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Abstract

Biometrics is a rapidly growing field, with applications in personal identification and

security. The Electrocardiogram (ECG) has the potential to be used as a physiological

signature for biometric systems. However, current methods still lack in performance

across different recording sessions.

In this thesis, it is shown that Deep Learning can be applied successfully in the analy-

sis of physiological signals for biometric purposes. This is accomplished in two different

experiments by formulating novel approaches based on Convolutional Neural Networks

and Recurrent Neural Networks, which may receive heartbeats, signal segments or spec-

trograms as input. These methods are compared in tasks implying the recognition of

subjects from four public databases: Fantasia, ECG-ID, MIT-BIH and CYBHi. This work

obtained state-of-the-art results for across-session authentication tasks on the CYBHi

dataset, reaching Equal Error Rates of 10.57% and 10.01% for the best model, with cor-

responding identification accuracy rates of 55.58% and 58.91%. It also demonstrates

that using spectrograms as input to the classifier is a promising approach for biometric

identification, achieving accuracy values of 99.79% and 96.88%, respectively for Fantasia

and ECG-ID databases. Further, it is shown empirically that for ECG biometric systems,

the ability of a model to generalize is crucial, not only its capacity to relate and store

information.

These contributions represent another step towards real-world application of ECG-

based biometric systems, closing the gap between intra and inter-session performance

and providing some guidelines that can be applied in future work.

Keywords: Biometrics, Deep Learning, Signal Processing, Electrocardiogram
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Resumo

A Biometria é uma área em rápido desenvolvimento, com aplicações em identificação

pessoal e segurança. O Eletrocardiograma (ECG) tem potencial para ser utilizado como

uma assinatura fisiológica em sistemas biométricos. No entanto, os métodos atuais ainda

têm um baixo desempenho em tarefas que implicam várias sessões de aquisição.

Nesta tese é mostrado que a Aprendizagem Profunda pode ser aplicada com sucesso

na análise de sinais fisiológicos para fins biométricos. Isto é conseguido em duas experi-

ências distintas através da formulação de novas técnicas baseadas em Redes Neuronais

Convolucionais e Redes Neuronais Recorrentes, as quais podem processar batimentos

cardíacos, segmentos de sinais ou espetrogramas. Estes métodos são comparados em ta-

refas que implicam o reconhecimento de indivíduos em quatro bases de dados públicas:

Fantasia, ECG-ID, MIT-BIH and CYBHi. São obtidos resultados competitivos com o es-

tado da arte em tarefas inter-sessão na base de dados CYBHi, atingindo taxas de erro

igual de 10.57% e 10.01% para o melhor modelo, com valores de exatidão de 55.58% e

58.91% para as tarefas de identificação correspondentes. Também é demonstrado que o

uso de espetrogramas à entrada do classificador constitui uma técnica promissora para

identificação biométrica, alcançando valores de exatidão de 99.79% e 96.88% para as ba-

ses de dados Fantasia e ECG-ID, respetivamente. Além disso, é mostrado empiricamente

que para sistemas biométricos com ECG, a habilidade de um modelo para generalizar é

crucial, não só a sua capacidade de relacionar e armazenar informação.

Estas contribuições representam mais um passo para a aplicação de sistemas biomé-

tricos baseados em ECG no mundo real, aproximando o desempenho intra e inter-sessão

e dando algumas diretrizes que poderão ser aplicadas em trabalhos futuros.

Palavras-chave: Biometria, Aprendizagem Profunda, Processamento de sinais, Eletrocar-

diograma
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1
Introduction

1.1 Context

In the last decade, with the increase in concerns about security, more trustworthy authen-

tication technologies are in demand by the military, government and health sectors [1,

2].

Human biometrics is a rapidly developing field, which uses inherent physical or be-

havioral data to identify or authenticate people. It was largely popularized by fingerprint-

based biometric systems, for example, the touch ID in smartphones [3].

Presently, digital health innovation is growing at a fast rate, with reports showing a

total investment of $3.5bn during the first half of 2017 in the USA alone [3]. This goes

along with a considerable increase in the number of consumers, generating large amounts

of data, which can potentially be used in medicine [4], as well as to improve biometric

systems.

As the ECG is a signal originated internally and unique to each person, it has the

potential to turn into a reliable source for biometrics [3, 5]. For this to occur, pattern

recognition algorithms are applied to ECG signals, given the existence of intrinsic features

based on their characteristic waveforms and segments (PQRST). This morphology enables

biometric identification by matching ECG templates to the subjects who generate these

signals.

Although efforts are being made to develop more robust ECG-based Biometric systems

(BSs), there are still some factors hindering its reliance, namely noise and artifacts, which

happen due to imperfections during signal aquisition. Consequently, computing features

may be arduous as the electrode material, movement, instrumentation of the devices and

power-line may interfere, therefore increasing the variability of ECG signals from the

same source [6, 7].

1



CHAPTER 1. INTRODUCTION

In the last few years, there was an increase in research activity on Deep Neural Net-

works (DNNs) for biometric applications. This includes many successful approaches to

the recognition of ECG signals, suggesting its usefulness for this task [8–11]. This type of

model has been extensively employed in speech recognition, machine translation, video

games and robotics [12]. The increase of interest in DNNs is a consequence of advances

in computational power, parallel computing, software infrastructure and the availability

of large datasets.

In this thesis, with the objective of improving current BSs, there are two proposed

experiments: "ECG Biometrics using Spectrograms"and "ECG Biometrics using Signal

Segments and Fusion". The first experiment uses Convolutional Neural Networks (CNNs)

and spectrograms to identify subjects from Fantasia [13] and ECG-ID [14] databases. The

second experiment compares several DNN architectures for biometric identification and

authentication. ECG data for this experiment are taken from Fantasia, MIT-BIH [15] and

CYBHi [16] databases.

Artificial Intelligence techniques may learn patterns that a researcher could not per-

ceive as easily. For example, the DNN could identify the sign of the fourth derivative as

a good feature, whereas it would not be trivial for the human mind to reach the same

conclusion. Therefore, these algorithms have the ability to learn more complex features,

allowing more information to be extracted from the same data.

1.2 Objectives

This thesis makes the following contributions to the field of ECG biometrics:

• Frameworks for personal identification and authentication using ECG signals and

deep neural networks;

• A comparison between different signal processing methods for ECG biometrics;

• The implementation of different DNN architecture topologies, namely convolu-

tional and recurrent neural networks;

• Application of these architectures in differing conditions, such as on-the-person and

off-the-person ECG Biometrics, recording duration, sampling frequency, recording

hardware, signal to noise ratio and moments of acquisition.

1.3 Concepts

1.3.1 Electrocardiogram

The ECG (Figure 1.1) is a recording of an electrical signal which represents the activation

of the heart muscles during their contraction and relaxation. It consists in the propa-

gation of electrical activity through the membrane of cardiac cells, resulting in voltage

2



1.3. CONCEPTS

Figure 1.1: Electrocardiogram signal, waves and segments.

variation over time. These values may be measured by electrodes placed on the skin

surface, linked to an electrocardiograph, the signal acquisition device. There are several

different ways to place the electrodes, capturing different derivations. Each derivation

allows to obtain voltage differences in a specific direction, leading to diverse, but highly

correlated measurements.

The ECG is represented by waves and segments, each corresponding to a different

stage of the cardiac cycle: (1) P wave: Contraction of the atria; (2) PQ segment: Time

between the contraction of the atria and activation of the ventricles; (3) QRS complex:

The combination of the Q, R and S waves, associated with the contraction of the ventricles;

(4) ST segment: Stage in which the ventricles contract; (5) T wave: The repolarization of

the ventricles [2].

This complex morphology is specific to each individual and, in addition to other qual-

ities (described in Section 1.3.3.1), makes the ECG a potential data source for biometrics.

1.3.2 Signal Processing

Signal processing is an area that studies the characteristics and components of signals,

as well as a wide range of methods that enable their analysis. In this thesis, it is used

throughout all the experiments, with large importance in the preprocessing stage, allow-

ing signals to become more interpretable to the classifiers. In this section, the applied

signal processing methods are described in detail.

3



CHAPTER 1. INTRODUCTION

1.3.2.1 Convolution

Throughout the experiments, the convolution operation appears frequently. It allows

a form of product between two different time series and is commonly used as a way to

apply filters to signals or images.

The convolution operation consists in integrating a multiplication between the values

of two functions f and g, one being successively translated by a constant τ . It can be

defined as:

(f ∗ g)(t) =
∫ ∞
−∞
f (τ)g(t − τ)dτ. (1.1)

Computationally, as the signals are represented by samples (discrete values), the

discrete version of convolution is utilized instead. The integral becomes a sum and the

operation is given by:

(f ∗ g)[n] =
∞∑

m=−∞
f [m]g[n−m]. (1.2)

1.3.2.2 Fourier Transforms and Spectrograms

A Fourier Transform is a representation of a signal in the frequency domain. It acts by

decomposing the input sequence into a sum of complex functions and is given by [17]:

X(ω) =
∫ ∞
−∞
x(t)e−jωtdt, ω ∈R, (1.3)

where ω is the angular frequency and x is the input signal.

