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Abstract

Given a time span for collecting observations in a comparison study, it is
advisable to consider the samples size of the ANOVA levels as random vari-
ables. More powerful F tests with F distribution conditional to N = n,
leading to lower critical values, are developed. The approach is used to ob-
tain the minimum duration for the data collection that ensures a pre-fixed
test power.
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1. Introduction

The theoretical developments presented in this paper were motivated by a
real case situation in the field of medicine. Consider the numbers of patients
that arrive to an hospital with different pathologies during a given time span.
These numbers cannot be known in advance because, if we decide to do the
counting in a different time period of the same length, the number of patients
obtained with those pathologies will be different from the first counting. So,
if, due to limitations in the budget, we have to conduct just one study to
compare the pathologies, it is more correct to consider the sample dimensions
as realizations of random variables. The data will be collected from the
patients with each pathology as soon as they present themselves.
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This situation arises mostly because there is a given time span for collect-
ing the observations. After the elapsed time interval, the F test statistics can
be obtained to test hypotheses about the different means values. In what fol-
lows, it is assumed that the sample dimensions n1, ..., nk for the k pathologies
are realizations of independent Poisson variables with parameters λ1, ..., λk

and the observations in these sample are normal, independent with variance
σ2. As a result, the F statistic to test the null hypotheses H0 : µ1 = ... = µk

will have conditional F distribution on the number of observations as will be
seen in the next section.

The approach presented is also useful while planning studies, before the
data are in. The minimum data collection duration to ensure, with a given
probability, reliable results will be obtained. Thus, when all k pathologies
are covered, the conditional distribution of the F test statistic has k − 1
and n − k degrees of freedom, with n the sum of all ni, i = 1, ..., k and
non-centrality parameter δ, which is null when the mean values µ1, ..., µk

for different pathologies are equal. Thus, δ will measure the “distance” of
the alternatives from H0. So, we may look for the minimum duration that
ensures, with a given probability, that all pathologies have at least a minimum
number of observations that allow the conditional power of the α level test
for a given δ to be sufficient high. Therefore, in sub-section 3.1, we see how
to determine these minimum samples sizes ṅi, i = 1, ..., k to have a sufficient
powerful F test, while in sub-section 3.2, the minimum time span for, with
a probability p, getting these ṅ1, ..., ṅk is obtained. Finally, an application
with simulated data is presented in section 5 to illustrate the methodology.

2. Conditional F distributions

Let the components of the vector n = (n1, ..., nk) of the samples sizes
be realizations of the components of the vector N = (N1, ..., Nk). The com-
ponents of N are independent Poisson variables, with vector of parameters
λ = (λ1, ..., λk). Assuming that, when n > 0, the samples xi,1, ..., xi,ni

,
i = 1, ..., k are normal with mean values µ1, ..., µk and variance σ2, for test-
ing H0 : µ1 = ... = µk the F test statistic

F =
n− k

k − 1

∑k

i=1
T 2
i

ni

− T 2

n∑k

i=1 Si

is used, where Ti =
∑ni

j=1 xi,j , Si =
∑ni

j=1 x
2
i,j − T 2

i /ni, T =
∑k

i=1 Ti and

n =
∑k

i=1 ni.
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Due to our assumption for N , the F statistics will have F distribution
conditional to N = n, with k − 1 and n − k degrees of freedom and non-
centrality parameter

δ =
1

σ2

k∑

i=1

ni(µi − µ.)2

where

µ. =
1

n

k∑

i=1

niµi

is the general mean value (Hocking, 2003; Mexia, 1990).
In a previous paper (Mexia and Moreira, 2010) the unconditional distri-

bution for the F statistics was derived. This distribution is given by the
following series

Ḟ (z) =
∑

n>0

q(n)F (z|k − 1, n− k, δ(n)) (1)

whose terms corresponds to all the vectors n = (n1, ..., nk) with ni > 0, i =
1, ..., k and where

q(n) =

k∏

i=1

e−λi λi
ni

ni!

1− e−λi

.

However, when the null hypothesis H0 : µ1 = ... = µk holds, δ(n) = 0, ∀n > 0
and

F ∼ Ḟ0(z) =
∑

n>0

q(n)F (z|k − 1, n− k). (2)

Notice that in eq. (1), the n for the degrees of freedom of the denominator
does not change within the sum.

