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HOCHSCHILD COHOMOLOGY VIA INCIDENCE ALGEBRAS

MARÍA JULIA REDONDO

Abstract. Given an algebra A we associate an incidence algebra A(Σ) and
compare their Hochschild cohomology groups.

1. Introduction

The purpose of this paper is to study the connection between the Hochschild
cohomology groups of A and of an incidence algebra associated to each presentation
(Q, I) of A.

Let A be an associative, finite dimensional algebra over an algebraically closed
field k. It is well known that if A is basic and connected, then there exists a unique
finite quiver Q such that A ∼= kQ/I, where kQ is the path algebra of Q and I is an
admissible two-sided ideal of kQ. The pair (Q, I) is called a presentation of A.

For each presentation (Q, I) of A, one can define its fundamental group π1(Q, I).
This group is not an invariant of the algebra, since different presentations may
yield the same algebra, with different fundamental groups associated. In [1, 16] it
is shown that this group is related to the first Hochschild cohomology group of A:
for any presentation (Q, I) of A there is an injective morphism of abelian groups
Hom(π1(Q, I), k+) → HH1(A), where k+ denotes the underlying additive group of
the field k.

If A is an incidence algebra, the fundamental group is an invariant of the alge-
bra, which will be denoted by π1(A), and Hom(π1(A), k

+) ≃ HH1(A). Moreover,
there is a simplicial complex |A| such that the fundamental group π1(A) and the
(co)homology groups of A are respectively isomorphic to the fundamental group
and the (co)homology groups of |A|, see [3, 18].

In [19] it is shown that for each presentation (Q, I) of an algebra A there is an
associated incidence algebra A(Σ), and the corresponding fundamental groups are
related by the following short exact sequence of groups

1 → H → π1(Q, I) → π1(A(Σ)) → 1.

Moreover, H is explicitly described in [19] by generators and relations.

Even though the computation of the Hochschild cohomology groups HHi(A) is
rather complicated, some approaches have been successful when the algebra A is
given by a quiver with relations. For instance, explicit formula for the dimensions
of HHi(A) in terms of those combinatorial data have been found in [2, 5, 7, 8, 9, 14].

In [15] Igusa and Zacharia give a combinatorial algorithm to find an upper bound
for the cohomological dimension of HHi(I(Σ)), where I(Σ) is the incidence alge-
bra associated to the poset Σ. They show how to construct the so-called reduced

subposet Σ of Σ which has the property that all elements x ∈ Σ, neither minimal
nor maximal elements, are such that {y ∈ Σ : y > x} has at least two minimal
elements and {z ∈ Σ : x > z} has at least two maximal elements. The Hochschild
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cohomology groups are invariant under this construction. Hence it is enough to
compute them for incidence algebras associated to reduced posets. The Hochschild
cohomology groups of some particular families of incidence algebras have been com-
puted in [11, 12] and it is known that they vanish if the associated poset does not
contain crowns, see [10, 15].

In this paper we are interested in comparing the Hochschild cohomology groups
of an algebra A with those of a particular incidence algebra A(Σ) associated to a
presentation (Q, I) of A. If the chosen presentation is homotopy coherent, see Defi-
nition 2, we define a morphism between the complexes computing these cohomology
groups, which induces morphisms HH(Φn) : HHn(A(Σν)) → HHn(A). Finally we
find conditions for these morphisms to be injective, see Theorem 16.

The paper is organized as follows. In Section 2 we introduce all the necessary
terminology and known results. In Section 3 we recall the construction of the
incidence algebra associated to any presentation of an algebra A. In Section 4
we introduce two classes of presentations: the homotopy coherent and the right
(left) compatible presentations, that will be essentially needed to prove the main
results, presented in Section 5, concerning the relationship between the Hochschild
cohomology groups of A and those of an associated incidence algebra. Finally in
Section 6 we present several examples.

2. Preliminaries

2.1. Quivers and relations. Let Q be a finite quiver with a set of vertices Q0,
a set of arrows Q1 and s, t : Q1 → Q0 be the maps associating to each arrow α
its source s(α) and its target t(α). A path w of length l is a sequence of l arrows
α1 . . . αl such that t(αi) = s(αi+1). We put s(w) = s(α1) and t(w) = t(αl). For any
vertex x we consider ex the trivial path of length zero and we put s(ex) = t(ex) = x.
A cycle is a non-trivial path w such that s(w) = t(w).

The corresponding path algebra kQ is the k-vector space with basis the set
of paths in Q; the product on the basis elements is given by the concatenation
of the sequences of arrows of the paths w and w′ if they form a path (namely,
if t(w) = s(w′)) and zero otherwise. Vertices form a complete set of orthogonal
idempotents. Let F be the two-sided ideal of kQ generated by the arrows of Q. A
two-sided ideal I is said to be admissible if there exists an integer m ≥ 2 such that
Fm ⊆ I ⊆ F 2. The pair (Q, I) is called a bound quiver.

It is well known that if A is a basic, connected, finite dimensional algebra over
an algebraically closed field k, then there exists a unique finite quiver Q and a
surjective morphism of k-algebras ν : kQ → A, which is not unique in general,
with Iν = Ker ν admissible. The pair (Q, Iν) is called a presentation of A. We
denote by kQ(x, y) the subspace of kQ with basis the set of paths from x to y,
Iν(x, y) = Iν ∩ kQ(x, y) and A(x, y) = kQ(x, y)/Iν(x, y).