Its discrete version, the Discrete-Time Fourier Transform (DTFT), is defined as:

X(ejω) =
∑
n∈Z

xne
−jωn, ω ∈R, (1.4)

where ω is the angular frequency and x is the input signal.

Depending on the employed functions, these transforms can have several types, such

as Wavelet transforms, Z-transforms, Sine/Cosine transforms, among others. These func-

tions produce coefficients with varying resolution in time and frequency domains. From

just a few coefficients, the original signal can be reconstructed in great detail, making

these algorithms popular for audio, image and video compression [18].

Spectrograms (Fig. 1.2) are visual representations of signals, expressing the occur-

rence of certain frequencies in a time window and their corresponding magnitudes. These

magnitudes can be represented in a frequency/time plot as a third dimension, usually

represented in false color. This kind of representation is generally achieved by applying

Fourier Transforms to segments of the original signal, in order to obtain the existing

frequencies and their corresponding magnitudes.

1.3.2.3 Filters

In signal processing, a filter is a function which has the purpose of removing unwanted

characteristics of a signal and emphasizing the relevant ones. It may be used for data

4



1.3. CONCEPTS

transformation, acting as a tool to increase the signal-to-noise ratio or to detect different

frequency components. It may also be used to obtain information from these inputs, for

instance, detecting waveforms in a signal or shapes in an image. These filters can be of

various types, depending on [17]: attenuated frequencies (low-pass, high-pass, band-pass,

band-stop); linearity (linear or nonlinear); memorylessness, whether the output depends

only on the input at the same instant; causality, being causal if the output depends only

on the past input; shift invariance; and stability.

As an example, the moving average is a low-pass filter which calculates averages of

successive signal segments. It can be defined as [17]:

yn =
1
N

(N−1)/2∑
k=−(N−1)/2

xn−k , n ∈Z, (1.5)

where N is an odd positive integer and represents the filter size.

An ECG has a frequency band between 0.5 and 80 Hz, however, as it often suffers

from added noise in the acquisition phase, it may be useful to process the signal with

filters. These filters can be used to eliminate various types of noise, such as [19]:

• Baseline wandering, a low frequency noise which occurs due to small movements,

respiration or offset voltages.

• Power-line noise (50/60 Hz), which affects the ECG on a higher frequency spectrum

and throughout all the signal length (see Fig. 1.2).

Figure 1.2: Two examples of spectrograms created from ECG-ID database (left) and two
examples from Fantasia database (right). The frequencies seen around 50 and 60 Hz are
due to power-line noise.

5



CHAPTER 1. INTRODUCTION

• Electromyogram (EMG) motion artifacts, which can be removed with low pass filters

due to their high frequencies.

1.3.3 Biometrics

Biometrics are measurements of distinct physical, chemical or other characteristics with

the objective of establishing a connection between subjects and their identity. They are

present in our daily life either for personal identification (e.g. identification of a finger-

print in a crime scene) or authentication (e.g. passport verification at an airport).

The main advantage of these systems is the absence of pre-knowledge, of which pass-

words are the primary example. Unlike these traditional methods, most biometric at-

tributes cannot be forgotten, transferred or stolen and, even though some could be re-

produced, their forgery is difficult and requires the presence of the individual. Since the

application of the elementary fingerprint recognition in 1883, efforts have been made to

discover different and more reliable types of biometric data [20].

Biometric data can be divided into physical and behavioral, depending on their nature.

Examples of these characteristics include [1]:

• Physical: fingerprints, face, iris, DNA, body odor or physiological signals (ECG,

EMG, Electroencephalogram (EEG));

• Behavioral: handwriting, gait or human behavior in a web page (mouse and keystrokes)

[20, 21];

Biometric technology has been used in a broad range of applications, reaching several

fields, such as: forensic science, financial security, physical access checkpoints, infor-

mation systems security, customs and immigration, national identification cards, driver

licenses, among others [20].

1.3.3.1 Biometric Systems

A biometric system is a system which has the objective of performing a biometrics task. It

may be seen as a computer program containing a pattern matching algorithm that allows

the authentication of subjects from a database given one or more types of biometric data.

BSs have two temporal phases: the enrollment phase, when an input is fed into the

algorithm and a template of a personal identity is generated; the authentication/identi-

fication phase, when feature extraction methods are applied and the model attributes a

class to new inputs.

BSs can be fiducial or non-fiducial-based, depending on the nature of the features in

use. As an example for ECG-based biometrics, the fiducial features are extracted between

reference points in the cardiac cycle ( e.g. temporal intervals). As for the non-fiducial

features, the ECG is considered as a whole, considering characteristics as R-R intervals or

relative heights between waves [2, 22].

6



1.3. CONCEPTS

There are several aspects that a BS should follow in order to be considered reliable.

These include universality, uniqueness, permanence, measurability, performance, ac-

ceptability and circumvention. The ECG has the potential to be chosen as a source of

information to a BS because it excels in some of these critical points, namely: universality,

everyone possesses a heart; uniqueness, the physical and chemical structural differences

of the heart provide differences in electrical conduction; and circumvention, as it is ex-

tremely difficult to counterfeit these signals [2].

Currently, the strongest issues hindering the mainstream use of ECG for commercial

BSs are noise and variability over time [23]. Robustness to noise is important, due to

the growing necessity of using cheaper and more practical acquisition devices. Handling

variability over time in ECG signals is another non-trivial problem, since the features

used to classify an ECG segment must be invariant over a wide temporal range, while

still being able to distinguish all of the subjects. Modern datasets, including CYBHi, are

made to test BSs for both these issues, but, even for state of the art systems, performance

is still unsatisfactory [11].

1.3.3.2 Evaluation Metrics

The metrics used for the evaluation of BSs can be general classification metrics or per-

formance measures. The former is used for identification, while the latter is used for

authentication and is more common in biometrics.

Classification metrics are more common in the machine learning literature and in

the medical field (e.g. diagnosis). The advantage of these metrics is the fact that they do

not depend on threshold values. The following binary classification metrics are the most

common:

Accuracy =
T P + TN

T P +FP + TN +FN
, (1.6)

Sensitivity =
T P

T P +FN
, (1.7)

Specif icity =
TN

TN +FP
, (1.8)

where TP, TN, FP and FN respectively stand for True Positives, True Negatives, False

Positives and False Negatives.

When personal data is fed into a BS, scores are attributed based on the similarity

between the input and an identity template. As this similarity is generally not perfect

(100%), even if it is scoring a trait of the same person on the same day, a threshold is

needed to determine if a particular score is within limits. Although this value is variable,

it still allows a more robust evaluation. With the application of a threshold in biometric

authentication systems, a given subject can be rejected if the provided input does not

reach the lower limit for acceptance. On the other hand, if this limit is too high, the

subject can be falsely rejected, i.e. have its access refused when it should be able to enter

the system. After this selection is made, the following metrics can be calculated: False
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Acceptance Rate (FAR), given by:

FAR =
FP

FP + TN
, (1.9)

False Rejection Rate (FRR), given by:

FRR =
FN

FN + T P
, (1.10)

where TP, TN, FP and FN respectively stand for True Positives, True Negatives, False

Positives and False Negatives after being subject to the acceptance threshold.

The Receiver Operating Characteristic (ROC) curve is a plot of FRR against FAR and

is determined after submitting the scores to different threshold values. Equal Error Rate

(EER) corresponds to a value in the ROC curve at which FAR and FRR are equal.

As for this thesis, performance measures (thresholding) are considered the most im-

portant metric, due to a more direct indication of robustness in the system, which will

only accept an input if its values satisfy a minimum degree of similarity with any template

in the database. Nevertheless, as it can be noticed by analyzing their formulas, there is a

high correlation between them and, in principle, if there are good identification results,

the authentication results are most likely in accordance.

1.3.4 Neural Networks

A Neural Network (Fig. 1.3) is a machine learning algorithm inspired by the human

brain. It is represented by a computational graph which consists in one or more layers of

neurons. The synapses of a neuron, also known as weights, are represented by numerical

matrices and are changed during the learning process, to minimize a cost function.

A Neural Network (NN) produces a result by propagating the inputs through each

layer consecutively, while each neuron performs a weighted sum of its inputs. Optionally,

the output of a neuron can pass through an activation function, a nonlinear function such

as the hyperbolic tangent (tanh) or the rectified linear unit (ReLU), given by max(x,0),

being x the input vector. This increases the ability of a NN to solve nonlinear problems.

Similarly to weights, biases are parameters that can be useful if there is a need for an

offset value from the input to the output of a neuron. The term "parameters"is often used

as a reference to the set of weights, biases and other variables present in a NN.

The first layer of a neural network is called a visible layer or an input layer. The

subsequent layers are called hidden layers up to the last one, the output layer. A NN with

two or more layers is called a Deep Neural Network (DNN).

