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Abstract. The cyclic shift graph of a monoid is the graph whose ver-
tices are elements of the monoid and whose edges link elements that
differ by a cyclic shift. This paper examines the cyclic shift graphs of
‘plactic-like’ monoids, whose elements can be viewed as combinatorial
objects of some type: aside from the plactic monoid itself (the monoid
of Young tableaux), examples include the hypoplactic monoid (quasi-
ribbon tableaux), the sylvester monoid (binary search trees), the stalac-
tic monoid (stalactic tableaux), the taiga monoid (binary search trees
with multiplicities), and the Baxter monoid (pairs of twin binary search
trees). It was already known that for many of these monoids, connected
components of the cyclic shift graph consist of elements that have the
same evaluation (that is, contain the same number of each generating
symbol). This paper focusses on the maximum diameter of a connected
component of the cyclic shift graph of these monoids in the rank-n case.
For the hypoplactic monoid, this is n − 1; for the sylvester and taiga
monoids, at least n − 1 and at most n; for the stalactic monoid, 3 (ex-
cept for ranks 1 and 2, when it is respectively 0 and 1); for the plactic
monoid, at least n− 1 and at most 2n− 3. The current state of knowl-
edge, including new and previously-known results, is summarized in a
table.
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1. Introduction

In a monoid M , two elements s and t are related by a cyclic shift, denoted
s ∼ t, if and only if there exist x, y ∈ M such that s = xy and t = yx.
In the plactic monoid (the monoid of Young tableaux, here denoted plac),
elements that have the same evaluation (that is, elements that contain the
same number of each generating symbol) can be obtained from each other
by iterated application of cyclic shifts [1, § 4]. Furthermore, in the plactic
monoid of rank n (denoted placn), it is known that 2n − 2 applications of
cyclic shifts are sufficient [2, Theorem 17].

To restate these results in a new form, define the cyclic shift graph K(M)
of a monoid M to be the undirected graph with vertex set M and, for all
s, t ∈M , an edge between s and t if and only if s ∼ t. Connected components
of K(M) are ∼∗-classes (where ∼∗ is the reflexive and transitive closure of
∼), since they consist of elements that are related by iterated cyclic shifts.
Thus the results discussed above say that each connected component of
K(plac) consists of precisely the elements with a given evaluation, and that
the diameter of a connected component of K(placn) is at most 2n− 2. Note
that there is no bound on the number of elements in a connected component,
despite there being a bound on diameters that is dependent only on the rank.

This paper studies the cyclic shift graph for analogues of the plactic
monoid in which other combinatorial objects have the role that Young
tableaux play for the plactic monoid. For each monoid there are two central
questions, motivated by the results for the plactic monoid: (i) whether con-
nected components consist of precisely the elements with a given evaluation;
(ii) what the maximum diameter of a connected component is in the rank n
case.

The monoids considered are the plactic monoid, which is celebrated for
its ubiquity, arising in such diverse contexts as symmetric functions [3],
representation theory and algebraic combinatorics [4, 5], and musical theory
[6]; the hypoplactic monoid, whose elements are quasi-ribbon tableaux and
which arises in the theory of quasi-symmetric functions [7, 8, 9]; the sylvester
monoid, whose elements are binary search trees [10]; the taiga monoid, whose
elements are binary search trees with multiplicities [11]; the stalactic monoid,
whose elements are stalactic tableaux [12, 11]; and the Baxter monoid, whose
elements are pairs of twin binary search trees [13, 14], and which is linked
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Table 1. Monoids and corresponding combinatorial objects.

Monoid Sym. Combinatorial object See
Plactic plac Young tableau § 4
Hypoplactic hypo Quasi-ribbon tableau § 5
Sylvester sylv Binary search tree § 6
Stalactic stal Stalactic tableau § 7
Taiga taig Binary search tree with multiplicities § 8
Baxter baxt Pair of twin binary search trees § 9

to the theory of Baxter permutations. (See Table 1.) Each of these monoids
arises by factoring the free monoid A∗ over the ordered alphabet A = {1 <
2 < . . .} by a congruence ≡ that can be defined in two equivalent ways:

C1 Insertion. ≡ relates those words that yield the same combinatorial
object as the result of some insertion algorithm.

C2 Defining relations. ≡ is defined to be the congruence generated by
some set of defining relations R.

Each of these monoids also has a rank-n version (where n ∈ N), which arises
by factoring the free monoid A∗

n over the finite ordered alphabet An =
{1 < 2 < . . . < n} by the natural restriction of ≡. Each of these monoids is
discussed in its own section, and the equivalent definitions will be recalled at
the start of the relevant section. For the present, note that these monoids are
multihomogeneous: if two words over A∗ represent the same element of the
monoid (that is, are related by ≡) then they have the same evaluation (that
is, they contain the same number of each symbol in A and, in particular,
have the same length). Thus it is sensible to consider the evaluation of an
element of the monoid to be the evaluation of any word that represents it.
The relation ≡ev holds between elements that have the same evaluation;
clearly ≡ev is an equivalence relation and ≡ev-classes are finite.

This paper shows that in the cyclic shift graph of the hypoplactic, sylvester,
and taiga monoids, each connected component does consist of precisely those
elements with a given evaluation. In the case of the stalactic monoid, an
alternative characterization is given of when two elements lie in the same
connected component. (The result for the sylvester monoid was previously
proved in a different way by the present authors [15, Theorem 3.4].)

Furthermore, just as for the rank-n plactic monoid, there is a bound on
the maximum diameters of connected components in the cyclic shift graphs
of the rank-n hypoplactic, sylvester, and taiga monoids, and this bound
is only dependent on n. It is worth emphasizing how remarkable this is:
although there is no global bound on the number of elements in a component
(or, equivalently, which have the same evaluation), any two elements in the
same component are related by a number of cyclic shifts that is dependent
only on n. Table 2 shows the current state of knowledge for all the monoids
considered in this paper. All the exact values and bounds shown in this
table are new results (although the upper bound of 2n− 3 in the case of the
plactic monoid follows by a minor modification of the reasoning that yields
the Choffrut–Mercaş bound of 2n− 2).



4 A.J. CAIN AND A. MALHEIRO

Table 2. Maximum diameter of a connected component of
cyclic shift graph for rank-n monoids.

Maximum diameter
Known bounds

Monoid ∼∗ = ≡ev Known value Conjecture Lower Upper
placn Y ? n− 1 n− 1 2n− 3
hypon Y n− 1 — — —
sylvn Y ? n− 1 n− 1 n

staln N

{
n− 1 if n < 3

3 if n ≥ 3
— — —

taign Y ? n− 1 n− 1 n
baxtn N ? ? ? ?

Experimentation using the computer algebra software Sage [16] strongly
suggests that in the cases of the rank-n plactic, sylvester, and taiga monoids,
the maximum diameter of a connected component is n− 1.

Also, although the monoids considered are all multihomogeneous, Sec-
tion 3 exhibits a rank 4 multihomogeneous monoid for which there is no
bound on the diameter of connected components in its cyclic shift graph.
Thus, the bound on diameters is not a general property of multihomoge-
neous monoids: rather, it seems to dependent on the underlying combina-
torial objects. This also is of interest because cyclic shifts are a possible
generalization of conjugacy from groups to monoids; thus the combinatorial
objects are here linked closely to the algebraic structure of the monoid.

[The results in this article have already been announced in the conference
paper [17].]

2. Preliminaries

2.1. Alphabets and words. This subsection recalls some terminology and
fixes notation for presentations. For background on the free monoid, see [18];
for semigroup presentations, see [19, 20].

For any alphabet X, the free monoid (that is, the set of all words, includ-
ing the empty word) on the alphabet X is denoted X∗. The empty word
is denoted ε. For any u ∈ X∗, the length of u is denoted |u|, and, for any
x ∈ X, the number of times the symbol x appears in u is denoted |u|x.

The evaluation (also called the content) of a word u ∈ X∗, denoted ev(u),
is the |X|-tuple of non-negative integers, indexed by X, whose x-th element
is |u|x; thus this tuple describes the number of each symbol inX that appears
in u. If two words u, v ∈ X∗ have the same evaluation, this is denoted u ≡ev

v. Notice that ≡ev is an equivalence relation (and indeed a congruence).
Note further that there are clearly only finitely many words with a given
evaluation, and so ≡ev-classes are finite.

When X represents a generating set for a monoid M , every element of
X∗ can be interpreted either as a word or as an element of M . For words
u, v ∈ X∗, write u = v to indicate that u and v are equal as words and
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u ≡M v to denote that u and v represent the same element of the monoid
M . A presentation is a pair 〈X |R〉 where R is a binary relation on X∗,
which defines [any monoid isomorphic to] X∗/R#, where R# denotes the
congruence generated by R.

The presentation 〈X |R〉 is homogeneous (respectively, multihomogeneous)
if for every (u, v) ∈ R we have |u| = |v| (respectively, u ≡ev v). That is,
in a homogeneous presentation, defining relations preserve length of words;
in a multihomogenous presentation, defining relations preserve evaluations.
A monoid is homogeneous (respectively, multihomogeneous) if it admits a
homogeneous (respectively, multihomogeneous) presentation. Suppose M is
a multihomogeneous monoid defined by a multihomogeneous presentation
〈X |R〉. Since every word in X∗ that represents a given element of M has
the same evaluation, it makes sense to define the evaluation of an element
of M to be the evaluation of any word representing it, and to write s ≡ev t
if s, t ∈M have the same evaluation.

2.2. ‘Plactic-like’ monoids. Throughout the paper, A denotes the infinite
ordered alphabet {1 < 2 < . . .} (that is, the set of natural numbers, viewed
as an alphabet), An the finite ordered alphabet {1 < 2 < . . . < n} (that
is, the first n natural numbers, viewed as an alphabet). A word u ∈ A∗

n is
standard if u ≡ev 123 · · · |u|. That is, u is standard if it contains each symbol
in {1, . . . , |u|} exactly once.

This paper is mainly concerned with ‘plactic-like’ monoids, whose ele-
ments can be identified with some kind of combinatorial object. Each such
monoid M has an associated insertion algorithm, which takes a combinato-
rial object of the relevant type and a letter of the alphabet A and computes
a new combinatorial object. Thus one can compute from a word u ∈ A∗

a combinatorial object PM(u) of the type associated to M by starting with
the empty combinatorial object and inserting the symbols of u one-by-one
using the appropriate insertion algorithm and proceeding through the word
u either left-to-right or right-to-left. (The procedure is slightly different for
the Baxter monoid; this will be discussed in Section 9.) One then defines
a relation ≡M as the kernel of the map u 7→ PM(u). In each case, the re-
lation ≡M is a congruence, and M is the factor monoid A∗/≡M; the rank-n
analogue is the factor monoid A∗

n/≡M, where ≡M is naturally restricted to
A∗

n × A∗
n. Since each element of M is an equivalence class of words that

give the same combinatorial object, elements of M can be identified with the
corresponding combinatorial objects.

Each of the combinatorial objects and insertion algorithms considered in
this paper is such that the number of each symbol from A in the word u is
the same as the number of symbols A in the object PM(u). It follows that
each of the corresponding monoids is multihomogeneous, and it makes sense
to define an element of a rank-n monoid to be standard if it is represented
by a standard word (and thus only by standard words).

2.3. Cyclic shifts. Recall that two elements s, t ∈M are related by a cyclic
shift, denoted s ∼ t, if and only if there exist x, y ∈M such that s = xy and
t = yx. If X represents a generating set for M , then s ∼ t if and only if there
exist u, v ∈ X∗ such that uv represents s and vu represents t. Notice that
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the relation ∼ is reflexive (because it is possible that x or y in the definition
of ∼ can be the identity) and symmetric. For k ∈ N, let ∼k be the k-fold
composition of the relation ∼: that is,

∼k= ∼ ◦ ∼ ◦ . . . ◦ ∼︸ ︷︷ ︸
k times

.

Note that ∼∗, the transitive closure of ∼, is
⋃∞

k=1 ∼k. Note further that
∼k ⊆ ∼k+1 since ∼ is reflexive. Thus ∼k relates elements of M that differ
by at most k cyclic shifts.

The following result is immediate from the definition of ∼:

Lemma 2.1. In any multihomogeneous monoid, ∼∗ ⊆ ≡ev.

For any monoid M , define the cyclic shift graph K(M) to be the undi-
rected graph with vertex set M and, for all s, t ∈M , an edge between s and
t if and only if s ∼ t. (See [21] for graph-theoretical definitions and terminol-
ogy.) Two elements s, t ∈M are a distance at most k apart in K(M) if and
only if s ∼k t. Connected components of K(M) are ∼∗-classes, since they
consist of elements that are related by iterated cyclic shifts. The connected
component of K(M) containing an element s ∈M is denoted K(M, s). If M
is multihomogenous, ∼∗ ⊆ ≡ev, and thus connected components of K(M)
are finite.

Since ∼ is reflexive, there is a loop at every vertex of K(M). Throughout
the paper, illustrations of graphs K(M) will, for clarity, omit these loops.

2.4. Cocharge sequences. This subsection introduces ‘cocharge sequences’,
which will be used in several places to establish lower bounds on the maxi-
mum diameters of connected components of the cyclic shift graphs of finite-
rank monoids.

Let u ∈ A∗ be a standard word. The cocharge sequence of u, denoted
cochseq(u), is a sequence (of length |u|) calculated from u as follows:

(1) Draw a circle, place a point ∗ somewhere on its circumference, and,
starting from ∗, write u anticlockwise around the circle.

(2) Label the symbol 1 with 0.
(3) Iteratively, after labelling some i with k, proceed clockwise from i to

the symbol i+ 1:
• if the symbol i+ 1 is reached before ∗, label i+ 1 by k + 1;
• if the symbol i+ 1 is reached after ∗, label i+ 1 by k.

(4) The sequence cochseq(u) is the sequence whose i-th term is the label
of i.

Note that at steps 2 and 3, the symbols 1 and i+ 1 are known to be in u
because u is a standard word.
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For example, for the word 1246375, the labelling process gives:

Word

Labelling

∗

1

2
4 6 3

7

50

0

01

1

2

2

and it follows that cochseq(u) = (0, 0, 0, 1, 1, 2, 2). Notice that the first term
of a cocharge sequence is always 0, and that each term in the sequence is
either the same as its predecessor or greater by 1. Thus the i-th term in the
sequence always lies in the set {0, 1, . . . , i− 1}.

The usual notion of cocharge is obtained by summing the cocharge se-
quence (see [5, § 5.6]). Note, however, that cocharge is defined for all words,
whereas this section defines the cocharge sequence only for standard words.

Lemma 2.2. (1) Let u ∈ A∗ and a ∈ An \ {1} be such that ua is a
standard word. Then cochseq(ua) is obtained from cochseq(au) by
adding 1 to the a-th component.

(2) Let xy ∈ A∗ be a standard word such that x does not contain the
symbol 1. Then cochseq(yx) is obtained from cochseq(xy) by adding
1 to the a-th component for each symbol a that appears in x.

(3) Let xy ∈ A∗ be a standard word such that y does not contain the
symbol 1. Then cochseq(yx) is obtained from cochseq(xy) by sub-
tracting 1 from the a-th component for each symbol a that appears
in y.

Proof. Consider how a is labelled during the calculation of cochseq(ua) and
cochseq(au):

cochseq(ua) :

∗

u

a cochseq(au) :

∗
a

u

In the calculation of cochseq(ua), the symbol a − 1 receives a label k, and
then a is reached after ∗ is passed; hence a also receives the label k. (If a
symbol a + 1 is present, it receives the label a + 1.) In the calculation of
cochseq(au), the symbols 1, . . . , a − 1 receive the same labels as they do in
the calculation of cochseq(ua), but after labelling a− 1 by k the symbol a is
reached before ∗ is passed; hence a receives the label k + 1 (and if a symbol
a+ 1 is present, it also receives the label k + 1 since it is reached after ∗ is
passed); after this point, labelling proceeds in the same way. Parts 2) and 3)
are now immediate consequences of part 1). �



8 A.J. CAIN AND A. MALHEIRO

3. General multihomogeneous monoids

In order to set in context the results below on the diameters of connected
components of cyclic shift graphs, this section gives an example of a mul-
tihomogeneous monoid for which the connected components of the cyclic
shift graph have unbounded diameter. This shows that the results for the
‘plactic-like’ monoids discussed in the rest of the paper are not simply con-
sequences of some more general result that holds for all multihomogeneous
monoids.

Example 3.1. Let M be the monoid defined by the presentation
〈a, b, x, y | (bxy, xyb), (byx, yxb), (axyb, byxa)〉.

Notice that M is multihomogeneous. Let α ∈ N. Then
a(xy)αb ≡M axyb(xy)α−1

≡M byxa(xy)α−1

∼ yxa(xy)α−1b

≡M yxaxyb(xy)α−2

≡M yxbyxa(xy)α−2

≡M b(yx)2a(xy)α−2

∼ (yx)2a(xy)α−2b

...
∼ b(yx)αa

Thus the elements a(xy)αb and b(yx)αa lie in the same connected component
of K(M). The aim is now to prove that the distance between a(xy)αb and
b(yx)αa in K(M) is at least α. This necessitates defining an invariant,
reminiscent of cocharge, but tailored specifically to the monoid M .

Let L =
{
u ∈ {a, b, xy, yx}∗ : |u|a = |u|b = 1

}
. Define a map µ : L →

N ∪ {0}, where µ(u) is calculated as follows:
(1) Draw a circle, place a point ∗ somewhere on itse circumference, and

write u anticlockwise aroung the circle.
(2) Temporarily ignoring the symbol b, let k(u) be the number of con-

secutive cyclic factors xy following a. (Equivalently, let k(u) be the
number of consecutive words xy (ignoring b) following the symbol a,
proceeding anticlockwise around the circle.)