2.2. Incidence algebras. An incidence algebra I(Σ) is a subalgebra of the algebra
Mn(k) of square matrices over k with elements (xij) ∈ Mn(k) satisfying xij = 0
if i 6≥ j, for some partial order ≥ defined in the poset (partially ordered set) Σ =
{1, . . . , n}.

Incidence algebras can equivalently be viewed as path algebras of quivers with
relations in the following way. Let Q be a finite quiver without oriented cycles and

such that for each arrow x
α
→ y ∈ Q1 there is no oriented path other than α joining

x to y. These quivers are called ordered. The set Q0 of vertices of Q is then a finite



poset (Σ,≥) as follows: x ≥ y if and only if there exists an oriented path from x to
y. Conversely, if Σ is a finite poset, we construct a quiver Q with the set of vertices
Σ, and with an arrow from x to y if and only if x > y and there is no u ∈ Q0 such
that x > u > y. In other words Q is the Hasse diagram of the poset Σ. Clearly
we obtain in this way an ordered quiver and a bijection between finite posets and
ordered quivers.

Let us consider kQ the path algebra of Q and I the parallel ideal of kQ, that is,
I is the two-sided ideal of kQ generated by all the differences γ − δ where γ and
δ are parallel paths (that is, γ and δ have the same starting and ending points).
The algebra I(Σ) = kQ/I is the incidence algebra of the poset Σ associated to the
ordered quiver Q.

2.3. Fundamental group. Let (Q, I) be a connected bound quiver. For x, y ∈ Q0,
a relation ρ =

∑m
i=1 λiwi in I(x, y) is called minimal if, for every non-empty proper

subset J ⊂ {1, 2, . . . ,m}, we have
∑

j∈J λjwj /∈ I(x, y). A relation ρ is called
monomial if m = 1, and binomial if m = 2.

For an arrow α ∈ Q1, we denote by α−1 its formal inverse and put s(α−1) = t(α)
and t(α−1) = s(α). A walk from x to y in Q is a formal composition αǫ1

1 αǫ2
2 . . . αǫt

t

(where αi ∈ Q1, ǫi =
+
− 1 for 1 ≤ i ≤ t, and t(αǫi

i ) = s(α
ǫi+1

i+1 )) starting at x and
ending at y.

Let ≈ be the smallest equivalence relation on the set of all walks in Q such that:

a) If α : x → y is an arrow then α−1α ≈ ey and αα−1 ≈ ex;
b) If ρ =

∑m
i=1 λiwi is a minimal relation then wi ≈ wj for all 1 ≤ i, j ≤ m;

c) If u ≈ v then wuw′ ≈ wvw′ whenever these compositions make sense.

Let x0 ∈ Q0 be arbitrary. The set π1(Q, I, x0) of equivalence classes of all the
closed walks starting and ending at x0 has a group structure. Clearly the group
π1(Q, I, x0) does not depend on the choice of the base point x0. We denote it simply
by π1(Q, I) and call it the fundamental group of (Q, I), see [1].

2.4. Hochschild cohomology: a convenient resolution for A = kQ/I. We

recall that the Hochschild cohomology groups HHi(A) of an algebra A are the

groups ExtiAe(A,A). We refer the reader to [4, 14, 17] for more general results.
To compute the Hochschild cohomology groups of A = kQ/I we will use a

convenient projective resolution of A as A-bimodule given in [6]. Let E be the
subalgebra of A generated by the set of trivial paths {ex|x ∈ Q0}; note that E
is semisimple and A = E ⊕ radA as E-bimodule. Let radA⊗n denote the n-fold
tensor product of radA with itself over E, with radA⊗0 = E. The complex

· · · → A⊗E radA⊗2 ⊗E A
b2→ A⊗E radA⊗E A

b1→ A⊗E A
b0→ A → 0

with

bn(a0 ⊗ · · · ⊗ an+1) =

n∑

i=0

(−1)
i
a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1

is a projective resolution of A as A-bimodule. There is a natural isomorphism
HomAe(A ⊗E radA⊗n ⊗E A,A) ≃ HomEe(radA⊗n, A), and the corresponding



boundary map bn : HomEe(radA⊗n, A) → HomEe(radA⊗n+1, A) is given by

(b0f)(a0) = a0f(1)− f(1)a0,

(bnf)(a0 ⊗ · · · ⊗ an) = a0f(a1 ⊗ · · · ⊗ an)

+
n∑

i=1

(−1)if(a0 ⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ an)

+ (−1)
n+1

f(a0 ⊗ · · · ⊗ an−1)an.

2.5. Hochschild cohomology and simplicial cohomology. Let A = I(Σ) be
an incidence algebra associated to a poset Σ. The simplicial complex associated
to Σ is defined as follows: SCn = SCn(Σ) is the k-vector space with basis the set
{s0 > s1 > · · · > sn|si ∈ Σ}. The complex computing the cohomology groups
SHn(Σ, k) is the following

0 → Homk(SC0, k)
B0

→ Homk(SC1, k)
B1

→ Homk(SC2, k) → · · ·

with

(Bn−1f)(s0 > · · · > sn) =

n∑

i=0

(−1)if(s0 > s1 > · · · > ŝi > · · · > sn).