1.3.4.1 Learning

A neural network learns by optimizing its weights based on an error signal. The algo-

rithms employed in this phase can be diverse, but are generally nonlinear optimization

algorithms.
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Figure 1.3: Neural Network [24].

For instance, in supervised learning, after the network produces results (forward

propagation), a comparison with the ground truth labels takes place. This comparison

originates an error signal, which is then propagated backwards, updating the weights

of each neuron. This procedure is called backpropagation. A common technique used

to implement it is gradient descent, which works by iteratively propagating the partial

derivative of the error with respect to the parameters θ, until the cost function J(θ)

reaches a minimum. It can be expressed by:

θ = θ − η∇θJ(θ), (1.11)

where η is the learning rate, a small constant which determines the magnitude of each

update.

In supervised learning, the functions used to obtain the error information (cost func-

tions) depend on the nature of the problem. The objective may be the attribution of a class

to an input - classification; or the approximation of a continuous variable - regression. A

popular metric used to calculate the classification cost function is the cross entropy loss

(H) between the predicted labels (ŷi) and the ground truth labels (yi). It is given by:

H(y, ŷ) =
C∑
i=1

yi log
1
ŷi

= −
C∑
i=1

yi log ŷi , (1.12)

where C is the total number of classes.

As for a regression task, the standard cost function is the mean squared error, defined

as:

MSE(y, ŷ) =
1
N

N∑
i=1

(yi − ŷi)2, (1.13)

where ŷi , yi and N represent, respectively, the predicted values, the ground truth values

and the total number of samples.

To facilitate the learning process, weights are generally initialized with small random

values following a specific distribution (e.g. normal distribution).
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Besides supervised learning, NNs are capable of unsupervised learning, in which case

there is no ground truth information and the network only finds a representation to make

sense of patterns in the data; semi-supervised learning, where a limited degree of ground

truth is provided; self-supervised learning, where the network (e.g. an autoencoder) tries

to learn a latent representation of its inputs, which can be useful for data compression or

as a pretrained module; and reinforcement learning, where a positive reinforcement (re-

ward) signal encourages the parameters to update in its direction and magnitude, while

the opposite occurs for negative reinforcement signals. NNs are considered universal

function approximators [25], as they are able to learn linear or nonlinear functions, when

given inputs and a cost function. With that in mind, along with their known ability to gen-

eralize, this can be considered a very promising approach to create powerful applications

for human biometrics.

1.3.4.2 Convolutional Neural Networks

A CNN (Fig. 1.4) is a type of neural network that works by applying convolution opera-

tions between kernels and an input tensor. This input tensor is an n-dimensional vector

carrying the input information. It may be, for example, a 2D matrix representation of an

image, a 3D sequence of images (video) or a sequence of voltage samples (1D), as it often

is, in the case of ECG biometrics. This algorithm has recently been successful in the fields

of machine translation and robotics, among others [12].

The kernels correspond to the weights in regular neural networks and can also be

learned. They can be viewed as filters which have the capability of attending to the

morphological characteristics of the input tensor. In the case of image recognition, these

filters can detect shapes, edges and other patterns that may appear in an image. Any

layer in a network with this ability is called a convolutional layer due to the fact that it

is based on the convolution operation. Its output is a tensor of stacked n-dimensional

matrices that indicate the neural activations originated by the input. These activation

maps correspond to the features of the input tensor, being also called feature maps. After

a convolution, a pooling layer may be used to reduce the dimensions of the feature maps.

In most cases, it is taken the maximum value of small slices of a feature map, an operation

called max pooling. This diminishes the need for computation and helps filters in the

detection of shapes that suffer translations [12].

1.3.4.3 Recurrent Neural Networks

A Recurrent Neural Network (RNN) (Fig. 1.5) is a type of NN with recurrent connections

and is used for sequential data processing. It generally consists of neurons connected to

themselves with the objective of encoding memory into a state vector. A state vector is

an embedding of the last n timesteps to the network and it is usually updated at each

timestep. The representation of RNNs may also be in an unfolded form, resulting in a

computation graph which can be easily implemented, where self connections turn into

10
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Figure 1.4: Convolutional Neural Network (LeNet architecture) [26].

sequential connections between neurons with shared parameters and the length becomes

finite.

These models can operate in different modes, depending on the task at hand:

• One to many, which can generate a sequence based on only one input. An example

application is audio generation.

• Many to many, which maps a sequence to another. Both sequences can have the

same or different lengths. This mode is applied in machine translation.

• Many to one, in which a single value is obtain from a sequence. It is mostly applied

in classification tasks, including in ECG biometrics.

The conventional algorithm for RNN training is called Backpropagation Through

Time (BPTT). This algorithm is similar to regular backpropagation, yet the shared pa-

rameters of the network are learned with a recursive temporal propagation of the cost

function’s gradient. Usually, due to limitations in memory and computation, RNNs are

trained by truncated BPTT. This method limits the backpropagation time window, lead-

ing to faster training, but also to restricted temporal dependencies [27].

During the propagation of gradients through many timesteps, the successive differen-

tiation leads to a decrease in the magnitudes of the gradients, causing a loss of long-term

information. This is known as the vanishing gradient problem, where the last layers,

being closer to the labels, receive high quality gradients, whereas the learning process

becomes harder for earlier layers. To counteract this issue, more complex recurrent cells

were developed, such as the Long Short-Term Memory (LSTM) [28] and the Gated Recur-

rent Unit (GRU) [29]. These computational memory cells possess gates with the ability to

learn to selectively attend to the past, choosing what to remember and what to forget.

The GRU is known to perform similarly to the LSTM in terms of recognition ability,

while being considerably faster, due to the absence of a forget gate. The remaining gates,

reset and update, compose the GRU. The general equations for these gates, respectively,

are:

r = σ (Wrxn +Urhn−1) (1.14)
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Figure 1.5: Recurrent Neural Network in folded (left) and unfolded (right) form (Adapted
from [12]).

and

z = σ (Wzxn +Uzhn−1), (1.15)

where σ is the logistic sigmoid function, hn−1 is the previous state and the weight

matrices Wr , Wz, Ur and Uz are optimized through training.

As the data flows through the GRU, these gates change their values, consequently

updating or forgetting the input data (by the reset gate) or computing the next state, which

is nominated as candidate (by the update gate), ensuring that the essential information

passes through. Therefore, the next state is a combination between the last state and a

mapping of the input data. The candidate for the next state is computed by:

h̃ = φ(Whxn +Uh(rn · hn−1)), (1.16)

where (·) denotes element-wise multiplication and φ is an activation function, being tanh

the most commonly used for this purpose.

The next state, i.e. the output of the current unit, is computed by:

hn = zn · hn−1 + (1− zn)̃hn. (1.17)

Overall, this ability to memorize is useful for signal analysis, as it can have a perspec-

tive of the global behavior of a signal, which is in itself a sequence of samples.
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2
State of the Art

This chapter includes a review of modern applications for ECG analysis, the most relevant

work in ECG Biometrics, along with important research in deep learning. Finally, some

of the works that join these areas and are most significant to the scope of this thesis are

presented.

2.1 ECG

The latest research in the areas of ECG signal processing and classification has very

diverse applications. Besides biometrics, research can be found in signal compression,

blind source separation [30], denoising [31], artifact removal [6], medical diagnosis, signal

synthesis, among others.

For ECG signal compression, standard techniques include discrete wavelet transforms

[32] or block sparse Bayesian learning [33]. Deep learning has already been applied to

this subject, as Yildirim et al. [34], using deep convolutional autoencoders, achieved a

very high compression ratio (32.25), while maintaining good signal quality.

There are various disease-related events which can be detected by analyzing the ECG

of a given patient. Park et al. [35] compared kernel density estimation, a NN and a

Support Vector Machine (SVM) to detect myocardial ischemia using fiducial features. A

more recent method used CNNs for a similar task [36]. Acharya et al. [37] were able to

diagnose congestive heart failure using a one-dimensional CNN.

For arrhythmia detection, several works have been proposed, using very diverse clas-

sification methods. Polat and Güneş [38] used Principal Component Analysis (PCA) and

an SVM to achieve 100% accuracy on a public arrhythmia dataset. Osowski et al. [39]

employed an ensemble of neural networks on the MIT-BIH Arrhythmia database. More

recently, Yildirim et al [40] applied a 1D CNN to the same task. Zihlmann et al. [41]
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applied spectrograms and CNNs for a similar task, using a larger database.

Synthesizing ECG signals may be important to assess if a particular model under-

stands the underlying characteristics of a signal. It can also improve the representation

capability of that particular model, so that it can extract better features. Work in this

area includes Belo et al. [8], which synthesized ECG, RESP and EMG signals using RNNs.

Golany and Radinsky [42] used generative adversarial networks to synthesize ECG signals,

augmenting the MIT-BIH dataset and improving the performance of an LSTM classifier.

It can be verified that, mainly due to their ability to effectively learn features from

data, DNNs are becoming increasingly popular throughout many tasks that require the

analysis of ECG signals.

