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Abstract 

The aging population alongside little availability of informal care are two of the several factors leading 

to an increased need for assisted living support. In this work, we tackle a home social care service 

problem, motivated by two real case studies where a new loyalty scheme must be considered: within 

a week, patient-caregiver loyalty should be pursued but, between weeks, the caregivers must rotate 

among patients (non-loyalty). In addition, a common situation in this kind of service is also addressed: 

the need of a constant re-planning caused by the leaving of patients and the arrival of new ones. This 

new plan should be such that minimum disturbance is caused to the visiting hours of current patients, 

the caregivers’ travelling time between visits is minimized, and the workload is balanced among 

caregivers. A multi-objective optimization approach based on mixed-integer models is developed. 

Results on the two real case studies show that both institutions can efficiently re-plan their activities 

without much disturbance on the visits of their patients, and with a patient-caregiver loyalty scheme 

suiting their needs. 

 

Keywords: OR in health services; Homecare service; (Re-)Routing and (Re-)Scheduling; Non-Loyalty; 

Mixed-integer linear optimization. 

 

1. Introduction 

Population aging is a phenomenon faced several countries, mainly western countries, with several 

social and economic consequences. According to the European Commission (2014), the European 

Union´s population will grow by the 2060-time horizon, but it will be more aged when compared to 

the present.  

As people age their autonomy tends to decrease, leading to the need for support of others to perform 

their daily living activities. Specialized home social care services providers are a good answer to this 

need while keeping elders’ quality of life and allowing them to continue living in their homes. Home 

care services providers have increasing concerns regarding the efficiency of their activities to face the 

current demand (Koeleman et al., 2012). Efficiency is even more important when the service is 

provided by non-profit organizations, which frequently have tight budgets and need to maximize the 

productivity of their workforce. 

The home social care service is part of the Home Care (HC) service broader concept, which 

encompasses the providing of medical, paramedical and social services to patients in their homes 

(Carello and Lanzarone, 2014). Nonetheless, the provision of medical and paramedical services differs 

from the delivery of social services. While the former is provided by skilled resources (e.g. nurses or 

medical doctors) to people who are ill or recovering from an illness or injury at home; the latter is 
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aimed at people who lack autonomy but may not be ill, usually elderly people. In medical and 

paramedical services, each patient may require a specific skill from the caregiver; therefore, not all 

human resources can visit all patients. To provide social services (as bathing, dressing, medication 

assistance, home cleaning, among others) human resources can be non-skilled workers and so 

patients can be visited by any caregiver (Gershon et al., 2008). In addition, the devices and 

consumables needed to assist the patient are different. Regarding medical and paramedical services, 

caregivers must bring medical instruments and consumables according to the patient’s needs. In social 

services, materials are found in the patient’s home and, as such, the caregiver does not have to bring 

along anything. Consequently, when performing logistics and resource planning of HC systems, those 

differences must be considered.  

Another aspect differentiating HC planning from other logistics planning problems is the continuity of 

care, also known as patient-caregiver loyalty. This work is motivated by a request in terms of patient-

caregiver loyalty from two non-profit organizations providing social services at patients’ homes. The 

social workers in charge want to plan the caregivers’ daily work schedule (which patient to visit and 

when) for a given time horizon under an unusual (in literature) loyalty scheme: within a week, patient-

caregiver loyalty should be pursued, assuring each patient is cared for by the same caregiver during 

the entire week – loyalty within a week; however, the caregivers must rotate among patients on a 

weekly basis – non-loyalty between weeks. The goal of this rotation scheme is two-fold: 1) to prevent 

the appearance of conflicts between caregivers and patients, and 2) to prevent musculoskeletal 

injuries, very common to this professional group (Olinski & Norton 2017), since some patients demand 

a higher level of strength from the caregivers than others.  In addition, this type of service faces a very 

frequent change of patients. Often, there are patients leaving the system (a patient may get too frail 

and need 24-hour assistance and may go to a nursing home, or may get too sick and need to be 

hospitalized, or may pass away), and, when possible, care should be provided to new patients from 

the waiting list.  Therefore, almost every week something happens that causes a change of plan, and 

the social workers wish the new plan does not impact too much on the lives of other patients. Since 

the demand for these kinds of services surpasses their supply, the social workers need to select the 

new patients to provide care from a large waiting list. This is not a straightforward task since the needs 

of the first patient on the waiting list may not fit the available schedule from the patient that have left 

the system, while the second and third patients’ needs might allow a better use of the available time. 

For instance, they might live nearer to some already visited patients, or they might need services with 

smaller duration and, therefore, better fitted to the time available. So, to whom should the services 

be provided? Who does best fit with the current service plan? Notice that elderly people have 

considerable difficulties in dealing with changes in their everyday life. If they are expecting the 



 

4 
 

caregiver to arrive at 10 a.m., many may be disturbed if, next week, the caregiver arrives at 11 a.m. 

and, in the following week, again at 10 a.m.  

Therefore, this work aims at developing a methodological approach based on optimization tools to 

support the planning of the caregivers’ work schedule for several weeks that may be indefinable 

repeated. Embedded in this approach one has: loyalty between caregivers and patients in each week, 

a non-loyalty scheme among weeks, and the possibility to re-schedule the existing visiting plan when 

patients leave the system and new ones must be selected. 

 

This paper unfolds as follows. In section 2, the related literature is reviewed, and the novelty of the 

proposed work presented. The two case studies that motivated this work are described in detail in 

section 3. The modelling approach and the MILP models are detailed in section 4. In section 5, both 

case studies are solved with the new models developed and the results are discussed. Lastly, section 

6 is dedicated to the concluding remarks and future work directions. 

 

 

2. Literature review  

HC resource planning can be divided into three levels: (i) districting and resource dimensioning, (ii) 

operator assignment, (iii) scheduling and routing definition (Lanzarone and Matta, 2014). Regarding 

the operator assignment level, the type of relationship between patient and caregiver is an issue that 

needs to be addressed. Continuity of care means that, when a caregiver is assigned to a patient, the 

assignment is to be maintained for as long as possible. Consequently, the patient always receives care 

from the same caregiver during extended periods. In the opposite side is the non-continuity of care 

scenario, where the patient can be cared for by different caregivers. In medical and paramedical 

services, the problem is called nurse-to-patient assignment. Nickel et al. (2012) address the continuity 

of care as a soft constraint. The authors develop a model to maximize the loyalty between nurse and 

patient by introducing a penalty in the objective function when a patient is visited by more than one 

nurse. This is combined with other three objectives (minimize the number of unscheduled tasks, 

overtime costs, and travelling distance) in a weighted sum objective function. Carello and Lanzarone 

(2014) consider three distinct types of continuity of care (hard, partial and not required) and two 

groups of patients (patients under treatment at the beginning of the time horizon and patients starting 

their treatment during the planning horizon). Patients needing hard continuity of care will not see 

their reference nurse changed during the time horizon. Partial continuity of care means that the 

reference nurse can be changed, although it is not desirable. If more nurses are needed, reassignment 

costs are added to the objective function (like in the approach adopted by Nickel et al., 2012). The 



 

5 
 

overall objective is to minimize the total overtime and reassignment costs. The authors use a 

cardinality-constrained approach to model uncertainty regarding the working time required by each 

patient. A real case is addressed where 22 nurses must be assigned to about 600 patients living in 

three different territories. Patients and nurses are divided into two classes: palliative and non-

palliative care. Six districts are considered (one for each class-territory pair) and the assignments are 

planned independently for each district, in a rolling horizon of 26 weeks. Lanzarone and Matta (2014) 

also address the nurse-to-patient assignment problem under continuity of care but focus on assigning 

newly admitted patients. Uncertainty regarding new patients’ demand and nurses’ workload is also 

considered. Lin et al. (2016) study the assignment of therapists to patients, where continuity of care, 

patient’s priority and preferred time periods are modelled. A mixed integer programming model is 

presented and applied to small, medium and large size instances and to a real case study from an HC 

provider in Hong Kong. 

