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Abstract16

A mixed model Yo = ∑m
i=1 Xiβi + ∑w

i=m+1 Xiβ̃i + e is orthogonal when the matrices
Mi = XiXT

i , i = 1, . . . , w, commute. The vectors β
c1
1 , . . . , βcm

m are fixed vectors and the18

β
cm+1
m+1 , . . . , βcw

w and en are random. For these models we have very interesting results namely
we have UMVUE for the relevant parameters when normality is assumed. We now intend to20

generalize that class of models taking Y = L
(

∑m
i=1 Xiβi + ∑w

i=m+1 Xiβ̃i

)
+ e with L a matrix

whose column vectors are linearly independent.22

Keywords and phrases : Normal orthogonal models, commutative Jordan algebras, mixed model.

1. Introduction24

An L model is given by

Y = LYo + e , (1.1)26
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816 S. S. FERREIRA ET AL.

where

Yo =
m

∑
i=1

Xiβi +
w

∑
i=m+1

Xiβ̃i (1.2)2

in the core model and e is the error vector. The vectors β
c1
1 , . . . , βcm

m are
fixed vectors and the β

cm+1
m+1 , . . . , βcw

w and en are independent, with null4

mean vectors and covariance matrices σ2
i Ici , i = m + 1, . . . , w and σ2 In .

Then Yo has mean vector and covariance matrix6

uo =
m

∑
i=1

Xiβi (1.3)

and8

Vo =
w

∑
i=m+1

σ2
i Mi +σ2L+L+>

. (1.4)

We will assume that the column vectors of matrix L are independent and10

that the ṅ components of core model correspond to the treatments. For
instance12

L = D(1r1 , . . . , 1rṅ) (1.5)

is the blockwise diagonal matrix with as principal blocks the vectors14

whose r1, . . . , rṅ components are equal to one. We will use a mixed model
with those number of observations for the different treatments.16

We will be interested in the case in which the core model is orthogonal
associated to a commutative Jordan algebra, CJA, A . Then, see [1], the18

matrices Mi = XiXT
i , i = 1, . . . , w, commute and constitute a basis for A .

In the next section we will consider CJA presenting certain results20

that will be useful later on. Then we study the structure of the core model
before presenting inference.22

2. Commutative Jordan algebras and core models

Commutative Jordan algebra, CJA, are linear spaces constituted by24

symmetric matrices that commute and containing the squares of its matri-
ces. These structures were introduced by [3], in a generalized formulation26

for quantum mechanics. Later on, CJA were undiscovered and used in
linear statistical inference by [10], [11], [12] and [14], among others like [13]28

and by [15] and [16]. Namely, [12] showed that for each CJA, A , there is
one and only one basis, the principal basis, pb(A) , constituted by pairwise30

orthogonal projection matrices which are orthogonal. An example of CJA
is the family V(P) of symmetric matrices diagonalized by P .32
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The symmetric matrices M1, . . . , Mu commute, see [9], if and only if
they are diagonalized by the same orthogonal matrix P thus belonging to2

V(P) . Thus a family of symmetric matrices is contained in a CJA if and
only if its matrices commute.4

If M ∈ A and pb(A) = {Q1, . . . , Qk} we have

M =
k

∑
j=1

a jQ j = ∑
j∈ϕ(M)

a jQ j , (2.1)6

with ϕ(M) = { j : a j 6= 0} . It is easy to see that the orthogonal projection
matrix on the range space R(M) of M is8

Q(M) = ∑
j∈ϕ(M)

Q j. (2.2)

Namely if Q is an orthogonal projection matrix belonging to A , we10

saw that Q = ∑ j∈ϕ(Q) Q j , since Q is the orthogonal projection matrix
on R(Q), thus rank(Q) = ∑ j∈ϕ(Q) rank(Q j) and so, if rank(Q) = 1 ,12

Q ∈ pb(A) . If 1
n Jn = 1

n 1n1>n ∈ Q we will have 1
n Jn ∈ pb(A) and we will

then put Q1 = 1
n Jn and say that A is regular. The core model14

Yo =
m

∑
i=1

Xiβi +
w

∑
i=m+1

Xiβ̃i (2.3)

is orthogonal, ORT, if matrices Mi = XiX>
i , i = 1, . . . , w commute. Let16

then {Q1, . . . , Qk} be the principal basis of a CJA containing M1, . . . , Mw .
If we assume that the β1, . . . , βm are fixed and that the β̃m+1, . . . , β̃w have18

null mean vectors and variance-covariance matrices σ2
m+1 Icm+1 , . . . ,σ2

w Icw ,
Yo will have mean vector20

uo =
m

∑
i=1

Xiβi (2.4)

and variance covariance matrices22

Vo =
w

∑
l=m+1

σ2
i Mi with Mi = XiX>

i , i = 1, . . . , w . (2.5)

