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Multi-treatment regression analysis: the unbalance
case

Elsa Estevao Moreira and Joao Tiago Mexia

Abstract— Under multi-treatment regression analysis, instead of [I. MULTI-TREATMENT REGRESSION ANALYZES THE
a sample for each treatment of a linear model, there is a linear UNBALANCED CASE
regression in the same variables. Then, instead of the action of . .
the treatments on the sample mean values, the action on regressioUPPOSE that there aietreatments in a linear base model,
coefficients is studied. When data is unbalanced, the regressibtis L multiple regressions all witlk controlled variables
matrices differs between regressions. This problem is solved through
the use of a block-wise diagonal covariance matrix in the ANOVA yi=XiB+e,l=1,..,L
procedures. The methodology was then applied to data obtained un
from experiments of electrodialtic removal of 3 heavy metals from ] ] )
contaminated wood. First, polynomial regressions of the 4th and 3iherey; = : is the vector of observations with,
were fitted to each metal concentration in the electrolytes through
time. Then the unbalanced case of multi-treatment regression anal%%%

Yin,
was applied aiming to choose the best treatment in jointly removing ponents and mean veciay = X.3;,1=1,..., L,

the 3 metals. Results pointed to the choice of treatment 1 as the most 1 29 . L0
efficient. A 1k
1 20 20
Keywords— ANOVA, F tests, multiple regression, Scheffé multiple X; = 2 2k
comparison, unbalanced data. : :
1 2O 0
nl ek 4y x(k41)
I. INTRODUCTION is the model matrix for thel-th regression with linearly
The present paper is weighted either toward the methdfdependent column vectors, thiisink(X;) = k + 1.
ology developed either for its application using real data Bro _ o
situation. The methodology developed, concerning the multi-3; = : is the vector of coefficients, and, =
treatment regression analysis for the unbalanced case, is ex- B

posed and its utility is demonstrated simultaneously through ¢,
the application. Some emphasis is given to the case studly, .
since it can interest from the point of view of modeling|
and problem solving. However, in this paper the case stu %/elnz

should be viewed as a mean to explain and demonstrate %reSS|_on,l = 1, ""L.' We assume as usually, thet,I =
,..., L is normally distributed with null mean value and

applicability of the method. ) : . .
PP y_ . c?vanance matrixo21,,, and in order to perform a multi-
In a multi-treatment regression model, for each treatmen

S . lireatment regression analysis, we also have to assume that
- combination of factors levels - of a linear base mode

. . . there are independence and equality of variancéebetween
instead of a random sample, there is a multiple regression

in the same variables, both controlled and dependent | e different regressions - homoscedasticity. This assumption

[6], [7]. The linear base model can be for instance an On|e_reasonable in this kind of analysis, since the regressions are

way, a two-way layout ANOVA, a factorial model with fixedalWays of the same type, thus _the varances should_be similar
across the regressions even with different sample sizes.

effects, a cross-nested model, etc [1], [5], [6]. The multiple In the regular case of multi-treatment regression, the model

regressions will correspond to the treatments of this linear_, . ) .
. . atrix X is the same for all regressions, here, as presented,

base model. Then, instead of the influence of the treatments . . . )
we can have different model matrices in the regressions.

on the sample mean values of the samples, the ianuencel_ : .
. . . . . he estimators for the vectors of coefficients are normal and
on the regression coefficients is studied. ANOVA algonthmsven by

. : I
and multiple comparison methods are adapted to perform 1%e
comparison between the coefficients of different regressions. Bl _ (XITXI ! X, Ty,
In a previous paper, a similar case study was treated using 1

. ; ; ~N(B,0? (X]X;) ),l=1,...,L
the regular case of multi-treatment regression analysis [7]. In 1
that case study the data was balanced, i.e., the numberandl are also independent from the sum of square for errors of
observations in egch regression assigned to a treatment washkeeregressios SE; = y; Ty, — yi' X8, ~ chXf”_k_l, l=
same. However, in the present paper we present the solution., L [5].
for the case of having different observations for regression,Now, leta be a vector of coefficients for a linear combina-
that is, different model matrices. tion of the regression coefficiengg = a” 3, with mean value

