike generation in neurons produces a temporal point process, whose statistics is
governed by intrinsic phenomena and the external incoming inputs to be coded. In particular,
spike-evoked adaptation currents support a slow temporal process that conditions spiking prob-
ability at the present time according to past activity. In this work, we study the statistics of
interspike interval correlations arising in such non-renewal spike trains, for a neuron model that
reproduces different spike modes in a small adaptation scenario. We found that correlations are
stronger as the neuron fires at a particular firing rate, which is defined by the adaptation process.
When set in a subthreshold regime, the neuron may sustain this particular firing rate, and thus
induce correlations, by noise. Given that, in this regime, interspike intervals are negatively corre-
lated at any lag, this effect surprisingly implies a reduction in the variability of the spike count
statistics at a finite noise intensity.

Introduction. – In many instances, point processes
describing the firing statistics of different neurons go be-
yond the simple Poissonian declaration of temporal events
or the more general renewal processes, which are often con-
sidered good descriptions of stationary spike trains [1–3].
Non-renewal firing properties have been observed in dif-
ferent species and neural areas [4–10]. The lack of inde-
pendence between subsequent interspike intervals (ISIs),
which defines the non-renewal character of a point pro-
cess, may arise from different endogenous and exogenous
mechanisms [11]. In particular, spike-evoked adaptation
currents are one of the most prominent processes shap-
ing the statistical structure of non-renewal spike trains
[11–21].

Given that spikes constitute the main substrate for neu-
ronal communication [1], these correlated events not only
highlight the presence of certain history-dependent pro-
cesses, but also imply profound effects on neural coding.
For example, rate coding of static inputs is strongly af-
fected by correlations between subsequent ISIs [22,23], as
well as the information transfer of slow signals [24, 25].
In particular, adaptation currents generally induce nega-
tive correlations, resulting in a long-term reduction of the
variability of the spike count statistics [11–21], but richer

patterns of correlations are also possible [20,21].

Neurons respond to incoming stimuli in different ways.
Type-I neurons or “integrators” are an important class
of excitable neural cells, in which input signals are inte-
grated up to a threshold, without any strong modulation
by the spectral characteristics of fluctuations [26,27]. For
these neurons, it is important to differentiate two firing
regimes: sub-threshold (or fluctuation/noise-driven) and
supra-threshold (or input/mean-driven) modes [1, 28, 29].
Whereas in the first regime, neuronal dynamics has only
a stable quiescent state and spiking responses can be
reached only assisted by noise, in the second one, a repeti-
tive firing is obtained even in a deterministic scenario and
noise simply makes that trajectories fluctuate around a de-
terministic cycle. Different analytical studies have focused
on the role of adaptation currents in generating interspike
interval correlations in spike trains of neuron models set to
the supra-threshold regime [19–21]. However, many corti-
cal areas exhibit a fluctuation-sensitive or balanced regime
[3, 30, 31], typically from a sub-threshold dynamics, and
therefore, it would be important to assess the contribution
of adaptation currents on the non-renewal characteristics
of spike trains in this condition.

In this work, we address this analysis for the minimal
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dynamical model supporting this phenomenon: the leaky
integrate-and-fire (LIF) model. Two main approaches
have been used to study correlations in integrate-and-
fire (IF) models (although others can also be adapted):
a method in which correlations are studied through the
analysis of perturbations on a limit cycle [16, 20], and
a method derived from the formulation of an appropri-
ate hidden Markov model (HMM) [19, 23, 32]. The first
method is extremely useful to study cases where adapta-
tion produces realistic conditions, but it is restricted only
to neuron models set in a repetitive firing regime, thus pre-
venting its application to the analysis of the sub-threshold
regime. By construction, the second method can be ap-
plied to any situation, but useful results were obtained
analytically only for a perturbative regime of small adap-
tation currents [19]. Interestingly, both approaches re-
sult in correlations with essentially the same mathematical
structure. Based on the second approach, here we study
how interspike interval correlations behave in response to
different features of the incoming stimuli, with particular
emphasis in the noise-driven regime. Since previous stud-
ies have shown that a non-trivial structure of correlations
arises as the firing rate of the spiking neuron is changed
(by manipulating the deterministic drift, or an equivalent
parameter) [12,14–16,19–21], we hypothesize that a simi-
lar situation can be reached, in the sub-threshold regime,
when noise varies, by setting the firing rate at selected
values. Confirming this hypothesis, we found that, in any
sub-threshold regime defined by a fixed drift, negative cor-
relations are maximal at a finite noise, implying a surpris-
ing regularizing effect of noise on long-term spike count
variability. Further studies on the consequences of this
effect are under analysis.