Regarding the scheduling and routing level, daily or weekly plans with visit sequences for each nurse 

are defined. The daily routing and scheduling problem is addressed, for instance, in the works of Begur 

et al. (1997), Cheng and Rich (1998), Bertels and Fahle (2006), Eveborn et al. (2006, 2009), Akjiratikarl 

et al. (2007), Rasmussen et al. (2012), Trautsamwieser et al. (2011), Braekers at al. (2016). In a very 

recent review of home health care routing and scheduling problems, Fikar and Hirsch (2017) conclude 

that this single period context is the most studied in the literature. However, the daily planning is a 

relaxation of the weekly planning, since services are planned only for one day, and cannot handle rest 

breaks between working days, maximum working time per week and loyalty between nurse and 

patient (Trautsamwieser and Hirsch, 2014). 

The medium-term HC planning problem is addressed in Trautsamwieser and Hirsch (2014), where a 

Branch-Price-and-Cut algorithm is developed to solve their optimization model. This problem aims at 

finding nurses’ work schedules by assigning patients’ visits to each nurse within a week. Different 

skilled nurses, patient’s time-windows, maximum working time per day, breaks during the day and 

rest times between working days must be respected while minimizing nurses’ total working time. The 

authors generate test instances in accordance with real-life conditions at the Austrian Red Cross, and 

are able to solve to optimality instances with up to nine nurses, 45 patients and 203 visits during the 

week. 

Another important feature in medium-term HC problems is that patients may require several 

visits/services per day. Temporal dependencies between visits are studied in the work of Rasmussen 

et al. (2012): synchronization, overlap, minimum difference and maximum difference. Mankowska et 

al. (2014) also address interdependent services, considering the scheduling of both single and double 

services. According to the authors, a double service consists of two services performed by two staff 
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members that can be split into simultaneous services or services with a given precedence relation. 

The authors also considered several visits a day, different time windows preferences, different skills 

and qualifications levels of staff members and temporal interdependencies of the double services. 

Three objectives are addressed: minimizing the total daily distance travelled by staff, minimizing the 

delay of services to reduce patients’ waiting times and, finally, to schedule a fair allocation of 

inevitable waiting times between patients. A MILP formulation and a heuristic procedure are 

proposed, and test instances results are presented.   

A different logistics problem is addressed in the work of Liu et al. (2014). Instead of focusing on the 

care given to patients, these authors focus on pickup and delivery of materials and goods (such as 

drugs, medical devices, blood samples) between patients’ homes and hospitals, medical laboratories 

and depots. The problem is modelled as a periodic home health care pickup and delivery problem. The 

objective is to minimize the length of the longest route in the planning horizon, aiming at workload 

balance among drivers. Several Tabu Search algorithms are developed and tested on several 

benchmark instances. A case study based on the French reality is also solved for five different weeks.  

In face of this literature review, one may conclude that more attention has been given by the academia 

to the planning of medical and paramedical services rather than the planning of social services. 

Moreover, most of works focuses on continuity of care when assigning the caregivers to patients. All 

published works assume the planning of visits are made from scratch and do not consider the existing 

visiting schedules. In terms of objectives, most multi-objective problems apply a weight sum approach 

and do not investigate the possibility of trade-offs among objectives.  

This paper further contributes to the home care service literature by addressing two real-world case 

studies on home social care, and by proposing a modelling and optimization approach that: 

- allows the planning of new patients’ visits, minimizing disturbance on the current patients’ 

visits and minimizing caregiver travelling time between patients’ homes, 

- provides the social workers with a weekly visiting plan where daily and weekly loyalty are 

assured, 

- allows for both the optimization of routing and scheduling from scratch or from a previous 

existing visiting scheme, 

- proposes a multi-objective approach where a compromise between travel time minimization 

and the minimization of disturbance in the current patients’ visiting hours is achieved, and 

also trade-offs the workload balance among teams with the total travel time, 
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- defines a weekly rotation scheme for caregivers – non-loyalty -, i.e., defines a multiple week 

working plan for caregivers where all visit all patients and work with each other according to 

the rules suggested by the social workers, 

- tackles, through the rotation working scheme, the prevention of work injuries by alternating 

the visited patients and, consequently, the performed tasks, 

- develops a working scheme for caregivers with a rolling horizon (i.e., when finishing the last 

planned week, the rules for teams’ composition are observed if the first week is picked as the 

next one), which allows the caregivers to know in advance exactly what will their working 

hours be -  periodic plan. 

 

3. Case Studies 

As previously mentioned, this work is motivated by two Portuguese real case studies of home social 

care service providers. The main services provided by these organizations are (1) home care service, 

where caregivers go to patients’ homes and provide services such as bathing, dressing, diaper 

changing, medication assistance and home cleaning; (2) meal delivery, where caregivers go to 

patients’ home only to deliver meals; and (3) transportation of patients to day care centre, where 

caregivers pick the patients up at their homes in the morning and bring them to the day care centre. 

The caregivers do not have any specific skills that make them neither more nor less suitable to take 

care of any of the patients.  In both case studies, every week the social workers manually plan the 

work of each caregiver, given the needs of each patient. The two case studies differ in size and capacity 

to serve patients. The first case concerns a small catholic parish, which takes in 60 patients at the local 

day care centre, prepares and delivers meals to 66 patients, provides home care service to 17 patients 

and transport one patient to the day care centre. The second case is a non-profit organization, which 

handles 50 patients at its day care centre, prepares and delivers meals to 100 patients, provides home 

care services to 36 patients and transports 4 patients to the day care centre.  

In both case studies, social workers expressed their concerns regarding the system “dynamism”, 

where almost every week a few patients leave the system, a long waiting list to manage, and the 

changing of routines (i.e., visiting hours) of the current patients that must be avoided at least to some 

less “adaptable” patients to routine changes. 

 

3.1 Small Catholic Parish – case A 

At the small catholic parish, six caregivers are available to provide the services mentioned above. The 

caregivers work in teams of two, starting at 8 a.m. until the end of their shift, at 4 p.m. All patients 

must be visited within this period. The lunch break is between 1 p.m. and 2 p.m. at the day care centre.  



 

8 
 

One team must help with the meal delivery, meaning that they must return to the day care centre by 

11.30 a.m. This service takes 90 minutes. Given the proximity of patients’ houses, the caregivers walk 

between each house. Patients are served from twice a week to several times per day depending on 

their needs. The visiting time-windows are defined by the social worker in accordance with the tasks 

to be performed. For example, home cleaning can be done at any time during the day, while bathing 

should be done in the morning. The services provided to the patients remain almost unchanged from 

week to week. Within the week and the day, the team visiting each patient must not change – daily 

and weekly loyalty. 