is the vector of the random error for thieth

1)
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w; =alp,,l=1,.., L. The vector of the linear combinations Note that testing, : A;pu* = 0 is equivalent to test,, :
of the regression coefficients for the regressionsy* = f1; = ... = Br;,i = 1,...,k. For a two-way base model
(2 M1 and more complex linear models a general formulation for

with mean vectoru* = | : will be the vector of Aj,j=1,..,m can be foqu in [6].
: Now, letn;, = A;pu* andn; = A;y*, then
YL 03 _ o
observations used in the base model. Then, it is easy to prove n; ~ N(n, C’QWj)aJ =1..,m
that where
{,ﬁ =[a”B,..a7B, )T =1, ®a”|[8T...8% )" W = A;[I,®a"|D [(Xfxl)*l, (X}CXL)*] I, @a”] AT
. ~ ~ ~T =T
y'=[a"B,..a"8,]" = [y ®a"][B,..8.]" and we have the sum of squares for the treatments
[6], and SSTy =n; Wi, ~ a?x7, 5,
" ~T ~T
COV(y") = [I. ®a"]COV ([ﬂl ~-ﬂL]T) I o@a’]” where r; = Rank(W3) and §; = LHnIWitn,j =
. ; i '
where® is the Kronecker product of matrices [9]. Now, onb -+ 77 Where W7 is the generalized inverse of Moore-
account of (1) PenRose [9]. .
- SinceSST;,j = 1,...,m is independent from each sum of
cov ([ﬁl --ﬂL]T> =o’D ((Xhirxl)*l, . (XTIF,XL)71> squares for the errors of theregressions, is also independent
) ) . from the sum of those sums
whereD ((XTX;)7!, ..., (XTX)~!) is a matrix block-wise .
diagonal [6]. So, SSSE — ZSSEz N UQX;
vy~ N(p*, 0*W*) =1
with with ¢ = 32, (n; — k —1). Then, we can use th& test
. . . . ) o statistics
W* = [I, @ a”]D ((X1 X1) 7 (XEX ) ) 1 oa’". SST.
_ 9 L~ F(z2lrj,9,6,),5=1,...m
J TJSSSE 725 Y1 ) 9 9

In @ multi-treatment regression analysis the usual aim is {9 test thef, (4), j = 1, ...,m [2], [3], [6], [8]. When Hy(5)
compare thek homologue coefficients of thé regressions, po\ds theng; =0, = 1,...,m and

choosing the followinga vectors:

rA SST;
B 1 J O F .
., e 1=, 5558 ~ FEI9)
al =[10.00=y =a'B=0Fr=y = | | i.e., F; has centralF’ distribution withr; and g degrees of
| Bra| freedom. Therf,(j) is rejected at the significance levelest,
forl=1,..L; if 73 > Figr;g0J = 1,...,m, with Fy_g,.. , the (1 — ¢)-
: th quantile for anF" distribution with r; and g degrees of
[ Brr ] freedom,j =1, ..., m.
T _ x _ Tna _ n * .
al =[00.. 1=y =af =fr=y = | ' B. Sche# multiple comparison method
_BL ) Using the Scheffé theorem [8], we have
for 1 = Lo L Pr [ﬂ (‘dT"j _ dT"—j‘ < JTjFI,q . ngw*.d—SSSEﬂ =1-gq
d R 7 g
A. Test of hypotheses where ) indicates that all vectorel € R™ are considered.

. d . . . S .
We may want to test hypotheses about the influence of tBe, the simultaneous confidence intervals with joint confidence
treatments on the linear combinations of regression coefficietdsel ¢ for all the dTnj, are given by the inequalities

Ho(j) : Ajp" = 0,5 =1,..;m SSSE
where A; is a matrix of contrasts with null sums for the g

elements in the different rows= 1, ..., m, with m the number 54] [8]. When d”7. = 0, the inequality (2) can not be
E J
tly

|d"n; —d",| < \/TjFle.,ngW;d @

of hypotheses to test regarding the parameters of the lin isfied if
base model [1], [6]. These matrices are used to correc

formulate the null hypothesis. An example of this matrix for T . T g OOSE
one-way ANOVA base model witl, treatments is 0= d%a;[ >y [1iF1g.r,.0dTWd g @
1 -1 0 0
A, _ e _with then, we can conclude thdf n; is significantly different from
o Lo 0 at significance levef [4]. For instance, taking
oo e 0 =1 I(L-1)xL T
Rank(A1) = L — 1. d=[0 --- 01 .0 --- 0 =1 0 --- 0]
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15.49
20.00
27.73
28.86
30.13
29.42
30.26
29.71
30.28