2.2 ECG Biometrics

Since the field of ECG Biometrics was first introduced, a fair amount of progress has

been made. Recently, this progress has been amplified by modern algorithms, including

DNNs.

The typical biometric system with ECG comprises the following flow [43]:

1. The acquired data is submitted to a feature extraction algorithm;

2. The extracted features are fed to a classification module, which compares the inputs

with ECG templates of a given subject and makes a decision;

3. The features and/or the classifier modules are stored in a database during the en-

rolment phase.

In fiducial-based ECG Biometrics research, the most common feature extraction meth-

ods are the extraction of characteristic points, such as intervals, amplitude, angles, areas,

linear combinations of features, euclidean distances and slopes [5, 44]. Wavelet trans-

forms [45], cosine transforms [46] or Fourier transforms [47] are also utilized for this

purpose, as they can accurately capture frequencies and waveforms in the cardiac cy-

cle. Fiducial features may be submitted to a dimensionality reduction technique, such

as PCA [5], Linear Discriminant Analysis (LDA) [48]; or to dynamic time warping [49],

which measures the similarity between sequences by aligning them through time. These

methods may be also used in the classification module [50, 51], however, NNs [47] and

decision trees [52] are also deployed for these tasks. Figure 2.1 contains an illustration of

commonly used fiducial features.

For non-fiducial approaches, R-R intervals and PCA are commonly used for feature

extraction [51]. Wavelet, cosine or Fourier transforms can extract this kind of features as

well [44], as some of the generated coefficients can represent patterns that occur over time

lengths superior to the duration of a cardiac cycle. Pinto et al. [53] compared various

combinations of features and classifiers for ECG identification in signals acquired from

a steering wheel. Overall, the best results were obtained with a combination of discrete
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Figure 2.1: Examples of fiducial features. Reprinted from [5].

cosine transform and SVM. In their approach, clustering was used to remove artifacts

that were present in the signals. Ferdinando et al. [54] used bivariate empirical mode

decomposition, spectrogram analysis and a k-nearest neighbor classifier for biometric

identification when emotions are considered. Besides achieving high classification rates,

this work found a correlation between accuracy and two spectrogram parameters: overlap

percentage and window size. Carvalho et al. [55] applied a similarity measure called

Normalized Relative Compression to outperform all the previously tried methods on

a locally collected dataset by a large margin, stating their intention to benchmark the

proposed approach on CYBHi database, which was acquired off-the-person and contains

two different recordings (see Section 3.4). Marques [56], using k-nearest neighbors and a

similarity-based approach, achieved an EER of 3.97% for within-session tasks and 14.31%

for across-session tasks on CYBHi database. In the latter kind of task, training and testing

is performed on two separate recording sessions. This creates a more usable biometric

system, as these systems must function through long periods of time.

Currently, DNNs have been employed in ECG biometrics to improve accuracy rates,

since automatically extracted features are generally more effective, since they are explic-

itly optimized for a particular task. Page [57] used NNs for both QRS detection and

classification, resulting in an identification accuracy of 99.96% for the ECG-ID dataset. It

demonstrated the efficacy of DNNs in ECG signal recognition.

Eduardo et al. [9] implemented a deep autoencoder to learn lower dimensional feature

representations, obtaining low identification errors on a private dataset. Zheng et al. [58]

also used an autoencoder to achieve 98.1% accuracy using a self-collected dataset. In

both these works, autoencoders are used for self-supervised feature representation, with

the purpose of increasing the recognition rate capability of the classifiers.

For a more in-depth review of recent work in ECG Biometrics, as well as future re-

search directions, see [23].
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2.3 Deep Learning

Deep Learning is a subset of Machine Learning that has recently been popularized as

a research field. It consists in the usage of DNNs on large datasets and can be applied

to diverse areas of study, while requiring little domain knowledge in some cases, as the

feature extraction step is done automatically.

In order to make sense of the recent breakthroughs in DNNs, here is presented some

of the most relevant research that is applicable to the analysis of ECG signals. It covers

two of the most effective NN types: CNNs and RNNs.

2.3.1 Convolutional Neural Networks

A Convolutional Neural Network is a type of DNN which uses the convolution operation

as a way to extract complex hierarchical features. Traditionally, CNNs were created to

handle 2-dimensional data, being used to recognize images [12].

One of the models with the highest recent impact in this area are Residual Networks

(ResNets) [59], which have allowed the increase of CNN layers up to the thousands, by

stacking feature maps formed in earlier layers to feature maps at higher levels - skip

connections. This acts a way to counteract the vanishing gradient problem (see Section

1.3.4.3). DenseNet [60], another recently proposed CNN architecture, includes extra

connections in groups of successive layers (dense blocks), potentiating the flow of infor-

mation through layers and outperforming ResNets while using less parameters. These

advances enabled CNNs to reach human-level performance on image recognition tasks.

This trend in image recognition can be helpful for ECG biometrics, especially when

the signals are represented by spectrograms. Besides enhancing the signal representation

by increasing its resolution in the frequency domain, spectrograms form 2D matrices,

which can serve directly as input to a 2D CNNs. This method has previously been applied

in sound recognition [61].

Although being mostly used for tasks related to computer vision or natural language

processing, CNNs can also capture sequential patterns, having inclusively been applied to

ECG signals in their 1-dimensional form [10, 11, 62–64]. Despite accomplishing positive

results, recent work in 1D CNNs for processing time series indicates there can still be a

margin for improvement.

One of these examples is Van Den Oord et al. [65], which used dilated causal 1D

convolutional layers, obtaining near-human naturalness scores in audio generation. These

layers used stacked convolutions that attend to the past with increasing spacing between

samples (dilation), leading to a large receptive field. Bai et al. [66] compared a similar

approach to RNNs and verify its superior potential for sequence modeling, as well as a

much faster rate of convergence.
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2.3.2 Recurrent Neural Networks

The main purpose of RNNs is to associate information gathered through a time period. In

this type of NN, self-connections between neurons allow a long-term temporal integration

of samples or features. In recent years, some improvements have been made to the

standard RNN architecture besides LSTM and GRU cells.

Graves et al. [67] proposed a complex network which learns how to read and write

to an external memory. This made it able to memorize complex dependencies and learn

question answering tasks from scratch. Ba et al. [68] surpassed LSTM on associative

memory tasks by a large margin. They used fast weights to update the network with

information about the recent past. Jaderberg et al. [69] integrated a regression problem

into truncated backpropagation through time, by trying to predict the gradients after a

certain number of timesteps. This approach was able to improve the convergence rate of

their recurrent model. Vaswani et al. [70] used a self-attention network to reach state of

the art results in machine translation, an area previously dominated by RNNs. Wu et al.

[71] recently proposed a simplified version of self-attention that includes convolutions

and yields even better performance.

RNNs and CNNs may be joined into a single network. This method has been applied

successfully in video recognition, since the abilities of vision and temporal association

are present in the same model [72].

2.4 ECG Biometrics using DNNs

This thesis focuses on applying deep learning to ECG signal analysis, a very recent ap-

proach that has already produced interesting results.

Salloum & Kuo [73] proposed an aggregation of RNN architectures for analysis and

classification after selecting QRS segments without further feature extraction methods.

For the identification problem, it was reported nearly 100% classification accuracy on the

ECG-ID database. Values of EER between 3.5% and 0% in an authentication task using

the MIT-BIH database. This proved the efficacy of RNNs for this kind of problem. Zhang

et al. [63] used a multiresolution one-dimensional CNN, where the feature extraction

step comprises discrete wavelet transform, autocorrelation and component selection, to

obtain 93.5% identification rate as the average result on 8 different datasets. Labati et al.

[64] also applied a 1D CNN to identify patients using the IDEAL database as well as the

PTB diagnostic ECG database, achieving 100% accuracy on the latter. Zhao et al. [74]

obtained promising results in a recently published ECG dataset [4] by feeding a 2D CNN

with ECG trajectories obtained by applying generalized S transforms to the signals. Wu

et al. [75] reached state of the art performance on MIT-BIH Arrhythmia and ECG-ID by

applying a two-stage approach, consisting of a 1D CNN, followed by an attention-based

bidirectional LSTM.

The mostly related paper to the work presented in this thesis is Luz et al. [11]. It used

17



CHAPTER 2. STATE OF THE ART

an architecture that fuses a 1D CNN, with raw ECG heartbeats as input, with another

2D CNN, fed with the corresponding spectrograms, demonstrating the potential of this

type of classifiers on off-the-person ECG biometrics, namely on CYBHi and UofTDB

databases. This work achieved EERs of 12.78% and 13.93% in across-session tasks. It

also demonstrates that spectrograms can be a complement to ECG segments when using

DNNs.
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3
Datasets

The data used for the first experiment is from two well-known public datasets from the

Physionet database [76]: Fantasia and ECG-ID. The second experiment, besides also

being tested on the Fantasia database, uses two other datasets: MIT-BIH and the CYBHi.