Simplified neuron models with spike-evoked
adaptation. – Single-cell neuronal models describe the
electrical properties of voltage-sensitive membranes, in-
cluding their response to incoming signals. Often, integra-
tion of signals produces stereotyped spikes when the trans-
membrane potential reaches certain value or threshold.
Initiated by the foundational description of the excitabil-
ity of the squid axon by Hodgkin and Huxley in 1952,
conductance-based models characterizing the behavior of
ionic channels and their interaction with the membrane
potential account not only for this highly nonlinear process
of spike generation [1], but also for many other subthresh-
old phenomena including oscillations [33] or adaptation
with subthreshold activation [14, 34], among others. Un-
like high-dimensional detailed models, IF neuronal mod-
els are approximate descriptions that relieve the need of
a precise spike generation mechanism and simply produce
spikes by declaration. However, in order to keep as much
information as possible between spikes, the description of
the electrical evolution of the potential during the sub-
threshold period should include all relevant phenomena.
For type-I neurons, the LIF model can be considered as
the minimal model preserving the characteristics of neu-

(a) (b)

(c) (d)

Fig. 1: The LIF neuron model and the hidden Markov corre-
lated sequence of ISIs. (a) Firing rate response of a LIF neuron
as a function of the constant drift driving the dynamics, µ, for
different noise intensities, D. (b) Firing rate response as a func-
tion of µ and D. Parameters: Vr = 0, Vthr = 1, τm = 10 ms,
α = 0 (no adaptation). (c) Simulated voltage trace and adap-
tation current in the sub-threshold (upper figures, light-gray
lines) and the supra-threshold (lower figures, dark-gray lines)
regimes. Variables defining the HMM used for the analysis of
correlations between ISIs are indicated. (d) Hidden Markov
model: the statistics of the (n+ 1)-th observation (ISI), τn+1,
is conditioned to the (n + 1)-th initial adaptation level, εn+1,
which in turn only depends on both variables at the immedi-
ately previous stage.

ronal processing during rest (leaky current and asymptotic
relaxation).

Neuronal adaptation includes a variety of interrelated
processes, from spike-triggered and subthreshold-activated
adaptation currents [14] to multi-time-scale adaptation
[35,36]. The addition of a spike-evoked adaptation current
gives a more realistic description to IF models (includ-
ing a physiological basis of the widespread phenomenon
of spike-frequency adaptation), without a substantial in-
crease of complexity. In detail, we consider that, during
subthreshold integration, the membrane potential evolves
according to

dV

dt
= − (V − Vrest)

τm
+ Iadapt + µ+ ξ(t), (1)

where the time constant given by the leaky current is τm,
the resting potential is Vrest, the adaptation current is de-
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noted by Iadapt, and the external signal is represented by
the constant drift µ. Randomness arises at different stages
during signal transduction and neuronal communication
[37], and here it is included simply as an additive Gaus-
sian white noise, 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = 2Dδ(t′ − t).
This dynamics governs the evolution of the membrane po-
tential during the subthreshold integration; whenever the
potential reaches a certain threshold Vthr, a spike is pro-
duced (or declared) and immediately after, the potential is
set to a reset value Vr. By a simple re-scaling of V , we can
consider Vrest = 0 and Vthr = 1 without loss of generality.
Furthermore, for simplicity we define Vr = Vrest = 0.

One of the most important output properties of a spik-
ing neuron is its firing rate, i.e., the number of spikes pro-
duced in certain time. When analyzed as a function of
an input feature, the resulting tuning function represents
a input-output mapping, which usually is modulated by
different factors. For the deterministic LIF model, spikes
can be produced only when the constant drift is above
certain value, see fig. 1(a), which separates two different
regimes: sub- and supra-threshold regimes. This discon-
tinuous mapping is monotonically smoothed by noise, see
figs. 1(a) and 1(b). In the subthreshold mode, the input
drift drives the neuronal dynamics towards a quiescent
state below the potential threshold, see fig. 1(c) (upper
trace in light-gray line), and noise is essential to produce
any spike. In the supra-threshold mode, the dynamical
state is set to a repetitive firing regime, see fig. 1(c) (lower
trace in dark-gray line), and noise has no such a funda-
mental role. Interestingly, a given firing rate can be ob-
tained in both regimes by proper combinations of input
parameters, (µ,D), see fig.1(b).