In [13, 6] it was shown that SHn(Σ, k) and HHn(A) are isomorphic. Moreover, there
is an explicit isomorphism between the complexes computing these cohomology
groups, which is defined as follows: note that A = I(Σ) is an incidence algebra,
and we are considering tensor products over E, thus

radA⊗n = ⊕s0>s1>···>snA(s0, s1)⊗k A(s1, s2)⊗k · · · ⊗k A(sn−1, sn),

with dimk A(si−1, si) = 1 for all i with 1 ≤ i ≤ n. Taking a basis element
(w1, . . . , wn) in A(s0, s1)⊗k A(s1, s2)⊗k · · · ⊗k A(sn−1, sn), the maps

εn : Homk(SCn, k) → HomEe(radA⊗n, A)

given by εn(f)(w1, . . . , wn) = f(s0 > s1 > · · · > sn)w1 · · ·wn commute with the
corresponding boundary maps and induce the desired isomorphism of complexes.

3. Associated incidence algebra

3.1. The associated incidence algebra. Let (Q, Iν) be a presentation of an
algebra A, that is, ν : kQ → A is a surjective morphism and Iν = Ker ν. We
associate to (Q, Iν) an incidence algebra A(Σν), where Σν is the poset defined as
follows (see [19]): let P (Q) be the set of paths of Q, let P (Q, Iν) = P (Q)/ ∼ be
the set of equivalence classes, where ∼ is the smallest equivalence relation on P (Q)
satisfying:

a) If ρ =
∑m

i=1 λiwi ∈ Iν is a minimal relation then wi ∼ wj for all 1 ≤ i, j ≤
m;

b) If u ∼ v then wuw′ ∼ wvw′ whenever these compositions make sense.

We denote by [u] the equivalence class of a path u. Observe that these are the
conditions used in the definition of the fundamental group π1(Q, Iν) if we replace
walks by paths. Let Σν be the set of equivalence classes in P (Q, Iν) that do not
contain paths in Iν . Equivalent paths share source and target, and the equivalence
relation is compatible with concatenation; this allows us to define s([w]) = [es(w)],
t([w]) = [et(w)] and [u][v] = [uv] whenever the composition makes sense and it is



not equivalent to a path in Iν . The set Σν is a poset, with [w] ≥ [w′] if and only if
there exist [u], [v] ∈ Σν such that [w′] = [u][w][v], see [19].

Example 1. Consider the quiver

1
α

((

β

66 2
γ

// 3

and the ideals I1 =< αγ >, I2 =< (α − β)γ >. The bound quivers (Q, I1) and
(Q, I2) are presentations of the same algebra A = kQ/I1, and the corresponding
Hasse diagrams are given by

Σ1 : [e1]

�� !!C
CC

CC
CC

C
[e2]

��}}{{
{{

{{
{{

!!C
CC

CC
CC

C
[e3]

��
[α] [β]

��

[γ]

}}{{
{{

{{
{{

[βγ]

Σ2 : [e1]

�� !!C
CC

CC
CC

C
[e2]

��}}{{
{{

{{
{{

!!C
CC

CC
CC

C
[e3]

��
[α]

!!C
CC

CC
CC

C
[β]

��

[γ]

}}{{
{{

{{
{{

[βγ]

4. Homotopy coherent and compatible presentations

In order to prove the main results in Section 5 we must consider presentations
satisfying two particular conditions: homotopy coherence and right (left) compati-
bility.

Definition 2. A presentation (Q, I) is called homotopy coherent if for any w,w′

paths in Q with w ∼ w′, we have w ∈ I if and only if w′ ∈ I.

This condition is necessary to construct the morphism of complexes computing
HH∗(A(Σν)) and HH∗(A), see Step 3 and Step 4 in Section 5.1.

Remark 3. If (Q, Iν) is homotopy coherent then Σν is just the set of equivalence

classes of non-zero paths.

Proposition 4. Let (Q, Iν) be a presentation with Iν generated by monomial or

binomial relations. Then (Q, Iν) is homotopy coherent.

Proof. Let w,w′ be paths in Q such that w ∼ w′. If Iν is generated by mono-
mial relations, then w = w′. If not, there exists a finite sequence of paths w0 =
w,w1, . . . , wr = w′ such that, for all i with 0 ≤ i < r, wi = uiρivi, wi+1 = uiγivi
with ρi, γi appearing in a minimal relation in Iν , ui, vi, ρi, γi paths in Q. So
λiρi+µiγi ∈ Iν for some λi, µi ∈ k \ {0}. This implies that λiwi+µiwi+1 ∈ Iν and
hence wi ∈ Iν if and only if wi+1 ∈ Iν . �

Recall that an algebra A is said to be schurian if dimA(x, y) ≤ 1 for any x, y ∈
Q0.

Corollary 5. Schurian algebras, incidence algebras and monomial algebras admit

homotopy coherent presentations.

Proof. These classes of algebras admit presentations (Q, Iν) with Iν generated by
monomial or binomial relations. �



Definition 6. A presentation (Q, Iν) is called right compatible if for any s > s′ ∈
SC1(Σν) we can choose a path u(s, s′) ∈ Q such that

(i) s′ = [v] s [u(s, s′)];
(ii) for any s > s′ > s′′ in SC2(Σν), u(s, s

′′) ∼ u(s, s′)u(s′, s′′).

For the sake of brevity, we refrain from stating the dual of the previous condition
and leave the primal-dual translation to the reader.

The following result will be essentially used in Lemma 14, and shows the necessity
of assuming left or right compatibility.

Lemma 7. If (Q, Iν) is a right compatible presentation then there exists a family

{u(s, s′) ∈ Q|s > s′ ∈ SC1(Σν)} such that if

[u(s0, s1)], . . . , [u(sn−1, sn)]

is the sequence associated to s0 > · · · > sn then

[u(s0, s1)], . . . , [u(si−1, si)u(si, si+1)], . . . , [u(sn−1, sn)]

is the sequence associated to s0 > · · · > ŝi > · · · > sn.