(3) Let µ(u) be k(u) if starting from a and proceeding anticlockwise,
one encounters b before ∗, and otherwise let µ(u) be k(u) + 1.

It is now necessary to show that µ(·) is invariant under applications of defin-
ing relations. Clearly, the set L is closed under applying defining relations.
Further, applying a defining relation (bxy, xyb) or (byx, yxb) does not alter
k(·), and does not alter the relative positions of a, b, and ∗. So applying
these defining relations does not alter µ(·). So suppose that u, v ∈ L differ
by a single application of a defining relation (axyb, byxa). Interchanging u
and v if neceessary, suppose u = paxybq and v = pbyxaq. Let m ∈ N ∪ {0}
be maximal such that (xy)m is a prefix of qp; thus either qp = (xy)m or
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qp = (xy)myxw for some w ∈ {xy, yx}∗. Applying the procedure above to
u and v, one sees that k(u) = m+1 = k(v) + 1, but b is encountered before
∗ for u but not for v; hence µ(u) = k(u) = k(v) + 1 = µ(v).

Thus if two words in L represent the same element of M , they have the
same image under µ. If u, v ∈ L are such that u ∼ v, then k(u) = k(v),
since applying ∼ does not alter the number of cyclic factors xy following a.
Thus µ(u) and µ(v) differ by at most one. Hence, since µ(a(xy)αb) = α and
µ(b(yx)αa) = 1, it follows that a(xy)αb and b(yx)αa are a distance at least
α− 1 apart in K(M).

Since α was arbitrary, this shows that there is no bound on the diameters
of connected components in K(M).

4. Plactic monoid

This section recalls the essential facts about the plactic monoid; for proofs
and further reading, see [5, Ch. 5].

A Young tableau is an array with rows left aligned and of non-increasing
length from top to bottom, filled with symbols from A so that the entries
in each row are non-decreasing from left to right, and the entries in each
column are [strictly] increasing from top to bottom. An example of a Young
tableau is

(4.1)

1 2 2 2 4

2 3 5

4 4

5 6

.

The associated insertion algorithm is as follows:

Algorithm 4.1 (Schensted’s algorithm).
Input: A Young tableau T and a symbol a ∈ A.
Output: A Young tableau T ← a.
Method:
(1) If a is greater than or equal to every entry in the topmost row of T ,

add a as an entry at the rightmost end of T and output the resulting
tableau.

(2) Otherwise, let z be the leftmost entry in the top row of T that is
strictly greater than a. Replace z by a in the topmost row and
recursively insert z into the tableau formed by the rows of T below
the topmost. (Note that the recursion may end with an insertion
into an ‘empty row’ below the existing rows of T .)

Thus one can compute, for any word u = u1 · · ·uk ∈ A∗, a Young tableau
Pplac(u) by starting with an empty tableau and successively inserting the
symbols of u, proceeding left-to-right through the word. Define the relation
≡plac by

u ≡plac v ⇐⇒ Pplac(u) = Pplac(v)

for all u, v ∈ A∗. The relation ≡plac is a congruence, and the plactic monoid,
denoted plac, is the factor monoid A∗/≡plac; the plactic monoid of rank n,
denoted placn, is the factor monoid A∗

n/≡plac (with the natural restriction
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of ≡plac). Each element [u]≡plac
(where u ∈ A∗) can be identified with the

Young tableau Pplac(u).
The monoid plac is presented by 〈A |Rplac〉, where

Rplac = { (acb, cab) : a, b, c ∈ A, a ≤ b < c }
∪ { (bac, bca) : a, b, c ∈ A, a < b ≤ c };

the defining relations in Rplac are often called the Knuth relations [5, § 5.2].
The monoid placn is presented by 〈An |Rplac〉, where the set of defining
relations Rplac is naturally restricted to A∗

n ×A∗
n. Notice in particular that

plac and placn are multihomogeneous.
Lascoux & Schützenberger proved that if two elements of plac have the

same evaluation, then it is possible to transform one to the other using cyclic
shifts [1, § 4]. In the terms of this paper, they proved that ≡ev ⊆ ∼∗ in
plac. Since the opposite inclusion holds in general, it follows that ≡ev = ∼∗

in plac. Thus connected components of the cyclic shift graph K(plac) are
≡ev-classes.

Choffrut & Mercaş showed that if two elements of placn have the same
evaluation, then it is possible to transform one to the other using at most
2n − 2 cyclic shifts [2, Theorem 17]. Thus the maximum diameter of a
connected component of K(placn) is at most 2n− 2.

This section gives a lower bound on the maximum diameter of a con-
nected component of K(placn), makes a slight improvement on the upper
bound of Choffrut & Mercaş, and conjecture the exact value on the basis of
experimentation using computer algebra software.

Establish the lower bound requires the use of cocharge sequences (defined
in Subsection 2.4 above). It is first of all necessary to show that cocharge
sequences are well-defined on standard elements of plac:

Proposition 4.2. Let w,w′ ∈ A∗ be standard words such that w ≡plac w
′.

Then cochseq(w) = cochseq(w′).

Proof. It suffices to prove the result when w and w′ differ by a single appli-
cation of a defining relation. Assume that w and w′ differ by an application
of a defining relation (acb, cab) ∈ Rplac where a ≤ b < c. So w = pacbq and
w′ = pcabq, where p, q ∈ A∗

n and a, b, c ∈ An with a ≤ b < c. Since w and
w′ are standard words, a < b.

Consider how labels are assigned to the symbols a, b, and c when calcu-
lating cochseq(w) as described in Subsection 2.4:

∗

a c b

Among these three symbols, a will receive a label first, then b, then c. Thus,
after a, the labelling process will pass ∗ at least once to visit b and only then
visit c. Thus interchanging a and c does not alter the resulting labelling.
Hence cochseq(w) = cochseq(w′). Similar reasoning shows that if w and
w′ differ by an application of a defining relation (bac, bca) ∈ Rplac, then
cochseq(w) = cochseq(w′). �
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For any standard tableau T in plac, define cochseq(T ) to be cochseq(u)
for any standard word u ∈ A∗ such that T = P(u). By Proposition 4.2,
cochseq(T ) is well-defined.

Proposition 4.3. (1) Connected components of K(plac) coincide with
≡ev-classes of plac.

(2) Let kn be the maximum diameter of a connected component of K(placn).
Then n− 1 ≤ kn ≤ 2n− 3.

Proof. The first part is the result of Lascoux & Schützenberger [1, § 4],
restated in the terms used of this paper. It remains to prove the second
part.

To establish the lower bound on kn, it is necessary to exhibit a pair of
elements of placn that lie in the same connected component of K(placn) but
are a distance at least n− 1 apart.

Let t = 12 · · · (n− 1)n and u = n(n− 1) · · · 21, and let

T = Pplac(t) = 1 2 n and U = Pplac(u) =

1

2

n

Since T ≡ev U , the elements T and U are in the same connected component
of K(placn). Let T = T0, T1, . . . , Tm−1, Tm = U be a path in K(placn) from
T to U . Then

T = T0 ∼ T1 ∼ . . . ∼ Tm−1 ∼ Tm = U.

Thus for i = 0, . . . ,m − 1, there are words ui, vi ∈ A∗
n such that Ti =

Pplac(uivi) and Ti+1 = Pplac(viui). For each i, at least one of ui and vi does
not contain the symbol 1, and by parts 2) and 3) of Lemma 2.2, cochseq(Ti)
and cochseq(Ti+1) differ by adding 1 to certain components or subtracting 1
from certain components. Hence corresponding components of cochseq(T )
and cochseq(U) differ by at most m. Since cochseq(T ) = (0, 0, . . . , 0, 0) and
cochseq(U) = (0, 1, . . . , n − 2, n − 1), it follows that m ≥ n − 1. Hence T
and U are a distance at least n− 1 apart in K(placn).

To establish the upper bound for kn, we proceed as follows. Let T,U ∈
placn be such that T ≡ev U . Let R be the unique tableau of row shape such
that T ≡ev R ≡ev U . By [2, Proof of Theorem 17], T ∼n−1 R and U ∼n−1 R.
Thus there exist T ′, U ′ ∈ placn such that T ∼n−2 T ′ and U ∼n−2 U ′, and
T ′ ∼ R ∼ U ′. Since there is only one word w ∈ A∗

n that represents the row
R, it follows that there are words t and u that are cyclic shift of w with
T ′ = Pplac(t) and U ′ = Pplac(u). Since t and u are both cyclic shifts of w,
they are cyclic shifts of each other and so T ′ ∼ U ′. Hence T ∼2n−3 U . �

Experimentation using the computer algebra software Sage [16] suggests
the following conjecture on maximum diameters of connected components
of K(placn); see Figure 1:

Conjecture 4.4. The maximum diameter of a connected component of
K(placn) is n− 1.
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1 2 3 4 5

1 3 4 5
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1 2 5
3 4

1 2 3
4 5

1 2 3 4
5
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2 5
4

1 3 4
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5
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3 4
5

1 2 4 5
3

1 3 4
2 5

1 2 3 5
4

1 4 5
2
3

1 2 4
3
5

1 3 5
2
4

1 2 3
4
5

1 4
2
3
5

1 2
3 5
4

1 3
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4
5

1 3 5
2 4

1 2 5
3
4

1 2 4
3 5

1 5
2
3
4

1 4
2 5
3

1 3
2 4
5

1 2
3
4
5

1
2
3
4
5

Figure 1. The connected component K(plac5,Pplac(12345))
of the cyclic shift graph. Note that its diameter is 4. (As
discussed following the definition of the cyclic shift graph,
the loops at each vertex are not shown.)

5. Hypoplactic monoid

Following the course of the previous section, only the essential facts about
the hypoplactic monoid are recalled here; for proofs and further reading, see
[9].
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A quasi-ribbon tableau is a finite array of symbols from A, with rows
non-decreasing from left to right and columns strictly increasing from top
to bottom, that does not contain any 2 × 2 subarray (that is, of the form

). An example of a quasi-ribbon tableau is:

(5.1)

1 1 2

3 4 4

5

6 6

.

Notice that the same symbol cannot appear in two different rows of a quasi-
ribbon tableau.

The insertion algorithm is as follows:

Algorithm 5.1 ([7, § 7.2]).
Input: A quasi-ribbon tableau T and a symbol a ∈ A.
Output: A quasi-ribbon tableau T ← a.
Method: If there is no entry in T that is less than or equal to a, output

the quasi-ribbon tableau obtained by creating a new entry a and attaching
(by its top-left-most entry) the quasi-ribbon tableau T to the bottom of a.

If there is no entry in T that is greater than a, output the quasi-ribbon
tableau obtained by creating a new entry a and attaching (by its bottom-
right-most entry) the quasi-ribbon tableau T to the left of a.

Otherwise, let x and z be the adjacent entries of the quasi-ribbon tableau
T such that x ≤ a < z. (Equivalently, let x be the right-most and bottom-
most entry of T that is less than or equal to a, and let z be the left-most and
top-most entry that is greater than a. Note that x and z could be either
horizontally or vertically adjacent.) Take the part of T from the top left
down to and including x, put a new entry a to the right of x and attach the
remaining part of T (from z onwards to the bottom right) to the bottom of
the new entry a, as illustrated here:

x

z ← a =

x a

z
[where x and z are
vertically adjacent]

x z ← a =
x a

z

[where x and z are
horizontally adjacent]

Output the resulting quasi-ribbon tableau.

Thus one can compute, for any word u ∈ A∗, a quasi-ribbon tableau
Phypo(u) by starting with an empty quasi-ribbon tableau and successively
inserting the symbols of u, proceeding left-to-right through the word. Define
the relation ≡hypo by

u ≡hypo v ⇐⇒ Phypo(u) = Phypo(v)

for all u, v ∈ A∗. The relation ≡hypo is a congruence, and the hypoplac-
tic monoid, denoted hypo, is the factor monoid A∗/≡hypo; the hypoplactic
monoid of rank n, denoted hypon, is the factor monoid A∗

n/≡hypo (with the
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natural restriction of ≡hypo). Each element [u]≡hypo
(where u ∈ A∗) can

be identified with the quasi-ribbon tableau Phypo(u). For two quasi-ribbon
tableaux T and U , denote the product of T and U in hypo by T ◦ U .

The monoid hypo is presented by 〈A |Rhypo〉, where

Rhypo = Rplac

∪
{
(cadb, acbd) : a ≤ b < c ≤ d

}
∪
{
(bdac, dbca) : a < b ≤ c < d

}
;

see [9, § 4.1] or [7, § 4.8]. The monoid hypon is presented by 〈An |Rhypo〉,
where the set of defining relations Rhypo is naturally restricted to A∗

n ×A∗
n.

Notice that hypo and hypon are multihomogeneous.
It seems that cyclic shifts of elements of hypo have not been explicitly

discussed in the existing literature. However, it is clear from the defining
relations that hypo is a quotient of plac under the natural homomorphism. If
two elements are ∼-related in plac, they are ∼-related in hypo. Furthermore,
since an element of plac and its image in hypo have the same evaluation, and
since connected components of K(plac) coincide with ≡ev-classes, it follows
that connected components of K(hypo) also coincide with ≡ev-classes. That
is, ∼∗ = ≡ev in hypo.

In contrast to K(placn), it is possible to give an exact value for the max-
imum diameter of a connected component in K(hypon): the aim is to prove
that it is n− 1. The proof that it cannot be smaller than n− 1 is similar to
the proof of the lower bound in Proposition 4.3. Again, cocharge sequences
are the key:

Proposition 5.2. Let u, v ∈ A∗ be standard words such that u ≡hypo v.
Then cochseq(u) = cochseq(v).

Proof. It suffices to prove the result when u and v differ by a single appli-
cation of a defining relation. Assume that u and v differ by an application
of a defining relation (cadb, acbd) ∈ Rhypo \ Rplac where a ≤ b < c ≤ d. The
reasoning for defining relations of the form (bdac, dbca) is similar, and for
defining relations in Rplac, one can proceed in the same way as in the proof
of Proposition 4.2. So u = pcadbq and v = pacbdq, where p, q ∈ A∗

n and
a, b, c, d ∈ An with a ≤ b < c ≤ d. Since u and v are standard words, a < b
and c < d.

Consider how labels are assigned to the symbols a, b, c, and d when
calculating cochseq(w) as described in Subsection 2.4:

∗

c
a d b

Among these four symbols, a will receive a label first, then b, then c, then
d. Thus, after a, the labelling process will pass ∗ at least once to visit b and
(perhaps after passing ∗ more times) only then visit c. After visiting b, it
must visit c first and thus must pass ∗ at least once before visiting d. Thus
interchanging a and c and interchanging b and d does not alter the resulting
labelling. Hence cochseq(u) = cochseq(v). �
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For any standard quasi-ribbon tableau T in hypo, define cochseq(T ) to
be cochseq(u) for any standard word u ∈ A∗ such that T = Phypo(u). By
Proposition 5.2, cochseq(T ) is well-defined.

Lemma 5.3. There is a connected component in K(hypon) with diameter
at least n− 1.

Proof. To prove this result, it suffices to exhibit two elements that lie in the
same connected component of K(hypon)), but that are a distance strictly at
least n− 1 apart. Let t = 12 · · · (n− 1)n and u = n(n− 1) · · · 21, and let

T = Phypo(t) = 1 2 n and U = Phypo(u) =

1

2

n

Then T ≡ev U and so T and U are in the same connected component of
K(hypon). Reasoning similar to the proof of Proposition 4.3 shows that a
path from T to U in K(hypon) must have length at least n− 1. �

Having shown that there is a connected component of K(hypon) with
diameter at least n−1, the next step is to prove that connected components
of K(hypon) have diameter at most n−1. To do this, some more definitions
are necessary:

• The column reading of a quasi-ribbon tableau T , denoted C(T ), is
the word in A∗ obtained by reading each column from bottom to
top, proceeding left to right through the columns. So the column
reading of (5.1) is 1 1 32 4 654 6 (where the spaces are simply for
clarity, to show readings of individual columns):

1 1 2

3 4 4

5

6 6

• The row reading of a quasi-ribbon tableau T , denoted R(T ), is the
word in A∗ obtained by reading the each row from left to right,
proceeding through the rows from bottom to top. So the row reading
of (5.1) is 66 5 344 112 (where the spaces are simply to show readings
of individual rows):

1 1 2

3 4 4

5

6 6

Let w ∈ A∗ and let a1 < a2 < . . . < ak be the symbols in An that appear
in w. The word w contains an (ai, ai+1)-inversion if it contains a symbol
ai+1 somewhere to the left of a symbol ai. The following lemma is immediate
from the statement of Algorithm 5.1:
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Lemma 5.4. Let w ∈ A∗ and let a1 < a2 < . . . < ak be the symbols in An

that appear in w. Then w contains an (ai, ai+1)-inversion if and only if ai
and ai+1 are on different rows of Phypo(w).

Proposition 5.5. Let T be a quasi-ribbon tableau. Then Phypo(C(T )) =
Phypo(R(T )) = T .

[The fact that Phypo(C(T )) = T follows from [9, Note 4.5], but the follow-
ing proof treats Phypo(C(T )) in parallel.]