3.1 Fantasia

The Fantasia database consists on 40 subjects (20 young and 20 elderly) whose signals

were recorded during 120min with a sampling frequency of 250 Hz, while watching the

movie Fantasia from Disney [13]. The main advantages of this database are its popularity

and the long duration of its recordings.

3.2 ECG-ID

ECG-ID consists of 310 recordings of 90 subjects aged from 13 to 75. While the original

data ranges from 2 to 20 recordings per subject, only the first two were used, with the

purpose of having the same number of samples for each subject and ensuring a balanced

dataset. Each recording is 20 seconds long with a sampling frequency of 500 Hz [14].

3.3 MIT-BIH

The MIT-BIH Database has been available since 1999 in Physionet. The basic subset of this

database, MIT-BIH Arrhythmia, contains ECG records from 47 subjects with 360Hz of

sample frequency and 11-bit resolution, from Boston’s Beth Israel Hospital. More subjects,

with no significant arrhythmic episodes, were added to this dataset, 18 subjects in MIT-

BIH Normal Sinus, and 7 individuals in MIT-BIH Long-Term [15]. In this experiment,
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although the full database is used, resampling to 250Hz is performed, so that there is a

more direct comparison with the results obtained on Fantasia database.

3.4 CYBHi

ECG signals are also from the Check Your Biosignals Here initiative (CYBHi) database

[16]. For this dataset, signals were acquired through the subjects’ hand palms and fingers,

while they were sitting in a resting position and watching videos. Signals are 2 minutes

long and the sampling frequency is 1000 Hz. In this experiment, only the long-term

portion of the signals is taken into account. This subset contains data from 63 subjects

aged between 18 and 24, from which 14 are male and 49 are female. It consists of two

sessions, recorded approximately 3 months apart.

This dataset is regarded as a good way to test for the robustness of the algorithms in

use. The reasons for this include: a relatively high number of subjects; the fact that there

are recordings took at two moments distant in time; its low signal-to-noise ratio. This

database was considered to be one of the best for biometric studies [77].
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4
Signal Processing Methods

In this chapter, the signal processing methods applied in the preprocessing step are

explained in detail for both experiments.

4.1 Overview

Here is presented an overview of the preprocessing pipeline for each experiment.

4.1.1 ECG Biometrics using Spectrograms

The full preprocessing step for this experiment is composed by:

• Normalization

• Filtering

• Segmentation and Spectrogram Generation

4.1.2 ECG Biometrics using Signal Segments and Fusion

The full preprocessing step for this experiment is composed by (Fig. 4.1):

• Normalization

• Filtering

• Quantization (Personalized RNN only)

• Segmentation + Peak Detection (CNN only)

• Segment Elimination
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(a) Preprocessing for the personalized model.

(b) Preprocessing for the non-personalized models.

Figure 4.1: Preprocessing flow for Fantasia and MIT-BIH. For CYBHi, filters are replaced
by a single Butterworth bandpass filter.

22



4.2. NORMALIZATION

4.2 Normalization

Normalization works by rescaling the data. It is applied twice for each of the performed

experiments, during different phases and using different formulas.

Usually, the main reason why normalization is applied in machine learning is that

it makes the classifier perform better. In the particular case of this work, the training

process becomes easier for neural networks. This happens because most gradient-based

optimization algorithms have faster convergence when normalization is applied [78].

Normalization is the first preprocessing step for both experiments, being directly

applied to the raw signals, so that the filters have a more stable behavior.

For the first experiment, each signal starts by being normalized by subtracting its

mean and dividing the result by the difference between its maximum and its minimum:

x′ =
x − x

max(x)−min(x)
, (4.1)

where x denotes the signal. After spectrograms are generated, they are normalized by

subtracting the mean and dividing by the standard deviation. After this step, ECG data

is ready to be used as input to the CNN.

For the second experiment, normalization is performed before filtering and after peak

detection occurs. Before filtering, the following formula is used:

x′ =
x − x

max(|x − x|)
, (4.2)

while after the signal is segmented, the normalization formula in use is:

x′ =
x −min(x)

max(x)−min(x)
, (4.3)

known as min-max normalization. This second normalization stage is crucial for the

generalization ability of the algorithm. It is demonstrated empirically in Section 6.

4.3 Filtering

For the first experiment, a Hann window filter is applied, so that higher frequencies,

which are associated with noise, are attenuated. The Hann window is given by:

w(n) = sin2

 πx
N − 1

, (4.4)

where N denotes the window size. Afterwards, baseline wandering is removed by apply-

ing a sliding window which subtracts to the signal its moving average.

For the second experiment, for the CYBHi database, similarly to [11], a Butterworth

bandpass filter with cutoff frequencies of 0.5Hz and 40Hz is applied to the raw ECG data,

with the purpose of removing undesired frequencies and smoothen the signal. This type
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of filter is popular in signal processing due to having almost no ripple, i.e. oscillations in

its pass band. It has been used for ECG denoising and, when compared with other filters,

has a reported accuracy close to wavelet-based filters at a fraction of the computational

cost [79].

For MIT-BIH and Fantasia, a moving average filter is applied, followed by a Hann

window filter (Fig. 4.1).

4.4 Quantization

For the personalized model, a large RNN, quantization is used to simplify the signal, in

order to make the network converge faster.

First, signals are clipped at their peaks by the use of an amplitude histogram with

a confidence threshold. this allows for better resolution outside the QRS complex. The

resulting signal, x, undergoes the same quantization process presented in [8]. This process

consists of discretizing its range of values, transforming it into a vector with SD=256

possible integer values. The following equation is used:

xn = round

sn −min(s)
max(s)

(SD − 1)

 (4.5)

where xn is the n-th sample of the input vector.

4.5 Segmentation

During the segmentation procedure, filtered signals are separated into chunks with a

determined size and overlap percentage. For the first experiment, each segment that

is taken from the signal becomes a spectrogram. As for the second experiment, signal

segments are directly processed by the classifier.

4.5.1 Spectrogram Generation

Since databases used in the first experiment have a significant difference in recording

duration (20 seconds vs 120 minutes), the need for a minimum amount of training and

validation data requires a change in the parameters used for spectrogram generation in

both databases.

For the Fantasia database, signals are segmented into chunks with a length of 1536

samples (approximate duration of 6 seconds) and the fast Fourier transform window has

a size of 256 samples with an overlap of 87.5%.

For the ECG-ID database, segments consist in 2048 samples (approximately 4 sec-

onds) and a fast Fourier transform window size of 512, with an overlap of 93.75%. The

shorter duration of the segments is due to the need of increasing the number of generated

windows for training and validation.
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Figure 4.2: Examples of resized spectrograms for each of the used databases: Fantasia
(left) and ECG-ID (right).

Once the spectrograms are generated, frequencies above 120 Hz are removed. The

resulting matrix is then resized to 80 × 80 and normalized by subtracting the mean and

dividing by the standard deviation. Examples of these processed spectrograms are shown

in Figure 4.2.

The reason behind the use of high overlap percentages for spectrogram generation

is that it provides more data for the same length of a signal. In addition to that, DNNs

generally have better performance in larger datasets [12]. Also, it has previously been

demonstrated that overlap percentage increases the performance of other classifiers, such

as k-nearest neighbors with statistical features extracted from spectrograms [54]. During

the validation procedure, several values of overlap were tested and this correlation was

verified.

4.5.2 Peak Detection

For the second experiment, segments containing at least two heartbeats are cut from the

filtered signals. From these segments, QRS peaks are detected using the Pan-Tompkins

algorithm [80], which encompasses the following steps:

1. Apply a bandpass filter (e.g. Butterworth) to the signal;

2. Differentiate the signal, to obtain the slopes;

3. Square the signal, so that it becomes positive;

4. Apply moving-window integration, to eliminate noisy peaks and emphasize the

QRS complex;

5. Capture the QRS peaks by selecting thresholds.

This algorithm is used to isolate single heartbeats, which are obtained by selecting the

same number of samples before and after the QRS peak. This is done so that two different
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kinds of input can be compared: segments and heartbeats. The possibility of joining both

these two methods is then assessed.

For the CYBHi database, with sampling a frequency of 1000Hz, segments are 2048

samples long (approximately 2 seconds) and are cut with an overlap of 89%. Heartbeats

contain 400 samples to each side of the detected QRS peaks, adding to 800 samples.

For both MIT-BIH and Fantasia, with the sampling frequency being 250Hz, samples

are still approximately 2 seconds long, but only contain 512 samples and are cut using an

overlap of 66%. Heartbeats have a length of 220 samples. For Fantasia, the total number

of generated segments was 145435, while for MIT-BIH, this number was 171002.

The use of heartbeats as input is only tried on CNN-based models.

4.6 Segment Elimination

Segment elimination is tested on the CYBHi database as a way to slightly improve results,

although it can be used to reject data in any ECG biometrics task.