TABLE | TABLE Il
EXPERIMENTAL CONDITIONS(TREATMENTS) EXPERIMENTAL DATA: CONCENTRATION OF EACH HEAVY METAL IN THE
ELECTROLYTE SOLUTIONS COLLECTED DURING THE TIME OF THE
Treatments Assisting agent Initial current  Duration EXPERIMENTS(L4 DAYS)
(mA) (days)
1 25% OXaliC aCid 40 14 Treat. 1 Treat. 2 Treat. 3 Treat. 4
0, H H days Cu Cr As Cu Cr As Cu Cr As days Cu Cr
2 2.5% oxal!c ac!d 60 14 0 000 000 011 000 000 000 000 000 015 00 000 000
3 2.5% oxalic acid 120 14 1 299 294 1599 169 294 1104 159 279 1047 05 000  0.00
. o 2 261 48 2114 214 475 1235 213 388 1265 06 003 004
4 5.0% formic acid: 3 311 573 2240 254 554 1651 257 422  18.76 07 031 024
0, i i 4 376 619 2570 281 603 2016 295 437 1965 08 066 039
2.5% oxalic acid 40 14 5 418 621 3055 413 632 3009 343 437 2067 15 042 256
6 460 623 3539 432 610 3272 390 438 2064 25 249 385
7 454 603 3806 457 595 2053 444 431 2091 34 229 416
8 459 577 3775 478 590 3122 521 443 2080 37 242 414
, 9 4.61 5.37 38.55 4.89 5.63 34.73 5.44 4.58 21.45 4.4 3.09 391
- - 10 4.60 517 37.21 5.04 5.51 35.07 5.70 4.55 21.38 4.7 277 3.78
where the values 1 and -1 correspond to fttle I'-th vector 11 439 481 3684 527 568 3356 597 452 2145 54 403 336
12 418 445 3648 525 558 3469 646 452 2088 64 545 281
components, we get 13 222 498 3695 508 521 3591 699 489 2250 74 685 232
. 14 199 474 3746 80 689 192 3115
_ 94 693 152 3203
d ny=m-—n 104 700 125 3233
114 728 109 3265
. . . 124 756 091 3268
and we can detect which pairs of componentsnof;j = 184 737 o079 3234
. L 144 610 070 3244
1, ..., m differ significantly [4], [8].
IIl. CASE STUDY Fig. 1. Concentration of Cu, Cr and As in the electrolytes through time

Electrodialytic remediation is a method that uses a direct
electric current as cleaning agent. Chromated copper arsenat& multi-treatment regression analysis, the unbalanced case,
(CCA) is the most common formulation that has been usediias then used to compare the 4 different treatments with the
preserve wood. In spite of CCA usefulness, due to its stroagm to find the most efficient treatment for removal all heavy
fixation in wood, chromium and arsenic are hazardous fpetals in the shortest possible time.
human health and present a potential threat to the environment.
The movement of charged particles in an electrical field g Modeling
applied to CCA-treated wood waste, to assist Cu (copper), Cr
(Chromium) and As (Arsenic) removal. Before proceeding to the multi-treatment regression anal-
Experiments of electrodialytic remediation were conductét$is, in order to perform the comparison between the 4
using wood chips from wood treated with CCA. For théreatments, polynomial regressions were fitted to the data in
statistical analysis of data collected from experiments, ti@gure 1. Using standard statistical techniques, namely the
treatments to be compared were defined by: a) the type df@st squares method and significance tests for regression
percentage of the extracting solution used to saturate the wé@gfficients [5], a 4th-degree polynomial regression
waste; b) the initial current passing through the electrodialytic . 2 3 4
cell and c) duration of the procedure. y = Pt + Bat” + Bst” + Bat” + e
Several electrodialytic experiments were carried out inwas fitted for Cu and Cr, while for As a 3rd-degree polynomial
electrodialytic cell and use different extracting solutions, initiakgression
currents, and durations. Experimental conditions, correspond- y = Bit + Pot® + B3t® + e
ing to each different combination of those factors will define a
treatment of the wood chips. During each experiment, sampl¥as fitted, wheref is time in days,y the concentration of
of the electrolyte solutions were periodically collected andie heavy metals in the electrolytes, i = 1,2,3,4 are the
analyzed for Cu, Cr and As determination. regression coefficients arderror term for which it is assumed
After a first selection, based on another kind of dat#e normality with zero mean value and variance(equality
just 4 experiments corresponding to the different treatmerfts variances). The adjusted polynomials are homogeneous
presented in Table 1 were selected to be analyzed undéice at time 0 no metal would have been removed. The
multi-treatment regression analysis. In Table 2, the collectggtimates of the regression coefficients for the 4 treatments
data is presented and in Figure 1, the same data is presef@d the values of th&” are presented in Table 3.
graphically. We also decided to obtain the instantaneous removal speed
In Table 2, we can observe that the data is unbalanced, g&en by the 1st derivatives of the polynomials. In the case of
different number of observations per treatment are available 4H1-degree polynomial, the expression of the removal speed
the treatment 1, 2 and 3, one observation per day of experimdff given by
was collected. However, in treatment 2 and 3 something went _ 42 3
wrong in the last day of experiments and the observation could Y= P14 200t + 305t + 4Bst" + e
not be collected correctly, thus it had to be eliminated. Fdihis removal speed is important, since in our aim the duration
treatment 4, more than one observation per day was collectefithe removal process should be the shortest possible and the
Our main concern was to compare the time evolution of thiest impulse for heavy metals mobilization to the electrolytes
4 experiments without having to throw away some of this crucial to this duration. Moreover, the coefficient of lower
available data. degree oft, 51, has a high weight in the regression (Table 3),
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Fig. 2. 4th degree polynomials fitted to Cu concentrations and correspondlagt line, and
removal speed _