To compute the values of Ḟ0(z) the corresponding series in eq. (2) must
be obviously truncated. The truncation error of this series when restricting
ourselves to samples with n ≤ no was studied in a previous paper (Mexia
and Moreira, 2010). In that paper, it was shown that the truncation error
does not exceed a bound

b(no) <
kε

(1− e−λo)k
,

if each no
i , the components of no, are chosen such

no

i∑

ni=0

e−λi
λni

i

ni!
> 1− ε, i = 1, ..., k, (3)
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with ε small (Mexia and Moreira, 2010). So, from this inequality we can
obtain the minimal samples sizes that allow us to control the truncation
error for the distribution Ḟ0(z).

In Table 1 is presented for different values of the minimal average sample
size, λo = Min{λ1, ..., λk} and different small ε, the minimal samples dimen-
sion no to have satisfy inequality (3). These truncation errors are perfectly
controlled even if the samples dimensions are relatively small, i.e., for in-
stance for k = 3, if the minimum of the λi, i = 1, 2, 3 is λ0 = 1, for ε = 10−6

the sample dimensions should not be less than 9. In this example, the trun-

Table 1: The minimal dimension of the samples no required to have the truncation error
controlled

λo

1 2 5 10 20
ε = 10−4 6 9 15 24 39
ε = 10−6 9 12 19 28 45
ε = 10−8 11 14 22 32 50

cation error has an upper bound of 0.000012. The critical values tables in
common use have in general 3 decimal places of precision, thus truncating the
distribution with an error of 0.000012 is more than needed to get a critical
value with good accuracy.

Theses formulas enable us to solve the equation Ḟ0(z) = 1 − α for z,
to obtain the (1 − α)-th quantiles, i.e, the critical values of α level tests.
After obtaining the quantiles for the distribution Ḟ0(z), the inference for the
one-way ANOVA to compare the k pathologies proceeds in the usual way
(Scheffé, 1959; Montgomery, 1997).

In order to demonstrate the advantage of using F tests with random
samples size, abbreviated Ḟ tests, we were led to obtain several critical values
for 5% of probability for the case of a test with 3 pathologies and compare
these with the critical values using an usual F test. The values, presented in
Table 3, were computed assuming increasing different values for λ1, λ2 and
λ3 that originate consequently different values of n. In Figure 1 the curves
for the critical values in Table 2 are presented. From that Figure we see that
the critical values for the Ḟ test are always lower than the critical values for
the usual F test. Although, the difference between both decrease and tend
to 0 as n increases.
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Table 2: Critical values for F tests with random sample size and for usual F tests, case
for compare 3 pathologies

Critical Values (5%)

λ1 λ2 λ3 n Ḟ F

0,05 0,05 0,05 9 4.256 5.143
0,1 0,1 0,1 12 3.885 4.256
0,1 0,3 0,5 16 3.634 3.806
1 1 1 27 3.354 3.403
2 2 1 33 3.285 3.316
4 3 2 43 3.214 3.232
5 4 4 53 3.172 3.183
6 5 4 57 3.159 3.168
8 8 6 71 3.126 3.132

11 11 10 88 3.100 3.104
16 16 16 114 3.076 3.078

3. Power analysis

Power analysis using the statistical power of a hypothesis test also called
sample size analysis, is an important tool for deciding what sample size is
required to guarantee a reasonable chance to reject a false null hypothesis.
In the next two sub-sections, we are going use the power analysis under the
context of random samples size to obtain first, the minimum dimensions ni,
i = 1, ..., k that the samples must have and second, the minimum duration
for the data collection in order to obtain that minimal dimensions.

3.1. Obtaining the global sample dimension

Suppose that we are working with F tests for fixed effect models for which,
a null hypotheses H0 and an alternative one Ha were previously formulated.
Considering a study with k pathologies and that n represents the sum of
sample dimensions for all pathologies, the power function of this tests is
given by

Powα(δ) = Pr(F > f1−α,k−1,n−k|H0 false) = 1− β,

where f1−α,k−1,n−k is the (1−α)-th quantile of the central F distribution with
k − 1 and n − k degrees of freedom. Since Pr(F > f1−α,k−1,n−k|H0 false) =
1− F (f1−α,k−1,n−k|k − 1, n− k, δ) we have

F (f1−α,k−1,n−k|k − 1, n− k, δ) = β. (4)

Since the power of the F text is a monotonically increasing function of the
parameter δ, from equation (4) we can get the pairs of (n, δ) that allow
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Figure 1: Critical valor for 5% probability level Ḟ versus F test

obtaining a predetermined power 1 − β for the α-level F test with k − 1
and n − k degrees of freedom. From those pairs, we can choose a minimum
global sample size n that guarantees, for all alternatives with non-centrality
parameter not less than a given δ, a test power of at least 1−β. We point out
that the parameter δ measures the “distance” between the alternatives and
the tested hypothesis. Thus, in an usual F test we can look for the minimum
sample size n that, for a given δ, ensures a sufficient power for the test.