There are no incompatibility issues between patients and services to be provided and the caregivers, 

so all caregivers can visit any patients and provide any kind of service. Likewise, there is no 

incompatibility between caregivers, so any caregiver can pair with any other. Besides that, the social 

worker specifically requested that all caregivers must pair with all other caregivers at least once during 

the planning horizon and that all caregivers must visit all patients on a weekly rotation scheme – non-

loyalty between weeks. Therefore, each patient is visited by the same team during the week, but to 

allow continuity of care and the transference of information regarding the patient between caregivers, 

one of the team members must be the same for at least two to at most three consecutive weeks. The 

second member of the team must be a different one every week. 

 

3.2 Non-profit organization – case B 

Nine caregivers work in the non-profit organization and the patients fall into one of two groups: 

bedridden or semi-dependent. The bedridden patients must be visited by a team of two caregivers, 

while the semi-dependent patients must be visited by only one caregiver. The social worker has not 

yet been able to plan the visits in accordance, and, therefore, there are bedridden patients frequently 

visited by only one caregiver. 

Patients’ visits can occur from 8 a.m. until 8 p.m. from Monday to Friday. The one-hour lunch break 

can start between 12 a.m. and 2 p.m. The lunch break period is flexible since not all caregivers have 

the same working schedule. To help with the meal delivery, three caregivers are needed at the day 

care centre before 11.30 a.m. and are assigned to this task for a period of 90 minutes. Given the size 

of intervention area of this non-profit organization, the caregivers travel by car.  As in the case of the 

catholic parish, patients’ visits may be twice a week to several times a day. The time-window to visit 

each patient is also defined by the social worker according to the patient’s needs. In this case, each 

patient should be preferably visited by the same caregiver within a day and within a week. Again, there 

is no incompatibility between patients/services to be provided and the caregivers. The weekly rotation 

scheme explained for case A also works for case B.  
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4. Modelling Approach 

The problem in study integrates two different levels of HC resource planning: the operator 

assignment, and the scheduling and routing definition. In addition, to account for the loyalty feature 

within a week and the non-loyalty feature between weeks, the model needs to be a multi-period one 

in a rolling horizon context. Therefore, even for the small-size real case-studies as the ones presented 

(both in terms of the number of caregivers and patients), the planning period of several weeks will 

lead to a very large problem and, for sure, too large computational times need to solve it (if not out 

of memory issues). On the other hand, the minimum number of weeks that allow the rolling horizon 

is also unknown a priori.  

Our strategy was to break down the problem in two separated sub-problems, since the rotation 

scheme that allocates caregivers to patients and the routing and scheduling decisions can be taken 

independently, if one assigns teams of caregivers to patients without specifying the caregiver that 

belongs to such team. Therefore, the routing and scheduling problem concerns the definition of 

“when” and “by whom” each patient should be visited in each day of the week, with the “by whom” 

question being answered in terms of “Team 1”, or “Team 2”. Therefore, instead of defining which 

caregiver visits which patient and when, we decide which team visits which patient and when and, in 

parallel, we define which caregiver belongs to which team. When forming the teams, the rotation 

scheme requested by the social workers is observed. Both problems can be formulated as mixed 

integer linear models. The “when and by whom” will be based on the periodic vehicle routing problem 

with time-windows (PVRPTW) where usual constraints of HC problems are added together with a few 

specific of our problem – team scheduling and routing model. The “team composition” can be 

formulated as an extension of an allocation model – caregiver assignment model (see Figure 1). 

Notice that with this decomposition approach, we can tackle the loyalty and non-loyalty requirements 

of the social workers without losing solution optimality. In the scheduling and routing model, the 

loyalty between teams and patients will be imposed allowing the definition of a single week plan. The 

non-loyalty requirement between weeks, i.e., the rotation scheme of caregivers when forming a team, 

will be modelled at the caregiver assignment model. Being an independent problem, we will be able 

to easily determine the minimum number of weeks that allows a scheme with rolling horizon 

characteristics.  
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Figure 1: Modelling approach 

 

4.1 The multi-objective team scheduling and routing model 

Facing the leaving of some patients and the entering of new ones, one set of decisions of this model 

is to determine the (current and new) patients’ week visiting schedule and the visit sequencing for 

each team of caregivers, without causing much disturbance in the visiting hours of the current 

patients. A second set of decisions concerns which patient(s) to admit, among those in a waiting list. 

We have considered that some of the current patients can have their visit starting time changed more 

than others do. The social workers decide previously which patients have “flexible” and “non-flexible” 

visiting times. Regarding the objective functions, we have modelled two minimization objectives (total 

travelling times and total deviation of the visit starting time) and one MinMax objective (balance work 

among caregivers).  

Although the model is developed assuming a pre-existing visiting plan, it can also be used to define 

scheduling and routing plan from scratch. 

 

4.1.1 Model formulation 

Having as the PVRPTW a baseline model, a graph G=(I,E) will be defined where patients homes and 

the day care centre are the nodes (set I) and the connection between the nodes will define set E. For 

each patient node, a time-window will be defined together with a visiting duration, i.e., the time spent 

at the patient’s home to perform all the required services.  The day care centre node is represented 

with two nodes: 0 and 𝑛 + 1. Feasible team visiting routes correspond to paths starting at node 0 and 

ending in node 𝑛 + 1.  

By adopting a graph approach, some questions arise concerning the modelling of some of our case 

distinctive features: (i) how to deal with patients needing more than one visit per day? (ii) how to 

model patients’ transportation from the day care centre? (iii) how to assure that some teams return 

earlier to the day care centre to help with lunch delivery? and (iv) how to ensure the caregivers’ lunch 

Caregiver Team Patient

LoyaltyNon-Loyalty

Extended PVRPTW
(1 week)

Allocation Problem
(Multiple weeks)

Caregiver 
Assignment Model

Team Scheduling and 
Routing Model
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break at the day care centre? Our strategy was to replicate all needed nodes. For the patients needing 

more than one visit, their nodes were replicated as many times as the number of visits and the time-

windows were set accordingly. When the service can be provided for a longer period than the 

maximum working time of caregivers, the daily loyalty has to be relaxed since patients with replicas 

might have visiting time-windows that are incompatible with one single visiting team. Our strategy 

was to model the daily loyalty as a soft-constraint, where the assignment of a second team is made 

possible at the expenses of a penalization in the objective function. For the issues concerning the day 

care centre, we also replicated its node so that one node would represent meal delivery, another the 

lunch break and some more the transportation service.  

 

Two additional questions need to be answered: (i) how to model current and new patients? and (ii) 

how ensure that visit starting time do not change for some patients and might change a bit to others? 

To address those questions, the modelling strategy focused on the sets definition: (i) patients’ set (𝑃) 

was partitioned into current (𝑃%&') and new patients (𝑃()*), and (ii) current patients were further 

partitioned as patient with flexible visit starting times (𝑃+) and with no flexibility (𝑃(+).   

All the details are given below. We start by defining all sets and indices. Then all parameters are 

provided, followed by the variables definition. Lastly, the three objective functions and all the 

constraints are provided.  

