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Abstract— Under multi-treatment regression analysis, instead of
a sample for each treatment of a linear model, there is a linear
regression in the same variables. Then, instead of the action of
the treatments on the sample mean values, the action on regression
coefficients is studied. When data is unbalanced, the regression
matrices differs between regressions. This problem is solved through
the use of a block-wise diagonal covariance matrix in the ANOVA
procedures. The methodology was then applied to data obtained
from experiments of electrodialtic removal of 3 heavy metals from
contaminated wood. First, polynomial regressions of the 4th and 3rd
were fitted to each metal concentration in the electrolytes through
time. Then the unbalanced case of multi-treatment regression analysis
was applied aiming to choose the best treatment in jointly removing
the 3 metals. Results pointed to the choice of treatment 1 as the most
efficient.

Keywords— ANOVA, F tests, multiple regression, Scheffé multiple
comparison, unbalanced data.

I. I NTRODUCTION

The present paper is weighted either toward the method-
ology developed either for its application using real data
situation. The methodology developed, concerning the multi-
treatment regression analysis for the unbalanced case, is ex-
posed and its utility is demonstrated simultaneously through
the application. Some emphasis is given to the case study,
since it can interest from the point of view of modeling
and problem solving. However, in this paper the case study
should be viewed as a mean to explain and demonstrate the
applicability of the method.

In a multi-treatment regression model, for each treatment
- combination of factors levels - of a linear base model,
instead of a random sample, there is a multiple regression
in the same variables, both controlled and dependent [2],
[6], [7]. The linear base model can be for instance an one-
way, a two-way layout ANOVA, a factorial model with fixed
effects, a cross-nested model, etc [1], [5], [6]. The multiple
regressions will correspond to the treatments of this linear
base model. Then, instead of the influence of the treatments
on the sample mean values of the samples, the influence
on the regression coefficients is studied. ANOVA algorithms
and multiple comparison methods are adapted to perform the
comparison between the coefficients of different regressions.

In a previous paper, a similar case study was treated using
the regular case of multi-treatment regression analysis [7]. In
that case study the data was balanced, i.e., the number of
observations in each regression assigned to a treatment was the
same. However, in the present paper we present the solution
for the case of having different observations for regression,
that is, different model matrices.

II. M ULTI -TREATMENT REGRESSION ANALYZES: THE

UNBALANCED CASE

Suppose that there areL treatments in a linear base model,
thusL multiple regressions all withk controlled variables

yl = Xlβl + el, l = 1, ..., L

whereyl =







yl1
...

ylnl






is the vector of observations withnl

components and mean vectorµl = Xlβl, l = 1, ..., L,

Xl =













1 x
(l)
11 · · · x

(l)
1k

1 x
(l)
21 . . . x

(l)
2k

...
...

1 x
(l)
nl1

· · · x
(l)
nlk













nl×(k+1)

is the model matrix for thel-th regression with linearly
independent column vectors, thusRank(Xl) = k + 1.

βl =







βl0

...
βlk






is the vector of coefficients, andel =







el1
...

elnl






is the vector of the random error for thel-th

regression,l = 1, ..., L. We assume as usually, thatel, l =
1, ..., L is normally distributed with null mean value and
covariance matrixσ2Inl

and in order to perform a multi-
treatment regression analysis, we also have to assume that
there are independence and equality of variancesσ2 between
the different regressions - homoscedasticity. This assumption
is reasonable in this kind of analysis, since the regressions are
always of the same type, thus the variances should be similar
across the regressions even with different sample sizes.

In the regular case of multi-treatment regression, the model
matrix X is the same for all regressions, here, as presented,
we can have different model matrices in the regressions.

The estimators for the vectors of coefficients are normal and
given by

β̃l =
(

Xl
TXl

)

−1

Xl
Tyl

∼ N(βl, σ
2
(

XT
l Xl

)

−1
), l = 1, ..., L

(1)

and are also independent from the sum of square for errors of
the regressionSSEl = yl

Tyl − yl
TXlβ̃l ∼ σ2χ2

nl−k−1, l =
1, ..., L [5].