As the data were obtained through ECG measurements in suboptimal settings (e.g.

hand palms and fingers on CYBHi), some segments may contain substantial amounts of

noise and motion artifacts when compared to others. These unwanted events generally

harm the performance of the model in use and their explicit elimination may be needed.

This elimination can be simply done by thresholding in terms of a given metric, such

as similarity [11]. A more robust approach can in principle be achieved by clustering

algorithms, which are unsupervised and can use features extracted from the data [6], as

well as cross-correlation [53].

Following the possibility that clustering can robustify the system, a k-means cluster-

ing algorithm is proposed for tasks involving the CYBHi database and compared with

thresholding. This unsupervised learning technique is performed before segmentation

and used to separate the signals in k=2 clusters - motion artifact or normal ECG. The

only feature in use is a moving standard deviation with a window size of 1536. This

method may allow the generation of cleaner segments, avoiding an explicit rejection of

data points for classification. The k-means clustering algorithm can be described by:

1. Initialize k initial cluster centroids as points in an N dimensional space, where N is

the number of features;

2. Create clusters by assigning the datapoints to the closest centroid, with respect to a

distance metric (e.g. Euclidean);

3. Compute k new centroids, which are given by the average position of all the data-

points in each cluster;

4. Return to 2. until convergence.
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Figure 4.3: Detected ECG artifacts (yellow) using k-means clustering.

Table 4.1: Total generated segments and rejected segments for each session of CYBHi.

Session Total Rejected (% of total)

1 35115 97 (0.28)
2 33217 118 (0.36)

This clustering method removed 10±30% of the total signal length for every subject

of the CYBHi database. This high variance is due to the fact that some signals have no

apparent artifacts, while others may have many. Figure 4.3 shows an example of an ECG

with detected artifacts.

By performing segment elimination by thresholding, segments outside adjusted limits

of standard deviation are rejected. After validation, it was verified that the optimal

percentages of segments to reject were very low. Nonetheless, this procedure was still

employed (Table 4.1).
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5
Architectures

The choice of a model for classification is a key part of a biometric system. In this chapter,

models used for the tasks of identification and authentication are explained in detail. The

presented architectures are optimized by cross-validation on small subsets of the training

data. Training is done by backpropagation, using the Adam optimizer [81] with sof tmax

activation and cross-entropy loss.

5.1 ECG Biometrics using Spectrograms

In this experiment, CNNs are fed with spectrograms as input to identify subjects from

two different databases, Fantasia and ECG-ID. With that in mind, the differences between

applying a small CNN (baseline) and DenseNet [60] are assessed. The same architectures

are maintained for each database.

DenseNet is a state of the art CNN architecture which has a very large capacity. It

can be seen as an evolution of ResNet [59], in the sense that it maintains its residual

connections, with a simple modification. In this type of architecture, the inputs of a

layer contained in a block are a concatenation of all the previous feature maps (Fig. 5.1).

Besides allowing a more efficient use of the network parameters, this type of architecture

achieved state of the art results on popular image recognition datasets. This version of

DenseNet has 19 layers, including 3 dense blocks with a growth rate of 10, starting with

20 kernels on the first convolutional layer.

A more conventional CNN (Fig. 5.2) is also implemented. This simpler model consists

of 4 convolutional layers with rectified linear unit (ReLU) activations. It is used as a base-

line to verify how much of an improvement is given by having a larger architecture. This

model also has the objective of optimizing parameters such as spectrogram dimensions

and overlap percentage.
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Figure 5.1: "A 5-layer dense block with a growth rate of k = 4", reprinted from [60].

Figure 5.2: Conventional CNN architecture used as a baseline. "Conv", "MP"and
"FC"respectively stand for convolutional, max pooling and fully connected layers.

As DenseNet as a much higher number of weights, it is expected to outperform the

baseline by a significant margin.

5.2 ECG Biometrics using Signal Segments and Fusion

In this second experiment, different DNN architectures are evaluated for the classification

of ECG signals, directly using signal samples after being filtered and segmented.

5.2.1 Recurrent Neural Networks

The architecture used for the experiments involving personalized models, represented

in Figure 5.3a, is a RNN based on GRUs (see Section 1.3.4.3). It is comprised by an

embedding matrix E, three sequential GRUs G and a fully connected layer with a softmax

activation. This kind of activation function, generally used for multi-class problems,

30
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(a) Recurrent Neural Network Architecture (b) Temporal CNN Architecture

Figure 5.3: Proposed architectures. "G"stands for GRU, "E"for embedding matrix, "C
N"for n-th CNN layer and "B"for batch normalization

turns the outputs of the last layer into normalized probabilities. It is given by:

softmax(xj ) =
exp(xj )∑
i exp(xi)

. (5.1)

The embedding matrix is popular in RNNs used for text processing. It works as a

translation mechanism between the input and the first GRU layer. This matrix starts with

random values and is optimized during the course of training. Each of the following GRU

layers are fed by the output (temporal state) of the previous one. Each GRU layer has

gates of size 256.

A non-personalized version of the RNN is also implemented and tested on CYBHi.

This version is used to compare the performance of CNNs and RNNs more directly, as it

uses the same preprocessing method (no quantization) and is much smaller (only 1 GRU

layer with 32 neurons and no embedding matrix). The final layer has 128 neurons.

5.2.2 Convolutional Neural Networks

The second proposed architecture (Fig. 5.3b) for this experiment is a two-stream Temporal

Convolutional Neural Network [66], which uses 1-dimensional convolutional layers to

learn temporal patterns. It combines predictions from two different inputs: ECG window

segments and extracted heartbeats.

31



CHAPTER 5. ARCHITECTURES

Figure 5.4: Temporal Convolutional Neural Network with three convolutional layers (L),
kernel size of 2 and dilation rate of 2L−1.

A Temporal Convolutional Neural Network (TCNN) (Fig. 5.4) is a 1-dimensional

CNN with dilated convolutions. This type of network performs the convolution opera-

tion between an input signal and a moving vector (1D) with a fixed size, the kernel. These

kernels are learned over the course of training. Each kernel will be activated by a partic-

ular type of waveform, enabling the NN to distinguish between different the sequences

of waveforms that compose the signals.

To perform dilated convolutions, each kernel, while keeping its size constant, steps

over several input samples. This provides a larger receptive field to the kernel, while

reducing its resolution. The size of each step is controlled by a dilation rate which, in

this case, is a power of 2. Successive layers of increasingly dilated convolutions become

an effective way to obtain hierarchical relationships between samples, while maintaining

computational efficiency [65, 66].

A high-level scheme of this architecture is presented in Figure 5.3b. Each neural

network is composed by several convolutional layers with 24 kernels of size 4, followed

by batch normalization and a ReLU (Rectified Linear Unit) activation function, given by

ReLU(x) = max(0,x). Then, a fully connected layer of size 256 is applied to the output of

the final convolutional layer. As there is a difference in length between both data streams

(segments and heartbeats), a different number of layers is used for each network. This

must happen due to the exponential factor on the dilation rate, making each additional

layer drastically increase the total receptive field.

With the purpose of having the same recording time per segment, the significant differ-

ence in sampling frequency (250 to 1000 Hz) between datasets causes segments to differ

in length, consequently having to change the architecture. This change is done simply by

varying the number of layers. For Fantasia and MIT-BIH, the number of convolutional

layers is 6 for the network with segments as input and 4 for the heartbeat network. These

values are increased by 2 (8 and 6) for the CYBHi database.

Each network is trained independently and the sum rule is used to combine the raw
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predictions (logits) produced by the output layers.

As an attempt to further improve generalization across different sessions on CYBHi,

an autoencoder is used as an auxiliary task, jointly trained with the model. This technique

is inspired by Le et al. [82], which showed significant improvements in performance for

several datasets. In this variant, the base TCNN, excluding the output layer, is used as the

encoder. For the decoder, a simple hidden layer of size 512 maps the final TCNN layer

to a reconstruction x̂ of the original input x with size D. Everything else is maintained,

with either segments or heartbeats used as input to each of the two NNs which have their

predictions combined after training. Mean squared error was used as the loss function

for the autoencoder and no weighting coefficients are multiplied by either parcel of the

loss function, given by:

L(y, ŷ,x, x̂) = −
C∑
i=1

yi log ŷi +
1
D

D∑
j=1

(xj − x̂j )2, (5.2)

where ŷi , yi and C represent, respectively, the predicted labels, the ground truth labels

and the number of classes.
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6
Experimental Results

This section presents the results obtained for each experiment. All training and testing

was performed on two NVIDIA GeForce GTX 1080 Ti graphics cards using TensorFlow

[83], a numerical computation library that can run on GPU.

6.1 ECG Biometrics using Spectrograms

This experiment takes advantage of developments in machine learning to conceive a

biometric identification system based on ECG spectrograms and CNNs.

The proposed task is to classify ECG spectrograms generated from signal segments

into as many classes as subjects in the system. While doing so, two CNN architectures

are tested: the baseline CNN and a DenseNet. The approach followed by this experiment

is displayed in Figure 6.1.