 

Indices and Sets 

𝑖, 𝑗, 𝑘 ∈ 𝐼 Nodes, 𝐼 = 𝑃%&' ∪ 𝑃()* ∪ 𝐶 ∪ 𝐶6 ∪ 𝐶7 ∪ 𝐶8  such that 
𝑃 = 𝑃%&' ∪ 𝑃()* All patient nodes and corresponding replicas, 𝑃 = {1,… , 𝑛}  
𝑃%&' = 𝑃+ ∪ 𝑃(+ Patients with and without flexibility on the visiting hours  

𝐶 Day care centre nodes, 𝐶 = {0, 𝑛 + 1} 
𝐶6 Lunch node, 𝐶6 = {𝑛 + 2} 
𝐶7 Meal delivery node, 𝐶7 = {𝑛 + 3} 
𝐶8  Transportation nodes, 𝐶8 = {𝑛 + 4} 

  
𝑎 ∈ 𝐴 Caregivers teams 

𝑡 ∈ 𝑇 Planning period (e.g. 5 days of the week) 
 

To model “daily loyalty”, we need to link each patient to his/her replicas. So, let 𝑅EF ⊆ 𝑃 be the set of 

replicas of patient 𝑖. For the transportation service, we must link the patient node to the 

transportation node. Consider then set 𝑉 ⊆ 𝑃 containing all patients needing transportation.  

 

Parameters 

𝑑EJ  Shortest travelling time between nodes  𝑖 and 𝑗 



 

12 
 

𝑤EL Time spend visiting node 𝑖 on day 𝑡 
[𝑒EL, 𝑙EL] Node 𝑖 time-window on day 𝑡 
ℎRL Maximum working hours for team 𝑎, on day 𝑡 
𝑞 Number of teams needed at the day care centre for the meal delivery service 
𝑀EJ
L  Big-M value 

𝜎ERL Current start time of visit of team 𝑎 to node 𝑖, on day 𝑡 
𝛿(+	(𝛿+) Maximum allowed deviation to the current starting time of visit of non-flexible 

(flexible) patients 
𝑁 Minimum number of visits to select from the waiting list 
𝛼 Penalty value 

 

The Big-M value has been defined as  𝑀EJ
L = max

E,J∈F
(0, 𝑙EL + 𝑑EJ + 𝑤EL − 𝑒JL)  as suggested in Cordeau et 

al. (2007). 

Since time windows limit the visiting period, some nodes cannot be visited in sequence. For instance, 

a patient with a time window at the beginning of the day cannot be visited after a patient whose time 

window is defined on the afternoon period. In such cases, the direct link between patients 𝑖 and	𝑗 has 

been removed and, consequently, the number of variables decreased. Let 𝐸R``a  denote the set of all 

possible direct links between any two nodes on graph 𝐺, 𝐸R``a = {(𝑖, 𝑗, 𝑡): 𝑒EL + 𝑑EJ + 𝑤EL − 𝑙JL < 0 ∧ 𝑖 ≠

𝑗}. 

Let 𝑊E   be the set of the visiting days of patient 𝑖, 𝑊E = {𝑡 ∈ 𝑇:𝑤EL > 0}, and |𝑊E| its cardinal. 

 

Variables 

𝑋EJRL = 1 if team 𝑎 travels directly from node 𝑖 to node 𝑗, on day 𝑡; = 0, otherwise 

𝑆ERL  visit starting time of node 𝑖 by team 𝑎, on day 𝑡  

𝑍ERL = 1 if team 𝑎 is assigned to node 𝑖, on day 𝑡; = 0, otherwise; this is an auxiliary variable that allows 

an easier modelling of some of the constraints 

𝑌ERL = 1 if replica 𝑖 is not visited by the same team as replica  𝑖n; = 0, otherwise 

 

 

Model formulation 

 

𝑚𝑖𝑛		𝐹q = r r 𝑑EJ𝑋EJRL

(E,J,L)∈stuu
vR∈w

+rrr𝛼𝑌JRL

J∈xyL∈aR∈w

 [ 1 ] 

𝑚𝑖𝑛		𝐹z{ = r |𝑆ERL − 𝜎ERL
(R,E,L):	E∈F|}~

| [ 2 ]  

𝑚𝑖𝑛 𝐹z� = 	𝑚𝑎𝑥 	{
R∈w

(𝑑EJ + 𝑤EL)	𝑋EJRL: (𝑖, 𝑗, 𝑡) ∈ 𝐸R``a }	 [ 3 ] 
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r r 𝑋EJRL

(E,J,L)∈stuu
vR∈w

= 1, 𝑖 ∈ 𝑃%&', 𝑡 ∈ 𝑇:𝑤EL > 0 [ 4 ] 

r 𝑋�JRL

J∈F∪��
= 1, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇 [ 5 ] 

r 𝑋J((�q)
RL

J∈F∪��
= 1, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇 [ 6 ] 

r 𝑋EJRL

J:(E,J,L)∈stuu
v

= r 𝑋JERL

J:(J,E,L)∈stuu
v

, 𝑎 ∈ 𝐴, 𝑖 ∈ 𝑃, 𝑡 ∈ 𝑇 [ 7 ] 

𝑆ERL + 𝑑EJ + 𝑤EL − 𝑆JRL ≤ 𝑀EJ
L (1 − 𝑋EJRL), 𝑎 ∈ 𝐴, 𝑖, 𝑗 ∈ 𝐼, 𝑡 ∈ 𝑇 [ 8 ] 

𝑒EL ≤ 𝑆ERL ≤ 𝑙EL, 𝑎 ∈ 𝐴, 𝑖 ∈ 𝑃, 𝑡 ∈ 𝑇 [ 9 ] 

𝑆(�qRL − 𝑆�RL ≤ ℎRL, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇 [ 10 ] 

r 𝑋EJRL

E:(E,J,R,L)∈stuu
v

= 1, 𝑎 ∈ 𝐴, 𝑗 ∈ 𝐶6, 𝑡 ∈ 𝑇 [ 11 ] 

r r 𝑋E((��)
RL

E:(E,(��,L)∈stuu
vR∈w

= 𝑞, 𝑡 ∈ 𝑇 [ 12 ] 

𝑋EJRL ≤ 𝑋J�RL, 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐶8, 𝑖 ∈ 𝐼: 𝑖 ≠ 𝑗 ∧ 𝑖 ≠ 𝑘, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇 [ 13 ] 

r 𝑋EJRL

J:(E,J,L)∈stuu
v

+ r 𝑋EJR
�L�

J:(E,J,L�)∈stuu
v

≤ 1, 𝑖 ∈ 𝑃; 	𝑎, 𝑎n ∈ 𝐴: 𝑎 ≠ 𝑎n; 𝑡, 𝑡n ∈ 𝑇: 𝑡 ≠ 𝑡n [ 14 ] 

r 𝑋J�RL

�:(J,�,L)∈stuu
v

+ 𝑌JRL = r 𝑋J��
RL

�:(J�,�,L)∈stuu
v

	+	𝑌J�
RL, 𝑗, 𝑗n ∈ 𝑅EF, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇 [ 15 ] 

r r 𝑋EJRL

(E,J,L)∈stuu
v

∧	E∈F���
R∈w

≥ 𝑁 
[ 16 ] 

r 𝑍ERL
�

L�∈�y

= |𝑊E| ⋅ 𝑍ERL,				𝑖 ∈ 𝑃()*, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇:𝑤EL > 0 [ 17 ] 

r r 𝑋J�RL

�:(J,�,L)∈stuu
vR∈w

= r r 𝑋(J�q)�
RL

�:(J,�,L)∈stuu
vR∈w

,							𝑗 ∈ 𝑅EF ∩ 𝑃()*, 𝑡 ∈ 𝑇 [ 18 ] 

𝜎EL − 𝛿(+ ≤ 𝑆ERL ≤ 𝜎EL + 𝛿(+, 𝑎 ∈ 𝐴, 𝑖 ∈ 𝑃(+, 𝑡 ∈ 𝑇 [ 19 ] 