Now, let a be a vector of coefficients for a linear combina-
tion of the regression coefficientsy∗l = aT β̃l with mean value
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µ∗

l = aTβl, l = 1, ..., L. The vector of the linear combinations
of the regression coefficients for theL regressionsy∗ =








y∗1
...

y∗L









with mean vectorµ∗ =









µ∗

1

...

µ∗

L









will be the vector of

observations used in the base model. Then, it is easy to prove
that

{

µ∗ = [aTβ1...a
TβL]

T = [IL ⊗ aT ][βT
1 ...β

T
L ]

T

y∗ = [aT β̃1...a
T β̃L]

T = [IL ⊗ aT ][β̃
T

1 ...β̃
T

L ]
T

[6], and

COV(y∗) = [IL ⊗ a
T ]COV

(

[β̃
T

1
...β̃

T

L ]
T
)

[IL ⊗ a
T ]T

where⊗ is the Kronecker product of matrices [9]. Now, on
account of (1)

COV
(

[β̃
T

1
...β̃

T

L ]
T
)

= σ
2
D

(

(XT
1 X1)

−1
, ..., (XT

LXL)
−1

)

whereD
(

(XT
1 X1)

−1, ..., (XT
LXL)

−1
)

is a matrix block-wise
diagonal [6]. So,

y∗ ∼ N(µ∗, σ2W∗)

with

W
∗ = [IL ⊗ a

T ]D
(

(XT
1 X1)

−1
, ..., (XT

LXL)
−1

)

[IL ⊗ a
T ]T .

In a multi-treatment regression analysis the usual aim is to
compare thek homologue coefficients of theL regressions,
choosing the followinga vectors:

aT = [1 0 ... 0] ⇒ y∗l = aT β̃l = β̃l,1 ⇒ y∗ =









β̃1,1

...

β̃L,1









,

for l = 1, ..., L;
...

aT = [0 0 ... 1] ⇒ y∗l = aT β̃l = β̃l,k ⇒ y∗ =









β̃1,k

...

β̃L,k









,

for l = 1, ..., L.

A. Test of hypotheses

We may want to test hypotheses about the influence of the
treatments on the linear combinations of regression coefficients

H0(j) : Ajµ
∗ = 0, j = 1, ...,m

where Aj is a matrix of contrasts with null sums for the
elements in the different rowsj = 1, ...,m, with m the number
of hypotheses to test regarding the parameters of the linear
base model [1], [6]. These matrices are used to correctly
formulate the null hypothesis. An example of this matrix for
one-way ANOVA base model withL treatments is

A1 =





1

1

.

.

.
1

−1

0

.

.

.
0

0

−1

.

.

.
· · ·

· · ·

· · ·

.
.
.

0

0

0

.

.

.
−1





(L−1)×L

, with

Rank(A1) = L− 1.

Note that testingH0 : A1µ
∗ = 0 is equivalent to testH0 :

β1,i = ... = βL,i, i = 1, ..., k. For a two-way base model
and more complex linear models a general formulation for
Aj , j = 1, ...,m can be found in [6].

Now, let ηj = Ajµ
∗ and η̃j = Ajy

∗, then

η̃j ∼ N(ηj , σ
2W∗

j ), j = 1, ...,m

where

W
∗

j = Aj [IL⊗a
T ]D

[

(XT
1 X1)

−1
, ..., (XT

LXL)
−1

]

[IL⊗a
T ]TAT

j

and we have the sum of squares for the treatments

SSTj = η̃T
j W

∗

j
+
η̃j ∼ σ2χ2

rj,δj

where rj = Rank(W∗

j ) and δj = 1
σ2η

T
j W

∗

j
+ηj , j =

1, ...,m, whereW∗

j
+ is the generalized inverse of Moore-

PenRose [9].
SinceSSTj, j = 1, ...,m is independent from each sum of

squares for the errors of theL regressions, is also independent
from the sum of those sums

SSSE =

L
∑

l=1

SSEl ∼ σ2χ2
g

with g =
∑L

l=1 (nl − k − 1). Then, we can use theF test
statistics

Fj =
g

rj

SSTj

SSSE
∼ F (z|rj , g, δj), j = 1, ...,m

to test theH0(j), j = 1, ...,m [2], [3], [6], [8]. When H0(j)
holds then,δj = 0, j = 1, ...,m and

Fj =
g

rj

SSTj

SSSE
∼ F (z|rj , g)

i.e., Fj has centralF distribution with rj and g degrees of
freedom. ThenH0(j) is rejected at the significance levelq test,
if Fj > F1−q,rj ,g, j = 1, ...,m, with F1−q,rj ,g the (1 − q)-
th quantile for anF distribution with rj and g degrees of
freedom,j = 1, ...,m.