051 0.26 0.13 0.07 ]

0.58 0.34 0.20 0.12

0.68 0.47 0.32 0.22

Fig. 3. 4th degree polynomials fitted to Cr concentrations and corresponding o 9% 9% 9%
removal speed 246 6.07 14.97 36.90
3.39 11.46 38.80 131.36

3.68 13.52 49.71 182.80

4.42 19.51 86.18 380.64

X4 — 4.72 2227 105.07 495.80

.. . . " ega 5.39 29.05 156.55 843.76
thus it is relevant for the determination of the initial speed of 639 4085 26112 1669.00
heavy metals mobilization to the electrolytes. 500 o400  Sioe0 400600
. . 9.42 88.67 835.01 7863.01

In Figures 2, 3 and 4 are graphically presented the 4th and 1043 10872 113367 1182092

. . . 11.42 130.39 1488.87 17000.99

3rd degree polynomials fitted to Cu, Cr and As concentrations 1242 15417 191432 2376950
. . 13.43 180.23 2419.60 32483.08
respectively, as well as the corresponding curves for the L 1443 20814 300286  4332256]

removal speed. is the model matrix for treatment 4, in which we had more

than one observation per day.
B. Multi-treatment regression analysis of the heavy metalsIn this 4—treatn_1ents regression apprpach, we want to com-
concentrations pare corresponding regression coefficients of the same con-

trolled variable (power of) between the 4 treatments. In order
In this section, we are going to apply the multi-treatmeng do this, we take

regression analysis to our problem. As a starting point, therey 7 _ 1000
are 4 polynomial regressions of the 4th degree for Cu and Cry) 7 _ 0100
and 3rd degree for As, fitted to each metal concentrations ing ]
the electrolytes through time. Next, we are going to exemplify 4)
the procedure just for the 4th degree polynomials.

to compare the coefficient df;
to compare the coefficient af ;
al =1[0 0 1 0] to compare the coefficient af ;
al’ =[0 0 0 1] to compare the coefficient af .