Proof. It follows by induction. �

Example 8. The presentations (Q, I1) and (Q, I2) presented in Example 1 are
right compatible, where the corresponding paths are given by

(i) for (Q, I1),

u([e1], [α]) = α, u([e1], [β]) = β, u([e2], [α]) = e2, u([e2], [β]) = e2
u([e2], [γ]) = γ, u([e3], [γ]) = e3, u([β], [βγ]) = γ, u([γ], [βγ]) = e3;

(ii) for (Q, I2),

u([e1], [α]) = α, u([e1], [β]) = β, u([e2], [α]) = e2, u([e2], [β]) = e2
u([e2], [γ]) = γ, u([e3], [γ]) = e3, u([β], [βγ]) = γ, u([γ], [βγ]) = e3,
u([α], [βγ]) = γ.

However the presentation (Q, I2) is not left compatible:

v([e2], [α]) = α, v([e2], [β]) = β, v([α], [βγ]) = e1 and v([β], [βγ]) = e1.

On the other hand, v([α], [βγ])v([e2], [α]) = α and v([β], [βγ])v([e2], [β]) = β, hence
we have no choice for v([e2], [βγ]) satisfying the dual of Definition 6(ii) since α 6∼ β.

Example 9. Consider the quiver

0
δ

// 1
α

((

β

66 2
γ

// 3

and the ideal I =< δ(α−β), (α−β)γ >. The presentation (Q, I) is neither left nor
right compatible. As in the previous example, we have no choice for v([e2], [βγ])
satisfying the dual of Definition 6(ii) and, dually, we have no choice for u([e1], [δβ])
satisfying Definition 6(ii).

Proposition 10.

(a) Monomial algebras admit right compatible presentations;

(b) Schurian algebras admit right compatible presentations;

(c) Incidence algebras admit right compatible presentations.



Proof.

(a) The relation ∼ is just equality for monomial algebras;
(b) Parallel non-zero paths in a schurian algebra are linearly dependent and

hence for any s > s′ ∈ SC1(Σν) we have that s
′ = [v] s [u], with [u] and [v]

uniquely determined;
(c) Incidence algebras are schurian.

�

5. Main results

5.1. Morphism HHn(A(Σν)) → HHn(A). In order to compare the cohomological
groups HHn(A(Σν)) and HHn(A), we will define a morphism of complexes

Φ∗ : Homk(SC∗(Σ), k) → HomEe(radA⊗∗, A),

and this will be done in several steps. Recall that F is the two-sided ideal of kQ
generated by the arrows, so F is a k-vector space with basis the set of all non-trivial
paths in Q. For any n ≥ 0, let F⊗n be the n-fold tensor product of F with itself
over E , with F⊗0 = E.

Step 1. Definition of Tn : F⊗n → SCn(Σν).
Step 2. Definition of ∂n+1 : F⊗n+1 → F⊗n and δn+1 : SCn+1(Σν) → SCn(Σν).
Step 3. Proof of the commutativity of the diagram

F⊗n+1
Tn+1

//

∂n+1

��

SCn+1(Σν)

δn+1

��

F⊗n
Tn

// SCn(Σν)

Step 4. Description of the morphism Φn : Homk(SCn, k) → HomEe(radA⊗n, A).

Step 1. Let Tn : F⊗n → SCn(Σν) be the k-linear map defined inductively by:

(i) T0(ei) = [ei];
(ii) For any path w in F , put

T1(w) = [es(w)] > [w]− [et(w)] > [w]

if [w] ∈ Σν , and zero otherwise;
(iii) For any basis element (w1, . . . , wn) in F⊗n, put

Tn(w1, . . . , wn)

= [Tn−1(w1, . . . , wn−1) + (−1)nTn−1(w2, . . . , wn)] > [w1 · · ·wn]

if [w1 . . . wn] ∈ Σν , and zero otherwise.

Note that we put
[∑

i λi s
i
0 > · · · > sin−1

]
> sn :=

∑
i λi s

i
0 > · · · > sin−1 > sn.

Step 2. For n ≥ 0, let ∂n+1 : F⊗n+1 → F⊗n be the k-linear map defined by

∂1(w) = et(w) − es(w),

∂n+1(w0, . . . , wn) = (w1, . . . , wn) + ∂̃n+1(w0, . . . , wn) + (−1)n+1(w0, . . . , wn−1)

= (w1, . . . , wn) +

n∑

i=1

(−1)i(w0, . . . , wi−1wi, . . . , wn)

+ (−1)n+1(w0, . . . , wn−1),



and let δn+1 : SCn+1(Σν) → SCn(Σν) be the k-linear map defined by

δn+1(s0 > · · · > sn+1) =

n+1∑

i=0

(−1)is0 > · · · > ŝi > · · · > sn+1.

Step 3. From now on, we will consider homotopy coherent presentations (Q, I). We
stress that, under this assumption, Tn is compatible with the equivalence relation
used to define Σν , that is, if wi ∼ ui for all i with 1 ≤ i ≤ n then Tn(w1, . . . , wn) =
Tn(u1, . . . , un).

Remark 11. If (Q, Iν) is homotopy coherent and [u], [v] ∈ Σν are such that [u] =
[v][u] then v is a trivial path. In fact, if v is a path of positive length, u ∼ vu implies

that u ∼ vmu and, for m sufficiently large, the path vmu belongs to the admissible

ideal Iν , a contradiction.