B. Scheff́e multiple comparison method
Using the Scheffé theorem [8], we have

Pr





⋂

d





∣

∣

∣d
T

ηj − d
T

η̃j

∣

∣

∣ 6

√

√

√

√rjF1−q,rj ,gdT W∗
j
d

SSSE

g







 = 1 − q

where
⋂

d

indicates that all vectorsd ∈ R
n are considered.

So, the simultaneous confidence intervals with joint confidence
level q for all thedTηj , are given by the inequalities

∣

∣dTηj − dT η̃j

∣

∣ 6

√

rjF1−q,rj ,gd
TW∗

jd
SSSE

g
(2)

[4], [8]. When dTηj = 0, the inequality (2) can not be
satisfied if

∣

∣0− dT η̃j

∣

∣ >

√

rjF1−q,rj ,gd
TW∗

jd
SSSE

g
(3)

then, we can conclude thatdTηj is significantly different from
0 at significance levelq [4]. For instance, taking

d =
[

0 · · · 0 1 0 · · · 0 −1 0 · · · 0
]T
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TABLE I

EXPERIMENTAL CONDITIONS(TREATMENTS)

Treatments Assisting agent Initial current Duration
(mA) (days)

1 2.5% oxalic acid 40 14
2 2.5% oxalic acid 60 14
3 2.5% oxalic acid 120 14
4 5.0% formic acid:

2.5% oxalic acid 40 14

where the values 1 and -1 correspond to thel-th l′-th vector
components, we get

dTηj = ηl − ηl′

and we can detect which pairs of components ofηj , j =
1, ...,m differ significantly [4], [8].

III. C ASE STUDY

Electrodialytic remediation is a method that uses a direct
electric current as cleaning agent. Chromated copper arsenate
(CCA) is the most common formulation that has been used to
preserve wood. In spite of CCA usefulness, due to its strong
fixation in wood, chromium and arsenic are hazardous to
human health and present a potential threat to the environment.
The movement of charged particles in an electrical field is
applied to CCA-treated wood waste, to assist Cu (copper), Cr
(Chromium) and As (Arsenic) removal.

Experiments of electrodialytic remediation were conducted
using wood chips from wood treated with CCA. For the
statistical analysis of data collected from experiments, the
treatments to be compared were defined by: a) the type and
percentage of the extracting solution used to saturate the wood
waste; b) the initial current passing through the electrodialytic
cell and c) duration of the procedure.

Several electrodialytic experiments were carried out in a
electrodialytic cell and use different extracting solutions, initial
currents, and durations. Experimental conditions, correspond-
ing to each different combination of those factors will define a
treatment of the wood chips. During each experiment, samples
of the electrolyte solutions were periodically collected and
analyzed for Cu, Cr and As determination.

After a first selection, based on another kind of data,
just 4 experiments corresponding to the different treatments
presented in Table 1 were selected to be analyzed under
multi-treatment regression analysis. In Table 2, the collected
data is presented and in Figure 1, the same data is presented
graphically.

In Table 2, we can observe that the data is unbalanced, i.e,
different number of observations per treatment are available. In
the treatment 1, 2 and 3, one observation per day of experiment
was collected. However, in treatment 2 and 3 something went
wrong in the last day of experiments and the observation could
not be collected correctly, thus it had to be eliminated. For
treatment 4, more than one observation per day was collected.
Our main concern was to compare the time evolution of the
4 experiments without having to throw away some of the
available data.