Proof. Let a1 < a2 < . . . < ak be the symbols in An that appear in T . By
definition, C(T ) and R(T ) will contain an (ai, ai+1)-inversion if and only if
ai and ai+1 are on different rows of T . Hence, by Lemma 5.4, symbols ai and
ai+1 are on different rows of Phypo(C(T )) and Phypo(R(T )) if and only if they
are on different rows of T . Furthermore, Phypo(C(T )) and Phypo(R(T )) both
have the same evaluation as T . Since quasi-ribbon tableau is determined by
its evaluation and whether adjacent symbols are on different rows, it follows
that Phypo(C(T )) = Phypo(R(T )) = T . �

Lemma 5.6. Every connected component of K(hypon) has diameter at most
n− 1.

(While reading this proof, the reader may wish to look ahead to Example
5.8, which illustrates the strategy.)

Proof. Let T and U be elements of the same connected component ofK(hypon).
Then T ∼ev U . Let a1 < a2 < . . . < ak be the symbols in An that appear in
T and U . Since the defining relations in Rhypo depend only on the relative
order of symbols, it is clear that there is an isomorphism from 〈a1, . . . , ak〉
to hypok extending ai 7→ i. Since k ≤ n, it suffices to prove that the distance
between T and U is at most n − 1 when T and U contain every symbol in
An.

The aim is to construct a path in K(hypon) from T to U of length at
most n − 1. For simplicity, the aim is to find a sequence T0, T1, . . . , Tn−1

such that T0 = T and Tn−1 = U , and Ti ∼ Ti+1 for i = 0, . . . , n − 2. The
construction is inductive, starting from T0 = T and building each Ti so that
the part of Ti that contains only symbols from {1, . . . , i+ 1} is equal to the
corresponding part of U .

Set T0 = T . Notice that since T ∼ev U , both T and U contain the same
number of symbols 1, which must all lie at the left of the top rows of the
two tableaux. Thus for i = 0, it holds that the part of Ti that contains only
symbols from {1, . . . , i+ 1} is equal to the corresponding part of U .

Now suppose that for some i with 1 ≤ i < n, it holds that the part of Ti−1

that contains only symbols {1, . . . , i} is equal to the corresponding part of
U .

Consider the positions of symbols i and i + 1 in a quasi-ribbon tableau.
One of two cases holds:



COMBINATORICS OF CYCLIC SHIFTS 17

(S) All symbols i and i + 1 are on the same row, with the rightmost
symbol i immediately to the left of the leftmost symbol i+ 1:

i i+1 .

(D) The symbols i and the symbols i+ 1 are on different rows, with the
rightmost symbol i immediately above the leftmost symbol i+ 1:

i

i+1
.

In each of the quasi-ribbon tableau Ti−1 and U , the symbols i and i + 1
may be in the same row or in different rows. There are thus four possible
combinations of cases:

(1) Suppose case (S) holds in both Ti−1 and U . Set Ti = Ti−1; thus
Ti−1 ∼ Ti by the reflexivity of ∼. Since Ti and U contain the same
number of symbols i+ 1, all of which must lie in the same row, the
part of Ti that contains only symbols {1, . . . , i + 1} is equal to the
corresponding part of U .

(2) Suppose case (D) holds in both Ti−1 and U . Set Ti = Ti−1. By the
same reasoning as above, Ti−1 ∼ Ti and the part of Ti that contains
only symbols {1, . . . , i+ 1} is equal to the corresponding part of U .

(3) Suppose case (S) holds in Ti−1 but case (D) holds in U . Let C(Ti−1) =
st, where s is the column reading of Ti−1 up to and including the
whole of the column containing the rightmost symbol i, and t is the
column reading of Ti−1 from (the whole of) the column containing
the leftmost symbol i+ 1. Let Ti = Phypo(ts); then Ti−1 ∼ Ti.

Notice that s contains all the symbols {1, . . . , i} in the word st.
Applying Lemma 5.4 twice, one therefore sees that for any j < i,
the symbols j and j + 1 are on different rows of Ti−1 if and only if
s contains a (j + 1, j)-inversion, which is true if and only if j and
j+1 are on different rows of Ti. Thus the parts of Ti−1 and Ti (and
thus, by the induction hypothesis, U) that contain only symbols
from {1, . . . , i} are equal. Furthermore, ts also contains an (i+ 1, i)
inversion, since t contains at least one symbol i + 1 and s contains
at least one symbol i, and so by Lemma 5.4 the symbols i and i+ 1
are on different rows of Ti. Hence the parts of Ti and U that contain
symbols from {1, . . . , i+ 1} are equal.

(4) Suppose case (D) holds in Ti−1 but case (S) holds in U . Let R(Ti−1) =
st, where s is the row reading of Ti−1 up to and including the whole
of the row containing the symbols i + 1, and t is the row reading
of Ti−1 from (the whole of) the row containing the symbols i. Let
Ti = Phypo(ts); then Ti−1 ∼ Ti.

Notice that t contains all the symbols {1, . . . , i} in the word st.
Applying Lemma 5.4 twice, one therefore sees that for any j < i,
the symbols j and j + 1 are on different rows of Ti−1 if and only if
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t contains a (j + 1, j)-inversion, which is true if and only if j and
j+1 are on different rows of Ti. Thus the parts of Ti−1 and Ti (and
thus, by the induction hypothesis, U) that contain only symbols from
{1, . . . , i} are equal. Furthermore, ts does not contains an (i + 1, i)
inversion, since t contains all the symbols i and s contains all the
symbols i + 1, and so by Lemma 5.4 the symbols i and i + 1 are
on the same row of Ti. Hence the parts of Ti and U that contain
symbols from {1, . . . , i+ 1} are equal.

By induction, the parts of the quasi-ribbon tableaux Tn−1 and U that contain
symbols from {1, . . . , n} are equal. That is, Tn−1 = U . Therefore T and U
are a distance at most n− 1 apart. �

Combining Lemmata 5.6 and 5.3 gives the following result:

Theorem 5.7. (1) Connected components of K(hypo) coincide with ≡ev-
classes of hypo.

(2) The maximum diameter of a connected component of K(hypon) is
n− 1.

The following example illustrates how the construction in the proof of
Lemma 5.6:

Example 5.8. Consider the following elements of hypo5:

T =

1

2 3

4 4 5

and U =

1 2

3 4 4

5

.

Then T and U have the same evaluation, and so lie in the same connected
component of K(hypo) by Theorem 5.7(1), and the distance between them
is at most 4 by Theorem 5.7(2). The connected component K(hypo5, T ) is
shown in Figure 2, and the construction in the proof of Lemma 5.6 yields
the following path between T and U :

T = T0 =

1

2 3

4 4 5

≡hypo
2 3

4 4 5
◦ 1 ∼ 1 ◦ 2 3

4 4 5
(case 4)

≡hypo T1 =
1 2 3

4 4 5

≡hypo 1 2 ◦ 3

4 4 5
∼ 3

4 4 5
◦ 1 2 (case 3)

≡hypo T2 =

1 2

3

4 4 5

≡hypo 4 4 5 ◦ 1 2

3
∼ 1 2

3
◦ 4 4 5 (case 4)
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1 2 3 4 4 5

1
2 3 4 4 5

1 2
3 4 4 5

1 2 3
4 4 5

1 2 3 4
5

1
2 3 4 4

5

1
2
3 4 4 5

1 2
3 4 4

5

1
2 3
4 4 5

1 2 3
4 4
5

1 2
3
4 4 5

1
2
3
4 4 5

1
2
3 4 4

5

1
2 3
4 4
5

1 2
3
4 4
5

1
2
3
4 4
5

Figure 2. The connected component
K(hypo5,Phypo(123445)). Note that its diameter is 4.

≡hypo T3 =
1 2

3 4 4 5

≡hypo
1 2

3 4 4
◦ 5 ∼ 5 ◦ 1 2

3 4 4
(case 3)

≡hypo T4 =

1 2

3 4 4

5

= U.

This gives a path of length 4 between T and U in K(hypo5).
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Notice, however, that T and U are actually a distance 1 apart inK(hypo5):

T =

1

2 3

4 4 5

≡hypo 2 4 4 ◦
1

3

5

∼
1

3

5

◦ 2 4 4

≡hypo

1 2

3 4 4

5

= U.

6. Sylvester monoid

6.1. Preliminaries. Only the necessary facts about the sylvester monoid
are recalled here; see [10] for further background.

A (right strict) binary search tree is a labelled rooted binary tree where
the label of each node is greater than or equal to the label of every node in
its left subtree, and strictly less than every node in its right subtree. An
example of a binary search tree is:

(6.1)

4

2

1

1

4

5

5

5

6

7

.

The left-to-right postfix traversal, or simply the postfix traversal, of a
rooted binary tree T is the sequence that ‘visits’ every node in the tree as
follows: it recursively perform the postfix traversal of the left subtree of the
root of T , then recursively perform the postfix traversal of the right subtree
of the root of T , then visits the root of T . Thus the postfix traversal of any
binary tree with the same shape as the (6.1) visits nodes as follows:

(6.2) .

The insertion algorithm for binary search trees adds the new symbol as a
leaf node in the unique place that maintains the property of being a binary
search tree:

Algorithm 6.1 (Right strict leaf insertion).
Input: A binary search tree T and a symbol a ∈ A.
Output: A binary search tree a→ T .
Method: If T is empty, create a node and label it a. If T is non-empty,

examine the label x of the root node; if a ≤ x, recursively insert a into the
left subtree of the root node; otherwise recursively insert a into the right
subtree of the root note. Output the resulting tree.

Thus one can compute, for any word u ∈ A∗, a binary search tree Psylv(u)
by starting with an empty binary search tree and successively inserting
the symbols of u, proceeding right-to-left through the word. For example
Psylv(5451761524) is (6.1).
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4
2
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1
2

4
3

3
1

2
4

2
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4

1
4

2
3

4
1

2
3

1
2

3
4

Figure 3. The connected component K(sylv4,Psylv(1234));
note that its diameter is 3.

A reading of a binary search tree T is a word u such that Psylv(u) = T .
It is easy to see that a reading of T is a word formed from the symbols that
appear in the nodes of T , arranged so that every symbol from a parent node
appears to the right of those from its children. For example, 1571456254 is
a reading of (6.1).

Define the relation ≡sylv by

u ≡sylv v ⇐⇒ Psylv(u) = Psylv(v).

for all u, v ∈ A∗. The relation ≡sylv is a congruence, and the sylvester
monoid, denoted sylv, is the factor monoid A∗/≡sylv; the sylvester monoid
of rank n, denoted sylvn, is the factor monoid A∗

n/≡sylv (with the natural
restriction of ≡sylv). Each element [u]≡sylv

(where u ∈ A∗) can be identified
with the binary search tree Psylv(u). The words in [u]≡sylv

are precisely the
readings of Psylv(u).

The monoid sylv is presented by 〈A |Rsylv〉, where

Rsylv =
{
(cavb, acvb) : a ≤ b < c, v ∈ A∗ };
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the monoid sylvn is presented by 〈An |Rsylv〉, where the set of defining rela-
tions Rsylv is naturally restricted to A∗

n×A∗
n. Notice that sylv and sylvn are

multihomogeneous.
The present authors proved that the relations ≡ev and ∼∗ coincide in sylv

[15, Theorem 3.4]. In the terms of this paper, this proves that connected
components of K(sylv) are ≡ev-classes. The aim in this section is to prove
that the maximum diameter of a connected component of K(sylvn) is either
n− 1 or n. Subsection 6.2 shows that K(sylvn) has a connected component
with diameter at least n − 1. Subsections 6.3 to 6.5 show that connected
components of K(sylvn) have diameter at most n.

6.2. Lower bound for diameters. As in the cases of the plactic and hy-
poplactic monoids, cocharge sequences are the key to proving that there is
a connected component of K(sylvn) with diameter at least n−1. Reasoning
similar to the proofs of Propositions 4.2 and 5.2 establishes the following
result:

Proposition 6.2. Let u, v ∈ A∗ be standard words such that u ≡sylv v.
Then cochseq(u) = cochseq(v).

For any standard binary tree T in sylv, define cochseq(T ) to be cochseq(u)
for any standard word u ∈ A∗ such that T = Psylv(u). By Proposition 6.2,
cochseq(T ) is well-defined.

Lemma 6.3. There is a connected component in K(sylvn) of diameter at
least n− 1.

Proof. The strategy is the same as in the plactic and hypoplactic monoids:
let t = 12 · · · (n− 1)n and u = n(n− 1) · · · 21, and let

T = Psylv(t) =

n

n− 1

2

1

and U = Psylv(u) =

1

2

n− 1

n

The same reasoning as in the proof of Proposition 4.3 shows that T and U
are not related by ∼≤n−2 in sylvn. �

6.3. Upper bound for diameters I: Overview. The proof that every
connected component of K(sylvn) has diameter at most n is long and com-
plicated. To illustrate the strategy, Example 6.4 explicity constructs a path
of length 5 between two elements of K(sylv5) that have the same evaluation.
Note, however, that these elements are standard, and much of the complex-
ity of the general proof is due to having to consider multiple appearances of
each symbol.

Example 6.4. Let T and U be the following elements of sylv5:

T =

4

2

1 3

5 , U =

1

4

3

2

5

∈ sylv5
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Notice that T ≡ev U . The aim is to build a sequence T = T0 ∼ T1 ∼ T2 ∼
T3 ∼ T4 ∼ T5 = U . The strategy is build the path based upon a left-to-right
postfix traversal of U . At any point in such a traversal, the set of vertices
already encountered is a union of subtrees of U . By applying an appropriate
cyclic shift to obtain Ti+1 from Ti (for each i), one gradually builds copies
of these subtrees within the Ti, arranged down the path of left child nodes
descending from the root, with the ‘just completed’ subtree at the root itself.
In the example construction below, the left-hand column shows the i-th tree
built so far, and the next column shows the i-th step of the left-to-right
postfix traversal. The subtrees of U containing the vertices encountered up
to the i-th step are outlined, as are the corresponding vertices in the tree Ti.
Note that cyclic shifts never break up the subwords (outlined) that represent
the already-built subtrees.

T = T0 = Psylv(13254) ∼ Psylv(54132)

= T1 =

2

1 3

4

5

1

4

3

2

5

One cyclic shift moves the
first node visited by the
traversal to the root. This
will be the base of the
induction in the proof.

= Psylv(54312 ) ∼ Psylv(12543)

= T2 =

3

2

1

4

5

1

4

3

2

5

The postfix traversal moves
from a left child directly to
its parent (which has empty
right subtree). This will be
the induction step, case 3.

= Psylv(54123 ) ∼ Psylv(41235)

= T3 =

5

3

2

1

4

1

4

3

2

5

The postfix traversal moves
from a left child to a node in
the right subtree of its
parent. This will be the
induction step, case 1.

= Psylv(4123 5 ) ∼ Psylv(123 54)

= T4 =

4

3

2

1

5

1

4

3

2

5

The postfix traversal moves
from a right child to a parent
whose left subtree is
non-empty. This well be the
induction step, case 2.

= Psylv(12354 ) ∼ Psylv(23541)

= T5 =

1

4

3

2

5

= U

1

4

3

2

5

The postfix traversal moves
from a right child to a parent
whose left subtree is empty.
This well be the induction
step, case 4.
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Before beginning the proof, it is necessary to set up some terminology
and conventions for diagrams of binary search trees. For brevity, write ‘the
node x’ instead of ‘the node labelled by x’ and ‘the (sub)tree α’ instead of
‘the (sub)tree with reading α’. However, equalities and inequalties always
refer to comparisons of labels: for example, x = y means that the nodes x
and y have equal labels, not that they are the same node.

Let x and y be nodes of a binary tree. If x is a descendent of y, then x is
below y and y is above x. (Note that the terms ‘above’ and ‘below’ do not
refer to levels of the tree: the right child of the root is not above any node
in the left subtree.) Let v be the lowest common ancestor of x and y. If x
is in the left subtree of v or is v itself, and y is in the right subtree of v or
is v itself, and x and y are not both v, then x is to the left of y, and y is to
the right of x. Note that if x is to the left of y, then x is less than or equal
to y.

Note that it important to distinguish directional terms like ‘above’ and
‘below’ from order terms like ‘less than’ and ‘greater than’. The former refer
to the position of nodes within the tree, whereas the latter refer to the order
of symbols in the alphabet A.

As used in this section, a subtree of a binary search tree will always be a
rooted subtree. The complete subtree at a node x is the entire tree below
and including x. Given a subtree T ′ of a tree T , the left-minimal subtree
of T ′ in T is the complete subtree at the left child of the left-most node in
T ′; the right-maximal subtree of T ′ in T is the complete subtree at the right
child of the right-most node in T ′. A node x is topmost if it is above all
other nodes labelled x. The path of left child nodes (respectively, path of
right child nodes) from a node x is the path obtained by starting at the x
and entering left (respectively, right) child nodes until a node with no left
(respectively, right) child is encountered.

In diagrams, individual nodes are shown as round, while subtrees as shown
as triangles. An edge emerging from the top of a triangle is the edge running
from the root of that subtree to its parent. A vertical edge joining a node to
its parent indicates that the node may be either a left or right child. An edge
emerging from the bottom-left of a triangle is the edge to its left-minimal
subtree; an edge emerging from the bottom-right of a triangle is the edge to
its right-maximal subtree. For example, consider the following diagram:

(6.3)

x

λ

z

ρ

σ τ

;

this shows a tree with root node x. Its left subtree consists of the subtree
λ and a single node z (which may be a left or right child) whose parent is
some node in the subtree λ. The right subtree of x consists of subtrees with
readings ρ, σ, and τ , with σ being the left-minimal subtree of ρ and τ being
the right-maximal subtree of ρ. Note that the tree ρ may be deeper than σ
or τ , in the sense that the paths leading to its lowest nodes may longer than
the paths to the lowest nodes in σ or τ .
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The strategy in the proof of Proposition 6.12 below is to pick T,U ∈ sylvn
such that T ≡ev U and construct a path of length n from T to U by using
a left-to-right postfix traversal of U . Specifically, one considers only the n
steps in the left to right postfix traversal that visit the topmost node labelled
by each symbol. (There is a unique topmost node labelled by each symbol
by Lemma 6.6 below.) Just as in Example 6.4, if the node of U visited at
the h-th step of the traversal has labelel x, then the h-th cyclic shift in this
path moves a node x in the h − 1-th tree in the path to become the root
of the tree h-th tree. However, the situation is more complicated because
there are other nodes with the same label, and these may be distributed very
differently in T and U . For example, the following two binary search trees
have the same evaluation, but nodes with the same labels are distributed
differently:

7

6

6

2

1

1

2

3

5

6

6

7

8

9

,

6

1

1

2

2

3

6

5

6

6

7

7 8

9 .