A spike-evoked adaptation current mimics the effects
of Ca2+−activated K+ or after-hyperpolarization currents
[38], which are widely expressed in the mammalian ner-
vous system [39], and can be minimally modelled by
a current-based description [12, 15, 19, 40], Iadapt(t) =
−gadapt x(t), where the adaptation process x(t) filters the
output spike train according to

dx

dt
= − x

τa
+ α

∑
i

δ(t− ti). (2)

In this equation, τa and α define the temporal and the
output scales of the adaptation process, respectively, and
δ(ti) is a pulse (Dirac delta function) representing a spike
occurring at time ti. Without loss of generality [19], gadapt
can be conveniently re-scaled so the temporal profile of the
adaptation current during the input integration of the n-th
interspike interval, τn = tn+1 − tn, reads

Iadapt = −εn
τa

exp[−(t− tn)/τa]. (3)

Coupling between successive initial adaptation
strengths is provided by integration of eq. (2) dur-
ing the arrival of a new spike,

εn+1 = εn exp(−τn/τa) + α, (4)

see fig. 1(c). As depicted schematically in fig. 1(d), the
preceding relationship supports a history-dependent pro-
cess that creates correlations between subsequent ISIs [19].
The statistics of the (n+ 1)-th ISI, τn+1, is conditioned to
the level of the (n+1)-th initial adaptation strength, εn+1,
through a temporally inhomogeneous first-passage-time
problem with an exponential time-dependent drift [41–43].
Furthermore, since the initial adaptation strength of the
(n+ 1)-th period depends exclusively on both variables at
the immediately previous stage, εn and τn, through eq. (4),
this scheme constitutes a Markov process with both an
observable (interspike interval) and a hidden variable (ini-
tial adaptation strength). However, correlations between
ISIs are not limited to consecutive periods, but extends
to all previous outcomes, due to a nested dependence via
the hidden variable. A similar HMM can be defined for
other history-dependent processes that also produce spike-
frequency adaptation and generate correlations between
ISIs [17,32,44].

Correlations in the sequence of interspike inter-
vals. – To quantify these correlations it is useful to de-
fine the serial correlation coefficient (SCC), which, in sta-
tionary conditions, is given by

ρk =
〈τnτn+k〉 − 〈τ〉2

〈(τ − 〈τ〉)2〉
, (5)

where brackets denote ensemble average and k is the lag
between successive ISIs. To compute the SCCs at any lag,
it is necessary to quantitatively describe the HMM de-
picted in fig. 1(d). Given the deterministic update defined
by eq. (4), this HMM is completely characterized by the
transition probability density

f(εn, τn|εn−1, τn−1) = δ{εn − [εn−1 exp(−τn−1/τa) + α]}
× φ(τn|εn), (6)

where φ(τn|εn) is the ISI probability density for the (tem-
porally inhomogeneous) system defined by eqs. (1) and (3)
evolving from the reset to the threshold, conditioned to the
explicit knowledge of the initial strength εn. Recently, we
showed that this probability density can be expressed as
a series expansion in terms of the initial strength of the
adaptation current for any one-dimensional IF model,

φ(τ |ε) =

∞∑
n=0

εn φn(τ), (7)

and, particularly, we explicitly computed all terms for the
LIF model [43].

Based on the transition probability defined by eq. (6),
in a previous work [19], we computed 〈τnτn+k〉 and ρk,
assuming that the statistics given by eq. (7) and all nested
expressions produced when computing SCCs at higher lags
are developed up to order 1. In this small adaptation
scenario (set by small values of α), correlations for any IF
model develop a geometrical structure,
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(a) (b)

Fig. 2: (Color online) Normalized SCC at lag 1, ρ̂1 = ρ1/α,
when spiking rate responses are set by the drift µ. (a) ρ̂1 as
a function of the constant input µ driving the neuron, for dif-
ferent noise intensities. Analytical expressions (colored lines)
and correlations obtained from the simulated dynamics (corre-
sponding symbols, each calculated from a sequence of N = 106

ISIs) show an excellent agreement. (b) ρ̂1 represented as a
function of the firing rate, for different noise intensity scenarios.
Interestingly, the largest absolute value is reached at approxi-
mately the same firing rate in all cases. Parameters: Same as
in fig. 1, except that α = 0.01 in simulations and τa = 100 ms.