However, for obtaining the power of the F test with random samples size,
we should use the Ḟ distribution and the ḟ1−α,k−1,n−k quantil, that is

Ḟ (ḟ1−α,k−1,n−k) =
∑

n>0

q(n)F (ḟ1−α,k−1,n−k|k − 1, n− k, δ(n)). (5)

For the computation of Ḟ distribution, as described in section 2, we have to
know the frequencies λ1, ..., λk and obtain the minimal sizes n1, ..., nk of the
samples that allow to truncate the series and compute with enough precision
the distribution values. The sum of all ni give us a minimum n and then we
can obtain the quantil ḟ1−α,k−1,n−k. Moreover, in computing the non-central
Ḟ , since in eq. (5) the non-centrality parameter δ(n) has to be computed in
each step of the sum, we need also to fixate the values of the sample means
µ1, ..., µk and variance σ2 based on previous knowledge. The power function
for this specific Ḟ test is given by

Powα(δ(n)) = 1− Ḟ (ḟ1−α,k−1,n−k). (6)
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If the obtained power is not enough, we should increase the n1, ..., nk propor-
tionally without changing the λ1, ..., λk and recalculate the power until we
have obtained a reasonable value. A reasonable value for the power will be for
instance 80%. This procedure may be repeated with different assumptions of
sample means values µ1, ..., µk and σ2, in order to obtain a final conclusion
about the minimum n that guaranties sufficient power for the test. Lets call
to these minimum dimensions ṅ1, ..., ṅk and to their sum ṅ.

In Table 3 we present the comparative results for the power of an Ḟ and F
usual test with 3 pathologies (k = 3). These results were obtained assuming
different values of λ1, λ2, λ3 and with µ1, µ2, µ3 and σ2 constant. Notice that
the n1, n2, n3 obtained are the minimum that allow a good precision in the Ḟ
distribution values. For all the cases presented in Table 3 the power of the Ḟ
test is considerably higher than the power of the usual F test, this meaning
that the F tests considering F distributions that account on the randomness
of samples size have an higher probability of reject a false null hypothesis.

Table 3: Comparison between the power of Ḟ tests (F tests with random samples size)
and the usual F tests; case for comparing 3 pathologies and µ1 = 0.5, µ2 = 0.3, µ3 = 1.2,
σ2 = 1.

Power

λ1 λ2 λ3 n1 n2 n3 n δ Ḟ usual F
0.05 0.05 0.05 3 3 3 9 1.34 42.14% 11.82%
0.1 0.1 0.1 4 4 4 12 1.79 53.07% 15.92%
0.1 0.3 0.5 4 5 7 16 2.68 69.06% 23.82%
1 1 1 9 9 9 27 4.02 83.19% 37.35%
2 2 1 12 12 9 33 4.43 85.77% 41.61%
4 3 2 17 14 12 43 5.71 91.36% 52.84%
5 4 4 19 17 17 53 7.65 95.71% 66.85%
8 8 6 25 25 21 71 9.96 97.92% 79.55%

Considering now, for instance, the second example in Table 3 (λ1 =
λ2 = λ3 = 0.1), the power obtained 53.07% for the minimum n1, n2, n3 and
those µ1, µ2, µ3, σ

2, is not sufficient high, thus we proportionally increase the
n1, n2, n3 without changing the λ1, λ2, λ3 until obtaining a power near 80%
as showed in the Table 4. This power is obtained for an n = 24. If we think
the sample means and variance can change significantly in order to cause a
decrease of the δ, we must also calculate the power for several different values
of these parameters and obtain the n that allows a power of at least 80%.
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Table 4: Power of an Ḟ test with λ1 = λ2 = λ3 = 0.1 and µ1 = 0.5, µ2 = 0.3, µ3 =
1.2, σ2 = 1 for increasing n1, n2, n3 until obtaining 80% in comparison with the power of
the the usual F Test

Power

n1 n2 n3 n δ Ḟ usual F
4 4 4 12 1.79 53.1% 15.9%
5 5 5 15 2.23 61.9% 20.1%
7 7 7 21 3.13 75.3% 28.8%
8 8 8 24 3.57 80.2% 37.3%

3.2. Obtaining the minimum duration by sampling

In the last section, the minimum sample dimensions ṅi, i = 1, ..., k and
global dimension ṅ to get an Ḟ test with power larger than or equal to 1−β
were obtained. Now, we may want to know how much time is necessary to
wait in order to get this minimum number of observations.