6.4. Upper bound for diameters II: Properties of trees. This section
gathers some properties of trees, and in particular properties of how nodes
with the same label are arranged in binary search trees. These properties
are mostly technical but simple to prove.

The left-to-right infix traversal (or simply the infix traversal) of a rooted
binary tree T is the sequence that ‘visits’ every node in the tree as follows:
it recursively performs the infix traversal of the left subtree of the root of T ,
then visits the root of T , then recursively performs the infix traversal of the
right subtree of the root of T . Thus the infix traversal of any binary tree
with the same shape as the right-hand tree in (6.1) visits nodes as follows:

(6.4) .

The following result is immediate from the definition of a binary search tree,
but it is used frequently:

Proposition 6.5. For any binary search tree T , if a node x is encountered
before a node y in an infix traversal, then x ≤ y.

Let U be a binary search tree and let a ∈ A be a symbol that appears in
U .

Lemma 6.6. Every node a appears on a single path descending from the
root to a leaf; thus there is a unique topmost node a.
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Proof. Suppose the node a appeared on two different paths. Let v be the
least common ancestor of two such appearances. Then a is in both the left
and right subtrees of v, and so a ≤ v < a by the definition of a binary search
tree, which is a contradiction. �

Lemma 6.7. If a node a has a non-empty right subtree, it is the topmost
node a.

Proof. Suppose a particular node a has a non-empty right subtree; let b be
a symbol in this subtree. Then a < b, since b is in the right subtree of a.
If this node a is not the topmost node a, then b is also in the left subtree
of the topmost node a (since the distinguished node a must be in the left
subtree of the topmost a); hence b ≤ a, which is a contradiction. Thus this
node a must be topmost. �

Lemma 6.8. Let x be a left child of a parent node z. Then the symbol z
is the least symbol in the tree U greater than or equal to every node in the
complete subtree at x. Furthermore, if x is not topmost, then x = z.

Proof. In the infix traversal of U , the node z is the first node visited after
visiting all the nodes in the complete subtree at x. Since the infix traversal
visit nodes in weakly increasing order, z is certainly the least symbol greater
than or equal to every node in the complete subtree at x. Suppose further
x is not topmost. Then its right subtree is empty and so z is visited im-
mediately after x. Since the topmost node x is visited at some later point,
and since nodes are visited in weakly increasing order, x ≤ z ≤ x and so
x = z. �

Lemma 6.9. Suppose z is not a topmost node. Then it is a left child if and
only if its parent is another node z.

Proof. If z is a left child, then its parent is another node z by Lemma 6.8.
If the parent of z is another node z, then the child node must be a left child
by the definition of a binary search tree. �

Lemma 6.10. Suppose x is a node and let y be a symbol such that y ≤ x
and y labels some node in the complete subtree at x. Then the topmost node
y is also in the complete subtree at x.

Proof. The result holds trivially if y = x, so suppose y < x. Then the node
y is in the left subtree of x and the infix traversal visits the node y in the
complete subtree at x before it visits x itself. Since the infix traversal visits
nodes in weakly increasing order, it must visit the topmost node y before
visiting any node x. Hence the topmost node y must also be in the left
subtree of x. �

Lemma 6.11. Suppose x is a topmost node and its right child z is not a
topmost node. Then z is the least symbol that is greater than every topmost
node in the complete subtree at x.

Proof. Since the node z is not topmost, its right subtree is empty. Thus it
is the maximum symbol in the complete subtree rooted at x. For any node
y in the left subtree of x, the topmost node y is also in the left subtree of x
by Lemma 6.10. For any node y′ in the left subtree of z, the topmost node
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y′ is also in the left subtree of z by Lemma 6.10. So z is greater than every
topmost node in the complete subtree at x. Since the symbols labelling
these topmost nodes are the ones visited by the infix traversal immediately
before it visits nodes labelled by z, it follows that z is the least symbol that
is greater than every topmost node in the complete subtree at x. �

These results give information about how repeated symbols can appear
in a binary search tree. Consider a symbol z that appears more than once
in U . If one chooses a node z, then one of the following holds:

• the node z is topmost;
• the node z is not a topmost node, and is the left child of another

node z (by Lemma 6.9);
• the node z is not a topmost node, and the right child of a topmost

node x, and z is the least symbol greater than every topmost node
in the complete subtree at x (by Lemma 6.11).

For example, consider the following binary search tree and the repeated
symbol 5:

(6.5)

5

5

2

5

4

5

5

5

The primary nodes a are those nodes labelled by a that are consecutive
with the topmost node a, including the topmost node itself; in (6.5) there
are two primary nodes 5. Any node a that has no children, and any node
a consecutive with it, provided they are not primary, are the tertiary nodes
a; in (6.5) there are three tertiary nodes 5. All other nodes a are secondary.
Note that in each group of consecutive secondary nodes a, the uppermost
node is a right child of some non-a node, and the lowermost node has as its
left child another non-a node. (Secondary and tertiary nodes always have
empty right subtrees, since they are never topmost.) In (6.5), there is one
secondary node 5.

In constructing a path of length n from T to U , the h-th cyclic shift,
corresponding to visiting a topmost node y of U , will move a node y of Th−1

to form the root of Th, and must simultaneously deal with any secondary
nodes z that are attached at the right child of y in U . Tertiary nodes z
either fall into place naturally or are dealt with during the cyclic shift that
moves z to the root. The difficulty is in proving that there always exists
a cyclic shift that performs these tasks. This is the reason for the slightly
complicated conditions that form the inductive statement in the proof of
Proposition 6.12 below.

6.5. Upper bound for diameters III: Result. This subsection is dedi-
cated entirely to Proposition 6.12 and its proof. Extensive use will be made
of the concepts and results in Subsections 6.3 and 6.4.
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Proposition 6.12. The diameter of any connected component of K(sylvn)
is at most n.

Proof. Let T and U be in the same connected component of K(sylvn). Then
T ≡ev U and so T and U contain the same number of nodes labelled by
each symbol. Without loss of generality, assume that every symbol in An

appears in T and U .

Preliminaries. Consider the left-to-right postfix traversal of U . Modify this
traversal so that it only visits topmost nodes; for the purposes of this proof,
call this the topmost traversal. Since U contains every symbol in An, there
are exactly n steps in this traversal. Let ui be the i-th node visited in this
modified traversal.

For h = 1, . . . , n, define Uh = {u1, . . . , uh} and let U↑
h be the set of nodes

in Uh that do not lie below any other node in Uh. Since a later step in a
left-to-right postfix traversal is never below an earlier step, uh ∈ U↑

h for all
h. (The set U↑

h will turn out to be the roots of the complete subtrees that
have been ‘built’ in Th.)

Let Bh be the complete subtree of U at uh; see Figure 4 for an example
of this and later definitions.

Define mh to be the minimum symbol in Bh; thus mh is the minimum
symbol below and including the node uh in U . Note that the topmost node
mh is in the subtree Bh by Lemma 6.10, and must (by minimality) be on
the path of left child nodes from uh.

Define qh to be the minimum symbol that is greater than every topmost
node in Bh, with qh undefined if there is no such symbol. Note that qh
can be found by following the path from uh to the root: qh will be symbol
labelling the first node entered from a left child, because this node is the
node visited by the infix traversal of U immediately after the nodes in the
subtree Bh have been visited. In particular, qh is defined precisely when uh
does not lie on the path of right child nodes from the root of U .

Define ph to be the maximum symbol that is less than every symbol in Bh,
with ph undefined if there is no such symbol. Note that ph can be found by
following the path from uh to the root: ph will be the symbol labelling the
first node entered from a right child, because this node is the node visited by
the infix traversal of U immediately before visiting nodes in the subtree Bh.
(This process always locates the topmost node ph, since it has a non-empty
right subtree.) In particular, ph is defined precisely when uh does not lie on
the path of left child nodes from the root of U .

Note that ph < x ≤ qh for all symbols x in Bh, ignoring the inequalities
involving ph or qh when these are undefined. Note that the symbol qh
may appear in Bh, labelling a secondary or tertiary node. In particular,
ph < mh ≤ uh < qh, since uh is a topmost symbol.

Define Ch to the the tree obtained from Bh by deleting all nodes mh

except the topmost. (Note that this leaves no ‘orphaned’ subtrees, since
only the topmost mh can have a right subtree, and the bottommost mh has
empty left subtree by the minimality of mh.)

Define Dh to be the tree obtained from Ch by deleting any tertiary nodes
qh from Ch.
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1

8

6

3

2

2

2

3

6

4

8

7

8

8

ph

qh

uh

mh

Bn

CnDn

Figure 4. Example tree U illustrating definitions of nota-
tion. Here, uh is the topmost node 5, and thus ph = 1 and
qh = 7. The subtree Bh consists of the complete subtree at
uh, and the minimum symbol in this subtree is mh = 2. The
subtree Ch is obtained from Bh by deleting all nodes 2 ex-
cept the topmost, and Dh is obtained from Ch by deleting
the tertiary nodes 8. Since there is a [secondary] node 8 in
Dh, the tree Eh is obtained from Dh by inserting three sym-
bols 8 using Algorithm 6.1, since there are three nodes 8 in
the tree U outside Dh.

If Dh contains no node qh, define Eh = Dh. If Dh contains a node qh,
define Eh to be the tree obtained from Dh by inserting s symbols qh into Dh

using Algorithm 6.1, where s is the difference between the number of nodes
qh in U and the the number of nodes qh in Dh.

Notice that the set of symbols in Eh is the same as the set of symbols in
Dh (in either case), and is contained in the set of symbols in Ch (this con-
tainment will be strict if in Ch there are tertiary nodes qh but no secondary
nodes qh), which in turn is equal to the set of symbols in Bh.

Suppose Bh contains a node x, but that Bh does not contain the topmost
node x. Then by Lemma 6.6, Bh is below the topmost node x and must be
in its left subtree since it contains a node x. In following the path from uh
to the root, qh labels the first node entered from a left child. Hence qh ≤ x.
However, x appears in Bh, so x ≤ qh. Hence x = qh. Thus qh is the only
symbol that can label a node in Bh but whose corresponding topmost node
lies outside Bh. By their definitions, the same applies to Ch, Dh, and Eh.

Statement of induction. The aim is to construct inductively a sequence T =
T0, T1, . . . , Tn = U with Ti ∼ Ti+1 for i ∈ {1, . . . , n − 1}. Let h = 1, . . . , n

and suppose U↑
h = {ui1 , . . . , uik} (where i1 < . . . < ik = h). Then the tree

Th will satisfy the following four conditions P1–P4:
P1 The subtree Eik appears at the root of Th.
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P2 The subtrees Eik , . . . , Ei1 appear, in that order, on the path of left
child nodes from the root of Th. (These subtrees may be separated
by other nodes on the path of left child nodes.)

P3 For j = 1, . . . , k, every node below Eij is in its left-minimal or right-
maximal subtrees in Th.

P4 For j = 1, . . . , k, no node mij is below a node pij in Th.
(Note that conditions P1–P4 do not apply to T0 = T , which is an arbitrary
element of sylvn.)

Base of induction. The base of the induction is to apply a cyclic shift to T0
and obtain a tree T1 that satisfies conditions P1–P4.

Note first that U↑
1 = U1 = {u1}. By the definition of the topmost tra-

versal, there can be no topmost nodes below u1 in U . Since m1 ≤ u1, the
topmost node m1 is in B1 by Lemma 6.10, and thus m1 = u1. Thus B1

consists only of symbols u1 and possibly tertiary nodes q1. Thus C1 consists
only of the topmost node m1 = u1 and possibly tertiary nodes q1, and so
D1 consists only of the single node u1. Thus E1 = D1 since D1 does not
contain a symbol q1.

There are two cases to consider:

Case 1. Suppose that there is some node with label u1 below some node
with label p1 in T0. (Note that this case can only hold when p1 is defined,
or, equivalently, if u1 is not on the path of left child nodes from the root of
U .)

In T0, distinguish the uppermost node with label u1 that lies below some
node with label p1. (Note that although u1 and p1 are defined in terms of
the tree U , here they are used to pick out nodes with the same labels in the
tree T0.) Since p1 < u1, this node u1 must be in the right subtree of the node
p1. Thus this node p1 must be a topmost node since it has non-empty right
subtree. As shown in Figure 5, let ζ be a reading of the part of T0 outside
the complete subtree at the topmost node p1, let α be a reading of the left
subtree of the topmost node p1, let δ be a reading of the right subtree of
the topmost node p1 outside the complete subtree at the distinguished node
u1, and let β and γ be readings of the left and right subtrees of this node
u1. All nodes p1 other than the distinguished topmost node p1 must be in
α. There are no nodes u1 in δ, by the choice of the distinguished node u1.
It is possible that there may be nodes u1 in β or in ζ. (If there is a node u1
in ζ, then the distinguished node u1 is not topmost and so γ is empty.)

Thus T0 = Psylv(βγu1δαp1ζ). Let T1 = Psylv(δαp1ζβγu1); note that T0 ∼
T1.

In computing T1, the symbol u1 is inserted first and becomes the root
node. Since other symbols u1 can only appear in β and ζ, and other symbols
p1 can only appear in α, all symbols m1 = u1 are inserted before symbols
p1. Thus there is no node m1 below a node p1; thus T1 satisfies P4. Since
E1 consists only of a node u1, the tree E1 appears at the root of T1 and
so T1 satisfies P1 and P2. Furthermore, every node below E1 is either in
the left-minimal subtree of E1 (that is, the left subtree of the root node u1)
or the right-maximal subtree of E1 (that is, right subtree of u1), and so T1
satisfies P3.
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ζ

p1

α δ

u1

β γ

Possible u1

All other p1

Possible u1

No u1

T0 = Psylv(βγu1δαp1ζ)

u1
No u1 = m1

below p1

E1

T1 = Psylv(δαp1ζβγu1)

∼

Figure 5. Base of induction, case 1: some node u1 lies below
some node p1 in T0.

ζ

u1

β γ

No u1 = m1

below p1

T0 = Psylv(βγu1ζ)

u1
No u1 = m1

below p1

E1

T1 = Psylv(ζβγu1)

∼

Figure 6. Base of induction, case 2: no node u1 lies below
a node p1 in T0.

Case 2. Suppose that no node labelled u1 lies below a node with label p1 in
T0. (This case always holds when p1 is undefined.)

Distinguish the topmost node u1 in T0. As shown in Figure 6, let ζ be a
reading of the part of T0 outside the complete subtree at the topmost node
u1. Since no node u1 lies below a node p1, there exists a reading β of the
left subtree of the topmost node u1 in which all symbols p1 appear before
all symbols u1. Let γ be a reading of the right subtree of the topmost node
u1.

Thus T0 = Psylv(βγu1ζ). Let T1 = Psylv(ζβγu1); note that T0 ∼ T1.
In computing T1, the symbol u1 is inserted first and becomes the root

node. Since other symbols u1 must appear after symbols p1 in β, all symbols
m1 = u1 are inserted before symbols p1. Thus there is no node m1 below a
node p1; thus T1 satisfies P4. Since E1 consists only of a node u1, the tree
T1 satisfies P1–P3 by the same reasoning as in Case 1.

This completes the base of the induction: the tree T1 satisfies P1–P4 and
T0 ∼ T1.

Induction step. Let h ∈ {1, . . . , n− 1} and suppose that U↑
h = {ui1 , . . . , uik}

(where i1 < . . . < ik). Recall that h = ik; for brevity, let g = ik−1. Suppose
that the tree Th satisfies conditions P1–P4. The aim is to apply a cyclic
shift to Th and obtain a tree Th+1 that satisfies conditions P1–P4.
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There are four cases, depending on the relatives positions of uh and uh+1

in U :

(1) uh is in the left subtree of v and uh+1 is in the right subtree of v,
where v is the lowest common ancestor of uh and uh+1 in U ;

(2) uh is in the left subtree of uh+1;
(3) uh is in the right subtree of uh+1, and there is no node ui in the left

subtree of uh+1;
(4) uh is in the right subtree of uh+1, and there is some node ui in the

left subtree of uh+1.

Case 1. Suppose that, in U , the node uh is in the left subtree of v and uh+1

is in the right subtree of v, where v is the lowest common ancestor of uh and
uh+1 in U .

In this case, U↑
h+1 = U↑

h ∪ {uh+1}. By the definition of the topmost
traversal, there are no topmost nodes below uh+1 in U . Since mh+1 ≤ uh+1,
the topmost node mh+1 is in Bh+1 by Lemma 6.10, and thus mh+1 = uh+1.
Thus Bh+1 consists only of symbols uh+1 and possibly tertiary nodes qh+1.
Thus Ch+1 consists only of the topmost node mh+1 = uh+1 and possibly
tertiary nodes qh+1, and so Dh+1 consists only of the single node uh+1.
Thus Eh+1 = Dh+1 since Dh+1 does not contain a symbol qh+1.