As the subset of ECG-ID in use contains two sessions per subject, two different tasks

are proposed: within-session and across-session. In within-session (or intra-session) tasks,

both sessions are used for training and testing, being the split by time. In this modality,

approximately the last 7 seconds of each session are used for testing. The across-session

Figure 6.1: Flowchart of the spectrogram-based subject identification method.
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Table 6.1: Within-session classification performance (%).

Model Database Accuracy Sensitivity Specificity

Simple CNN Fantasia 99.42 99.42 99.98
DenseNet Fantasia 99.79 99.78 99.99
Simple CNN ECG-ID 94.23 94.26 99.94
DenseNet ECG-ID 96.88 96.89 99.96

Table 6.2: Across-session classification performance for ECG-ID (%).

Model Accuracy Sensitivity Specificity

Simple CNN 73.54 72.72 99.70
DenseNet 73.28 72.46 99.70

(or inter-session) task is formulated as a way to test for generalization performance. In

this setting, one session from each subject is used for training, while the other is used for

testing.

The CNNs were trained on 67% of the data and tested on the remaining 33%. For the

Fantasia database, spectrograms were randomly chosen throughout the entire length of

every signal, as the recording time is much longer when compared to ECG-ID, of which

all the generated spectrograms were used.

The results presented on Table 6.4 suggest that the combination of deep learning and

spectrograms can be used effectively for human identification, only needing a recording

of 6 seconds to be able to accurately classify a subject on a universe of 40.

In the across-session experiments 6.2, both models reach similar results. This may

have to do with the fact that these models were overfitting to a small training set (10s) with

a very high overlap percentage (93.75%), which generated very similar spectrograms, not

enabling the models to learn some of the features required to better distinguish between

subjects. In this case, using a larger model does not bring any benefits in performance.

In the within-session modality, the performance of these models reaches state of

the art on both Fantasia and ECG-ID databases and the values of sensitivity and speci-

ficity presented on Table 6.1 are in a reasonable range. In this setting, as hypothesized,

DenseNet outperforms the baseline CNN.

The presented approach is not as accurate on ECG-ID database (Table 6.3), when

compared with the results for Fantasia. This happens due to the large number of subjects,

along with the short recording time, only allowing the generation of 366 spectrograms

per subject, even with a considerable overlap percentage (93.75%). While the accuracy

values were not higher than most of the related works, we believe them to be at the

same level, having in mind that only a subset of the database is required. In addition
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Table 6.3: Within-session accuracy comparison for ECG-ID Database. PCA, LDA and
(W)NM stand, respectively, for Principal Component Analysis, Linear Discriminant Anal-
ysis and (Weighted) Nearest Mean.

Work Method Accuracy (%)

Lugovaya [14] Wavelets, PCA and LDA + (W)NM ensemble 96
Tan & Perkowski [52] Wavelets + Probabilistic RF 98.79

[57] NNs for QRS detection and classification 99.96
Salloum & Kuo [73] LSTM (3 beats as input) 98.2
Salloum & Kuo [73] LSTM (9 beats as input) 100

Proposed Spectrograms + Small CNN 94.23
Proposed Spectrograms + DenseNet 96.88

to this, past experiments on ECG-ID database have had very diverse setups: Lugovaya

[14], Tan & Perkowski [52] and Page et al. [57], although having used all the available

data, which varies from 2 to 20 sessions per subject, the splitting between training and

test sets diverged considerably; Salloum & Kuo [73] used only one session per subject,

however, the inputs were fed in sequence lengths of either 3 or 9 heartbeats out of 18

total; while our method uses 2 sessions per subject and 4 second segments. As there

are no widely followed standard procedures for ECG biometrics tasks, it is hard to fairly

compare results across different works.

An advantage of these algorithms is their robustness to variations in the moment

of signal acquisition, as spectrograms with small offsets in time are correctly identified

without the need for QRS detection. This experiment demonstrates there is potential

in the use of spectrograms for biometric recognition applications. Using data acquired

across different sessions has shown that this method is not very reliable. The second

experiment goes deeper into this issue, trying to understand which models generalize

better over time.

Table 6.4: Accuracy comparison for Fantasia Database. RBF and RF stand, respectively,
for Radial Basis Function and Random Forest. PRNN stands for personalized RNN.

Work Method Accuracy (%)

Tantawi et al.[45] Wavelets + RBF NN 95.89
Zhang et al. [84] Hand-crafted features + RF 98
Zhang et al.[63] Wavelets + 1D-CNN 97.2

Exp 1 Spectrograms + Small CNN 99.42
Exp 1 Spectrograms + DenseNet 99.79
Exp 2 Segments + PRNN 100
Exp 2 Segments and Heartbeats + TCNN 97.27
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(a) Personalized setting

(b) Non-personalized setting

Figure 6.2: Biometric authentication setting. RSTC stands for Relative Score Threshold
Classifier, which attributes each template to a subject by comparing the normalized scores
given by the outputs of each model.
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6.2 ECG Biometrics using Signal Segments and Fusion

In this experiment, segments or heartbeats are extracted from the filtered signals and fed

directly into DNNs with the ability of processing one-dimensional data. Then, the model

attributes a class to each segment, according to the subject from whom these signals

were generated. Comparisons are made between RNN and CNN architectures, using

personalized or non-personalized models. The models were trained on 70% of the data

and tested on the remaining 30%.

6.2.1 Personalized models

In this case (Fig. 6.2a), a new model is trained for each subject. While it may be slower

than training a single model for every subject, it could in principle achieve better results.

This is based on the hypothesis that having a NN focused solely on a single subject can

converge faster, due to a lower data complexity. A GRU, a type of RNN, is used for this

task.

Tables 6.5 and 6.4 show the results for this model on MIT-BIH and Fantasia. While

it underperforms for segments of 2 seconds, it reaches positive results if averaging pre-

dictions over a longer time window, as it can be seen in Figure 6.3. All the results shown

for the personalized RNN were obtained in this longer setting. Although results can be

competitive, requiring each subject to record almost 2 minutes of ECG data for every

access is impractical in real world systems. For MIT-BIH, final EER was reached after 71

seconds, while for Fantasia it took 78 seconds to achieve an EER of 0.021%. [73] used a

similar way to improve results, by using 9 out of 18 total heartbeats as input to achieve

perfect scores.

Table 6.5: Performance comparison for the MIT-BIH database (%). PRNN stands for
personalized RNN.

Work Method Accuracy EER

Wang et al. [46] DCT + Autocorrelation 97.8 -
Karegar et al. [85] Nonlinear features + SVM 96.07 3.938
Salloum & Kuo [73] RNN (3 HBs) 98.6 -
Salloum & Kuo [73] RNN (9 HBs) 100 0

Proposed PRNN 79.80 1.714
Proposed TCNN 95.62 1.265

6.2.2 Non-personalized models

In this setting, a single model is trained to assign an ECG segment to one of many subjects

registered in the system (Fig. 6.2b).
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The TCNNs used in this experiment can receive either segments or heartbeats. Two

or more heartbeats are isolated from each segment and randomly sampled to be used as

input to a CNN. As each model has a different view of the same segment, we consider

the hypothesis that a fusion of both CNNs can perform better than the best single model.

This hypothesis is based on the fact that at least two heartbeats are required to obtain

non-fiducial features, while, if the neural network focuses on a single heartbeat, it could

be able extract better fiducial features.

A smaller version of the RNN model used for the personalized setting is compared

with the proposed CNN models. This model only receives ECG segments as input.

Model architectures were only optimized for CYBHi, using a subset of the M1-M1

training data. No hyperparameter optimization was performed for either Fantasia or

MIT-BIH. To improve the ability to generalize across sessions, only 10 epochs of training

were used for all the experiments with CNNs, as during validation, loss values started to

stabilize and it is well known that early stopping can improve generalization [86]. Further

training would likely improve results for within-session tasks, however, creating similar

training conditions provides a more direct comparison between both modalities. As it is

not trivial to constrain the models to only learn features that generalize across sessions,

a good way to infer the degree of overfitting to the session is the variation between intra

and inter-session results.

For Fantasia and MIT-BIH, comparisons are made in Tables 6.4 and 6.5, respectively.

Even without explicit optimization, results are on par with the state of the art.

For CYBHi, in the presented figures, tasks are encoded by the sessions used for train-

ing and testing. For example, "M1-M2"means training on the first session and testing on

Figure 6.3: Evolution of accuracy values with an increasing prediction time window for
the Fantasia database.
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the second. The full results for the TCNN using thresholding for segment elimination

are shown in Table 6.6. Table 6.8 shows more extensive evaluation, as the main results of

this work. Results are presented for the RNN and for all three TCNN variants. TCNN in-

dicates the base model decribed in Section 5 using thresholding for segment elimination,

TCNN+Clustering denotes the model using k-means clustering before segmentation to

remove motion artifacts and TCNN+AE refers to the variant using a supervised autoen-

coder. In all the tasks, CNNs achieve better results than the RNN. Even having a simpler

architecture, this RNN, requiring 368 seconds per training epoch, still takes much longer

to run than the CNN models, at 15 seconds per epoch. This model comparison can be

seen as unfair, considering that the RNN takes advantage from much more computation.