TABLE II

EXPERIMENTAL DATA : CONCENTRATION OF EACH HEAVY METAL IN THE

ELECTROLYTE SOLUTIONS COLLECTED DURING THE TIME OF THE

EXPERIMENTS(14 DAYS)

Treat. 1 Treat. 2 Treat. 3 Treat. 4
days Cu Cr As Cu Cr As Cu Cr As days Cu Cr

0 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.15 0.0 0.00 0.00
1 2.99 2.94 15.99 1.69 2.94 11.04 1.59 2.79 10.47 0.5 0.00 0.00
2 2.61 4.80 21.14 2.14 4.75 12.35 2.13 3.88 12.65 0.6 0.03 0.04
3 3.11 5.73 22.40 2.54 5.54 16.51 2.57 4.22 18.76 0.7 0.31 0.24
4 3.76 6.19 25.70 2.81 6.03 20.16 2.95 4.37 19.65 0.8 0.66 0.39
5 4.18 6.21 30.55 4.13 6.32 30.09 3.43 4.37 20.67 1.5 0.42 2.56 15.49
6 4.60 6.23 35.39 4.32 6.10 32.72 3.90 4.38 20.64 2.5 2.49 3.85 20.00
7 4.54 6.03 38.06 4.57 5.95 29.53 4.44 4.31 20.91 3.4 2.29 4.16 27.73
8 4.59 5.77 37.75 4.78 5.90 31.22 5.21 4.43 20.80 3.7 2.42 4.14 28.86
9 4.61 5.37 38.55 4.89 5.63 34.73 5.44 4.58 21.45 4.4 3.09 3.91 30.13

10 4.60 5.17 37.21 5.04 5.51 35.07 5.70 4.55 21.38 4.7 2.77 3.78 29.42
11 4.39 4.81 36.84 5.27 5.68 33.56 5.97 4.52 21.45 5.4 4.03 3.36 30.26
12 4.18 4.45 36.48 5.25 5.58 34.69 6.46 4.52 20.88 6.4 5.45 2.81 29.71
13 2.22 4.98 36.95 5.08 5.21 35.91 6.99 4.89 22.50 7.4 6.85 2.32 30.28
14 1.99 4.74 37.46 8.0 6.89 1.92 31.15

9.4 6.93 1.52 32.03
10.4 7.00 1.25 32.33
11.4 7.28 1.09 32.65
12.4 7.56 0.91 32.68
13.4 7.37 0.79 32.34
14.4 6.10 0.70 32.44

Fig. 1. Concentration of Cu, Cr and As in the electrolytes through time

A multi-treatment regression analysis, the unbalanced case,
was then used to compare the 4 different treatments with the
aim to find the most efficient treatment for removal all heavy
metals in the shortest possible time.

A. Modeling

Before proceeding to the multi-treatment regression anal-
ysis, in order to perform the comparison between the 4
treatments, polynomial regressions were fitted to the data in
Figure 1. Using standard statistical techniques, namely the
least squares method and significance tests for regression
coefficients [5], a 4th-degree polynomial regression

y = β1t+ β2t
2 + β3t

3 + β4t
4 + e

was fitted for Cu and Cr, while for As a 3rd-degree polynomial
regression

y = β1t+ β2t
2 + β3t

3 + e

was fitted, wheret is time in days,y the concentration of
the heavy metals in the electrolytes,βi, i = 1, 2, 3, 4 are the
regression coefficients ande error term for which it is assumed
the normality with zero mean value and varianceσ2 (equality
of variances). The adjusted polynomials are homogeneous
since at time 0 no metal would have been removed. The
estimates of the regression coefficients for the 4 treatments
and the values of theR2 are presented in Table 3.

We also decided to obtain the instantaneous removal speed
given by the 1st derivatives of the polynomials. In the case of
4th-degree polynomial, the expression of the removal speed
are given by

y = β1 + 2β2t+ 3β3t
2 + 4β4t

3 + e.

This removal speed is important, since in our aim the duration
of the removal process should be the shortest possible and the
first impulse for heavy metals mobilization to the electrolytes
is crucial to this duration. Moreover, the coefficient of lower
degree oft, β1, has a high weight in the regression (Table 3),
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Fig. 2. 4th degree polynomials fitted to Cu concentrations and corresponding
removal speed

Fig. 3. 4th degree polynomials fitted to Cr concentrations and corresponding
removal speed

thus it is relevant for the determination of the initial speed of
heavy metals mobilization to the electrolytes.

