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Abstract. Distributions and densities for F test statistics are obtained assuming random sample sizes, thus getting random
degrees of freedom and non-centrality parameters. Classical optimum properties are extended to this new setup as well as
Scheffé Theorem for simultaneous confidence intervals.
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INTRODUCTION

When we cannot consider as known the dimensions n1, ...,nk of the samples for the k levels of the one-way layout it

is more correct to consider these as realizations of some random variable. This situation arises mostly when we have

a given time span for collecting the observation. This collecting is carried out separately for the different levels. A

good example is the obtention of data for the comparison of pathologies. The data is obtained from the patients with

each pathology as soon as they present themselves. Stochastically we will have independent counting processes which

“generate” the samples. This leads us to assume that the sample sizes are values take by independent Poisson variables

N1, ...,Nk with parameters λ1, ...,λk, which will be the components of the random vector N.

If we assume that the observations have equal mean values µ1, ...,µk for each sample and that they are normal,

independent, all with variance σ2, we may think of using the F tests for testing H0 : µ1 = ... = µk, but now they will

have only conditional F distributions. In the next section, we will derive the unconditional distributions. As we shall

see, they are given by series whose terms corresponds to the vectors n = (n1, ...,nk), thus we will study the truncation

errors which occur when we restrict ourselves to samples with n ≤ n0. We also will consider simultaneous confidence

intervals and extend some results on the optimal properties of the F tests.

DISTRIBUTIONS

Given the samples xi,1, ...,xi,ni
, i = 1, ...,k, we get for H0 the F test statistic

F =
n− k

k−1

∑k
i=1

T 2
i

ni
− T 2

n

∑k
i=1 Si

(1)

where Ti = ∑
ni
j=1 xi, j, Si = ∑

ni
j=1 x2

i, j − T 2
i /ni, T = ∑k

i=1 Ti and n = ∑k
i=1 ni. This statistics will have, as conditional

distribution, given N = n, the F distribution with k−1 and n− k degrees of freedom and non-centrality parameter

δ =
1

σ2
[

k

∑
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niµ
2
i −nµ .2] (2)

with

µ .=
1

n

k

∑
i=1

niµi (3)

being the general mean value. This distribution will be given by

F(z|k−1,n− k,δ ) = F̄(
k−1

n− k
z|k−1,n− k,δ ) (4)
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where F̄(.|k−1,n− k,δ ) is the distribution of T which is the quotient of a non-central chi-square with k−1 degrees

of freedom and non-centrality parameter δ by a central chi-square with n− k degree of freedom, both chi-squares

being independent. In order to obtain the unconditional distribution of F , we will use these last distributions since

they are more tractable than the cental F distributions. Namely, see [2], we will have

F̄(z|r,s,δ ) = Pr(T ≤ z) = e−δ/2
∞

∑
l=0

( δ
2
)l

l!
F̄(z|r+2l,s). (5)

For more details see the Appendix.

We now obtain the unconditional distribution of T . So, first we put

p(n) = pr(N = n) =
k

∏
i=1

pr(Ni = ni) =
k

∏
i=1

e−λi
λi

ni

ni!
. (6)

Since we only can carry out the test when n > 0 (this is when ni > 0, i = 1, ...,k), we will be interested in the

q(n) = pr(N = n|N > 0) =
pr(N = n∩N > 0)

pr(N > 0)
=

p(n)

pr(N > 0)
(7)

where

pr(N > 0) =
k

∏
i=1

pr(Ni > 0) =
k

∏
i=1

(1− pr(Ni = 0)) =
k

∏
i=1

(1− e−λi). (8)

The unconditional distribution of T will then be

F̄(z) = ∑
n>0

q(n)F̄(z|k−1,n− k,δ (n)) (9)

with

δ (n) =
1

σ2
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
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2
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(
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

 (10)

while for F the unconditional distribution will be

F(z) = ∑
n>0

q(n)F̄(
k−1

n− k
z|k−1,n− k,δ (n)). (11)

TRUNCATION ERRORS

To compute the values of F̄(z) and F(z) we must truncate the corresponding series. Since, whatever z, r and s, we have

0 < F̄(z|r,s,δ )< 1;0 < z (12)

the truncation errors, when we only consider the terms with n ≤ no, will be bounded by

b(no) = ∑
n�no

q(n) =
1−∑n�no p(n)

pr(N > 0)
=

1− pr(N ≤ no)

pr(N > 0)
=

1

pr(N > 0)
−

pr(N ≤ no)

pr(N > 0)
(13)

and since N1, ...,Nk are independent Poisson variables with parameters λ1, ...,λk, we have

b(no) =
1

pr(N > 0)
−

∏k
i=1 (pr(Ni ≤ no

i ))

pr(N > 0)
=

k

∏
i=1

1

1− e−λi
−

k

∏
i=1

∑
no

i
ni=0 e−λi

λ
ni
i

ni!