ρk =
[
φ̃L0 (1/τa)

]k−1
ρ1, (8)

where φ̃L0 (s) is the Laplace transform of the ISI density
function for the unperturbed system (i.e., without the
adaptation current), and ρ1, the first SCC, reads

ρ1 = −α 〈τ〉φ1[
1− φ̃L0 (1/τa)

]
〈(τ − 〈τ〉)2〉φ0

×

[
φ̃L0 (1/τa) 〈τ〉φ0

+
dφ̃L0 (s)

ds
c1/τa

]
. (9)

The indexed brackets in eq. (9) are the contributions to
the moments computed with the functions indicated by
the respective index,

〈τ〉φn
=

∫ ∞
0

τ φn(τ) dτ = −dφ̃
L
n (s)

ds
cs=0. (10)

Therefore, within this framework, the two quantities
needed to evaluate all SCCs are the unperturbed ISI den-
sity function (expressed in the Laplace domain) φ̃L0 (s) and
the first order correction φ̃L1 (s) (or, at least, its effect on
the mean ISI, 〈τ〉φ1

). For the LIF model, these quantities
read

φ̃L0 (s) = e−(Z2
thr−Z

2
r )/4 D−τms(Zr)

D−τms(Zthr)
, (11)

Fig. 3: (Color online) Normalized SCCs at higher lags, ρ̂k =
ρk/α. Analytical expressions (bluish colored lines) perfectly
agree with data obtained from simulations (corresponding sym-
bols, each calculated from a sequence of N = 5 × 106 ISIs).
The factor defining the geometrical structure, φ̃L

0 (1/τa), is also
shown (red dashed line, scale on the right side). As in fig.
2, firing rate was determined by varying the constant drift µ.
Parameters as in fig. 2, with D = 10−4 ms−1.

φ̃L1 (s) =

√
τm/D

1− τd/τm
e−(Z2

thr−Z
2
r )/4

D−τms(Zthr)
s
[
D−τm(s+1/τm)(Zr)

−
D−τm(s+1/τm)(Zthr)

D−τm(s+1/τd)(Zthr)
D−τm(s+1/τd)(Zr)

]
, (12)

where Zi =
√
τm/D (µ − Vi/τm), and Dν(z) is the

parabolic cylinder function according to Whittaker’s no-
tation [45].

In fig. 2(a) we show the first SCC (normalized by α),
which sets the basis for all other SCCs at higher lags,
as a function of the constant input driving the spiking
dynamics, µ, for different noise intensities. When ρ1 is
represented as a function of the firing rate elicited by the
constant input, fig. 2(b), we can observe that the behavior
is approximately conserved, but scaled, across the different
cases. Importantly, irrespective of the noise intensity, ρ1
exhibits a minimum around certain firing frequency.

The geometrical structure of the SCCs at higher lags,
eq. (8), depends on a scaling factor given by the ISI den-
sity function of the system without adaptation, φ0(τ),
but Laplace-transformed and evaluated at a specific value,
φ̃L0 (1/τa). In fig. 3 we show the first 4 correlation coeffi-
cients, for a representative case, as a function of the firing
rate elicited by varying the constant input current, µ. The
scaling factor is shown in red dashed line, whose scale can
be read on the right margin. Given the monotonic charac-
ter of this scaling factor, successive minima slightly shift
towards higher firing rates as lag increases.