In Figures 2, 3 and 4 are graphically presented the 4th and
3rd degree polynomials fitted to Cu, Cr and As concentrations
respectively, as well as the corresponding curves for the
removal speed.

B. Multi-treatment regression analysis of the heavy metals
concentrations

In this section, we are going to apply the multi-treatment
regression analysis to our problem. As a starting point, there
are 4 polynomial regressions of the 4th degree for Cu and Cr
and 3rd degree for As, fitted to each metal concentrations in
the electrolytes through time. Next, we are going to exemplify
the procedure just for the 4th degree polynomials.

Let

yl = Xlβl + el, l = 1, 2, 3, 4

be the 4 polynomials in matrix notation, whereβl =
[βl,1 βl,2 βl,3 βl,4]

T are vector of coefficients for thel-th
polynomial,

X1 =





















1 1 1 1
2 4 8 16
3 9 27 81
4 16 64 256
5 25 125 625
6 36 216 1296
7 49 343 2401
8 64 512 4096
9 81 729 6561

10 100 1000 10000
11 121 1331 14641
12 144 1728 20736
13 169 2197 28561
14 196 2744 38416





















is the model matrix for treatment 1, in which we had one
observation per day during 14 days. The model matrix for
treatment 2 and 3 is equal to that for treatment 1 without the

Fig. 4. 3rd degree polynomials fitted to As concentrations and corresponding
removal speed

TABLE III

ESTIMATES FOR THE REGRESSION COEFFICIENTS

Treatment
1 2 3 4

Copper β̃4 -0.001 0.000 -0.001 0.001
β̃3 0.036 0.013 0.030 -0.023
β̃2 -0.393 -0.167 -0.296 0.240
β̃1 2.079 1.326 1.230 0.090

R2 0.760 0.960 0.900 0.970
SSE 2.843 0.779 0.396 3.860

Chromium β̃4 -0.001 -0.002 -0.002 0.000
β̃3 0.041 0.057 0.061 0.021
β̃2 -0.596 -0.698 -0.668 -0.371
β̃1 3.364 3.514 2.968 2.089

R2 0.970 0.990 0.810 0.860
SSE 0.294 0.089 0.574 5.744

Arsenic β̃3 0.033 0.016 0.045 0.007
β̃2 -1.047 -0.619 -1.111 -0.478
β̃1 10.950 8.009 8.702 7.518

R2 0.910 0.940 0.900 0.900
SSE 70.619 62.812 16.166 257.269

last line, and

X4 =

































0.51 0.26 0.13 0.07
0.58 0.34 0.20 0.12
0.68 0.47 0.32 0.22
0.77 0.59 0.45 0.35
1.48 2.18 3.21 4.73
2.46 6.07 14.97 36.90
3.39 11.46 38.80 131.36
3.68 13.52 49.71 182.80
4.42 19.51 86.18 380.64
4.72 22.27 105.07 495.80
5.39 29.05 156.55 843.76
6.39 40.85 261.12 1669.00
7.39 54.67 404.20 2988.54
8.00 64.00 512.00 4096.00
9.42 88.67 835.01 7863.01

10.43 108.72 1133.67 11820.92
11.42 130.39 1488.87 17000.99
12.42 154.17 1914.32 23769.50
13.43 180.23 2419.60 32483.08
14.43 208.14 3002.86 43322.56

































is the model matrix for treatment 4, in which we had more
than one observation per day.

In this 4-treatments regression approach, we want to com-
pare corresponding regression coefficients of the same con-
trolled variable (power oft) between the 4 treatments. In order
to do this, we take

1) aT = [1 0 0 0] to compare the coefficient oft ;
2) aT = [0 1 0 0] to compare the coefficient oft2 ;
3) aT = [0 0 1 0] to compare the coefficient oft3 ;
4) aT = [0 0 0 1] to compare the coefficient oft4 .