𝜎EL − 𝛿+ ≤ 𝑆ERL ≤ 𝜎EL + 𝛿+, 𝑎 ∈ 𝐴, 𝑖 ∈ 𝑃+, 𝑡 ∈ 𝑇 [ 20 ] 

r 𝑋J�RL

J:(J,E,R,L)∈stuu
v

= 𝑍ERL	,			𝑖 ∈ 𝑃, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇:𝑤EL > 0 [ 21 ] 

𝑍ERL = 𝑧E̅RL	,			𝑃%&' ∖ �𝑗:	𝑗 ∈ 𝑅EF�, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇	 [ 22 ] 

𝑋EJRL, 𝑌JRL ∈ {0,1}, 					𝑍ERL ∈ [0, 1], 𝑆ERL ≥ 0, 𝑎 ∈ 𝐴, 𝑖, 𝑗 ∈ 𝐼, 𝑡 ∈ 𝑇 [ 23 ] 
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The first objective function is the traditional travelling time minimization (function [ 1 ]). We aim at 

finding the shortest travelling time to visit all patients. Function [ 2 ] minimizes the impact of changing 

the visiting  times for the current patients.  This function can be  linearized and  replaced by function 

[ 24 ] and constraints [ 25 ] and [ 26 ]. 

𝑚𝑖𝑛	𝐹{ = r 𝛥ERL
(R,E,L):	E∈F|}~

 [ 24 ]  

𝑆ERL − 𝜎ERL ≤ 𝛥ERL	,				𝑖 ∈ 𝑃%&', 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇 [ 25 ]  

−𝑆ERL + 𝜎ERL ≤ 𝛥ERL,				𝑖 ∈ 𝑃%&', 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇 [ 26 ]  

 

The workload balance objective function is modelled as a MinMax objective, meaning that one aims 

at minimizing the workload (defined as travel time plus service time) of the team with the heaviest 

workload (function [ 3 ]).  Again, this function is not linear, but can be linearized. To do so, a new 

variable 𝑈 is defined,	function [ 27 ] replaces function [ 3 ] and constraint [ 28 ] is added to the model.  

This constraint assures that in each day of the week, teams will work at most 𝑈 time units. 

 

𝑚𝑖𝑛𝑈 [ 27 ] 

r (𝑑EJ + 𝑤EL)	𝑋EJRL

EJ:	(E,J,L)∈stuu
v

≤ 𝑈	, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇 [ 28 ] 

 

If one wishes to impose workload balance over the entire week, the constraint [ 29 ] is the one to add 

to the model.  

r (𝑑EJ + 𝑤EL)	𝑋EJRL

(E,J,L)∈stuu
v

≤ 𝑈	, 𝑎 ∈ 𝐴 [ 29 ] 

 

Equation [ 4 ] assures that all currently visited patients (including all the patients’ replicas) are visited 

exactly once a day, but only on the days the visit has been requested. Equations [ 5 ] and [ 6 ] assure 

that all teams start their shift at the day care centre (node 0) and finish their shift at the day care 

centre (node 𝑛 + 1). Notice that set  𝐶6 is included in these equations since the lunch break is 

modelled as fictitious patient visited by all the teams. It is assumed that they can start their shift 

directly to their lunch break as some teams may only work on the afternoon. Likewise, teams working 

only mornings can finish their shift at the day care centre immediately after lunch. Equation [ 7 ] 

models work continuity, i.e. it assures that all teams arrive and leave patients’ homes. Constraint [ 8 ] 

sets the starting time of visit to patients i and j if visited by the same team. When different teams are 

assigned to patients 𝑖 and 𝑗 (i.e. when 𝑋EJRL = 0), the corresponding constraint becomes redundant. 
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Constraint [ 9 ] assures the time-windows.  If team 𝑎 is available before 𝑒EL, it is assumed the team will 

wait so that services does not begin before 𝑒EL. Being a hard constraint, the team cannot arrive after 

𝑙EL. For the day care centre nodes (𝑖 = 0	 ∨ 𝑖 = 𝑛 + 1) the time windows set the service period. 

Constraint [ 10 ] defines the maximum working period for team 𝑎 at day 𝑡.  Constraints [ 4 ] to  [ 10 ] 

are the traditional constraints of a PVRPTW.  

 

Equation [ 11 ] tackles the lunch break, which is modelled as a fictitious patient that all teams must 

visit. Meal distribution is assured by constraint [ 12 ]. Again, being modelled as special visiting node, it 

is imposed that at least 𝑞 teams visit this node in the time window assured by constraint [ 9 ]. This 

time-window is set by the social worker and can be as small as possible to assure all caregivers arrive 

on time, i.e., in the worst case the earliest and latest starting times are the same (from 12:00 to 12:00, 

for example). 

Constraint [ 13 ] models the transportation service by imposing that after visiting the patient’s node, 

the day care centre node is the next one to be visited. This constraint does not conflict with the one 

assuring the team’s return at the end of the shift to the day care centre (constraint  [ 6 ]) since replicas 

are modelled as different nodes sharing the same location. This replica time-window should be large 

enough not to limit the final solution, for instance, it could have the length of a working day (e.g., from 

8 a.m. until 4 p.m.). With this modelling strategy, one needs to add as many replicas to set 𝐶8  as the 

number of patients requesting this service.  

Constraint [ 14 ] assures the weekly loyalty by imposing that two teams cannot visit the same patient 

in two different days of the week. The daily loyalty is imposed by the soft constraint [ 15 ] which is 

defined for each subset of patients and corresponding replicas.  

Constraints [ 16 ] and [ 17 ] impose a minimum of 𝑁 visits to be selected from the waiting list and 

assure the admitted patients are visited all days of the week they have asked for. This minimum 

number is set by the social worker. The need for such constraints comes from the fact that when 

minimizing any of the given objectives, no patient would ever be selected since it would increase the 

objective function value. Equation [ 18 ] ensures that if a new patient, having multiple replicas, is 

selected from the waiting list then all the corresponding replicas are also picked up.   

Patients with non-flexible starting times of visits can see their previous starting time 𝜎EL change at 

most ±𝛿(+, which can be as small as one or two minutes. This is assured by constraint [ 19 ] which 

also prevents infeasibilities caused by possible round up (or down) of 𝜎EL values. For patients with 

some time flexibility, a similar approach is used (constraint [ 20 ]). Although they are similar, we opt 

for making both explicit to reinforce the idea of having two distinct types of changes in the visiting 

hours. Parameter 𝛿+ is also pre-set by the social worker. If one desires to model flexible visiting time 
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for each patient, a parameter  𝛿E, 𝑖 ∈ 𝑃%&', would replace 𝛿(+ and 𝛿+, and the two constraints would 

be merged into one. Notice that since the waiting list and the time flexibility are defined by the social 

worker, all new patients may eventually enter the system. Equations [ 21 ] and [ 22 ] ensure that 

current patients are visited by the same team as in the previous planning. Exception is made to the 

replicas  since  they might have been visited by different teams (penalization).  To finish,  constraints 

[ 23 ] define variables domain. The way the 𝑍ERL variable has been defined within the model (equation 

[ 21 ]), one can relax its need to be binary. It suffices to impose that 𝑍ERL ∈ [0, 1]. 