There are two sub-cases:

Sub-case 1(a). Suppose that there is some node labelled uh+1 below some
node with label ph+1 in Th and that qh 6= ph+1.

Since uh+1 is in the right subtree of v, the symbol ph+1 is greater than or
equal to v. The symbol v is greater than or equal to every symbol in Bh.
It is impossible that ph+1 is equal to some symbol in Bh, since this would
require ph+1 = v = qh, which is excluded from this sub-case. Hence ph+1 is
strictly greater than every symbol in Bh and thus in Eh.

The tree Eh appears at the root of Th by P1. Since ph+1 is strictly greater
than every symbol in Eh, every symbol ph+1 must be in the right-maximal
subtree of Eh in Th by P3. Distinguish the uppermost node uh+1 that lies
below some node ph+1; since ph+1 < uh+1, this node uh+1 must be in the
right subtree of the node ph+1. Thus this node ph+1 must be a topmost
node since it has non-empty right subtree.

As shown in Figure 7, let λ be a reading of the left-minimal subtree of Eh;
note that λ contains all the subtrees Eij by P2. Let ζ be a reading of the
right-maximal subtree of Eh outside the complete subtree at the topmost
node ph+1, let α be a reading of the left subtree of the topmost node ph+1,
let δ be a reading of the right subtree of the topmost node ph+1 outside the
complete subtree at the distinguished node uh+1, and let β and γ be readings
of the left and right subtrees of this node uh+1. All other nodes ph+1 must
be in α. There are no nodes uh+1 in δ, by the choice of the distinguished
node uh+1. It is possible that there may be nodes uh+1 in β or in ζ. (If
there is a node uh+1 in ζ, then the distinguished node uh+1 is not topmost
and so γ is empty.)

Thus

Th = Psylv(βγuh+1δαph+1ζλEh).
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Eh

λ ζ

ph+1

α δ

uh+1

β γ

No mij

below pij Possible uh+1

All other ph+1

Possible uh+1

No uh+1

Th = Psylv(βγuh+1δαph+1ζλEh)

uh+1

Eh

λ

No uh+1 = mh+1

below ph+1

No mij

below pij

Eh+1

Th+1 = Psylv(δαph+1ζλEhβγuh+1)

∼

Figure 7. Induction step, sub-case 1(a): Eh = Dh and some
node uh+1 lies below some node ph+1 in Th.

Let
Th+1 = Psylv(δαph+1ζλEhβγuh+1);

notice that Th ∼ Th+1.
In computing Th+1, the symbol uh+1 is inserted first and becomes the root

node. Since other symbols uh+1 can only appear in β and ζ, all symbols
mh+1 = uh+1 are inserted before symbols ph+1. Thus there is no node mh+1

below a node ph+1. Since Eh+1 consists only of a node uh+1, the tree Th+1

satisfies P1. Since every symbol in the trees λ and Eh are strictly less than
every other symbol, these trees reinserted on the path of left child nodes in
the same way; hence Th+1 satisfies P2 since Th does, and satisfies P4 since
Th does and since there is no node mh+1 below a node ph+1. Finally, Th+1

satisfies P3 because all the Eij in λ satisfy the condition in P3 (since Th
satisfies P3), and trivially Eh+1 satisfies the condition in P3.
Sub-case 1(b). Suppose that that no node uh+1 lies below a node ph+1 in
Th, or that ph+1 = qh.

The tree Eh appears at the root of Th by P1. The symbol uh+1 is strictly
greater than every symbol in Eh and so every node uh+1 must be in the
right-maximal subtree of Eh in Th by P3. Distinguish the topmost node
uh+1 in Th. As shown in Figure 8, let λ be a reading of the left-minimal
subtree of Eh; note that λ contains all the subtrees Eij by P2. Let ζ be a
reading of the right-maximal subtree of Eh outside the complete subtree at
the topmost node uh+1. Note that no symbol uh+1 appears in ζ. If no node
uh+1 lies below a node ph+1 in Th, choose a reading β of the left subtree of
the topmost node uh+1 in which all symbols ph+1 appear before all symbols
uh+1. On the other hand, if ph+1 = zh, so that every node with this label
in Th is in the subtree Eh, then fix any reading β of the left subtree of
the topmost node uh+1; then β vacuously has the same property (since it
contains no symbols ph+1 at all). Let γ be a reading of the right subtree of
the topmost node uh+1.

Thus
Th = Psylv(βγuh+1ζλEh).
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Figure 8. Induction step, sub-case (b): Eh = Dh and no
node uh+1 lies below a node ph+1 in Th.

Let
Th+1 = Psylv(ζλEhβγuh+1);

note that Th ∼ Th+1.
In computing Th+1, the symbol uh+1 is inserted first and becomes the

root node. Since other symbols uh+1 can only appear in β, and any symbols
uh+1 in β must appear after symbols ph+1, all symbols mh+1 = uh+1 are
inserted before symbols ph+1. Thus there is no node mh+1 below a node
ph+1. Since Eh+1 consists only of a node uh+1, the tree Th+1 satisfies P1.
Since every symbol in the trees λ and Eh are strictly less than every other
symbol, these trees are re-inserted on the path of left child nodes in the same
way; hence Th+1 satisfies P2 since Th does, and satisfies P4 since Th does
and since there is no node mh+1 below a node ph+1. Finally, Th+1 satisfies
P3 because all the Eij in λ satisfy the condition in P3 because Th satisfies
P3, and trivially Eh+1 satisfies the condition in P3.

Case 2. Suppose that, in U , the node uh is in the left subtree of uh+1. By
the definition of the topmost traversal, the right subtree of uh+1 contains no
node ui.

In this case, U↑
h+1 =

(
U↑
h \ {uh}

)
∪ {uh+1}. It is immediate from the

definitions that ph+1 = ph and mh+1 = mh. Finally, qh is defined and
qh = uh+1, since uh+1 will be the next topmost node that the infix traversal
of U visits after visiting all nodes in Bh, and so uh+1 must be the topmost
node qh since the infix traversal visits nodes in weakly increasing order.
Sub-case 2(a). Suppose that Eh 6= Dh. Then Dh contains nodes with label
qh = uh+1. By the definition of qh, the symbol uh+1 is greater than or equal
to every symbol in Dh. Thus uh+1 is the rightmost symbol in Dh and this
is the node where the right-maximal subtree of Dh (and Eh) is attached in
Th. The tree Eh consists of Dh with s nodes uh+1 inserted, where s is the
number of nodes uh+1 that appear in U outside of the complete subtree at
uh.

As shown in Figure 9, let λ be a reading of the left-minimal subtree of
Dh; note that the subtree λ contains all the Eij except Eh by P2. Let β be
a reading of the right-maximal subtree of Dh.

Thus
Th = Psylv(u

s
h+1βλDh).
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Figure 9. Induction step, sub-case 2(a): Eh 6= Dh.

Let
Th+1 = Psylv(u

s1
h+1βλDhu

s2
h+1),

where s2 is the number of primary nodes uh+1 in U , and where s1 = s− s2.
Notice that Th+1 ∼ Th.

In computing Th+1, the rightmost symbol uh+1 is inserted first and be-
comes the root node. Then the next s2 − 1 nodes uh+1 are attached along
the path of left child nodes. Since every symbol in Dh or λ is less than
or equal to uh+1, the subtrees Dh and λ are re-inserted at the left child of
the bottommost node uh+1. Since every symbol in β is strictly greater than
uh+1, the subtree β is re-inserted as the right child of the root node uh+1.
Finally, the remaining s1 symbols uh+1 are re-inserted into Dh.

All secondary nodes uh+1 are inside Dh, so the s nodes uh+1 outside Dh

are either primary or tertiary. Since there are s2 primary nodes uh+1 in
U , and since the evaluation of U is the same as the evaluation of Th, there
are s1 tertiary nodes uh+1 in U . Hence Dh and the other nodes uh+1 in
Th+1 together make up Eh+1; thus Th+1 satisfies P1. All the other Eij are
contained in λ, so Th+1 satisfies P2. Since Th satisfies P3, and since λ and
β are the left-minimal and right-maximal subtrees of Eh+1, it follows that
Th+1 satisfies P3. Finally, the relative positions of the mij and pij have not
been altered, so Th+1 satisfies P4.
Sub-case 2(b). Suppose that Eh = Dh. Thus Dh does not contain nodes
labelled qh = uh+1. Since uh+1 is greater than every node in Dh, it follows
that all nodes uh+1 are in the right-maximal subtree of Dh (and Eh) in Th.
Furthermore, since uh+1 is the smallest symbol greater than every symbol
in Dh, only another node uh+1 can be the left child of a node uh+1 in Th.

As shown in Figure 10, let λ be a reading of the left-minimal subtree of
Dh; note that the subtree λ contains all the Eij except Eh by P2. Let δ be a
reading of the right-maximal subtree of Dh outside of the complete subtree
at the topmost node uh+1. (Note that δ may be empty.) Let β be a reading
of the right subtree of the topmost node uh+1; note that the left subtree
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Figure 10. Induction step, sub-case 2(b): Eh = Dh.

of this node can only contain other nodes uh+1. Suppose there are s nodes
uh+1 in U (and so in Th).

Thus Th = Psylv(βu
s
h+1δλDh). Let Th+1 = Psylv(u

s1
h+1δλDhβu

s2
h+1), where

s2 is the number of primary nodes uh+1 in U , and where s1 = s − s2. In
computing Th+1, the rightmost symbol uh+1 is inserted first and becomes
the root node. Then the next s2 − 1 nodes uh+1 are attached along the
path of left child nodes. Since every symbol in β is strictly greater than
uh+1, the subtree β is re-inserted as the right child of the root node uh+1.
Since every symbol in Dh or λ is less than or equal to uh+1, the subtrees Dh

and λ are re-inserted as the left child of the bottommost node uh+1. Since
every symbol in δ is strictly greater than uh+1, the symbols in δ are also
inserted into the right subtree of the root node uh+1. Finally, the remaining
s1 symbols uh+1 are re-inserted into Dh.

By the definition of Dh and the fact that there are s2 primary nodes uh+1

in U , and the fact that the evaluation of U is the same as the evaluation of
Th, there are s1 tertiary nodes uh+1 in U . Hence Dh and the other nodes
uh+1 in Th+1 together make up Eh+1; thus Th+1 satisfies P1. All the other
Eij are contained in λ, so Eh+1 satisfies P2. Since Th satisfies P3, and since
λ and δβ are the left-minimal and right-maximal subtrees of Eh+1, it follows
that Th+1 satisfies P3. Finally, the relative positions of mij and pij have not
been altered, so Th+1 satisfies P4.

Case 3. Suppose that, in U , the node uh is in the right subtree of uh+1, and
there is no node ui in the left subtree of uh+1. Note that qh is defined if and
only if qh+1 is defined, in which case qh = qh+1.

In this case, U↑
h+1 =

(
U↑
h \ {uh}

)
∪ {uh+1}, and ph = uh+1.

By definition, Bh+1 is the complete subtree of U at uh+1. So Ch+1 is
Bh+1 with all but the topmost node mh+1 deleted. Since the left subtree
of uh+1 in U contains no nodes ui, by Lemma 6.10 it only contains other
nodes uh+1 and so mh+1 = uh+1. Thus Ch+1 consists of uh+1 and its right
subtree. By defintion, qh+1 (if defined) is the least symbol greater than every
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topmost symbol in Bh+1; since uh+1 is less than every symbol in Bh, this
implies that qh+1 = qh. By definition of the topmost traversal, there is no
topmost node between uh and uh+1, so only (non-topmost) nodes qh+1 can
lie between them. Thus Ch+1 consists of uh+1, some number s2 (possibly
zero) of secondary nodes qh+1, and the subtree Bh. Hence Dh+1 consists of
uh+1, these nodes qh+1, and the subtree Bh with its tertiary nodes qh+1 = qh
deleted, since these tertiary nodes are the same in both Bh+1 and Bh.

Notice that, in Th, all nodes mh that are not in Eh itself are in the left-
minimal subtree of Eh, but may not be consecutive. Since no mh is below
ph = uh+1, which is the greatest symbol less than mh, it follows that the
uppermost node uh+1 in Th is in the left subtree of the lowest node mh.

Furthermore, as shown in Figures 11 and 12 below, this uppermost node
uh+1 in Th must be on the path of right child nodes from the left child of the
lowest node mh, for otherwise it would be in a left subtree of some node x
below the lowest node mh, which would imply uh+1 = ph < x < mh, which
contradicts ph being the greatest symbol less than mh.
Sub-case 3(a). Suppose that Eh 6= Dh. Then qh is defined and Dh contains
nodes qh. Since qh is greater than or equal to every node in Dh, it follows
that the uppermost node qh is where the right-maximal subtree of Dh (and
Eh) is attached in Th. The tree Eh consists of Dh with s nodes qh inserted,
where s is the number of nodes qh that appear in U outside of the subtree
Dh. Suppose there are r+1 nodes mh in U , so there are r nodes mh outside
Dh in U .)

As shown in Figure 11, let λr be reading of the left-minimal subtree of Dh

outside of the complete subtree at the uppermost mh below Dh. (Note that
λr may be empty.) For i = r− 1, . . . , 2, let λi be readings of the left subtree
of the i-th node mh (counting from the lowermost to the uppermostmost)
outside of the complete subtree of the i− 1-th. (Note that λi will be empty
if the i-th node mh is the left child of the i+ 1-th.) Let λ0 be a reading of
the left subtree of the bottommost node mh outside the complete subtree
at the uppermost node uh+1. Let τ be a reading of the left subtree of the
uppermost node uh+1. Note that the uppermost non-empty subtree λi or τ
contains all the Eij except Eh by P2. Let β be a reading of the right-maximal
subtree of Dh.

Thus
Th = Psylv(τq

s2
h uh+1λ0mhλ1mh · · ·λr−1mhλrq

s1
h βDh);

where s1 = s − s2. (Recall that s2 was defined above as the number of
secondary nodes qh between uh and ph = uh+1 in U .) Let

Th+1 = Psylv(λ0mhλ1mh · · ·λr−1mhλrq
s1
h βDhτq

s2
h uh+1),

Notice that Th ∼ Th+1.
In computing Th+1, the symbol uh+1 is inserted first and becomes the

root node. Then the s2 symbols qh are inserted into the right subtree of the
root nodes, since qh > ph = uh+1. Every symbol in τ is less than or equal
to uh+1 and so is inserted into the left subtree of the root note uh+1. Every
symbol in Dh is greater than uh+1 and less than or equal to qh, so the tree
Dh is re-inserted at the left child of the bottommost qh. Every symbol in
β is greater than qh (since in Th the subtree β is the right child of a node
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Figure 11. Induction step, sub-case 3(a): Eh 6= Dh.

qh, as discussed above), so β is inserted as the right subtree of the topmost
qh. The remaining s1 symbols qh are re-inserted below Dh, attached at the
same position as in Th. The symbol mh is the smallest symbol greater than
uh+1 and all symbols mh are inserted into the left-minimal subtree of Dh

(which is attached at the single node mh in Dh). Every symbol in every
λi is less than every symbol in τ and so are inserted into the left-minimal
subtree of τ . Since every symbol in λi is greater than every symbol in λi+1,
the former is inserted into the right-maximal subtree of the latter.

As noted above, Dh+1 consists of uh+1 with empty left subtree, s2 nodes
qh+1 = qh, and the subtree Bh with its tertiary nodes qh+1 = qh deleted.
Hence, since Dh contains secondary nodes qh, so does Dh+1, and so Eh+1

consists of Dh+1 with s1 nodes qh+1 = qh inserted, as shown in Figure 11.
Therefore Eh+1 appears at the root of U and so Th+1 satisfies P1. The

other trees Eij in Th were in the uppermost non-empty λi or τ ; this still holds
and so Th+1 satisfies P2. Since Th satisfies P3 and the insertions into the
left-minimal and right-maximal subtrees of Eh+1, the tree Th+1 satisfies P3.
Finally, Th+1 satisfies P4 since Th does. (Note that mh is below ph = uh+1,
but this does not matter since uh is not in U↑

h+1.)

Sub-case 3(b). Suppose that Eh = Dh. Then either qh is undefined, or is
defined but Dh does not contain nodes qh.



COMBINATORICS OF CYCLIC SHIFTS 39

Dh

λr

mh

λr−1

λ2

mh

λ1

mh

λ0

uh+1

τ

δ

qh

s nodes

qh

β

No mij

below pij

Th = Psylv(τβq
s2
h uh+1λ0mhλ1mh · · ·λr−1mhλrq

s1
h δDh)

uh+1

τ

λr

λ0

qh

s2 nodes

qh

Dh

mh

r nodes

mh

qh

s1 nodes

qh

δβ

No mij

below pij Eh+1

Th+1 = Psylv(λ0mhλ1mh · · ·λr−1mhλrq
s1
h δDhτβq

s2
h uh+1)

∼

Figure 12. Induction step, sub-case 3(b): Eh = Dh.

Suppose that qh is defined. Let s be the number of nodes qh that appear
in U outside of the subtree Dh.

Since qh is greater than every node in Dh, it follows that the s nodes qh
are all in the right-maximal subtree of Dh (and Eh) in Th. Since qh is the
least symbol greater than every symbol in Dh, in Th the left child of a node
qh can only be another node qh.

Now return to the general situation, where qh may or may not be defined.
As shown in Figure 12, let λi and τ be as in sub-case 3(b). Let δ be a
reading of the right-maximal subtree of Dh outside the complete subtree at
the uppermost node qh, and let β be a reading of the right subtree of the
topmost node qh. (If qh is undefined, β is empty.)