The base model for our problem was the simplest one: the
one-way ANOVA with fixed effects and 4 treatments. The null
hypotheses that we want to test for each metal are

H0 : η1 = A1µ
∗ = 0

with

A1 =

[

1 -1 0 0
1 0 -1 0
1 0 0 -1

]

,

which is equivalent to test

1) H1
0 : β1,1 = β2,1 = β3,1 = β4,1 equality of coefficient

for t ;
2) H2

0 : β1,2 = β2,2 = β3,2 = β4,2 equality of coefficient
for t2;

3) H3
0 : β1,3 = β2,3 = β3,3 = β4,3 equality of coefficient

for t3;
4) H4

0 : β1,4 = β2,4 = β3,4 = β4,4 equality of coefficient
for t4.

To find significant differences between each pair of treat-
ments, the Scheffé multiple comparison method was applied to
the cases for which we had significantF tests. The inequality
in equation (3) was verified for the 6 pairwise comparisons

1) dT η̃1 = β1,i − β2,i takingdT = [1 − 1 0 0];
2) dT η̃1 = β1,i − β3,i takingdT = [1 0 − 1 0];
3) dT η̃1 = β1,i − β4,i takingdT = [1 0 0 − 1];
4) dT η̃1 = β2,i − β3,i takingdT = [0 1 − 1 0];
5) dT η̃1 = β2,i − β4,i takingdT = [0 1 0 − 1];
6) dT η̃1 = β3,i − β4,i takingdT = [0 0 1 − 1],

for the regression for the same power oft, i = 1, ..., k = 4.

C. Results and discussion

The results obtained for theF tests at a 5% of significance
are presented in Table 4. For the Cu, the the null hypothesis
was rejected for all powers oft, for the Cr just fort and t2,
and finally for As just fort.
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TABLE IV

RESULTS OF THEF TESTS FOR5% OF SIGNIFICANCE FORCU, CR AND AS

Cu
SQT d.f. F F0.95;3;44

H1
0 - coefficient oft 15.342 3 29.213 2.816

H2
0 - coefficient oft2 11.568 3 22.027

H3
0 - coefficient oft3 6.300 3 11.997

H4
0 - coefficient oft4 3.791 3 7.219

SSSE 7.877 44
Cr

SQT d.f. F F0.95;3;44

H1
0 - coefficient oft 3.811 3 8.341 2.816

H2
0 - coefficient oft2 1.328 3 2.906

H3
0 - coefficient oft3 1.241 3 2.716

H4
0 - coefficient oft4 1.228 3 2.688

SSSE 6.701 44
As

SQT d.f. F F0.95;3;48

H1
0 - coefficient oft 75.855 3 2.983 2.798

H2
0 - coefficient oft2 65.075 3 2.559

H3
0 - coefficient oft3 63.357 3 2.492

SSSE 257.269 48

The results of the Scheffé pairwise comparison method, also
at 5% significance, are presented in Table 5. The results for
the Cu can be resumed in following way:

• For β1, there are significant differences between treat-
ments 1 and 4, 2 and 4, and 3 and 4;

• For β2, there are significant differences between treat-
ments 1 and 4, 2 and 4, and 3 and 4;

• For β3, there are significant differences between treat-
ments 1 and 4 and 3 and 4;

• For β4, there are significant differences between treat-
ments 1 and 4.

This results enable us to separate significantly, at the 5% level,
the treatment 1 from the other three treatments. The maximum
value ofβ1 is attained for treatment 1, which is equivalent to
saying that treatment 1 (2.5% percentage of oxalic acid and 40
mA ) is the treatment with the highest initial speed, followed
by treatments 2, 3 and 4 (Table 3, Fig. 2, 3, 4). Thus, given the
weight ofβ1 in the regression and in the removal speed of Cu,
it may be concluded that, treatment 1 is the best one, since it
has the highestβ1 coefficient, meaning an higher initial speed
of mobilization of Cu into the electrolytes.

Regarding Cr, there are significant differences forβ1, be-
tween treatments 1 and 4 and treatments 2 and 4, while for
β2 just between treatments 2 and 4. So, it can be concluded
that there are significant differences between treatment 4 and
treatments 1 and 2, but treatment 3 is not significantly different
from 4. Moreover, the maximum value forβ1 is attained
for treatment 2, followed closely by treatment 1, after which
comes treatments 3 and 4 (Table 3). Sinceβ1 has much
more weight in the regression than the other coefficients, we
can select both treatment 2 and 1 as being the best ones in
mobilizing Cr into the electrolytes.