 

To finish the model definition, we just want to call the reader’s attention to the fact that if one wishes 

to solve a problem ignoring the existence of a previous visiting scheme, constraints [ 16 ] to [ 22 ] and 

variable 𝑍ERL should be removed. Also, sub-sets 𝑃%&', 𝑃()*, 𝑃+	and 𝑃(+ are no longer needed. The 

resulting team scheduling and routing problem (called HC model, from now on) is an extension of the 

PVRPTW and therefore is a NP-hard problem.  Consequently, we designed a decomposition approach 

taking advantage of the case studies characteristics and of the previous formulation. Notice that the 

design of a powerful algorithm to solve this problem optimally is not within the scope of this work.  

 

4.1.2 Solution Method 

To develop a solution method to solve the HC model, we looked into it from two perspectives: patient 

typology and time periods (days of the week). Regarding patient’s typology and since different 

typology means a different team, the separation between bedridden and semi-dependent patients 

allows for a reduction on instances sizes. This decomposition approach does not impact on optimality 

since teams working with bedridden patients are different from the teams caring for semi-dependent 

patients. When considering one day of the week independently from the other, we can further reduce 

the instance size (Figure 2).  

 

 
Figure 2: Decomposition approach for the team scheduling and routing problem 

 

(Periodic) HC model 
1 week, all patients

(Periodic) HC model 
for each patient’s typology

Decomposition 
by day HC model 

for each day

Decomposition 
by patient’s 

typology
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By dealing independently with each time-period, we can no longer assure week loyalty, since 

constraint [ 14 ] has to be relaxed. A procedure was then developed to assure the final solution met 

all the requirements. Figure 3 provides its pseudocode.  

 

Figure 3: Pseudocode for the heuristic solution procedure of the team scheduling and routing problem 

 

4.2 Caregiver assignment model 

As mentioned above, the social workers have made some specific requests regarding the way they 

wanted caregivers to be assigned to patients:  

• teams of two, except for the semi-dependent patients of case B that should be visited by only 

one caregiver, 

• all caregivers must pair with all other caregivers at least once during the planning horizon, and  

• all caregivers should visit all patients on a week rotation scheme but only one of the team 

members must be the same for at least two to at most three weeks.  

Notice that, while in the previous model a planning horizon is of one week, in this new model, the 

planning horizon is made of several weeks. To be precise, in this problem, we are not seeking for the 

optimal assignment since any team structure is good as long as it verifies all the requirements. Rather, 

we aim at finding the smallest number of time periods allowing the rotation scheme to work on a 

rolling horizon. 

 

4.2.1 Model formulation 

Indices and Sets 

𝑖, 𝑗 ∈ 𝐼 Caregivers 
𝑎 ∈ 𝐴 Teams 
𝑡 ∈ 𝑇 Planning period (e.g. weeks) 

Parameter 
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𝑘 Maximum number of consecutive time periods a caregiver may belong to the same team 
 

Variables 

𝑋EJRL = 1 if caregivers 𝑖 and 𝑗 are assigned to team 𝑎 on time period 𝑡. 

𝑌ERL = 1 if caregiver 𝑖 is assigned to team 𝑎 on time period 𝑡. 

Given the symmetry inherent to the definition of variable 𝑋EJRL (since 𝑋EJRL = 𝑋JERL), this variable has only 

been defined such that 𝑖 < 𝑗. 

Constraints 

r 𝑋EJRL

EJ:E�J

= 1	,			𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇	 [ 30 ] 

r𝑌ERL

R∈w

= 1	,			𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇	 [ 31 ] 

𝑋EJRL ≤ 𝑌ERL	, 𝑖, 𝑗 ∈ 𝐼: 𝑖 < 𝑗; 	𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇	 [ 32 ] 

𝑋EJRL ≤ 𝑌JRL	, 𝑖, 𝑗 ∈ 𝐼: 𝑖 < 𝑗; 	𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇	 [ 33 ] 

r 𝑌ERL
�

L�∈[L,L��]

≤ 𝑘	,			𝑖 ∈ 𝐼, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇	 [ 34 ] 

𝑋EJ
R(L�q) + 𝑋EJRL ≤ 1	,				𝑖, 𝑗 ∈ 𝐼: 𝑖 < 𝑗; 	𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇		 [ 35 ] 

𝑋EJRL = 1	 ⟹ 𝑌E
R(L�q) = 1⊕	𝑌J

R(L�q) = 1	,				𝑖, 𝑗 ∈ 𝐼: 𝑖 < 𝑗; 	𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇		 [ 36 ] 

𝑋EJRL, 𝑌ERL ∈ {0,1},				𝑎 ∈ 𝐴, 𝑖, 𝑗 ∈ 𝐼: 𝑖 < 𝑗, 𝑡 ∈ 𝑇 [ 37 ] 

 

Constraint [ 30 ] assures that each team at each time period is composed of two different caregivers. 

Equation [ 31 ] assigns each caregiver to exactly one team at each time period. Constraints [ 32 ] and 

[ 33 ] impose that if caregivers 𝑖 and 𝑗 are teamed up at time period 𝑡 then each of them is assigned 

to the corresponding team. Constraint [ 34 ] assures that each caregiver is not assign more than 𝑘 

consecutive time periods to team 𝑎. In consecutive time periods, all teams have to have a different 

composition (constraint [ 35 ]). The most challenging request to be modelled is the one imposing one 

team member to be the same at least two consecutive time periods, while the second member must 

be a different one. Formally, this request can be expressed by relation [ 36 ] where ⊕ stands for 

exclusive disjunction. Expression [ 36 ] can be linearized by constraints [ 38 ] and [ 39 ]. 

 

𝑌E
R(L�q) + 𝑌J

R(L�q) ≥ 𝑋EJRL	,				𝑖, 𝑗 ∈ 𝐼: 𝑖 < 𝑗; 	𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇		 [ 38 ] 

𝑌E
R(L�q) + 𝑌J

R(L�q) ≤ 2 −	𝑋EJRL	,				𝑖, 𝑗 ∈ 𝐼: 𝑖 < 𝑗; 	𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇		 [ 39 ] 

 

Lastly, constraint [ 37 ] defines variables domain. 
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4.2.2 Extension to deal with the particularities of case study B 

The model formulation proposed above assumes that all teams have two caregivers. However, in case 

B, the number of caregivers on each team depends on the patient’s needs, as only one caregiver visits 

the semi-dependent patients. To extend the model to account for this feature, we must assign a 

fictitious caregiver to the single-member teams so that all teams remain comprised of two elements. 

By adopting this approach, a few changes have to be made to the previous formulation. 

Set 𝐴 = {1,… , 𝑛L, 𝑛L + 1,… , 𝑛} will be sorted so that the first 𝑛L teams are teams of two caregivers 

and the remaining 𝑛 − 𝑛L are teams with only one caregiver. Set 𝐴 can then be partitioned as 𝐴 =

𝐴q ∪ 𝐴{.  Let 𝑛+ = 𝑛 − 𝑛L be the number of fictitious caregivers. Set 𝐼 = {1,… , 𝑛+, 𝑛+ + 1,… ,𝑚} 

should also be sorted so that the 𝑛+  fictitious caregivers are the last elements of the set. As for set 𝐴, 

set 𝐼 can be partitioned as  𝐼 = 𝐼q ∪ 𝐼{, where |	𝐼{	| = 𝑛+.  

Constraints [ 30 ] to [ 33 ] remain unchanged. Constraints [ 34 ], [ 35 ], [ 38 ] and [ 39 ] should now be 

defined only over set 𝐴q. Lastly, two new constraints are added. The first one, constraint [ 40 ], assures 

that each caregiver works as part of teams of two elements no more than twice the number of time 

periods they work in teams comprised of one caregiver. With this constraint, we are modelling a more 

balanced assignment among caregivers in terms of the patient’s typology, which has been our option 

to model towards the prevention of musculoskeletal injuries among caregivers. Constraint [ 41 ] 

assures that the teams with fictitious caregivers do have the same composition after three consecutive 

weeks, i.e., caregivers cannot be assigned to the same single-member team more than two 

consecutive weeks. 