Now24

Mi =
k

∑
j=1

bi, jQ j , i = 1, . . . , w, (2.6)

so26

Vo =
k

∑
j=1

γ jQ j (2.7)
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with

γ j =
w

∑
i=m+1

bi, jσ
2, j = 1, . . . , k. (2.8)2

Moreover uo will span

Ωo = R([X1 . . . Xm]) =
( m

∑
i=1

Mi

)
. (2.9)4

Now M = ∑m
i=1 Mi and T = Q(M) will belong to A . We can reorder the

matrices in pb(A) to have6

T =
h

∑
j=1

Q j . (2.10)

Since R(Mi) ⊆ R(T) , i = 1, . . . , m we will have bi, j = 0 , j = h + 1, . . . , k ,8

i = 1, . . . , m . Then the matrix B = [bi, j] will be

B =

[
B1,1 0
B2,1 B2,2

]
(2.11)10

with B1,1 a matrix of type m × h , B2,1 a matrix of type (w − m) × h
and B2,2 a matrix of type (w − m) × (k − h) . 0 is a null matrix of type12

m× (k− h) .
Putting σ2 = (σ2

m+1, . . . ,σ2
w) , γ1 = (γ1, . . . , γh) and γ2 =14

(γh+1, . . . , γk) we have




γ(1) = B>2,1σ
2

γ(2) = B>2,2σ
2 .

(2.12)16

Then, if the row vectors of B2,2 are linearly independent the column
vectors of B>2,2 will be linearly independent and we have, see [7],18





σ2 = (B>2,2)
>γ(2)

γ(1) = B>2,1(B>2,2)
>γ(2)

(2.13)

with C+ the Moore-Penrose inverse of C , see [8]. Thus the parameters of20

γ(2) and σ2 of random effects part of the core model will determine each
other. Then the random effects part of the core model segregates itself as a22

separate sub-model. We thus say that these core models are segregated.

3. Estimation24

The orthogonal projection matrices on Ω = R(L) will be Q(Ω) =
LL+ . Let now the row vectors of K constitute an orthonormal basis26
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for the orthogonal complement Ω⊥ of Ω, then, with n the number of
components of Y we will have2

Q(Ω⊥) = In −Q(Ω) = K>K . (3.1)

The orthogonal projections YΩ and Y⊥Ω of Y in Ω and Ω⊥ will be4

YΩ = LYo + eΩ (3.2)

and6

Y⊥Ω = e⊥Ω , (3.3)

thus, if we assume that cross-variance matrices8

Σ�(β̃i , e), i = m + 1, . . . , w, (3.4)

we will have10

Σ�(YΩ, Y⊥Ω) = 0n×n (3.5)

since12

Σ�(eΩ, e⊥Ω) = 0n×n . (3.6)

Thus, taking S = ‖Y⊥Ω‖2 = ‖e⊥Ω‖2 we will have E(S) = gσ2 with14

g = n − no where no = rank(L) . Moreover, since the column vectors
of L are linearly independent we have L+L = In, so that16

Z = L+Y = L+LL+Y = L+YΩ = Yo + L+eΩ (3.7)

= Yo + L+LL+e = Yo + L+e , (3.8)18

with L+e independent from Yo, so Z will have mean vector uo and
variance covariance matrix20

Vo +σ2L+L+>
. (3.9)

Let now the g j row vectors of A j , j = 1, . . . , k constitute an orthonormal22

basis for R(Q j) , j = 1, . . . , k . Taking




η j = A juo ,

η̃ j = A jZ ,
j = 1, . . . , k, (3.10)24

since u spans ω and T = ∑h
j=1 Q j is the orthogonal projection matrix on

ω , we will have η j = 0, j = h + 1, . . . , k . Moreover since the Q1, . . . , Qk26

are pairwise orthogonal, the variance-covariance matrix of η̃ j will be

γ j Ig j +σ2 A jL+L+>
A>j , thus, taking28

S j = ‖η̃ j‖2 , j = 1, . . . , k, (3.11)
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we have

E(S j) = g jγ j + t jσ
2 , j = m + 1, . . . , w, (3.12)2

see [9], with t j = trace(A jL+L+>
A>j ) , j = 1, . . . , k and g j = rank(Q j) ,

j = 1, . . . , k . Thus we have the unbiased estimators4

γ̃ j =
S j

g j
− t j

g j
σ2, j = m + 1, . . . , k (3.13)

for the components of γ(2) . If the core model are segregated we also have6

the unbiased estimators



σ̃2 = (B>2,2)
>γ̃(2)

γ̃(1) = B>2,1(B>2,2)
>γ̃(2) .