Now,

Th = Psylv(τβq
s2
h uh+1λ0mhλ1mh · · ·λr−1mhλrq

s1
h δDh),

where s1 = s − s2. (Recall that s2 was defined above as the number of
secondary nodes qh between uh and ph = uh+1 in U .) Let

Th+1 = Psylv(λ0mhλ1mh · · ·λr−1mhλrq
s1
h δDhτβq

s2
h uh+1).

Notice that Th ∼ Th+1.
Assume for the moment that qh is defined and s2 > 0. In computing

Th+1, the symbol uh+1 is inserted first and becomes the root node. Then
the s2 symbols qh are inserted into the right subtree of the root nodes, since
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qh > uh+1. Every symbol in β is greater than qh, so β is inserted as the
right subtree of the topmost qh. Every symbol in τ is less than or equal to
uh+1 and so is inserted into the left subtree of the root node uh+1. Every
symbol in Dh is greater than uh+1 and less than qh, so the tree Dh is re-
inserted as the left child of the bottommost qh. The remaining s1 symbols
qh are re-inserted below Dh, attached at the right-maximal subtree of Dh.
The symbol mh is the smallest symbol greater than ph = uh+1 and so all
symbols mh are inserted into the the left-minimal subtree of Dh (which is
attached at the single node mh in Th). Every symbol in every λi is less than
every symbol in τ and so the λi are inserted into the left-minimal subtree of
τ . Since every symbol in λi is greater than every symbol in λi+1, the former
is inserted into the right-maximal subtree of the latter.

As noted above, Dh+1 consists of uh+1 with empty left subtree, s2 nodes
qh+1 = qh, and the subtree Bh with its tertiary nodes qh+1 = qh deleted. The
tree Dh+1 contains s2 nodes qh+1 = qh, and so Eh+1 consists of Dh+1 with s1
nodes qh+1 = qh inserted, as shown in Figure 12. Thus Eh+1 appears at the
root of Th+1 and every node below it is in its left-minimal or right-maximal
subtrees.

If, on the other hand, qh is defined and s2 = 0, then, by near-identical
reasoning, Dh is inserted at the right child of uh+1 and δβ becomes the
right-maximal subtree of Dh, and the s = s1 nodes qh are inserted into the
tree δβ.

In this case, Dh+1 does not contain any nodes qh+1 = qh and so Eh+1 =
Dh+1 consists of uh+1 and the subtree Bh with its tertiary nodes qh+1 = qh
deleted and so Eh+1 appears at the root of Th+1 and every node below it is
in its left-minimal or right-maximal subtrees.

Finally, if qh is undefined, then again Dh is inserted at the right child of
uh+1 and δβ becomes the right-maximal subtree of Dh.

In this case, qh+1 is also undefined and so there are no tertiary nodes
in Bh. Hence Eh+1 = Dh+1 consists precisely of uh+1 with right subtree
Bh. So Eh+1 appears at the root of Th+1 and every node below it is in its
left-minimal or right-maximal subtrees.

Therefore Th+1 satisfies P1. The other trees Eij in Th were in the up-
permost non-empty λi or τ ; this still holds and so Th+1 satisfies P2. Since
Th satisfies P3 and all nodes below Eh+1 are in its left-minimal and right-
maximal subtrees, the tree Th+1 satisfies P3. Finally, Th+1 satisfies P4 since
Th does. (Note that mh is below ph+1, but this does not matter since uh is
not in U↑

h+1.)

Case 4. Suppose that, in U , the node uh is in the right subtree of uh+1, and
there is some node ui in the left subtree of uh+1.

Suppose there are topmost nodes uj and uj′ in this left subtree. Then
their lowest common ancestor v is also in this left subtree; v must have
both subtrees non-empty and so be a topmost node and thus lie in Uh.
Thus there is a unique node in U↑

h in the left subtree of v; clearly this is
ug, which is the rightmost node in U↑

h \ {uh}. (Recall that, for brevity,
h = ik and g = ik−1.) Furthermore, this node is on the path of left child
nodes from uh+1 (since only topmost nodes have right subtrees). Therefore,
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U↑
h+1 =

(
U↑
h \ {uh, ui}

)
∪ {uh+1}, where ui is the unique node from U↑

h in
the left subtree of uh+1. As in case 3, ph = uh+1. The smallest symbol in
the tree Bh+1 is the smallest symbol in the left subtree of uh+1 (which is
certainly non-empty in this case) and so mh+1 = mg. The least symbol less
than or equal to every symbol in Bh+1 is the least symbol less than or equal
to every symbol in the right subtree of uh+1 (which is certainly non-empty
in this case) and so qh = qh+1 (or qh+1 is undefined if qh is undefined). The
only nodes between ug and the topmost node uh+1 are other nodes uh+1,
so qg = uh+1 (in particular, qg is defined). Finally, uh+1 is the first node
entered from a right child on ascending from uh to the root (by the definition
of the topmost traversal) so and uh+1 = ph.

Let s2 be the number of secondary nodes qh between uh and uh+1 in U ,
and let t2 is the number of primary nodes uh+1 and let s1 = s− s2.
Sub-case 4(a). Suppose that Eh 6= Dh and Eg 6= Dg. Then qh is defined,
Dh contains nodes qh, and Dg contains nodes qg. Since qh is greater than
or equal to every node in Dh, it follows that the topmost node qh is where
the right-maximal subtree of Dh (and Eh) is attached in Th. Similarly, since
qg is greater than or equal to every node in Dg, it follows that the topmost
node qg is where the right-maximal subtree of Dg (and Eg) is attached in
Th. The tree Eh consists of Dh with s nodes qh inserted, where s is the
number of nodes qh that appear in U outside of the subtree Dh. The tree
Eg consists of Dg with t nodes qg inserted, where t is the number of nodes
qg = uh+1 that appear in U outside of the subtree Dg.

By P2, the subtree Eg appears on the path of left child nodes and thus
in the left-minimal subtree of Dh (and Eh). The only symbols that are less
than or equal to mh (the minimum symbol in Eh) and greater than or equal
to qg = ph = uh+1 (the maximum symbol in Eg) are the symbols mh and
qg = ph = uh+1 themselves.

By P4, no node mh appears below a node ph = qg, so nodes mh cannot
appear in the right-maximal subtree of Eg. Thus the nodes mh (except for
the single node mh in Eh) are precisely the nodes on the path of left child
nodes between Eh and Eg.

As shown in Figure 13, let λ be a reading of the left-minimal subtree of
Dg and let β be a reading of the right-maximal subtree of Dh.

Then
Th = Psylv(q

s2
h u

t
h+1λDgβm

r
hq

s1
h Dh).

Let
Th+1 = Psylv(u

t1
h+1λDgβm

r
hq

s1
h Dhq

s2
h u

t2
h+1).

Note that Th ∼ Th+1.
In computing Th+1, the rightmost symbol uh+1 is inserted first and be-

comes the root node, with the remaining t2 − 1 symbols descending from it
on the path of left child nodes. Since qh = qh+1 > uh+1, the s2 symbols qh
are inserted into the right subtree of the root node uh+1. Every symbol in
Dh is greater than uh+1 and less than or equal to qh, so the subtree Dh is
re-inserted as the left child node of the bottommost node qh. The remaining
s1 symbols qh are inserted below Dh (attached at the same place as in Th).
The symbol mh is the smallest symbol greater than uh+1 and so the r sym-
bols mh is re-inserted into the left-minimal subtree of Dh (attached as the



42 A.J. CAIN AND A. MALHEIRO

Dh

mh

r nodes

mh

Dg

λ uh+1

t nodes

uh+1

qh

s nodes

qh

β

No mij

below pij

Th = Psylv(q
s2
h u

t
h+1λDgβm

r
hq

s1
h Dh)

uh+1

t2 nodes

uh+1

Dg

λ uh+1

t1 nodes

uh+1

qh

s2 nodes

qh

Dh

mh

r nodes

mh

qh

s1 nodes

qh

β

No mij

below pij

Eh+1

Th+1 = Psylv(u
t1
h+1λDgβm

r
hq

s1
h Dhq

s2
h u

t2
h+1)

Figure 13. Induction step, sub-case 4(a): Eh 6= Dh and
Eg 6= Dg.

left child of the node mh in Dh). Every symbol in β is greater than qh, so β
is re-inserted as the right child of the topmost qh. Every symbol in Dg and
λ is less than or equal to uh+1 and so Dg and λ are re-inserted at the left
child of the bottommost node uh+1. The remaining t1 nodes uh+1 are into
the right-maximal subtree of Dg (in the same place as they were attached
in Th).

The subtree Dh, the nodes mh, and possibly some of the qh below Dh

make up Bh. This tree Bh, together with the nodes qh above Dh, the nodes
uh+1 and Dg together make up Dh+1. Adding the remaining nodes qh = qh+1

below Dh gives the tree Eh+1. So Th+1 satisfies P1. The other trees Eij in
Th were in λ; this still holds and so Th+1 satisfies P2. Every node not in
Eh+1 is in its left-minimal or right-maximal subtree; together with the fact
that Th satisfies P3, this shows that Th+1 satisfies P3. Finally, Th+1 satisfies
P4 since Th does. (Note that mh is below ph = uh+1, but this does not
matter since uh is not in U↑

h+1.)
Sub-case 4(b). Suppose that Eh 6= Dh and Eg = Dg. Then qh is defined and
Dh contains nodes qh. Further, qg is defined and qg = uh+1, but Dg does not
contain nodes qg. Since qh is greater than or equal to every node in Dh, it
follows that the topmost node qh is where the right-maximal subtree of Dh

(and Eh) is attached. The tree Eh consists of Dh with s nodes qh inserted,
where s is the number of nodes qh that appear in U outside of the complete
subtree at uh.

By P2, in Th the subtree Eg appears on the path of left child nodes and
thus in the left-minimal subtree of Eh (and thus of Dh), which appears at
the root of Th by P1. The only symbols that are less than or equal to mh
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Figure 14. Induction step, sub-case 4(b): Eh 6= Dh and
Eg = Dg; sub-sub-cases (1)–(3) use different cyclic shifts.

(the minimum symbol in Eh) and greater than or equal to every symbol in
Eg are mh and ph = uh+1 = qg. Thus nodes mh and uh+1 must appear either
on the path of left child nodes between Eh and Eg, or in the right-maximal
subtree of Eg.

As shown in Figure 14, let λ be a reading of the left-minimal subtree of
Dg and let β be a reading of the right-maximal subtree of Dh. The nodes
shown as empty consist of r nodes mh and t nodes uh+1 (for some r and
t), with the mh above the uh+1 by condition P4 since uh+1 = ph. Note,
however, that the boundary between the mh and the uh+1 may be either
above or below Dg.

Consider three sub-sub-cases:
(1) There are no nodes uh+1 above Dg. Suppose there are r1 nodes mh

below Dg and r2 above. Then

Th = Psylv(q
s2
h u

t
h+1m

r1
h λDgm

r2
h βq

s1
h Dh).

Let

Th+1 = Psylv(u
t1
h+1m

r1
h λDgm

r2
h βq

s1
h Dhq

s2
h u

t2
h+1).

Note that Th ∼ Th+1.
In computing Th+1, the rightmost symbol uh+1 is inserted first and

becomes the root node, with the remaining t2−1 symbols descending
from it on the path of left child nodes. Since qh = qh+1 > uh+1, the
s2 symbols qh are inserted into the right subtree of the root node
uh+1. Every symbol in Dh is greater than uh+1 and less than or
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equal to qh, so if s2 > 0, the subtree Dh is re-inserted as the left
child node of the bottommost node qh, while if s2 = 0, the subtree
Dh is inserted as the right child of uh+1. The remaining s1 symbols
qh are inserted below Dh (attached at the same place as in Th).
Every symbol in β is greater than qh, so if s2 > 0, the subtree β is
re-inserted as the right child of the topmost qh, while if s2 = 0, the
subtree β is inserted as the right-maximal subtree of Dh. The symbol
mh is the smallest symbol greater than uh+1 and so the r2 symbols
mh are inserted into the left-minimal subtree of Dh (attached as the
left child of the node mh in Dh). Every symbol in Dg and λ is less
than or equal to uh+1 and so Dg and λ are re-inserted at the left
child of the bottommost node uh+1. The remaining r1 nodes mh are
inserted at the left child of the bottommost node mh (so that the
nodes mh are now consecutive). The remaining t1 nodes uh+1 are
into the right-maximal subtree of Dg.

(2) There are o1 nodes uh+1 below Dg and o2 above, where o2 ≥ t2.
Then

Th = Psylv(q
s2
h u

o1
h+1λDgu

o2
h+1m

r
hβq

s1
h Dh).

Let
Th+1 = Psylv(u
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h+1 mr

hβq
s1
h Dhq

s2
h u

o1
h+1λDgu

t2
h+1).

Note that Th ∼ Th+1.
In computing Th+1, the rightmost symbol uh+1 is inserted first and

becomes the root node, with the remaining t2−1 symbols descending
from it on the path of left child nodes. Every symbol in Dg and λ
is less than or equal to uh+1 and so Dg and λ are re-inserted at the
left child of the bottommost node uh+1. The next o1 nodes uh+1 are
inserted into the right-maximal subtree Dg. Since qh = qh+1 > uh+1,
the s2 symbols qh are inserted into the right subtree of the root node
uh+1. Every symbol in Dh is greater than uh+1 and less than or equal
to qh, so if s2 > 0, the subtree Dh is re-inserted as the left child node
of the bottommost node qh, while if s2 = 0, the subtree Dh is inserted
as the right child of uh+1. The remaining s1 symbols qh are inserted
below Dh (attached at the same place as in Th). Every symbol in
β is greater than qh, so if s2 > 0, the subtree β is re-inserted as
the right child of the topmost qh, while if s2 = 0, the subtree β is
attached at as the right-maximal subtree of Dh. The symbol mh

is the smallest symbol greater than uh+1 and so the r symbols mh

are inserted into the left-minimal subtree of Dh (attached as the left
child of the node mh in Dh). The remaining o2 − t2 nodes uh+1 are
inserted at the left child of the bottommost node uh+1 (so that the
o1 + o2 − t2 = t1 nodes uh+1 below Dg are now consecutive).

(3) There are o1 nodes uh+1 below Dg and o2 above, where o2 < t2.
Then

Th = Psylv(q
s2
h u

o1
h+1λDgu

o2
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r
hβq

s1
h Dh).

Let
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h u
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Note that o1 − t2 + o2 = t1 and that Th ∼ Th+1.
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In computing Th+1, the rightmost symbol uh+1 is inserted first
and becomes the root node, with the remaining t2 − o2 − 1 symbols
descending from it on the path of left child nodes. Since qh = qh+1 >
uh+1, the s2 symbols qh are inserted into the right subtree of the root
node uh+1. Every symbol in Dh is greater than uh+1 and less than
or equal to qh, so if s2 > 0, the subtree Dh is re-inserted as the
left child node of the bottommost node qh, while if s2 = 0, the
subtree Dh is inserted as the right child of uh+1. The remaining
s1 symbols qh are inserted below Dh (attached at the same place
as in Th). Every symbol in β is greater than qh, so if s2 > 0, the
subtree β is re-inserted as the right child of the topmost qh, while if
s2 = 0, the subtree β is attached at as the right-maximal subtree of
Dh. The symbol mh is the smallest symbol greater than uh+1 and
so the r symbols mh are inserted into the left-minimal subtree of
Dh (attached as the left child of the node mh in Dh). The next o2
symbols uh+1 are inserted into the left subtree of the bottommost
node un+1, so that there are t2 − o2 + o2 = t2 consecutive nodes
uh+1. Every symbol in Dg and λ is less than or equal to uh+1 and
so Dg and λ are re-inserted at the left child of the bottommost node
uh+1. The remaining o1 − t2 + o2 = t1 nodes uh+1 are inserted into
the right-maximal subtree of Dg.

The subtree Dh, the nodes mh, and possibly some of the qh below Dh

make up Bh. This tree Bh, together with the nodes qh above Dh, the nodes
uh+1 and Dg together make up Dh+1. Adding the remaining nodes qh = qh+1

below Dh gives the tree Eh+1. So Th+1 satisfies P1. The other trees Eij in
T2 were in λ; this still holds and so Th+1 satisfies P2. Every node not in
Eh+1 is in its left-minimal or right-maximal subtree; together with the fact
that Th satisfies P3, this shows that Th+1 satisfies P3. Finally, Th+1 satisfies
P4 since Th does. (Note that mh is below ph = uh+1, but this does not
matter since uh is not in U↑

h+1.)
Sub-case 4(c). Suppose that Eh = Dh and Eg 6= Dg. Then Dg contains
nodes qg. Since qg is greater than or equal to every node in Dg, it follows
that the topmost node qg is where the right-maximal subtree of Dg (and
Eg) is attached in Th. The tree Eg consists of Dg with t nodes qg inserted,
where t is the number of nodes qg = uh+1 that appear in U outside of the
complete subtree at ug.

The subtree Eg appears on the path of left child nodes and thus in the
left-minimal subtree of Eh (and Eh). The only symbols that is less than or
equal to mh and greater than or equal to every symbol in qg are mh and
ph = uh+1 = qg. By P4, no node mh appears below a node ph, so nodes
mh cannot appear in the right-maximal subtree of Eg. Thus the nodes mh

(except for the single node mh in Dh) are precisely the nodes on the path
of left child nodes between Dh and Dg.

As shown in Figure 15, let λ be a reading of the left-minimal subtree
of Dg. Let δ be a reading of the right-maximal subtree of Dh outside the
complete subtree at the topmost node qh (if qh is defined) and let β be a
reading of the right-maximal subtree of the topmost qh. (Note that β is
empty if qh is not defined.)
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Figure 15. Induction step, sub-case 4(c): Eh = Dh and
Eg 6= Dg; sub-sub-cases (1) and (3) use different cyclic shifts.