1− e−λi
. (14)

So, if we choose no
i such

no
i

∑
ni=0

e−λi
λ ni

i

ni!
> 1− ε , i = 1, ...,k (15)
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we will have

b(no)<
k

∏
i=1

1

1− e−λi
−

k

∏
i=1

1− ε

1− e−λi
=

1− (1− ε)k

∏k
i=1(1− e−λi)

≈
kε

∏k
i=1(1− e−λi)

. (16)

Considering λ0 = Min{λ1, ...,λk} we have

k

∏
i=1

(1− e−λi)≥ (1− e−λ o

) (17)

so that

b(no)<
kε

(1− e−λ o
)k
. (18)

For different values of λ (the average dimension of the samples) and small ε , we present in Table 1 the minimal number

no of terms to have
n0

∑
n=0

e−λ λ n

n!
> 1− ε . (19)

So, given the number k of samples, we may chose the threshold ε such that the truncation error is controlled since it

TABLE 1. The minimal dimension of the
samples no required to have the truncation er-
ror controlled

λ

minimum no 1 2 5 10 20

ε = 10−4 6 9 15 24 39

ε = 10−6 9 12 19 28 45

ε = 10−8 11 14 22 32 50

will be bounded by b(no), when we require ni < no; i = 1, ...,k.

For different values of k, λ and ε , we present in Table 2 the upper bound for the truncation error.

TABLE 2. Limit for the b(no)
k=2 k=5 k=10

λ λ λ

ε 1 2 5 10 20 1 2 5 10 20 1 2 5 10 20

10−4 5,0E-04 2,7E-04 2,0E-04 2,0E-04 2,0E-04 5,0E-03 1,0E-03 5,2E-04 5,0E-04 5,0E-04 9,8E-02 4,3E-03 1,1E-03 1,0E-03 1,0E-03

10−6 5,0E-06 2,7E-06 2,0E-06 2,0E-06 2,0E-06 5,0E-05 1,0E-05 5,2E-06 5,0E-06 5,0E-06 9,8E-04 4,3E-05 1,1E-05 1,0E-05 1,0E-05

10−8 5,0E-08 2,7E-08 2,0E-08 2,0E-08 2,0E-08 5,0E-07 1,0E-07 5,2E-08 5,0E-08 5,0E-08 9,8E-06 4,3E-07 1,1E-07 1,0E-07 1,0E-07

SIMULTANEOUS CONFIDENCE INTERVALS

Given n the vector of sample sizes, let Y.(n) be the vector of sample means and S(n) the sum of sums of squares of

residuals for the k samples. Then, Y.(n) and S(n) are conditionally independent. Moreover, Y.(n) will be conditionally

normal with mean vector µ , with components µ1, ...,µk, and variance-covariance matrix σ2D( 1
n1
, ..., 1

nk
), while S(n)

will be the product of a chi-square with n− k degrees of freedom. With f1−q,k−1,n−k the (1− q)-th quantile for a F

distribution with k−1 and n− k degrees of freedom, we have

pr





⋂

a∈Rk



|aT µ −aT Y.(n)| ≤

√

(k−1) f1−q,k−1,n−kaT D(
1

n1
, ...,

1

nk

)a
S(n)

n− k







= 1−q (20)

where
⋂

indicates that all vectors a ∈ Rk are considered, see [4].

Taking N = ∑k
i=1 Ni, we get

pr





⋂

a∈Rk



|aT µ −aT Y.(N)| ≤

√

(k−1) f1−q,k−1,N−kaT D(
1

N1
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1
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)a
S(N)
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





= 1−q. (21)
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We thus obtained a version of the Scheffé theorem, for simultaneous confidence intervals, when sample sizes are

random.

This result was included in our paper given the intimate connection there is between these simultaneous intervals

and the F tests. Thus, see Scheffé(1959), the q level F test rejects the hypothesis H0 : µ1 = ...= µk if and only if there

exists ao such that
√

(k−1) f1−q,k−1,n−kaoT D(
1

n1
, ...,

1

nk

)ao
S(n)

n− k
< |aoT µ −aoT

Y.(n)|. (22)

OPTIMUM PROPERTIES OF THE F-TESTS

The F tests for fixed effects models, see for instance [1], are Uniformly Most Powerful (UMP) in the classes of tests

such that,

1. the power is function of a non-centrality parameter;

2. they are invariant for transformation that leave the non- centrality parameter unchanged.

Moreover, see [3], if we have controlled heteroscedasticity, this is, a variance-covariance matrix σ2C, with C known,

the F tests are UMP in the class of tests invariant for transformation

y+ = L(y+d) (23)

with L regular, and that, after reduction of the heteroscedasticity, they have power which depends only on non-

centrality parameters. This last result is a generalization of (2.) since it replaces the requirement of homoscedasticity

by that of controlled heteroscedasticity.

Since C is regular there exist, see [2], matrices G such that GCGT = In and so GL−1(LCLT )(GL−1)T = In so,

working with

y′ = Gy (24)

or with

y+
′
= GL−1y+ (25)

we are working with homoscedastic vectors. Now the previous results hold whatever the vector n of sample sizes.

Representing by pow(δ |n) and pow′(δ |n) the powers of the F and of another test of the same size, belonging to one

of the classes mentioned above, we have pow′(δ |n)≤ pow(δ |n), thus unconditioning we get

pow′(δ ) = ∑
n>0

q(n)pow′(δ |n)≤ ∑
n>0

q(n)pow(δ |n) = pow(δ ) (26)

where pow(δ ) and pow′(δ ) are the unconditional powers of the F and the other test. We thus established

Proposition 0.1 When we have a positive random vector of sample sizes, an F test is UMP in the classes of tests such

that

1. the power is function of a non-centrality parameter;

2. are invariant for transformations that leave non-centrality parameters unchanged;

3. are invariant for transformations y+ =L(y+d), with L regular, and that, after reduction of the heteroscedasticity,

have power which depends only on non-centrality parameters.

Clearly these optimum properties apply to the tests we have been studying.
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