Assuming the existence of k independent Poisson counting processes Ni(t);
t ≥ 0, i = 1, ..., k, corresponding to the arrivals of the patients with the k
pathologies, and reliable lower bounds λ̇1, ..., λ̇k for the processes intensities,
the probability of getting at least ṅi number of patients for the i-th pathology,
for all i = 1, .., k, is

pr(N(t) ≥ ṅ) =
k∏

i=1

pr(Ni(t) ≥ ṅi) =
k∏

i=1

[1− pr(Ni(t) < ṅi)]

≥

k∏

i=1

[1−

ṅi−1∑

j=1

e−λ̇it
(λ̇it)

j

j!
].

(7)

since for the lower bounds λ̇1, ..., λ̇k we have

pr(Ni(t) < ṅi) <

ṅi−1∑

j=1

e−λ̇it
(λ̇it)

j

j!
,

for i = 1, ..., k.
Now, setting a probability p to have N(t) ≥ ṅ, the time t can be chosen

such that
k∏

i=1

[1−

ṅi−1∑

j=1

e−λ̇it
(λ̇it)

j

j!
] > p. (8)
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4. An example of application

In order to illustrate the usefulness of the method, in this section an
example of application with non real data is presented.

Consider the people arriving at an hospital with pathologies 1, 2 and 3
during a given time span, from which a blood sample is taken to register a
specific value. Suppose that is known from previous studies that the arrivals
rates for the 3 pathologies are λ1 = 8.56, λ2 = 0.64 and λ3 = 0.34 cases per
day, in that hospital.

Before moving to data collection, we may want to answer to the following
questions:

1. What are the minimum samples sizes required to have a controlled
truncation error for the series distribution in eq. (2), therefore enough
precision for the Ḟ distribution?

2. Are these minimum samples sizes sufficient to obtain a pre-fixed test
power of 80%? Do we need more observations in order to get that?

3. How long is required to wait to obtain these minimum samples sizes?

In the next section the answers to those questions will be given. After that,
we can proceed with the analysis of the collected data.

4.1. Planning the study

In order to answer to question 1, we use the inequality (3) to computed
the minimum samples sizes for the 3 pathologies. The results are presented in
Table 5 taking ε = 10−6. If these minimum samples size are satisfied, we are

Table 5: Minimum samples sizes

pathology 1 2 3
λi 8.56 0.64 0.34

ni min. 26 7 6

guaranteed that the truncation error will have an upper bound of 0.0001230,
which give us enough precision on the critical values.

An F test to compare k = 3 different pathologies with α = 5% of signif-
icance will have an F statistic with 2 and n − 3 degrees of freedom. So, we
start by obtaining the power of the corresponding Ḟ test for the minimum
samples sizes in Table 5 (n = 39). To this purpose, we used the known
estimates for the sample means values: µ̂1 = 0.91, µ̂1 = 1.5, µ̂1 = 0.7; and
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variance: σ̂2 = 0.4. The power obtained, 92.9% for a δ = 6.23, is high
enough, thus we do not need to increase the ni, i = 1, 2, 3. As a result, the
minimum global sample size of 39 corresponding to the sum of the minimum
samples sizes in Table 5, enables us to conduct an Ḟ test with a power much
higher that 80%.

Now, let’s consider a probability p = 1 − ε of getting n1 ≥ 26 ∩ n2 ≥
7∩n3 ≥ 6, with ε = 10−4. We computed the probability given by expression
(8) for t increasing from 1 to 100 and stopping when pr(n1 ≥ 0 ∩ n2 ≥
0 ∩ n3 ≥ 0) > p and found out that for t ≃ 58 the value for that probability
was 0.99991. In other words, the data collection period should be at least 58
days in order to obtain that number of observations per pathology.

4.2. Data analysis

A study was conducted with a collection period of 58 days and the 42
observations presented in Table 6 were collected.