Let s2 be the number of secondary nodes qh between uh and uh+1 in U ,
and let t2 be the number of primary nodes uh+1. Note that if qh is defined,
then s2 < s since there must be at least one primary node qh. Consider two
sub-sub-cases:

(1) Suppose s2 > 0 and qh is defined. Then
Th = Psylv(βq

s2
h u

t
h+1λDgm

r
hq

s1
h δDh).

Let
Th+1 = Psylv(u

t1
h+1λDgm

r
hq

s1
h δDhβq

s2
h u

t2
h+1).

Note that Th ∼ Th+1.
In computing Th+1, the rightmost symbol uh+1 is inserted first and

becomes the root node, with the remaining t2−1 symbols descending
from it on the path of left child nodes. Since qh = qh+1 > uh+1, the
s2 symbols qh are inserted into the right subtree of the root node
uh+1. Every symbol in β is greater than qh, so β is re-inserted as the
right child of the topmost qh. Every symbol in Dh is greater than
uh+1 and less than or equal to qh, so the subtree Dh is re-inserted
as the left child node of the bottommost node qh. Every symbol
in δ is greater than qh, so δ is inserted into the subtree β. The
remaining s1 symbols qh are inserted into the right-maximal subtree
of Dh. The symbol mh is the smallest symbol greater than uh+1 and
so the r symbols mh are re-inserted into the left-minimal subtree
of Dh (attached as the left child of the node mh in Dh). Every
symbol in Dg and λ is less than or equal to uh+1 and so Dg and λ
are re-inserted at the left child of the bottommost node uh+1. The
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remaining t1 nodes uh+1 are into Dg (in the same place as they were
attached in Th).

(2) Suppose s2 = 0 or qh is not defined. Then

Th = Psylv(u
t
h+1λDgm

r
hβq

s
hδDh).

(If qh is undefined, formally treat qh and β as empty and s as 0.)
Let

Th+1 = Psylv(u
t1
h+1λDgm

r
hβq

s
hδDhu

t2
h+1),

Note that Th ∼ Th+1.
In computing Th+1, the rightmost symbol uh+1 is inserted first and

becomes the root node, with the remaining t2−1 symbols descending
from it on the path of left child nodes. Every symbol in Dh and δ
is greater than uh+1, so the subtrees Dh and δ are re-inserted as
the right child node of the root node uh+1. The s symbols qh are
inserted into te right-maximal subtree of Dh. Every symbol in β is
greater than every symbol in Dh, so β is inserted into the subtree
δ. The symbol mh is the smallest symbol greater than uh+1 and
so the r symbols mh are re-inserted into the left-minimal subtree
of Dh (attached as the left child of the node mh in Dh). Every
symbol in Dg and λ is less than or equal to uh+1 and so Dg and λ
are re-inserted at the left child of the bottommost node uh+1. The
remaining t1 nodes uh+1 are into Dg (in the same place as they were
attached in Th).

(The key difference between the sub-sub-case is the different placement of
β in the reading of Th. In sub-sub-case (2), the subword βqshδDh makes up
the entire part of Th outside of the left-minimal subtree of Dh, and since this
subword is intact in the reading of Th+1, it will appear as the right subtree
of the root, as shown by the reasoning below. This observation will be used
to abbreviate some of the sub-sub-cases in sub-case 4(d) below.)

The subtree Dh, the nodes mh, and possibly some of the qh below Dh

make up Bh. This tree Bh, together with any nodes qh above Dh, the nodes
uh+1 and Dg together make up Dh+1. Adding the remaining nodes qh = qh+1

below Dh gives the tree Eh+1. So Th+1 satisfies P1. The other trees Eij in
T2 were in λ; this still holds and so Th+1 satisfies P2. Every node not in
Eh+1 is in its left-minimal or right-maximal subtree; together with the fact
that Th satisfies P3, this shows that Th+1 satisfies P3. Finally, Th+1 satisfies
P4 since Th does. (Note that mh is below ph = uh+1, but this does not
matter since uh is not in U↑

h+1.)
Sub-case 4(d). Suppose that Eh = Dh and Eg = Dg. If qh is defined then it
is the least symbol greater than any symbol in Dh and so all nodes qh must
appear in the right-maximal subtree of Eh in Th, and the left child of a node
qh can only be another node qh.

It is possible that qg is defined, in which case qg = uh+1, but Dg does not
contain nodes qg. The subtree tree Dg appears on the path of left child nodes
and thus in the left-minimal subtree of Dh (and Eh). The only symbols that
is less than or equal to every symbol in Dh and greater than or equal to
every symbol in Dg are mh and ph = uh+1 (which is equal to qg, if qg is
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Figure 16. Induction step, sub-case 4(d): Eh = Dh and
Eg = Dg; sub-sub-cases (1)–(6) use different cyclic shifts.

defined). Thus nodes mh and uh+1 must appear either on the path of left
child nodes between Dh and Dg, or in the right-maximal subtree of Dg.

As shown in Figure 16, let λ be a reading of the left-minimal subtree
of Dg. Let δ be a reading of the right-maximal subtree of Dh outside the
complete subtree at the topmost node qh (if qh is defined) and let β be a
reading of the right-maximal subtree of the topmost qh. (Note that β is
empty if qh is not defined.) The empty nodes are filled with r nodes mh

and t nodes uh+1, with the mh above the uh+1. Note, however, that the
boundary between the mh and the uh+1 may be either above or below Dg.

Let s2 be the number of secondary nodes qh between uh and uh+1 in U ,
and let t2 is the number of primary nodes uh+1. There are six sub-sub-cases:
consider first the three sub-sub-cases where s2 > 0:

(1) There are no uh+1 above Dg. Suppose there are r1 nodes mh below
Dg and r2 above. Then

Th = Psylv(βq
s2
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t
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Note that Th ∼ Th+1.
In computing Th+1, the rightmost symbol uh+1 is inserted first and

becomes the root node, with the remaining t2−1 symbols descending
from it on the path of left child nodes. Since qh = qh+1 > uh+1, the
s2 symbols qh are inserted into the right subtree of the root node
uh+1. Every symbol in β is greater than qh, so the subtree β is
re-inserted as the right child of the topmost qh. Every symbol in
Dh is greater than uh+1 and less than or equal to qh, so the subtree
Dh is re-inserted as the left child node of the bottommost node qh.
Every symbol in δ is greater than qh, so δ is inserted into the subtree
β. The remaining s1 symbols qh are inserted into the right-maximal
subtree of Dh. The symbol mh is the smallest symbol greater than
uh+1 and so the r2 symbols mh are inserted into the left-minimal
subtree of Dh (attached as the left child of the node mh in Dh).
Every symbol in Dg and λ is less than or equal to uh+1 and so
Dg and λ are re-inserted at the left child of the bottommost node
uh+1. The remaining r1 nodes mh are inserted at the left child of the
bottommost node mh (so that the nodes mh are now consecutive).
The remaining t1 nodes uh+1 are into the right-maximal subtree of
Dg.

(2) There are o1 nodes uh+1 below Dg and o2 above, where o2 ≥ t2.
Then

Th = Psylv(βq
s2
h u

o1
h+1λDgu

o2
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r
hq
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h δDh).

Let
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h u
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t2
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Note that Th ∼ Th+1.
In computing Th+1, the rightmost symbol uh+1 is inserted first and

becomes the root node, with the remaining t2−1 symbols descending
from it on the path of left child nodes. Every symbol in Dg and λ
is less than or equal to uh+1 and so Dg and λ are re-inserted at the
left child of the bottommost node uh+1. The next o1 nodes uh+1 are
inserted into the right-maximal subtree of Dg. Since qh = qh+1 >
uh+1, the s2 symbols qh are inserted into the right subtree of the root
node uh+1. Every symbol in β is greater than qh, so subtree β is re-
inserted as the right child of the topmost qh. Every symbol in Dh is
greater than uh+1 and less than or equal to qh, so the subtree Dh is
re-inserted as the left child node of the bottommost node qh. Every
symbol in δ is greater than qh and so δ is inserted into the subtree
β. The remaining s1 symbols qh are inserted into the right-maximal
subtree of Dh. The symbol mh is the smallest symbol greater than
uh+1 and so the r symbols mh are inserted into the left-minimal
subtree of Dh (attached as the left child of the node mh in Dh). The
remaining o2 − t2 nodes uh+1 are inserted at the left child of the
bottommost node uh+1 (so that the o1 + o2 − t2 = t1 nodes uh+1

below Dg are now consecutive).
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(3) There are o1 nodes uh+1 below Dg and o2 above, where o2 < t2.
Then

Th = Psylv(βq
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Note that o1 − t2 + o2 = t1 and that Th ∼ Th+1.
In computing Th+1, the rightmost symbol uh+1 is inserted first

and becomes the root node, with the remaining t2 − o2 − 1 symbols
descending from it on the path of left child nodes. Since qh = qh+1 >
uh+1, the s2 symbols qh are inserted into the right subtree of the root
node uh+1. Every symbol in β is greater than qh, so the subtree β
is re-inserted as the right child of the topmost qh. Every symbol in
Dh is greater than uh+1 and less than or equal to qh, so the subtree
Dh is re-inserted as the left child node of the bottommost node qh.
Every symbol in δ is greater than qh, so δ is inserted into the subtree
β. The remaining s1 symbols qh are inserted into the right-maximal
subtree of Dh. The symbol mh is the smallest symbol greater than
uh+1 and so the r symbols mh are inserted into the left-minimal
subtree of Dh (attached as the left child of the node mh in Dh).
The next o2 symbols uh+1 are inserted into the left subtree of the
bottommost node un+1, so that there are t2−o2+o2 = t2 consecutive
nodes uh+1. Every symbol in Dg and λ is less than or equal to uh+1

and so Dg and λ are re-inserted at the left child of the bottommost
node uh+1. The remaining o1 − t2 + o2 = t1 nodes uh+1 are inserted
into the right-maximal subtree of Dg.

The three sub-sub-cases where s2 = 0 (see below) differ from the above
three sub-sub-cases in the same way that the two sub-sub-cases in sub-
case 4(c) differ: instead of taking a reading of Th with β at the start, take
one where β appears just before the string qsh. Since the reasoning is so
similar, these sub-sub-cases are thus treated in an abbreviated form:

(4) There are no uh+1 above Dg. Suppose there are r1 nodes mh below
Dg and r2 above. Then
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Note that Th ∼ Th+1.
(5) There are o1 nodes uh+1 below Dg and o2 above, where o2 ≥ t2.

Then
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Th+1 = Psylv(u

o2−t2
h+1 mr

hβq
s
hδDhu

o1
h+1λDgu

t2
h+1).

(6) There are o1 nodes uh+1 below Dg and o2 above, where o2 < t2.
Then

Th = Psylv(u
o1
h+1λDgu

o2
h+1m

r
hβq

s
hδDh).
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Let

Th+1 = Psylv(u
o1−t2+o2
h+1 λDgu

o2
h+1m

r
hβq

s
hδDhu

t2−o2
h+1 ).

Note that o1 − t2 + o2 = t1 and that Th ∼ Th+1.
The subtree Dh, the nodes mh, and possibly some of the qh below Dh

make up Bh. This tree Bh, together with the nodes qh above Dh, the nodes
uh+1 and Dg together make up Dh+1. Adding the remaining nodes qh = qh+1

below Dh gives the tree Eh+1. So Th+1 satisfies P1. The other trees Eij in
T2 were in λ; this still holds and so Th+1 satisfies P2. Every node not in
Eh+1 is in its left-minimal or right-maximal subtree; together with the fact
that Th satisfies P3, this shows that Th+1 satisfies P3. Finally, Th+1 satisfies
P4 since Th does. (Note that mh is below ph = uh+1, but this does not
matter since uh is not in U↑

h+1.)

Conclusion. The tree Tn satisfies the conditions P1–P4. In particular, En

appears at the root of Tn. Since un is the root of U (since it is obviously the
last node visited by the topmost traversal), Bn = U . Thus Cn is U with all
nodes mn deleted except the topmost. Since qn is undefined, En = Dn = Cn.
Hence Cn appears at the roots of Tn and U . However, the number of nodes
mn in the trees Tn and U are equal, and since mn is the smallest symbol
appearing in Tn or U , all the nodes mn in Tn and U must appear in the
paths of left child nodes in Tn and U , in the left subtree of the single node
mn in En. Hence Tn = U .

Thus there is a sequence T = T0, T1, . . . , Tn = U with Ti ∼ Ti+1 for
i ∈ {1, . . . , n − 1}. Since T and U were arbitrary elements of an abritrary
connected component of K(sylvn), the diameter of any connected component
of K(sylvn) is at most n. This completes the proof. �

6.6. Summary. Combining Lemma 6.3 and Proposition 6.12 gives the fol-
lowing result:

Theorem 6.13. (1) Connected components of K(sylv) coincide with ≡ev-
classes of sylv.

(2) The maximum diameter of a connected component of K(sylvn) is
n− 1 or n.

Computational evidence strongly suggests that the maximum diameter
of a connected component of K(sylvn) is in fact n − 1. When one explic-
itly constructs of a path of length n between two ≡ev-related elements of
K(sylvn) using the strategy in the proof Proposition 6.12, there seems al-
ways to be a fairly ‘obvious’ way to combine two steps and so obtain a path
of length n − 1. However, these steps can apparently be located anywhere
along the path and do not seem to exhibit any pattern. Thus the authors
have been unable to prove that there are always two steps which it is possible
to combine.

7. Stalactic monoid

The stalactic monoid is primarily used in the definition of the more in-
teresting taiga monoid (see Section 8), but its cyclic shift graph exhibits a
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particularly simple structure. As usual, this section recalls only the essen-
tials background; for further reading, see [11].

A stalactic tableau is a finite array of symbols from A in which columns
are top-aligned, and two symbols appear in the same column if and only if
they are equal. For example,

(7.1)

3 1 2 6 5

3 1 6 5

1 5

1

is a stalactic tableau. The insertion algorithm is very straightforward:

Algorithm 7.1.
Input: A stalactic tableau T and a symbol a ∈ A.
Output: A stalactic tableau T ← a.
Method: If a does not appear in T , add a to the left of the top row of T .

If a does appear in T , add a to the bottom of the (by definition, unique)
column in which a appears. Output the new tableau.

Thus one can compute, for any word u ∈ A∗, a stalactic tableau Pstal(u) by
starting with an empty stalactic tableau and successively inserting the sym-
bols of u, proceeding right-to-left through the word. For example Pstal(361135112565)
is (7.1). Notice that the order in which the symbols appear along the first
row in Pstal(u) is the same as the order of the rightmost instances of the
symbols that appear in u. Define the relation ≡stal by

u ≡stal v ⇐⇒ Pstal(u) = Pstal(v)

for all u, v ∈ A∗. The relation≡stal is a congruence, and the stalactic monoid,
denoted stal, is the factor monoid A∗/≡stal; The stalactic monoid of rank n,
denoted staln, is the factor monoid A∗

n/≡stal (with the natural restriction
of ≡stal). Each element [u]≡stal

(where u ∈ A∗) can be identified with the
stalactic tableau Pstal(u). Note that if T is a stalactic tableau consisting
of a single row (that is, will all columns having height 1), then there is a
unique word u ∈ A∗, formed by reading the entries of T left-to-right, such
that Pstal(u) = T . Thus, if T = Pstal(a1 · · · ak) and U ∈ stal is such that
U ∼ T , then U = Pstal(ai · · · aka1 · · · ai−1) for some i.

The monoid stal is presented by 〈A |Rstal〉, where

Rstal =
{
(bavb, abvb) : a, b ∈ A, v ∈ A∗ }.

The monoid staln is presented by 〈An |Rstal〉, where the set of defining rela-
tions Rstal is naturally restricted to A∗

n ×A∗
n. Notice that stal and staln are

multihomogeneous.
[The stalactic monoid was originally defined by Hivert et al. [12, § 3.7]

using the defining relations
{
(bvb, bbv) : b ∈ A, v ∈ A∗ }; this would yield

a monoid that is anti-isomorphic to stal. The definition of stal here follows
Priez [11, Example 3] so as to be compatible with the construction of the
taiga monoid below.]

Proposition 7.2. Connected components of K(stal) are properly contained
in ≡ev-classes.
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Proof. By Lemma 2.1(1), ∼ ⊆ ≡ev, so it remains to prove that equality
does not hold. Since no defining relations in Rstal can be applied to a word
without repeated letters, a stalactic tableau consisting of a single row is
represented by exactly one word over A∗. In particular, an element of the
form k n 1 k−1 is represented by the unique word k · · ·n1 · · · (k−1).
Thus the elements of this form are all ∼-related and form a ∼∗-class and
thus a connected component of K(stal). Thus, for n ≥ 3, the elements
1 2 3 n and 2 1 3 n are ≡ev-related but in different con-

nected components of K(stal). �

However, it is possible to characterize connected components of K(stal).
For any stalactic tableau T , let ι(T ) be the word obtained by reading from
left to right the symbols that appear in columns of height 1. Define κ(T ) to
be the pair

(
[ι(T )]∼, ev(T )

)
. (Notice that [ι(T )]∼ = [ι]∼∗ .)

Proposition 7.3. (1) Two elements of stal lie in the same connected
component of K(stal) if and only if they have the same image under
the map κ.

(2) The maximum diameter of a connected component of K(stal) is 3.
(3) The maximum diameter of a connected component of K(staln) is 3

if n ≥ 3, and is respectively 1 and 0 for n = 2 and n = 1.