As for As, significant differences for theβ1 coefficient
were only found between treatments 1 and 4. However, the
maximum value forβ1 is attained for treatment 1, exceeding
considerably the values for the other treatments. Thus, treat-
ment 1 can also be selected with some confidence, as being
the treatment with the best initial speed of As removal.

The results obtained from this analysis allowed us to con-
clude, mainly on account of the initial speed of removal, that:

• For Cu, oxalic acid was the best extracting solution and

TABLE V

SCHEFFÉ PAIRWISE COMPARISON- RESULTS FORCU, CR AND AS

(α = 5%)

Cu
Treatments 1omember 2omember significantly

different
Coefficient oft

1 1 and 2 0.75310 1.28177 no
2 1 and 3 0.84847 1.28177 no
3 1 and 4 1.98894 0.85568 yes
4 2 and 3 0.09537 1.34997 no
5 2 and 4 1.23584 0.95482 yes
6 3 and 4 1.14047 0.95482 yes

Coefficient oft2

1 1 and 2 0.22593 0.50361 no
2 1 and 3 0.09646 0.50361 no
3 1 and 4 0.63271 0.32749 yes
4 2 and 3 0.12947 0.54715 no
5 2 and 4 0.40679 0.39115 yes
6 3 and 4 0.53625 0.39115 yes

Coefficient oft3

1 1 and 2 0.02271 0.06178 no
2 1 and 3 0.00554 0.06178 no
3 1 and 4 0.05876 0.03949 yes
4 2 and 3 0.01717 0.06906 no
5 2 and 4 0.03605 0.05012 no
6 3 and 4 0.05323 0.05012 yes

Coefficient oft4

1 1 and 2 0.00083 0.00238 no
2 1 and 3 0.00024 0.00238 no
3 1 and 4 0.00182 0.00148 yes
4 2 and 3 0.00058 0.00273 no
5 2 and 4 0.00100 0.00200 no
6 3 and 4 0.00158 0.00200 no

Cr
Treatments 1omember 2omember significantly

different
Coefficient oft

1 1 and 2 0.15034 1.19669 no
2 1 and 3 0.39549 1.19669 no
3 1 and 4 1.27483 1.02039 yes
4 2 and 3 0.54583 1.26036 no
5 2 and 4 1.42517 1.09437 yes
6 3 and 4 0.87935 1.09437 no

Coefficient oft2

1 1 and 2 0.10135 0.47018 no
2 1 and 3 0.07185 0.47018 no
3 1 and 4 0.22529 0.38547 no
4 2 and 3 0.02950 0.51083 no
5 2 and 4 0.32664 0.32413 yes
6 3 and 4 0.29714 0.32413 no

As
Treatments 1omember 2omember significantly

different
Coefficient oft

1 1 and 2 2.94127 4.41590 no
2 1 and 3 2.24865 4.41590 no
3 1 and 4 3.43238 3.38553 yes
4 2 and 3 0.69262 4.64833 no
5 2 and 4 0.49111 4.05992 no
6 3 and 4 1.18374 4.05992 no

40 mA the best initial current;
• For Cr, oxalic acid was the best extracting solution and

60 mA and 40 mA were the best initial currents;
• For As, oxalic acid was the best extracting solution and

40 mA the best initial current.

Thus, taking in consideration the global results for the three
metals, one can conclude that the best extracting solution is
in fact oxalic acid 2.5% and the best initial current is 40 mA.

IV. CONCLUSIONS

Regarding the method used, the unbalanced case of the
multi-treatment regression approach allows to perform an
ANOVA analysis with several factors having for each treat-
ment a regression model of the same type but with different
observations, i.e., different model matrices. This difficulty is
overcome through the use of block-wise diagonal covariance
matrices.

As for the case study, the application of the method allowed
us to conclude that the treatment 1 was the most efficient, i.e.,
in removing the three metals from the wood, the best assisting
agent was 2.5% oxalic acid and the best initial current was 40
mA.
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