Noise-induced correlations. – Overall, the preced-
ing results are very similar to those we have previously
obtained for a perfect IF (PIF) neuron model [19]. In this
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(a) (b)

(d)(c)

Fig. 4: (Color online) Structure of correlations. (a) Normalized SCC at lag 1, ρ̂1 in parameter space. A deep valley approximately
follows the trajectory of the isoline corresponding to a specific firing rate (compare normalized SCC isolines at the bottom plane
with firing rate isolines in fig. 1(b)). (b) Bi-dimensional representation of the contour structure. Greenish lines represent
contours of ρ̂1 (indicated in the inset), whereas reddish dashed lines are isolines of firing rates (indicated in situ). Correlation
contours approximately follow the isoline corresponding to 10 sp/s (i.e., ∼ 1/τa). Parameters for (a) and (b): same as in fig. 2,
including τa = 100 ms. (c) The structure of correlations develops narrowly around a lower firing rate (∼ 2 sp/s) when time scale
of the adaptation current is increased (τa = 500 ms). (d) The opposite is true when time scale is reduced. Overall, correlation
weakens (see inset) and develops loosely around the indicated firing rate. In this case, τa = 20 ms and ∼ 50 sp/s.

study, we have shown the same behavior, but analyzed as
a function of the constant input µ, which actually is equiv-
alent to the firing rate but scaled (in the pure PIF model,
noise does not modulate the firing rate). Even when it is
useful to gain theoretical insight with a tractable model,
the PIF model lacks of biological realism, as it only can
be set in the supra-threshold regime and noise simply ran-
domizes spike times without any fundamental role. Here,
with the study of the LIF model, we can focus on the sub-
threshold regime and analyze the contribution of noise in
creating correlations.

Given that, according to fig. 2(b), minima of correla-
tions for different cases are set around certain firing rate,
the key idea to explore is whether there is a matching of
time scales between the adaptation process, which is the
responsible for creating correlations, and the firing state.
In fig. 4(a) we show the first SCC in the input param-
eter space, µ and D. In the low-noise limit, it can be
observed a deep valley, characterized by the value of µ
that elicits a particular firing rate. As noise increases, the
position of this valley moves along, bending towards the
D-axis. If we focus on the contour levels, we can distin-
guish that ρ1-isolines are similar to those of the firing rate,
see fig. 1(b), implying that the development of strong cor-
relations are concomitant to a particular firing rate. This

is further developed in fig. 4(b), where the contour levels
of ρ1 and the firing rate are plotted together in the param-
eter space. As a general trend, correlations are structured
around 10 sp/s, which tentatively corresponds to 1/τa.
Since the adaptation process is the responsible for creating
a history-dependent spike train, its time constant sets the
scale in which spikes should be produced to maximize the
influence of the update rule, eq. (4), on the development
of correlations. Therefore, by changing the adaptation
time constant we should observe that correlations develop
around a different contour level of the firing rate. This sce-
nario is shown in figs. 4(c) and 4(d), where adaptation time
scale has been set at τa = 500 ms and τa = 20 ms, respec-
tively. As expected, correlations organize around 2 sp/s
(shown as below 10 sp/s) and 50 sp/s, respectively, with
the additional effect that they are strengthened (weak-
ened) as adaptation time scale increases (decreases).

The preceding observation corresponds to a matching of
time scales: for a given adaptation process (a defined τa),
correlations are stronger when the neuron fires at a certain
firing rate. In particular, this firing rate can be elicited in a
subthreshold regime and, furthermore, be driven by noise.
In this case, for example, the constant input µ may be
fixed by external influences and noise can be considered
as a parameter. Different cases, corresponding to different
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Fig. 5: (Color online) Noise-induced correlations. (a) Normal-
ized SCC at lag 1, ρ̂1, as a function of the noise intensity, for dif-
ferent sub-threshold scenarios (established by µ). The transi-
tion to the supra-threshold condition occurs at µ = 0.100 ms−1

(parameters as in fig. 2). Greenish lines represent analytical
expressions, whereas corresponding symbols are data obtained
from simulations (each data-point was calculated from a se-
quence of N = 5 × 106 ISIs). Extreme correlations occur at a
finite noise, whose value depends on the specific sub-threshold
case. (b) When represented as a function of the ongoing firing
rate, all minima are set around the same rate, indicative of a
matching of time scales sustained by noise.

values of µ, are shown in fig. 5(a). The closer the value of µ
to the critical value separating sub- and supra-threshold
regimes (here, 0.10 ms−1), the stronger the correlations
and, of course, the weaker the noise intensity that max-
imizes them. However, as we argue above, the intrinsic
phenomenon is a matching of time scales, so when repre-
sented as a function of the firing rate elicited by the noise,
see fig. 5(b), all cases display their maximum of correla-
tions at the same firing rate. From a different perspective,
for a given system (i.e., a defined τa and D), there will be
certain subthreshold external input µ that produces the
strongest negative correlations (sustained by noise).