Lemma 12. Let (Q, Iν) be a homotopy coherent presentation of A. Then

Tn∂n+1(w0, . . . , wn) = δn+1Tn+1(w0, . . . , wn), for any n ≥ 0 and (w0, . . . , wn) a

basis element in F⊗n+1 with w0 · · ·wn 6∈ Iν .

Proof. Observe that w0 · · ·wn 6∈ Iν implies that w1 · · ·wn 6∈ Iν and w0 · · ·wn−1 6∈
Iν , and the homotopy coherence of the presentation implies that [w0 . . . wn] ∈ Σν

if and only if w0 · · ·wn 6∈ Iν . A direct computation shows that T0∂1(w) = [et(w)]−
[es(w)] = δ1T1(w) and

T1∂2(w0, w1) = T1(w1)− [es(w0)] > [w0w1] + [et(w1)] > [w0w1] + T1(w0)

= δ2T2(w0, w1)

for any w 6∈ Iν , w0w1 6∈ Iν . Now we proceed by induction, assuming that the
desired equality holds for any j such that 0 ≤ j < n, n > 1.

Tn∂n+1(w0, . . . , wn)

= Tn(w1, . . . , wn)− Tn(w0w1, . . . , wn) + (−1)nTn(w0, . . . , wn−1wn)

+ (−1)n+1Tn(w0, . . . , wn−1)− Tn(w0, ∂̃n−1(w1, . . . , wn−1), wn)

= Tn(w1, . . . , wn)− Tn(w0w1, . . . , wn) + (−1)nTn(w0, . . . , wn−1wn)

+ (−1)n+1Tn(w0, . . . , wn−1)

− Tn−1(w0, ∂̃n−1(w1, . . . , wn−1)) > [w0 · · ·wn]

− (−1)nTn−1(∂̃n−1(w1, . . . , wn−1), wn) > [w0 · · ·wn]

= Tn(w1, . . . , wn)− Tn(w0w1, . . . , wn) + (−1)nTn(w0, . . . , wn−1wn)

+ (−1)n+1Tn(w0, . . . , wn−1)

+
[
Tn−1∂n(w0, . . . , wn−1) + (−1)n+1Tn−1∂n(w1, . . . , wn−1, wn)

]
> [w0 · · ·wn]

+ [−Tn−1(w1, . . . , wn−1) + (−1)nTn−1(w2, · · · , wn)] > [w0 · · ·wn]

+ [Tn−1(w0w1, . . . , wn−1)− Tn−1(w1, . . . , wn−1wn)] > [w0 · · ·wn]

+
[
(−1)n+1Tn−1(w0, . . . , wn−2) + Tn−1(w1, . . . , wn−1)

]
> [w0 · · ·wn].



By the inductive hypothesis and using the inductive definition of Tn we have

Tn∂n+1(w0, . . . , wn)

= Tn(w1, . . . , wn) + (−1)n+1Tn(w0, . . . , wn−1)

+
[
δnTn(w0, . . . , wn−1) + (−1)n+1δnTn(w1, . . . , wn)

]
> [w0 · · ·wn]

= δn+1 (Tn(w0, . . . , wn−1) > [w0 · · ·wn])

+ (−1)n+1δn+1 (Tn(w1, . . . , wn) > [w0 · · ·wn])

= δn+1Tn+1(w0, . . . , wn).

�

Step 4. We are now in a position to describe the morphisms

Φn : Homk(SCn(Σν), k) → HomEe(radA⊗n, A).

Note that radA ≃ F/Iν and radA⊗n ≃ F⊗n/R with

R =
n−1∑

s=0

F⊗s ⊗E Iν ⊗E F⊗n−s−1.

For any w ∈ F we write w for the class ofwmodulo Iν . For any f in Homk(SCn(Σν), k)

let Φ̃n(f) : F⊗n → A be the k-linear map defined by

Φ̃n(f)(w1, . . . , wn) = f(Tn(w1, . . . , wn))w1 · · ·wn,

where (w1, . . . , wn) is a basis element in F⊗n.

Let (w1, . . . , ρ, . . . , wn) ∈ F⊗s ⊗E Iν ⊗ F⊗n−s−1. If ρ is a path, it is clear that

Φ̃n(f)(w1, . . . , ρ, . . . , wn) = 0. If ρ =
∑m

i=1 λivi is a minimal relation, m > 1, then

Tn(w1, . . . , vi, . . . , wn) = Tn(w1, . . . , v1, . . . , wn)

for any i with 1 ≤ i ≤ m. Hence

Φ̃n(f)(w1, . . . , ρ, . . . , wn) =
m∑

i=1

λiΦ̃
n(f)(w1, . . . , vi, . . . , wn)

=

m∑

i=1

λif(Tn(w1, . . . , vi, . . . , wn))w1 · · · vi · · ·wn

= f(Tn(w1, . . . , v1, . . . , wn))

m∑

i=1

λiw1 · · · vi · · ·wn = 0.

The ideal Iν is generated by paths and minimal relations, so Φ̃n(f)(R) = 0, and

then Φ̃n induces a map Φn(f) : radA⊗n → A given by

Φ0(f)(ei) = f(T0(ei))ei = f([ei])ei,

Φn(f)(w1, . . . , wn) = f(Tn(w1, . . . , wn))w1 · · ·wn.

Proposition 13. If (Q, Iν) is a homotopy coherent presentation of A, the map

Φ∗ : Homk(SC∗(Σν), k) → HomEe(radA⊗∗, A) is a morphism of complexes and,

hence, it induces morphisms HH(Φn) : HHn(A(Σν)) → HHn(A), for any n ≥ 0.