Table 6: Observations
ni pathology 1 pathology 2 pathology 3

1 1.12 1.96 0.65

2 0.06 1.83 0.46

3 1.09 0,88 0.67

4 0.27 1.62 0.49

5 1.58 1.98 0.85

6 0.40 1.78 0.64

7 0.03 1.66

8 0.36 1.80

9 1.03 1.99

10 1.86 0.35

11 1.68

12 0.45

13 1.59

14 0.81

15 0.71

16 0.44

17 1.33

18 0.70

19 0.29

20 1.26

21 0.06

22 1.30

23 1.23

24 0.74

25 1.78

26 1.71

mean 0.9179 1.5833 0.6266

In Table 7 is presented the one way ANOVA used to test the null hypoth-
esis H0 : µ1 = µ2 = µ3.

The distribution Ḟ0(z) =
∑

n>0
q(n)F (z|2, 39) of the F statistic was com-

puted and the corresponding series was truncated, that is, the terms such
n1 > 26 ∧ n2 > 10 ∧ n3 > 6 were not considered. This condition guaranties
that the truncation error is less than 0.0001230.
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Table 7: One way ANOVA table

ANOVA df SS F statistic δ
Treatments 2 4.365 7.515 11.2

Error 39 11.326
Total 41 15.691

Using a numerical method the equation Ḟ0(z) = 0.95 was solved in order
to z and obtained the quantile ḟ(0.95;2;39), which is the critical value of the 0.05
level test. Since the obtained critical value 3.220 is less than the F = 7.515,
the null hypothesis is rejected and we can conclude that the 3 pathologies
are significantly different. Moreover, since the obtained samples led to an
higher δ = 11.2 (Table 7) and n = 42, the power for this test is 99.29% even
higher then planed, in contrast with the 82.96% of the usual F test.

Had we considered the samples sizes n1, n2, n3 as fixed numbers rather
than as Poisson random variables, the critical value for this test with the usual
central F distribution would be 3.238 instead of 3.220. As a result, when
using F tests with random samples size, a slightly smaller value for the F
statistic is required. However, the power of the test using the Ḟ distribution,
i.e., considering random samples size, increase considerably comparatively
with the power of the usual F test.

All the computations were performed using the EXCEL and programming
in Microsoft Visual Basic for applications.

5. Conclusions

In comparison studies, when there is a specific time span to collect the
observations and the sizes of the samples cannot be decided previously, it is
appropriate to consider the sample dimensions as realizations of independent
Poisson variables. The F tests developed from this assumption have the
advantage of being more powerful, i.e., F tests considering F distributions
that account on the randomness of samples size have an higher probability of
reject a false null hypothesis. Moreover, they generate smaller critical values
than the F usual distribution, the difference tending to zero as the number
of observations increase. Furthermore, the approach is useful in the planning
phase of a study to obtain the minimum duration for the data collection that
ensures the chosen power and level of significance.

11



Acknowledgements

This work was partially supported by CMA/FCT/UNL, under the project
PEst-OE/MAT/UI0297/2011.

References

Hocking, R., 2003. Methods and Applications of Linear Models. John Wil-
ley&Sons. New York.

Kendall, M. and Stuart, A., 1961. The Advanced Theory of Statistics. Vol.II.
Charles Griffin & Co. Londres.

Montgomery, D.C., 1997. Design and Analysis of Experiments - 5th edition.
John Willey & Sons. New York.

Mexia, J.T., Nunes, C., Ferreira, D., Ferreira, S., Moreira, E., 2011. Ortog-
onal fixed efects ANOVA with random sample sizes. WSEAS proceedings
of the 5th International conference on Applied Mathematics, Simulation,
Modelling, 84-90.

Mexia, J.T., Moreira, E.E., 2010. Randomized sample size F tests for the one-
way layout. AIP Conference Proceedings, volume 1281- ICNAAM 2010-
8th International Conference of Numerical Analysis and Applied Mathe-
matics, 1248-1251,doi:10.1063/1.3497917.

Mexia, J.T., 1990. Best linear unbiased estimates, duality of F tests and Sheff
multiple comparison method in presence of controlled heteroscedasticity.
Computational statistics and data analisys 10(3), 271-281.

Nunes, C., Ferreira, D., Ferreira, S., Mexia, J.T., 2011. F-
tests with a rare pathology. Journal of Applied Statistics.
DOI:10.1080/02664763.2011.603293.
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