All TCNN variants outperformed the previous state of the art for across-session tasks,

the most indicative task for performance in real biometric systems. Applying k-means

clustering before segmentation and using an autoencoder as a regularizer seem to improve

results. More model runs could give values of standard deviation, however, there was

no substantial variability between random seeds. Overall, the most natural choice for a

commercial system would be TCNN+AE, due to lower EERs and higher accuracies for

across-session tasks. It also presents low variation in the EERs between tasks M1-M2 and

M2-M1, which may indicate more stability.

The notion of overfitting is further explored with the RNN model. From these results

(Table 6.7), it can be seen that while the within-session EER has a relative 50% decrease

from 20 to 30 epochs, the across-session performance decreases from 20% to 19% on

M1-M2 and has a slight increase on M2-M1. Further training only aggravates this issue,

leading either to a bigger difference between intra and inter-session tasks or to unstable

training, which was verified in later epochs. This indicates that DNNs can overfit and

that early stopping can be a good way to avoid it, possibly improving generalization.

As it can be seen in Figure 6.4, more epochs of training can lead to improved results.

However, these results were obtained on test data, so this knowledge cannot be prop-

agated to the experiments, as test data should remain unseen. The initial choice of 10

training epochs was made to avoid overfitting. This figure shows that this choice might

have been a good one, as across-session accuracy ceases to increase steadily after that

value. Due to gradient instability in later epochs, values of learning rate (0.001) and

exponential decay (0.95) used in the experiments had to be reduced to 0.0008 and 0.7,

respectively. It can still be noticed that later epochs can generate unstable gradients. A

clear example is epoch 15 of task M2-M2, in which the accuracy dropped considerably,

right before it settled at its maximum. Having more recording sessions for training would

enable similar knowledge to be used by the model, most likely improving its ability to

generalize.

A clear situation of overfitting is demonstrated in Table 6.9. In this table, a trade-

off between intra and inter-session performance can be verified, as well as very poor

temporal generalization without segment normalization. The most likely cause for this

phenomenon is that the model learns undesired features which only occur within the
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Table 6.6: Performance for the TCNN model on CYBHi (%).

Task Input Accuracy Sensitivity Specificity EER

M1-M1
Segments 83.23 83.80 99.73 3.847

Heartbeats 78.96 79.24 99.66 6.174
Fusion 88.05 88.37 99.81 3.013

M2-M2
Segments 85.54 85.47 99.77 3.441

Heartbeats 79.74 79.77 99.67 6.489
Fusion 89.96 89.99 99.84 2.632

M1-M2
Segments 47.86 47.95 99.16 11.11

Heartbeats 48.89 48.44 99.18 14.41
Fusion 54.98 54.61 99.27 10.25

M2-M1
Segments 45.31 45.25 99.12 12.88

Heartbeats 47.79 47.92 99.16 17.12
Fusion 53.61 53.63 99.25 13.44

Table 6.7: Performance for the non-personalized RNN model on CYBHi (%).

Task Epochs Accuracy Sensitivity Specificity EER

M1-M1
20 58.10 58.59 99.32 17.63
30 67.42 67.96 99.47 11.09

M2-M2
20 57.21 57.29 99.31 14.84
30 67.94 68.15 99.48 10.09

M1-M2
20 28.45 28.13 98.85 20.20
30 32.61 32.56 99.91 19.00

M2-M1
20 30.32 30.44 98.88 17.85
30 30.04 30.18 99.87 17.89

same session. These features can be viewed as confounders [87], which are correlated

with the label, but are not its true cause. One way to correct for this issue would be

by training the model with data acquired in various settings. This could be done, for

example, by varying the subject’s heart rate or the amplifier gain. In the presented exper-

iment, as a partial correction for this issue, normalizing each individual segment led to

much better generalization across sessions. This can be seen as a way to simulate diverse

values of amplifier gain. Another technique that can be applied for this purpose is the

data augmentation method presented in [11], which scales either the full heartbeat or a

particular component. This augmentation is also reported to be crucial in their work.

When comparing personalized with non-personalized approaches, it can be seen that

non-personalized models reach lower error rates. This may be due to the use of RNNs, as

their weaker performance may be masking an otherwise promising approach.

42



6.2. ECG BIOMETRICS USING SIGNAL SEGMENTS AND FUSION

Table 6.8: Performance comparison for CYBHi (%).

Task Work Accuracy EER

M1-M1

Marques [56] - 3.97±0.22
Luz et al. [11] - 1.33

RNN 67.42 11.09
TCNN 88.05 3.847

TCNN+Clustering 92.59 2.073
TCNN+AE 89.54 3.150

M2-M2
RNN 67.94 10.09

TCNN 89.96 2.632
TCNN+Clustering 94.47 1.654

TCNN+AE 90.56 2.709

M1-M2

Marques [56] - 14.31
Luz et al. [11] - 12.78

RNN 32.61 19.00
TCNN 54.98 10.25

TCNN+Clustering 47.26 11.38
TCNN+AE 55.58 10.57

M2-M1
Luz et al. [11] - 13.93

RNN 30.32 17.85
TCNN 53.61 12.88

TCNN+Clustering 49.70 9.972
TCNN+AE 58.91 10.01

Table 6.9: Performance for the TCNN+fusion model on CYBHi with vs without segment
normalization (%).

Task Normalization Accuracy EER

M1-M1
No 92.67 2.874
Yes 88.05 3.013

M2-M2
No 92.58 2.404
Yes 89.96 2.632

M1-M2
No 11.60 23.56
Yes 54.98 10.25

M2-M1
No 16.65 37.59
Yes 53.61 13.44
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Figure 6.4: Evolution of accuracy with increasing training epochs on CYBHi, using TCNN
with signal segments as input. Maximum accuracy values for M1-M1, M2-M2, M1-M2
and M2-M1 are, respectively, 84.35, 50.95, 84.50 and 50.61.

The personalized model is also much slower than all the others, requiring several days

to complete training. This happens not only because it uses a large RNN, but also because

each new subject requires a unique model to be trained from scratch. In future work,

parts of these models can be shared between subjects as feature extractors, leaving only

a smaller and faster classifier as the final layer. This way, the personalized modality can

become more scalable than its non-personalized counterpart, as this kind of approach

requires a much larger output layer, with as many classes as subjects in the system.

Segment elimination did not provide significant improvements when applied to both

training and testing. However, it could lead to better results if only applied to remove

testing data, since samples containing artifacts lose useful information and become harder

to attribute. This is similar to the procedure of adding a rejection class to the model or

a threshold of model uncertainty, which automatically rejects samples that are not well

recognized. Future work on this subject would likely improve biometric systems.
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Conclusion and Future work

In the experiments performed for this thesis, small extracted segments were confidently

attributed to the subject from whom they were generated. This was possible through the

recognition of temporal and frequential information existent in ECG signals by DNNs.

This work reaches state of the art performance in important benchmark datasets

by using models that are not only able to extract features automatically, but can also

generalize to unseen data. This represents another step towards more capable and robust

biometric identification and authentication systems.

Using segments instead of heartbeats for authentication provides a much higher num-

ber of templates for the same signal length, potentially increasing the performance of

learning algorithms, such as DNNs. It can also avoid performing QRS detection, which is

not fail-safe, to obtain templates. Nonetheless, this work shows that performing a fusion

of both methods generally brings improvements.

Having the obtained results into account, it can be verified that, for these tasks, CNNs

largely outperform RNNs. By using dilated convolutions, an effective mechanism to

relate temporal data and propagate the error, all the TCNN variants were able to learn

long-term dependencies in a more efficient way. In contrast, RNNs have a much slower

convergence, possibly due to the vanishing gradient problem.

Although the achieved results show good performance rates, especially within the

same session, there is a considerable margin for improvement. Performance in across-

session tasks is still insufficient. This is the most relevant modality, as biometric systems

must function for an indefinite amount of times and throughout several years. Although

datasets such as CYBHi and ECG-ID are helping to improve it, there is a very large gap

to within-session results.

A way to improve this lack in robustness is to take advantage of the fast growing trend

in digital health, as the extensive amount of ECG data measured by wearable devices can
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be used to improve current systems. A similar idea has been applied by Clifford et al. [4],

which used a large open-sourced ECG database collected from one of these devices for an

international challenge with the objective of detecting atrial fibrillation events.

Another direction could be the use of several datasets for transfer learning, as it may

enable models to learn a better representation of the signal, especially in low data regimes,

as is the case of ECG-ID database. This would likely improve its ability to differentiate

between more subjects and hopefully needing less training data for each one.

Further development could also be made regarding signal preprocessing methods, as

the effect of noise and artifacts present in the signal is a cause for recognition error. This

could be achieved by explicitly learning to denoise ECG signals. Using models that are

inherently robust to noise is another promising approach to deal with the same issue.
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