The base model for our problem was the simplest one: the

Let one-way ANOVA with fixed effects and 4 treatments. The null
yi=XiB+e,l=1,2,3,4 hypotheses that we want to test for each metal are
be the 4 polynomials in matrix notation, wherg, = Hy:my=A1pn" =0
[Bi1 B2 Bis B4t are vector of coefficients for theth .
polynomial, with a0 o
_ _ A= [ 1 0 4 0 :| N
1 1 1 1 1 0 0 -1
2 4 8 16
a1 o 2 which is equivalent to test
5 25 125 625 . . .
X, = | 7 s s o 1) Hj : f1a = P21 = Bs.1 = Ba1 equality of coefficient
1 8 64 512 409 for ¢ ;
9 81 729 6561 2 . . .
0o e e 2) H : Bia = P2 = P32 = Bao equality of coefficient
12 144 1728 20736 for t2,
13 169 2197 28561 . . .
L 14 196 2744 38416 3) HS’ : 1,3 = P23 = P33 = Pa,3 equality of coefficient
. . - - 3.
is the model matrix for treatment 1, in which we had one foit ' ) -
observation per day during 14 days. The model matrix for %) ]{{o ;451,4 = P24 = B34 = Ba,a equality of coefficient
or t*.

treatment 2 and 3 is equal to that for treatment 1 without the
To find significant differences between each pair of treat-

ments, the Scheffé multiple comparison method was applied to

Fig. 4. 3rd degree polynomials fitted to As concentrations and correspondik}e cases for which we had significafittests. The inequality
removal speed in equation (3) was verified for the 6 pairwise comparisons

TABLE Il [
T= _ - ; T _ _ .
ESTIMATES FOR THE REGRESSION COEFFICIENTS 2) qul = Pri— P tak!ng dT [10 =10
3) d' 7y = P1 — Pa,; takingd =[1 0 0 —1];
. ‘;reatment 3 . 4) dT'fh = 5271' — ﬂg_’i taklng dT = [O 1 -1 O],
T R TR 5) dily = fz; — fia; takingd! = [0 1 0 —1J
By | 0303 0167  -0.29 0.240 6) dT’ﬁl = ﬁ37i - 54,1‘ taklng d’ = [0 01 — 1],
B% 2.079 1.326 1.230 0.090 .
R 0760 0960 0900 0970 for the regression for the same poweriof =1, ...,k = 4.
SSE 2.843 0.779 0.396 3.860
Chromi B -0.001 -0.002 -0.002 0.000
omm [}i 0.041 0.057 0.061 0.021
B -0.596 -0.698 -0.668 -0.371 i i
| S GE e oo C. Results and discussion
s5E | 074  oom oSt s7a4 The results obtained for the tests at a 5% of significance
e B3] Toa et g oar are presented in Table 4. For the Cu, the the null hypothesis
Fy | 10980 8009 8702 7518 was rejected for all powers af for the Cr just fort andt?,
R 0.910 0.940 0.900 0.900 . )
SSE | 70619 62812  16.166  257.269 and f|na||y for As just fort.
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TABLE IV TABLE V
RESULTS OF THEF' TESTS FOR5% OF SIGNIFICANCE FORCU, CR AND AS SCHEFFE PAIRWISE COMPARISON RESULTS FORCU, CR AND AS
(a = 5%)
Cu
SQT  df b F0.95;3;44
Hé - coefficient oft 15.342 3 29.213 2.816 Freatment T bCu P 5 T
. 2 reatments member member signiticantly
Hg - coeff!c!em oft3 11.568 3 22.027 different
HEl - coefficient oft 6.300 3 11.997 Coefficient oft
H - coefficient oft4 3.791 3 7.219 1 1land 2 0.75310 1.28177 no
SSSE 7877 77 2 land 3 0.84847 1.28177 no
Cr 3 land 4 1.98894 0.85568 yes
QT df. F Fo 95344 4 2and 3 0.09537 1.34997 no
— T Ty 5 2and 4 1.23584 0.95482 yes
H coeff|§|ent oft2 3811 3 8.341 2.816 6 3and 4 114047 095482 ves
H§ - coefficient oft 1.328 3 2.906 — P]
9 N 3 Coefficient oft
H2 - coefficient oft 1.241 3 2716 T Tand 2 0.22593 0.50361 o
Hy - coefficient oft % 1.228 3 2.688 2 land 3 0.09646 0.50361 no
SSSE 6.701 z 3 land4 0.63271 0.32749 yes
As 4 2and 3 0.12947 0.54715 no
QT d%. F o 95.3.48 5 2and 4 0.40679 0.39115 yes
Hé§ ~coefficient of 75.855 3 2083 2.798 6 Sand4 %53225 — Q39115 yes
. - 2 oefficient of ¢~
Hg coeff!qent oft3 65.075 3 2.559 T Tad? 0.02271 506178 5
H{ - coefficient oft 63.357 3 2.492 2 land 3 0.00554 0.06178 no
SSSE 257.269 48 3 1and 4 0.05876 0.03949 yes
4 2and 3 0.01717 0.06906 no
5 2and 4 0.03605 0.05012 no
6 3and 4 0.05323 0.05012 yes
, i . ) Coefficient oft+
The results of the Scheffé pairwise comparison method, also I~ Tandz  O00DBE 00023 o
2 land 3 0.00024 0.00238 no
0, 1 ifi I 3 land 4 0.00182 0.00148 yes
at 5% significance, are p_resentegl in Table 5. The results for 3 Lad4 o002 000148 -
. 5 2and 4 0.00100 0.00200 no
the Cu can be resumed in following way: 5 2andd 00100 000200 no
PO . Cr
« For 31, there are significant differences between treat- e Gehe— Prerhe Sgneay