Proof. We have to show that, for any n ≥ 0, the diagram

Homk(SCn(Σν), k)
Φn

//

Bn

��

HomEe(radA⊗n, A)

bn

��
Homk(SCn+1(Σν), k)

Φn+1

// HomEe(radA⊗n+1, A)

is commutative. A direct computation shows that

Φn+1(Bnf)(w0, . . . , wn) = (Bnf)(Tn+1(w0, . . . , wn))w0 · · ·wn

= f(δn+1Tn+1(w0, . . . , wn))w0 · · ·wn

and

(bnΦn(f))(w0, . . . , wn) = f(Tn∂n+1(w0, . . . , wn))w0 · · ·wn.

The desired equality follows from Lemma 12. �

5.2. The complex KerΦ∗. We will show that the complex KerΦ∗ is exact, by
constructing a contraction homotopy Sn : KerΦn → KerΦn−1. Observe that

KerΦn = {f ∈ Homk(SCn(Σν), k) : f(Tn(w1, . . . , wn))w1 · · ·wn = 0,

for any basis element (w1, . . . , wn) ∈ F⊗n}

= {f ∈ Homk(SCn(Σν), k) : f(Tn(w1, . . . , wn)) = 0,

for any basis element (w1, . . . , wn) ∈ F⊗n \R}.

In order to construct the homotopy, the chosen presentation (Q, Iν) of A must be
left or right compatible, see Definition 6. In this case we choose a family

{u(s, s′) ∈ Q|s > s′ ∈ SC1(Σν)}

satisfying Definition 6 and let G0 : SC0(Σν) → SC1(Σν) be the map given by

G0([w]) =

{
0 if w ∈ E,

[et(w)] > [w] if w ∈ F .

Let Gn : SCn(Σν) → SCn+1(Σν), for n > 0, be defined inductively in the following
way: for any s0 > · · · > sn in SCn(Σν), denote

ui = u(si−1, si), Ω = Ω(s0 > · · · > sn) = {i : ui ∈ E, 0 < i ≤ n},

and put

(i) Gn(s0 > · · · > sn) = Gn−1(s0 > · · · > sn−1) > sn if Ω 6= ∅ or [u1 · · ·un] =
sn;

(ii) Gn(s0 > · · · > sn) =
[
Gn−1(s0 > · · · > sn−1) + (−1)nTn(u1, . . . , un)

]
> sn

otherwise.

In order to prove that the complex KerΦ∗ admits a contraction homotopy, we
need the following lemma.

Lemma 14. Let (Q, Iν) be a homotopy coherent, right compatible presentation of

A. Then

(i) δ1G
0([w]) = [w]− T0(et(w)), for any [w] ∈ SC0(Σν);

(ii) (δn+1G
n+Gn−1δn)(s0 > · · · > sn) = s0 > · · · > sn if Ω(s0 > · · · > sn) 6= ∅;

(iii) (δn+1G
n + Gn−1δn)(s0 > · · · > sn) = s0 > · · · > sn − Tn(u1, . . . , un),

otherwise.



Proof. A direct computation shows that δ1G
0([w]) = [w] − T0(et(w)) and that the

assertion is true for δ2G
1+G0δ1. Now assume that n > 1 and proceed by induction.

Let s0 > · · · > sn ∈ SCn(Σν) and consider the following cases:

a) Ω(s0 > · · · > sn) = ∅, [u1 · · ·un] 6= sn;
b) Ω(s0 > · · · > sn) = ∅, [u1 · · ·un] = sn;
c) 1) Ω(s0 > · · · > sn) = {n};

2) Ω(s0 > · · · > sn) = {i}, 0 < i < n;
3) Ω(s0 > · · · > sn) has at least two elements.

Case (a). If s0 > · · · > sn is such that Ω(s0 > · · · > sn) = ∅ and [u1 · · ·un] 6= sn,
we have

δn+1G
n(s0 > · · · > sn)

= δn+1(G
n−1(s0 > · · · > sn−1) > sn) + (−1)nδn+1(Tn(u1, . . . , un) > sn)

= δnG
n−1(s0 > · · · > sn−1) > sn + (−1)n+1Gn−1(s0 > · · · > sn−1)

+ (−1)nδnTn(u1, . . . , un) > sn + (−1)n(−1)n+1Tn(u1, . . . , un).

Using the inductive hypothesis and Lemma 12 we get

δn+1G
n(s0 > · · · > sn)

= s0 > · · · > sn −Gn−2δn−1(s0 > · · · > sn−1) > sn

− Tn−1(u1, . . . , un−1) > sn + (−1)n+1Gn−1(s0 > · · · > sn−1)

+ (−1)nTn−1∂n(u1, . . . , un) > sn − Tn(u1, . . . , un)

= s0 > · · · > sn − Tn(u1, . . . , un)−Gn−1δn(s0 > · · · > sn).

Case (b). If s0 > · · · > sn is such that Ω(s0 > · · · > sn) = ∅ and [u1 · · ·un] = sn
then

δn+1G
n(s0 > · · · > sn)

= δn+1(G
n−1(s0 > · · · > sn−1) > sn)

= δnG
n−1(s0 > · · · > sn−1) > sn + (−1)n+1Gn−1(s0 > · · · > sn−1)

= s0 > · · · > sn −Gn−2δn−1(s0 > · · · > sn−1) > sn

− Tn−1(u1, . . . , un−1) > sn + (−1)n+1Gn−1(s0 > · · · > sn−1).