(3.14)8

As to estimable vectors, putting
{

X = [X1 . . . Xm]

β = [β1
> . . . βm

>]>
(3.15)10

we have

uo = Xβ (3.16)12

and so the mean vector of Y will be

u = Luo = LXβ . (3.17)14

Given a matrix G, GY and GYω will have the same mean vector since
both Y and Yω have mean vector u . Now16

ψ = Gβ (3.18)

is estimable if there is a linear unbiased estimator ψo for ψ .18

The mean vector of UY is ULXβ, and UY is an unbiased estimator
of ψ if20

ULX = G, (3.19)

this is if22

ψ = Gβ = ULuo. (3.20)

Since24

uo = Tuo =
h

∑
j=1

Q juo =
h

∑
j=1

A>j A juo =
h

∑
j=1

A>j η j (3.21)
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we have

ψ = UL
h

∑
j=1

A>j η j , (3.22)2

thus

ψ∗ = UL
h

∑
j=1

A>j η̃ j (3.23)4

will be an unbiased estimator of ψ .

4. The orthogonal case6

Let us assume that L+ = L> , then matrices

Q j = LQ jL>, j = 1, . . . , w, (4.1)8

will be pairwise orthogonal projection matrices which are orthogonal.
Moreover10

w

∑
j=1

Q j = LL> = Q(Ω) (4.2)

with Ω = R(L) . Thus adding to the Q j , j = 1, . . . , w the matrix12

Q⊥ = In − LL> (4.3)

we get the principal basis of a complete CJA, A .14

If the row vectors of A j constitute an orthogonal basis for R(Q j) ,
j = 1, . . . , w we have A>j A j = Q j and A j A>j = Ig j , with g j = rank(Q j)16

= rank(Q j) , j = 1, . . . , w . Then, with

A j = A jL>, j = 1, . . . , w (4.4)18

we will have



Q j = A>j A j

Ig j = A j A
>
j ,

j = 1, . . . , w, (4.5)20

and the row vectors of A j will constitute an orthogonal basis for R(Q j) .
Thus, since L+L = In,22





A ju = A jL>Luo = A juo = η j

A jY = A jL>LZ = A jZ = η̃ j ,
j = 1, . . . , w. (4.6)
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Besides this the variance-covariance matrix of Y will be

V = L
( w

∑
j=1

γ jQ j

)
L> +σ2 In =

w

∑
j=1

γ jQ j +σ2 In2

=
w

∑
j=1

(γ j +σ2)Q j +σ2Q⊥ , (4.7)

so4 



V−1 = ∑w
j=1(γ j +σ2)−1Q j + 1

σ2 Q⊥

det(V) = ∏w
j=1(γ j +σ2)g j(σ2)g ,

(4.8)

with g = n− no . Thus6

(y− u)>V−1(y− u) =
w

∑
j=1

(y− u)>A>A(y− u)
(γ j +σ2)

+
y>Q⊥y

σ2

=
w

∑
j=1

‖η̃ j − η j‖2

γ j +σ2 +
w

∑
j=m+1

S j

γ j +σ2 +
S

σ2 , (4.9)8

where, as before, S j = ‖η̃ j‖2 , j = m + 1, . . . , w, and

S = y>Q⊥y = ‖y
Ω⊥‖2. (4.10)10

Thus when normality is assumed Y will have the density

n(y) =
e
− 1

2

[
m
∑

j=1

‖η̃ j−η j‖2

γ j+σ2 +
w
∑

j=m+1

S j
γ j+σ2 + S

σ2

]

(2π)
n
2

w
∏
j=1

(γ j +σ2)
g j
2 σ g

. (4.11)12

We now have

Proposition 1. The η̃ j , j = 1, . . . , m, the S j , j = m + 1, . . . , w and S will14

be sufficient complete statistics.

Proof. Applying the Factorization theorem we see that the statistics16

are sufficient. Moreover they will be complete, see [5], since the normal
distribution belongs to the exponential family and, for these models,18

the parameter space contains the cartesian product of non degenerate
intervals. ¤20

Corollary 2. The ψ̃ j, the γ̃(1) , γ̃(2) and σ̃2 will be UMVUE.

Proof. The thesis follows from the proposition and the Blackwell-Lehman-22

Scheffé theorem. ¤
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