ments 1 and 4, 2 and 4, and 3 and 4; dierent

Coefficient of ¢

o For 3,, there are significant differences between treat- 1 tadz o103 L1%6e9 no
ments 1 and 4, 2 and 4, and 3 and 4, : Yaas  Osem i o
« For 33, there are significant differences between treat- > Zad4 LaEo LM e

ments 1 and 4 and 3 and 4; Coefficient oft2

. . . 1 land 2 0.10135 0.47018 no

« For g4, there are significant differences between treat- 2 1and3 0.07185 0.47018 no

3 1land 4 0.22529 0.38547 no

ments 1 and 4. 4 2and 3 0.02950 051083 no

5 2and 4 0.32664 0.32413 yes

This results enable us to separate significantly, at the 5% level, 6 Sendd 02074 05413 no

the treatment 1 from the other three treatments. The maximum Treawments  Imember  Zmember  sigrificantly
. ; o . e

value of 5, is attained for treatment 1, which is equivalent to L Coefoeniolt _

saying that treatment 1 (2.5% percentage of oxalic acid and 40 20 jadd e a0 e

mA ) is the treatment with the highest initial speed, followed 4 2and3 06262 464833 no

6 3and 4 1.18374 4.05992 no

by treatments 2, 3 and 4 (Table 3, Fig. 2, 3, 4). Thus, given the

weight of 3, in the regression and in the removal speed of Cu,

it may be concluded that, treatment 1 is the best one, since it o _

has the highest; coefficient, meaning an higher initial speed 40 MA the best initial current; _ _

of mobilization of Cu into the electrolytes. « For Cr, oxalic acid was the best extracting solution and
Regarding Cr, there are significant differences fior be- 60 mA and 40 mA were the best initial currents;

tween treatments 1 and 4 and treatments 2 and 4, while fof FOT AS, oxalic acid was the best extracting solution and

B, just between treatments 2 and 4. So, it can be concluded 40 MA the best initial current.

that there are significant differences between treatment 4 akeys, taking in consideration the global results for the three

treatments 1 and 2, but treatment 3 is not significantly differefitetals, one can conclude that the best extracting solution is

from 4. Moreover, the maximum value fo$, is attained in fact oxalic acid 2.5% and the best initial current is 40 mA.

for treatment 2, followed closely by treatment 1, after which

comes treatments 3 and 4 (Table 3). Singe has much IV. CONCLUSIONS

more weight in the regression than the other coefficients, WeRegarding the method used, the unbalanced case of the
can select both treatment 2 and 1 as being the best onegyifyii-treatment regression approach allows to perform an
mobilizing Cr into the electrolytes. o ANOVA analysis with several factors having for each treat-
As for As, significant differences for thg, coefficient ment a regression model of the same type but with different
were only found between treatments 1 and 4. However, thgservations, i.e., different model matrices. This difficulty is
maximum value for, is attained for treatment 1, exceedingyercome through the use of block-wise diagonal covariance
considerably the values for the other treatments. Thus, treglatrices.
ment 1 can also be selected with some confidence, as beings for the case study, the application of the method allowed
the treatment with the best initial speed of As removal. s tg conclude that the treatment 1 was the most efficient, i.e.,
The results obtained from this analysis allowed us to Cofy removing the three metals from the wood, the best assisting
clude, mainly on account of the initial speed of removal, thafgent was 2.5% oxalic acid and the best initial current was 40
« For Cu, oxalic acid was the best extracting solution andA.
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