A minimum in the first SCC as a function of the noise
intensity was previously reported for a related model [32].
In this study, the authors have numerically found a shallow
minimum in ρ1 at a finite noise, for a LIF neuron model
with a history-dependent threshold. This minimum was
not very pronounced probably because the system was set
in the supra-threshold regime. At the light of our results,
a precise value of the noise intensity will be influential only
in a sub-threshold condition.

Influence on spike-count statistics. – The devel-
opment of correlations between ISIs has an important im-
pact on rate coding. In general, the Fano factor is uti-
lized to characterize the relative importance of the first
two moments of the statistics defined by the number of
spikes observed in a temporal window of length T , as
FFT = 〈∆n2T 〉/〈nT 〉, where 〈nT 〉 and 〈∆n2T 〉 are the mean
and the variance, respectively. For T → ∞, the Fano
factor converges to [22]

Fig. 6: (Color online) Spike train regularization by negative
correlations. (a) Ratio between the Fano factor and the Fano
factor of a surrogate spike train with ISI correlations removed
by shuffling, FF∞/FFsh

∞, as a function of the noise intensity,
for a LIF neuron model set in a subthreshold regime (symbols).
This ratio highlights the exclusive contribution of correlations
on the reduction of the spike-train variability, 1 + 2

∑∞
k=1

ρk
(lines). Temporal windows used to compute spike-counts were
large enough to assure asymptotic conditions. Parameters as
in fig. 2, with µ = 0.0975 ms−1. Different contributions of the
adaptation current to the dynamics are considered, see different
values of α. (b) When represented as a function of the evoked
firing rate, the strongest reduction of the spike-count variability
is observed at a particular firing rate.

FF∞ = limT→∞ FFT = CV2

(
1 + 2

∞∑
k=1

ρk

)
, (13)

where CV is the coefficient of variation, defined on the
statistics of single ISIs as CV =

√
〈∆τ2〉/〈τ〉.

Therefore, a process that creates negative correlations
also generates a reduction of the spike-count variability,
as the factor 1 + 2

∑∞
k=1 ρk is less than unity. These

correlations can be removed from a spike train by shuffling
the order of the ISIs, a procedure that creates a surrogate
spike train with exactly the same single ISI statistics, but
no correlations between them. Then, the ratio FF∞/FFsh

∞
clearly highlights the exclusive contribution of correlations
in the reduction of the spike-count variability. In fig. 6(a)
we show this reduction as a function of the noise intensity,
in a given subthreshold regime. When represented as a
function of the firing rate evoked, fig. 6(b), the strongest
reduction of the spike-count variability is positioned at the
firing rate that matches the adaptation process (10 Hz).

In fig. 6, we can observe that our analytical derivation
perfectly agrees to numerical results in the perturbative
regime (brighter green symbols), where this framework
is valid, whereas higher order effects on correlations are
visible when α increases (dimer green symbols). Clearly,
these effects have to oppose the linear decrease in order
to prevent an unlimited growth beyond physical signifi-
cance. However, the conclusion that a reduction of the
spike-count variability and, therefore, a regularization of
the spike train is maximized at a specific firing frequency
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(here, sustained by a specific value of noise intensity) holds
well beyond the perturbative scenario, indicating that the
effect subsists in more realistic adaptation conditions.

Conclusions. – In this work we have analyzed the
development of negative correlations in a LIF neuron
model with a spike-triggered adaptation current. This sys-
tem is adequate to explore both supra- and sub-threshold
regimes. Whereas the first regime has been previously
studied, and also confirmed by the present approach, the
second one has been never characterized. We found that
correlations are stronger as the neuron fires at a particular
firing rate, defined by the inverse of the adaptation time
scale. Obviously, this scenario can be obtained in both
firing regimes, and when restricted to the sub-threshold
case, noise plays a fundamental role, by driving the spe-
cific firing rate that maximizes correlations. Given that
the sum of negative correlations at different lags produces
a regularization of the long-term spike-count variability
[13, 19, 22], this noise-sustained effect implies that noise
may have a constructive role in neural rate codes when
adaptation currents are present.
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