On the other hand

Gn−1δn(s0 > · · · > sn)

= Gn−1(δn−1(s0 > · · · > sn−1) > sn) + (−1)nGn−1(s0 > · · · > sn−1)

= Gn−2δn−1(s0 > · · · > sn−1) > sn + (−1)n−1Tn−1(u2, . . . , un) > sn

+ (−1)nGn−1(s0 > · · · > sn−1).

Hence

(δn+1G
n +Gn−1δn)(s0 > · · · > sn)

= s0 > · · · > sn − [Tn−1(u1, . . . , un−1) + (−1)nTn−1(u2, . . . , un)] > sn

= s0 > · · · > sn − Tn(u1, . . . , un).



Case (c). If s0 > · · · > sn is such that Ω(s0 > · · · > sn) 6= ∅ then

δn+1G
n(s0 > · · · > sn)

= δn+1(G
n−1(s0 > · · · > sn−1) > sn)

= δnG
n−1(s0 > · · · > sn−1) > sn + (−1)n+1Gn−1(s0 > · · · > sn−1).

Case (c 1). If Ω(s0 > · · · > sn) = {n} then u(sn−2, sn) = un−1 and

Ω(s0 > · · · > ŝj > · · · > sn) =

{
∅ if j = n− 1, n,

{n} otherwise.

Moreover [u1 · · ·un−1] 6= sn. In fact, if [u1 · · ·un−1] = sn, using Remark 11 we
deduce that sn = sn−1, a contradiction. So

Gn−1δn(s0 > · · · > sn)

= Gn−1(δn−1(s0 > · · · > sn−1) > sn) + (−1)nGn−1(s0 > · · · > sn−1)

= Gn−2δn−1(s0 > · · · > sn−1) > sn + Tn−1(u1, . . . , un−1) > sn

+ (−1)nGn−1(s0 > · · · > sn−1).

Case (c 2). If Ω(s0 > · · · > sn) = {i}, 0 < i < n, then

Ω(s0 > · · · > ŝj > · · · > sn) =

{
∅ if j = i− 1, i,

{i} otherwise,

Gn−1(s0 > · · · > ŝi−1 > · · · > sn)−Gn−1(s0 > · · · > ŝi > · · · > sn)

=
[
Gn−2(s0 > · · · > ŝi−1 > · · · > sn−1)−Gn−2(s0 > · · · > ŝi > · · · > sn−1)

]
> sn

and so

Gn−1δn(s0 > · · · > sn)

= Gn−1(δn−1(s0 > · · · > sn−1) > sn) + (−1)nGn−1(s0 > · · · > sn−1)

= Gn−2δn−1(s0 > · · · > sn−1) > sn + (−1)nGn−1(s0 > · · · > sn−1).

Case (c 3). If Ω(s0 > · · · > sn) has at least two elements then

Ω(s0 > · · · > ŝi > · · · > sn) 6= ∅

and

Gn−1δn(s0 > · · · > sn)

= Gn−1(δn−1(s0 > · · · > sn−1) > sn) + (−1)nGn−1(s0 > · · · > sn−1)

= Gn−2δn−1(s0 > · · · > sn−1) > sn + (−1)nGn−1(s0 > · · · > sn−1).

Then, in cases (c 2) and (c 3),

(δn+1G
n +Gn−1δn)(s0 > · · · > sn)

=
[
(δnG

n−1 +Gn−2δn−1)(s0 > · · · > sn−1)
]
> sn

and in case (c 1)

(δn+1G
n +Gn−1δn)(s0 > · · · > sn)

=
[
(δnG

n−1 +Gn−2δn−1)(s0 > · · · > sn−1) + Tn−1(u1, . . . , un−1)
]
> sn.

Hence the assertion follows by induction. �



Note that GnTn = 0: a direct computation proves this for n = 0, 1, and an
inductive procedure completes the proof since

Tn(w1, . . . , wn) = [es(w1)] > [w1] > · · · > [w1 · · ·wn] + simplices with Ω 6= ∅

and hence

GnTn(w1, . . . , wn)

= Gn([Tn−1(w1, . . . , wn−1) + (−1)nTn−1(w2, . . . , wn)] > [w1 · · ·wn])

= Gn−1(Tn−1(w1, . . . , wn−1) + (−1)nTn−1(w2, . . . , wn)) > [w1 · · ·wn].

So, for any f ∈ KerΦn+1, the composition fGn belongs to KerΦn. Let

Sn+1 : KerΦn+1 → KerΦn

be the map defined by Sn+1(f) = fGn.

Proposition 15. Let (Q, Iν) be a homotopy coherent, right compatible presentation

of A. The map Sn+1 : KerΦn+1 → KerΦn is a contraction homotopy.

Proof. It follows immediately from the previous lemma since

(S1B
0)(f) = B0fG0 = fδ1G

0 = f, and

(Sn+1B
n +Bn−1Sn)(f) = BnfGn +Bn−1fGn−1 = fδn+1G

n + fGn−1δn = f

because fT0 = 0 = fTn. �

Theorem 16. Let (Q, Iν) be a homotopy coherent, right compatible presentation

of an algebra A. If Φn−1 is a surjective morphism, then HH(Φn) : HHn(A(Σν)) →
HHn(A) is an injective morphism.

Proof. It follows by diagram chasing of elements in the commutative diagram of
complexes computing the corresponding cohomology groups. �

Monomial algebras without non-zero oriented cycles, schurian algebras and inci-
dence algebras satisfy the assumptions of the following corollary.