 

r r 𝑌ERL

R∈w�

	
L∈a

≤ 2r r 𝑌ERL

R∈w�

	
L∈a

	,			𝑖 ∈ 𝐼q	 [ 40 ] 

𝑋EJ
R(L�{) + 𝑋EJ

R(L�q) + 𝑋EJRL ≤ 2	,				𝑖, 𝑗 ∈ 𝐼: 𝑖 ≠ 𝑗; 	𝑎 ∈ 𝐴{, 𝑡 ∈ 𝑇		 [ 41 ] 

 

 

5. Results 

In this section, we analyse and discuss the results obtained with the developed models for both case 

studies. We first address the multi-objective team scheduling and routing model (section 5.1) where 

we solve three scenarios (detailed below) and perform a complementary analysis regarding the 

workload balance and the weekly loyalty vs. non-loyalty impact. The caregiver assignment results are 

presented in section 5.2. The models have been implemented using GAMS/CPLEX (built 24.4.3) on 

Intel® Core ™ i5-5200U with 2.2 GHz.  
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5.1 The multi-objective team scheduling and routing model 

Data from both case studies was collected and analysed. For the current patients	(𝑃%&'), the social 

workers provided us with the “service sheets” of each caregiver/team for each day of a given week. 

Those “service sheets” contain information about the visited patients, starting and ending times of 

the visits and type of services provided. From those sheets, we were also able to gather information 

about the patients’ service duration (𝑤EL). Each patient’s time windows [𝑒EL, 𝑙EL]	were provided by the 

social workers.  From the patients’ addresses, we built the distance matrix using the API Google Maps. 

Given a travel speed (on foot, for case A, and by car, for case B), the distance matrix was transformed 

into a traveling time matrix (𝑑EJ). For the patients in the waiting list (𝑃()*), the data collection 

process was similar, although an exception was made for the service duration, which was estimated 

by the social workers. Figure 4 shows the location of 𝑃%&'(dots) and 𝑃()* (crosses) for both cases. 

 

Case A 

 

 

Case B 

 

 
Figure 4: Day care centre and patients’ locations (current and waiting list) 

From the “service sheets”, we were also able to analyse the current patient-caregiver/team 

assignment and to estimate the current travelling time. For case A, three service areas had been 

defined (one for each team), corresponding to a total of 924 minutes walked per week. Those service 

areas are depicted in Figure 5, and one can easily observe the possibility of a total walking time 

reduction.  

x
Day Care Centre

Patients (Current)
Patients (Waiting List)

Bedridden Patients (Current)

Semi-Dependent Patients (Current)

Day Care Centre
Semi-Dependent Patients (Waiting List)

x Bedridden Patients (Waiting List)

x
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Figure 5: Current service areas for case A 

For case B, no service areas can be depicted from the “service sheets” since patients’ assignments to 

teams changed daily (e.g., on Monday two teams were assigned to bedridden patients while on 

Tuesday there were three teams assigned). The estimated current travel time is 1365 minutes per 

week. A deeper analysis of these “service sheets” showed that some constraints had not been verified: 

i) not all the bedridden patients had been visited by teams of two caregivers, and ii) the same patient 

were visited by different teams along the week, i.e., weekly loyalty was not ensured.  

Given the issues that the actual plan presents for both case studies, instead of using these plans to 

feed our multi-objective team scheduling and routing model, we decide to use an optimized plan, 

where all constraints are ensured (Scenario 1). Moreover, both social workers stated that the service 

is at “full capacity”, meaning that the caregivers could not visit any more patients. However, we also 

decided to check if with an optimized plan, more patients could be visited (Scenario 2). Finally, the 

plan from scenario 2 will be the one feeding the model to select new patients to enter (from the 

waiting list), when patients eventually leave the system (Scenario 3).   

 

5.1.1 Scenario 1: Optimized Scheduling and Routing Plan 

To optimize the current week plan, only the 𝑚𝑖𝑛		𝐹q objective function was considered and the 

solution method presented in section 4.1.2  was applied as the full model failed to provide a good 

solution for the smaller-size case (case A) - out of memory after 4 hours, best feasible solution with 

31% gap. Therefore, the number of patients (including replicas) to be visited each day of the week was 

assessed to determine the order by which the solution method would be applied (see Table 1). 

 

Table 1: Number of patients to be visited at each day of the week for cases A and B 

𝑷𝒄𝒖𝒓 Mon Tue Wed Thu Fri 
Case A  22 20 20 22 20 
Case B      
  - Bedridden 22 22 22 22 22 
  - Semi-Dependent 20 15 14 14 22 
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For case A, Monday and Thursday have the largest number of patients and the patients are the same, 

meaning that Monday is equal to Thursday; the same situation occurs for Tuesday, Wednesday and 

Friday, meaning that the solution method for case A has only 2 iterations:  

• 1st Iteration: solve HC model for Monday/Thursday; 

• 2nd Iteration: solve HC model for Tuesday/Wednesday/ Friday, with an imposed patient-team 

assignment according to the solution provided by the 1st iteration. 

The results for case A are presented in Table 2. The total walking time improved the current time by 

23% (714 minutes vs. 924 minutes). With this optimized plan, the teams of caregivers spend 10% of 

their time walking between patients’ houses, 63% in providing care to the patients and the remaining 

27% of the working period is idle time due to the waiting to comply with the patients’ time-windows.   

 

Table 2: Results for Case A (Scenario 1) 

 
 

For the bedridden patients of case B, the same number of patients is observed from Monday to Friday. 

In this case, we notice that although the patients are the same, some differences exist in terms of 

duration and time-windows amongst the days of the week. We choose to start the solution procedure 

with Monday and then, each day of the week was solved imposing the patient-team assignment 

previously obtained. In total, five iterations were performed. For the semi-dependent patients, also 

five iterations were made with the following order: 1st Friday, 2nd Monday, 3rd Tuesday, 4th Thursday 

and 5th Wednesday.  

The results for case B are shown in Tables 3 and 4. A total travelling time of 1,280 minutes per week 

is required to visit both bedridden and semi-dependent patients, resulting in a 6% improvement when 

compared to the current solution. Although one might feel that only a small improvement has been 

achieved, one should notice that the current solution does not meet all the constraints. In our 

optimized plan, all bedridden patients are visited by teams of two caregivers, with three teams being 

dedicated to these patients, and the remaining three caregivers are dedicated to the semi-dependent 

patients. In addition, the weekly loyalty is assured, meaning that along the week patients are always 

visited by the same team. For the bedridden patients, in some cases the daily loyalty could not be met 

1st Iteration 2nd Iteration Week
Mon and Thu Tue, Wed and Fri Total

OFV (min) 144.7 141.6 714.2
Computational Time (s) 740.0 1.3 741.3
GAP (%) 0.0 0.0 -
Walking Time (WT) 144.7 141.6 714.2
Service Time (ST) 940.0 885.0 4,535.0
Workload (WT+ST) 1,084.7 1,026.6 5,249.2
Idle Time 355.3 413.4 1,950.8

Case A 
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given the duration of a work-shift (8 hours) and the several visits needed along the day to a patient 

(e.g., at 8 a.m. and at 7 p.m.). Given the results in Table 3, there are two patients that could not be 

visited by the same team within a day (see Penalties row). Regarding the way teams spend their time, 

comparable results to Case A are observed for the bedridden patients. However, for the semi-

dependent patients, the idle time reaches almost 40% of the work-shift time (Table 4). 