Proof. Suppose T,U ∈ stal are such that T ∼ U . Then there exist x, y ∈ A∗

such that xy represents T and yx represents U . Deleting from x and y every
symbol a such that |x|a+|y|a > 1 yields two words x′ and y′ with ι(T ) = x′y′

and ι(U) = y′x′; thus ι(T ) ∼ ι(U). Furthermore, since T ∼ U it follows that
ev(T ) = ev(U). Thus κ(T ) = κ(U). Iterating this reasoning shows that if T
and U lie in the same connected component of K(stal), then κ(T ) = κ(U).

Now suppose that T,U ∈ stal are such that κ(T ) = κ(U). Let B =
{b1, . . . , bk} consist of exactly the symbols in A that appear more than once
in U and thus in T . Choose any word t such that Pstal(t) = T , and delete
the leftmost appearance of each symbol in B from t; call the resulting word
t′. Let t0 = b1 · · · bkt′ ∈ A∗. Since the order of columns in a stalactic tableau
corresponding to a word is determined by the rightmost appearance of each
symbol in that word, and since ev(t) = ev(t0), it follows that Pstal(t0) = T .
Let T1 = Pstal(t

′b1 · · · bk), so that T ∼ T1. Then T1 is of the form

(7.2)

a1 am b1 b2 bk

b1 bk

b1

︷ ︸︸ ︷Symbols that appear once

.

Similarly, choose any word u with Pstal(u) = U , delete the leftmost ap-
pearance of each symbol in B to obtain a word u′, and let u0 = b1 · · · bku′;
then Pstal(u0) = U . Let U1 = Pstal(b1 · · · bku′). Then ι(U1) ∼ ι(U) ∼ ι(T ) ∼



54 A.J. CAIN AND A. MALHEIRO

3 1 2
3

1 2 3
3

2 3 1
3

1 3 2
3

2 1 3
3

3 2 1
3

Figure 17. The connected component K(stal,Pstal(1233)),
which has diameter 3.

ι(T1), and so ι(U1) ∼ ι(T1). Thus U1 of the form

(7.3)

ah+1 am a1 ah b1 b2 bk

b1 bk

b1

︷ ︸︸ ︷Symbols that appear once

.

Note that (7.2) and (7.3) differ only by a cyclic permutation of the columns
of height 1.

Let s ∈ A∗ be such that Pstal(ah+1 · · · ama1 · · · ahs) = U1. Delete the
leftmost appearance of each symbol in B from the word s; call the resulting
word s′. Again using the fact that the rightmost appearance of each symbol
determines the order of columns, Pstal(ah+1 · · · amb1 · · · bka1 · · · ahs′) = U1.
Similarly, Pstal(a1 · · · ahs′ah+1 · · · amb1 · · · bk) = T1. Hence U1 ∼ T1.

Thus T ∼ T1 ∼ U1 ∼ U , and so there is a path of length at most 3 from T
to U . Hence T and U lie in the same connected component. This completes
the proof of part 1).

Furthermore, this shows that connected components of K(stal) have di-
ameter at most 3. Direct calculation shows that the connected component
K(stal,Pstal(1233)) is as shown in Figure 17 and thus has diameter 3. This
proves part 2). For part 3), note that connected components of K(stal1) are
singleton vertices, and the connected components of K(stal2) have at most
two vertices corresponding to the two possible orders of columns filled by
symbols 1 and 2. �

8. Taiga monoid

The taiga monoid is a quotient of the sylvester monoid that is associated
with a modified notion of binary search tree. As usual, this section only
recalls the essential facts; see [11, § 5] for further background.

A binary search tree with multiplicities is a labelled search tree in which
each label appears at most once, where the label of each node is greater than
the label of every node in its left subtree, and less than the label of every
node in its right subtree, and where each node label is assigned a positive
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integer called its multiplicity. An example of a binary search tree is:

(8.1)
42

21

12 31
53

62

71

.

(The superscripts on the labels in each node denote the multiplicities.)

Algorithm 8.1.
Input: A binary search tree with multiplicities T and a symbol a ∈ A.
Output: A binary search tree with multiplicities T ← a.
Method: If T is empty, create a node, label it by a, and assign it multi-

plicity 1. If T is non-empty, examine the label x of the root node; if a < x,
recursively insert a into the left subtree of the root node; if a > x, recur-
sively insert a into the right subtree of the root node; if a = x, increment
by 1 the multiplicity of the node label x.

Thus one can compute, for any word u ∈ A∗, a binary search tree with
multiplicities Ptaig(u) by starting with an empty binary search tree with
multiplicities and successively inserting the symbols of u, proceeding right-
to-left through the word. For example Ptaig(65117563254) is (8.1).

Define the relation ≡taig by
u ≡taig v ⇐⇒ Ptaig(u) = Ptaig(v),

for all u, v ∈ A∗. The relation ≡taig is a congruence, and the taiga monoid,
denoted taig, is the factor monoid A∗/≡taig; the taiga monoid of rank n,
denoted taign, is the factor monoid A∗

n/≡taig (with the natural restriction
of ≡taig). Each element [u]≡taig can be identified with the binary search tree
with multiplicities Ptaig(u).

As with [ordinary] binary search trees, a reading of a binary search tree
with multiplicities T is a word u such that Ptaig(u) = T . It is easy to see that
a reading of T is a word formed from the symbols that appear in the nodes
of T , with the number of times each symbol appears being its multiplicity,
arranged so that the rightmost symbol from a parent node appears to the
right of the rightmost symbols from its children. For example, 135671456254
is a reading of (8.1).

The monoid taig is presented by 〈A |Rtaig〉, whereRtaig = Rsylv∪Rstal; the
monoid taign is presented by 〈An |Rtaig〉, where the set of defining relations
Rtaig is naturally restricted to A∗

n × A∗
n. Notice that taig and taign are

multihomogeneous.
The taiga monoid is a quotient of the sylvester monoid under the homo-

morphism τ : sylv → taig sending [u]sylv to [u]taig (or equivalently, Psylv(u)
to Ptaig(u)) for all u ∈ A∗. This homomorphism naturally restricts to a sur-
jective homomorphism τ : sylvn → taign. This connection between sylv and
taig makes it possible to use the reasoning about the diameters of connected
components in K(sylvn) to prove the corresponding results for K(taign).

Since defining relations in Rstal involve repeated symbols, only relations
in Rsylv apply to standard words. That is, standard words are related by
≡taig if and only if they are related by ≡sylv. Thus the proof of Lemma 6.3
applies in taign to establish the following result:
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Lemma 8.2. There is a connected component in K(taign) of diameter at
least n− 1.

Lemma 8.3. Every connected component of K(taign) has diameter at most
n.

Proof. Define a map ψ : taign → sylvn that maps a binary search tree with
multiplicities T to the standard binary search tree obtained by deleting the
multiplicities of T . Note that, two elements T,U ∈ taign are equal if and
only if ψ(T ) = ψ(U) and ev(T ) = ev(U).

Suppose P,Q ∈ taign are such that ψ(P ) ∼ ψ(Q) (in sylvn) and ev(P ) =
ev(Q). Then there are readings xy of ψ(P ) and yx of ψ(Q). Replacing
each symbol a with aka for each a ∈ An, where ka is the a-th component
of ev(P ) = ev(Q), gives readings x̂ŷ of P and ŷx̂ of Q, so that P ∼ Q (in
taign).

Let T and U be elements of the same connected component of K(taign).
Then T ≡ev U . By the strategy for bulding a path in K(sylvn) in the
proof of Proposition 6.12, there is a path ψ(T ) = T0, . . . , Tn = ψ(U) in
K(sylvn). By the reasoning in the previous paragraph, this path lifts to a
path T = T̂0, . . . , T̂n = U in K(taign). Thus the diameter of K(taign, T ) is
at most n. �

Combining Lemmata 8.2 and 8.3 gives the result:

Theorem 8.4. (1) Connected components of K(taig) coincide with ≡ev-
classes in taig.

(2) The maximum diameter of a connected component of K(taign) is
n− 1 or n.

9. Baxter monoid

The Baxter monoid is a monoid of pairs of twin binary search trees. As in
previous sections, only the essential facts are given here; see [14] for further
background.

A left strict binary search tree is a labelled rooted binary tree where the
label of each node is strictly greater than the label of every node in its left
subtree, and less than or equal to every node in its right subtree; see the left
tree shown in (9.1) below for an example.

The canopy of a binary tree T is the word over {0, 1} obtained by travers-
ing the empty subtrees of the nodes of T from left to right, except the first
and the last, labelling an empty left subtree by 1 and an empty right subtree
by 0. (See (9.1) below for examples of canopies.)

A pair of twin binary search trees consist of a left strict binary search tree
TL and a right strict binary search tree TR, such that TL and TR contains
the same symbols, and the canopies of TL and TR are complementary, in the
sense that the i-th symbol of the canopy of TL is 0 (respectively 1) if and only
if the i-th symbol of the canopy of TL is 1 (respectively 0). The following is
an example of a pair of twin binary search trees, with the complementary
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canopies 0110101 and 1001010 shown in grey:

(9.1)



4

2

1 3

3

5

4 6
0 1

1 0

1 0 1

,

3

1

3

2

4

4 6

5
1 0

0 1 0

1 0


The insertion algorithm for left strict binary search trees is symmetric to

Algorithm 6.1:

Algorithm 9.1 (Left strict leaf insertion).
Input: A left strict binary search tree T and a symbol a ∈ A.
Output: A left strict binary search tree a→ T .
Method: If T is empty, create a node and label it a. If T is non-empty,

examine the label x of the root node; if a < x, recursively insert a into the
left subtree of the root node; otherwise recursively insert a into the right
subtree of the root node. Output the resulting tree.

Thus one can compute, for any word u ∈ A∗, a pair of twin binary
search trees Pbaxt(u) = (TL, TR), where TR is Psylv(u) and TL is obtained
by starting with an empty left strcit binary search tree and successively
inserting the symbols of u, proceeding left-to-right through the word. For
example, Pbaxt(42531643) is (9.1).

A reading of a pair of twin binary search trees (TL, TR) is a word u such
that Pbaxt(u) = (TL, TR). It is easy to see that a reading of (TL, TR) is a
word formed from the symbols appearing in the two binary trees TL and
TR (which, by definition, contain the same symbols), ordered so that every
symbol from a parent node in TL appears to the left of those from its children
in TL, and every symbol from parent node in TR appears to the right of those
from its children.

Define the relation ≡baxt by
u ≡baxt v ⇐⇒ Pbaxt(u) = Pbaxt(v),

for all u, v ∈ A∗. The relation ≡baxt is a congruence, and the Baxter monoid,
denoted baxt, is the factor monoid A∗/≡baxt; the Baxter monoid of rank n,
denoted baxtn, is the factor monoid A∗

n/≡baxt (with the natural restriction
of ≡baxt). Each element [u]≡baxt

(where u ∈ A∗) can be identified with the
pair of twin binary search trees Pbaxt(u). The words in [u]≡baxt

are precisely
the readings of Pbaxt(u).

The monoid baxt is presented by 〈A |Rbaxt〉, where
Rbaxt = { (cudavb, cuadvb) : a ≤ b < c ≤ d, u, v ∈ A∗ }

∪ { (budavc, buadvc) : a < b ≤ c < d, u, v ∈ A∗ };

see [14, Definition 3.1]. The monoid baxtn is presented by 〈An |Rbaxt〉, where
the set of defining relations Rbaxt is naturally restricted to A∗

n × A∗
n. Note

that baxt and baxtn are multihomogeneous.
There is a straightforward method for extracting every possible reading

from a pair of binary search trees (TL, TR):
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Method 9.2. Input: A pair of twin binary search trees (TL, TR).
Output: A reading of (TL, TR).
(1) Set (UL, UR) to be (TL, TR). (Throughout this computation, UL is a

forest of left strict binary search trees and UR is a right strict binary
search tree.)

(2) If UL and UR are empty, halt.
(3) Given some (UL, UR), choose and output some symbol a that labels

a root of some tree in the forest UL and a leaf of the tree UR.
(4) Deleting the corresponding root vertex of UL and the corresponding

leaf vertex of UL.

This is essentially [14, Algorithm on p.133], except that the method given
here is non-deterministic in that there may be several choices for a in step 3.
As these choices vary, all possible readings of (TL, TR) are obtained.

Proposition 9.3. Connected components of K(baxt) are properly contained
in ≡ev-classes.

Proof. Connected components of K(baxt) are ∼∗-classes, and by Lemma 2.1,
∼∗ ⊆ ≡ev. It thus remains to prove that equality does not hold. Since all
the defining relations in Rbaxt have length at least 4, it follows that none of
these relations can be applied to words of length 3. Thus all length-3 words
represent distinct elements of baxt. Therefore the words in {123, 231, 312}
represent all the elements in one ∼∗-class in baxt (and thus one connected
component of K(baxt). The word 132 is not in this set, but is in the same
≡ev-class. This completes the proof. �

A natural question at this point is whether ∼∗ and ≡ev do not coincide in
baxt only for the slightly trivial reason that relations in Rbaxt do not apply
to words of length 3, and that perhaps ∼∗ and ≡ev coincide for elements
represented by words of length 4 or more. However, consider the elements
of baxt represented by the words 1243, 2431, 4312, and 3124:

Pbaxt(1243) =


1

2

4

3

,

3

2

1

4


Pbaxt(2431) =

 2

1 4

3

,
1

3

2 4



Pbaxt(4312) =


4

3

1

2

,

2

1 3

4


Pbaxt(3124) =

 3

1

2

4 ,
4

2

1 3
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It is straightforward to prove that there is exactly one reading of each of these
pairs of twin binary search trees: for example, consider extracting a reading
from Pbaxt(2431). Following Method 9.2, (UL, UR) is initially Pbaxt(2431).
The first output symbol must be 2, since this is the unique root in UL.
Deleting the corresponding vertices yields

(UL, UR) =

 1 4

3

,
1

3

4


From this point onwards, there will be exactly one leaf vertex in UR, and so
only one choice for the symbol to output. Hence the method must output
4, 3, 1. Hence the unique reading of Pbaxt(2431) is 2431.

Hence the element represented by the words in {1243, 2431, 4312, 3124}
form a single ∼∗-class and so (for example) 1234 and 1243 are not related
by ∼∗.

Question 9.4. (1) Is there a characterization of ∼∗-classes in baxt?
(2) Is there a bound on the diameter of ∼∗-classes in baxtn?

10. Questions

Question 10.1. For each monoid M ∈ {plac, hypo, sylv, stal, taig, baxt}, is
there an efficient algorithm that takes two elements T,U ∈ M such that
T ≡ev U and computes the distance between them in K(M)?

With regard to the previous question, note that it is always possible to
compute the distance via a brute-force computation: one could build the
entire connected component K(M, T ), then find the shortest path from T
to U . The question is whether this can be done efficiently. Note that the
strategies for constructing paths in the various proofs in this paper do not
in general find shortest paths between two elements; see Example 5.8.

11. Appendix: Conjugacy

In a group, the relation ∼ is simply the usual notion of conjugacy. The
concept of cyclic shifts can thus be viewed in an algebraic way as a general-
ization to monoids of the concept of conjugacy in groups. Another possible
generalization, introduced by Otto [22], is o-conjugacy, defined by
(11.1) x ∼o y ⇐⇒ (∃g, h ∈M)(xg = gy ∧ hx = yh).

The relation ∼o is an equivalence relation. The following result describes
how ∼o is related to ∼ and ≡ev:

Proposition 11.1. (1) In any monoid, ∼∗ ⊆ ∼o.
(2) In any multihomogeneous monoid ∼o ⊆ ≡ev.

Proof. For the first part, see [23, § 1]. For the second part, see [15, Lemma 3.2].
�

Thus in a multihomogeneous monoid, ∼∗ ⊆ ∼o ⊆ ≡ev. Since ∼∗ = ≡ev in
the plactic, hypoplactic, sylvester, and taiga monoids, in these settings ∼o

coincides with ∼∗ and ≡ev and thus is not of independent interest. How-
ever, it turns out that ∼o and ≡ev coincide in the stalactic and Baxter
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monoids. (Recall that ∼∗ is strictly contained in ≡ev in both these monoids;
see Propositions 7.2 and 9.3.)

Proposition 11.2. In stal, the relations ∼o and ≡ev coincide.

Proof. Let u, v ∈ A∗ be such that u ≡ev v. In particular, Pstal(u) and Pstal(v)
both have m columns, for some m ∈ N. For i ∈ {1, . . . ,m}, let ai ∈ A be
the symbol that appears in the i-th column of Pstal(u) and let bi ∈ A be the
symbol that appears in the i-th column of Pstal(v). Let g = a1 · · · am and
h = b1 · · · bm. Notice that every symbol that appears in u and v appears
exactly once in g and h. Hence gu ≡ev vg and uh ≡ev hv. Furthermore, the
order of rightmost appearances of symbols in gu and vg is identical; together
with gu ≡ev vg, this implies that Pstal(gu) = Pstal(vg). Thus gu ≡stal vg.
Similarly, uh ≡stal hv. Hence u ∼o v. This proves that ≡ev ⊆ ∼o. The
opposite inclusion follows from Proposition 11.1(2). �

Proposition 11.3. In baxt, the relations ∼o and ≡ev coincide.

Proof. Let p, q ∈ A∗ be such that p ≡ev q. By [24, Proposition 3.8], ppq ≡baxt

pqq and qpp ≡baxt qqp. Hence pg ≡baxt gq with g = pq, and hp ≡baxt qh with
h = qp. Thus p ∼o q. This proves that ≡ev ⊆ ∼o. The opposite inclusion
follows from Proposition 11.1(2). �
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