Corollary 17. Let (Q, Iν) be a homotopy coherent, right compatible presentation

of an algebra A. If dimk A(x, x) = 1 for any x ∈ Q0 then the morphism HH(Φ1) :
HH1(A(Σν)) → HH1(A) is injective.

Proof. The proof follows from the previous theorem by observing that the assumed
hypotheses imply that Φ0 is a surjective map. �

Corollary 18. If A is an incidence algebra, then HH(Φn) : HHn(A(Σν)) →
HHn(A) is an isomorphism for any n ≥ 0.

Proof. The assertion is clear for n = 0. Since A = I(Σ) is an incidence algebra,
recall from Section 2.5 that

radA⊗n = ⊕s0>s1>···>snA(s0, s1)⊗k A(s1, s2)⊗k · · · ⊗k A(sn−1, sn),

with dimk A(si−1, si) = 1 for all i with 1 ≤ i ≤ n. Taking a set of basis elements
(w1, . . . , wn) in A(s0, s1)⊗kA(s1, s2)⊗k · · ·⊗kA(sn−1, sn), the maps g : radA⊗n →
A defined by

g(v1, . . . , vn) =

{
λw1 · · ·wn if (v1, . . . , vn) = (w1, . . . , wn),

0 otherwise,



form a basis of the k-vector space HomEe(radA⊗n, A). Take f ∈ Homk(SCn(Σν), k)
defined as follows:

f(s0 > · · · > sn) =

{
λ if s0 > · · · > sn = [es(w1)] > [w1] > · · · > [w1 · · ·wn],

0 otherwise.

Now Φn(f) = g and hence Φn is a surjective map for any n ≥ 0. Then we get the
short exact sequence of the complexes

0 → Ker(Φ∗) → Homk(SC∗(Σν), k) → HomEe(radA⊗∗, A) → 0,

so that we get the long exact sequence

· · · → HHn(KerΦ∗) → HHn(A(Σν)) → HHn(A) → HHn+1(KerΦ∗) → . . .

�

6. Examples

Example 19. Consider the presentations (Q, I1) and (Q, I2) of the algebra A =
kQ/I1 given by

Q : 1
α

((

β

66 2
γ

// 3,

I1 =< αγ > and I2 =< (α − β)γ >, presented in Example 1. Using [15] we
construct the reduced posets Σ1,Σ2, as described in the Introduction,

Σ1 : [e1]

�� !!C
CC

CC
CC

C
[e2]

��}}{{
{{

{{
{{

[e3]

}}{{
{{

{{
{{

[α] [βγ]

Σ2 : [e1]

!!C
CC

CC
CC

C
[e2]

��

[e3]

}}{{
{{

{{
{{

[βγ]

and from [11, 2.5,2.2] and [14, 5.3] we get

HHi(A(Σ1)) =

{
k if i = 0, 1,

0 otherwise
, HHi(A(Σ2)) =

{
k if i = 0,

0 otherwise.

From [14, 5.3,1.6] we get

HHi(A) =





k if i = 0,

k2 if i = 1,

0 otherwise.

Now we present families of algebras where the non-vanishing of some Hochschild
cohomology groups can be deduced.

Example 20. Consider the quiver

1

α1

αn

...
2,



with arrows α1, . . . αn with any orientation, and let A = kQ/F 2. The quiver of the
corresponding incidence algebra A(Σ) is given by

[1]

�� !!C
CC

CC
CC

C

**VVVVVVVVVVVVVVVVVVVVVVVV [2]

��vvmmmmmmmmmmmmmmmm

tthhhhhhhhhhhhhhhhhhhhhhhhh

[α1] [α2] . . . [αn]

and from [14, 1.6] we get

HHi(A(Σ)) =





k if i = 0,

kn−1 if i = 1,

0 otherwise.

Hence dimk HH
1(A) ≥ n − 1 by Corollary 17. If α1, · · · , αn share starting and

ending points, then from [14, 1.6] we get

HHi(A) =






k if i = 0;

kn
2
−1 if i = 1;

0 otherwise.

The particular case n = 2, α1, α2 with opposite orientations, has been considered
in [7] and

HHi(A) =

{
k if i = 0, 4s, 4s+ 1;

0 otherwise.

The previous example shows that the injective morphism described in Theo-
rem 16 can not be expected to be an isomorphism in general. It would be nice
to determined all the algebras that admit a distinguished presentation making the
mentioned morphism an isomorphism.

Example 21. Let Qn be the quiver

1

α1

((

β1

66 2

α2

((

β2

66 3

α3
**

β3

44 · · ·

αn−1

((

βn−1

66 n

and let An = kQn/F
2. The quiver of the corresponding incidence algebra A(Σn)

is given by

1

�� ""DD
DD

DD
DD

D 2

vvlllllllllllllllll

||zz
zz

zz
zz

z

�� ""DD
DD

DD
DD

D 3

vvlllllllllllllllll

||zz
zz

zz
zz

z

��

· · · n

xxrrrrrrrrrrr

��
[α1] [β1] [α2] [β2] [α3] · · · [αn−1] [βn−1]

and from [14, 1.6] we get

HHi(A(Σn)) =





k if i = 0;

kn−1 if i = 1;

0 otherwise.

Hence dimk HH
1(A) ≥ n− 1 by Corollary 17.
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d’homologie, représentations et algèbres de Hopf. AMA Algebra Montp. Announc. 2003, Pa-
per 7, 6 pp. (electronic).

Maria Julia Redondo, Instituto de Matemática, Universidad Nacional del Sur, Av.
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