 

Table 3: Results for Case B - Bedridden Patients (Scenario 1) 

 

 

Table 4: Results for Case B – Semi-Dependent Patients (Scenario 1) 

 
 

5.1.2 Scenario 2: Full Capacity Scheduling and Routing Plan 

Given the optimized plan obtained for both cases studies (Scenario 1) and the fraction of idle time 

(idle time represents about 30% of the total working time), the team scheduling and routing model 

will be used to check if it is possible to include additional patients from the waiting list. For that, the 

optimized plan from Scenario 1 will be set as the current plan, and the model will select patients from 

the waiting list to be admitted to the week plan according to parameter N. In this scenario, all current 

patients are considered non-flexible patients regarding the starting time of the visit, with 𝛿(+= 5 

minutes. The results for both cases are shown at Figure 6. 

 

 

1st Iteration 2nd Iteration 3rd Iteration 4th Iteration 5th Iteration Week
Mon Tue Wed Thu Fri Total

OFV (min) 4,138.4 4,138.0 4,137.2 4,138.0 4,138.4 20,689.9
Penalties 2 2 2 2 2 10
Computational Time (s) 23.0 0.5 0.5 0.4 0.5 24.9
GAP (%) 0.0 0.0 0.0 0.0 0.0 0.0
Travelling Time (TT) 138.4 138.0 137.2 138.0 138.4 689.9
Service Time (ST) 849.0 789.0 780.0 794.0 813.0 4,025.0
Workload (TT+ST) 987.4 927.0 917.2 932.0 951.4 4,714.9
Idle Time 452.6 513.0 522.8 508.0 488.6 2,485.1

Case B: Bedridden

2nd Iteration 3rd Iteration 5th Iteration 4th Iteration 1st Iteration Week
Mon Tue Wed Thu Fri Total

OFV (min) 121.1 114.8 104.9 112.9 136.3 590.0
Computational Time (s) 0.4 0.4 0.1 0.4 2.0 3.3
GAP (%) 0.0 0.0 0.0 0.0 0.0 0.0
Travelling Time (TT) 121.1 114.8 104.9 112.9 136.3 590.0
Service Time (ST) 758.0 755.0 722.0 715.0 796.0 3,746.0
Workload (TT+ST) 879.1 869.8 826.9 827.9 932.3 4,336.0
Idle Time 560.9 570.2 613.1 612.1 507.7 2,864.1

Case B: Semi-Dependent
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Case A 

 

Case B: Bedridden 

 
 

Case B: Semi-Dependent 

 

 

 

 

 

 

 

 

 

Figure 6: Increase of travel time due the admission of new patients as function of N 

 

For case A, it is possible to add a maximum of 5 new visits, corresponding to two additional patients 

(#351 and #352). The model chooses the patients with the smallest number of visits per week. All 

remaining patients from the waiting list had five or more visits per week. In the full capacity plan, the 

total walking time increases by 15%, when compared with the optimized plan (714 minutes vs. 818 

minutes). 

For the bedridden patients (case B), it is possible to add 10 new visits (corresponding to two more 

patients - #85 and #88 -, the one needing only one visit per day). The travel time increases 27% (from 

690 to 876 minutes). When considering N = 11, no solution exists. It is worth mentioning that both 

patients were assigned to team 2, which was the team with the largest idle time. 

 

As an illustrative example, Figure 7 shows the detailed routing plan for team 2, on Monday, in Scenario 

1 (Optimized Plan) and Scenario 2 (Full Capacity Plan). It can be observed that, for instance, patient 57 

is visited at minute 72 in the optimized plan and at minute 67 in the full capacity plan (with a difference 

of 5 minutes). Moreover, patient 85 was inserted where there was a waiting time period of 50 minutes 
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in the optimized plan. The lunch break also changed from starting at around 12.30 (276’) to start at 2 

p.m. (360’).  

Scenario 1: Optimized Plan 

 
Scenario 2: Full Capacity Plan 

 
Figure 7: Routes details of team 2, bedridden patients of case B (scenarios 1 and 2) 

 

For the semi-dependent patients, a maximum of 6 visits can be added to the optimized plan without 

disturbing the visiting hours of the current patients. These six visits correspond to three new patients 

- patients 80, 81 and 82 - and all of them require two visits per week. The total travel time increases 

10% (from 590 to 648 minutes).  

 

5.1.3 Scenario 3: Re-Scheduling and Re-Routing Plan 

Given the full capacity plan from scenario 2, where some patients from the waiting list are now being 

served, scenario 3 will re-do the plan when patients leave the system and new ones can be added. The 

current patients are divided into flexible patients (𝑃+), with 𝛿+ = 60 minutes, and non-flexible patients 

(𝑃(+), with 𝛿(+ = 5 minutes. We simulate the leaving of one patient in a given week, for both cases, 

using two objective functions: Min Deviation (𝐹{)	and Min Travel Time (𝐹q). The multi-objective 

problem is solved through a lexicographic approach. First, a solution is obtained with 𝑚𝑖𝑛		𝐹{, and 

then a solution is obtained for 𝑚𝑖𝑛		𝐹q with an additional constraint imposing a limit on the first 

objective function (𝐹{ ≥ 𝜀 ⋅ 𝐹{∗, 𝜀 > 0). With such an approach, we aim at finding a solution that 

minimizes the travel time compromising at most the deviation in 𝜀	%.  

We present below some results for Case B to illustrate the adequacy of the model to tackle the 

problem. Results for case A are not shown for sake of paper length. The computational times in 

scenario 3 are negligible, since all simulations were run in just few seconds, proving the optimality of 

the solutions.   
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For the semi-dependent patients, in 85% of simulations, when one patient leaves the system, it is 

possible to admit one new patient. In the remaining 15%, two new patients can be admitted. Notice 

that this depends on the location of both the leaving and the new patients, as well as on the time-

windows and on the length of the service of the new patient when compared to the “space freed” by 

the leaving one.  

Figure 8 presents the results in terms of travel time (blue dots) and time deviation (orange dots) from 

the initial plan, when just one patient leaves the system, and at least one patient must be added (N = 

1). The red line indicates the travel time obtained in scenario 2 (full capacity). For example, when 

patient #9 leaves the system, patient #78 (not shown) from the waiting list can be admitted. This leads 

to a small decrease in travel time (-0.5%), and a time deviation of 71 minutes from the initial starting 

time of visit (two flexible patients changed the visiting hours by 33 minutes each, and one non-flexible 

patient changed the visiting hour by 5 minutes). From this simulation, we see that almost all cases 

present a travel time higher than the red line. Although there were (most times) a one to one 

“replacement”, one should not forget that the previous visiting scheme has been optimized 

considering the leaving patient and not the new one.  

 

 
Figure 9: Simulation results for the semi-dependent patients, by leaving patient 

The at least one-to-one “replacement” observed for the semi-dependent patients is not observed 

when considering the bedridden patients. Table 6 shows the simulation results for the leaving of each 

one of the 10 bedridden patients (that are visited from once a day, e.g., patient #1, to four times a 

day, e.g., patient #2). One can see that in 50% of those simulations it was not possible to admit any of 

the patients on the waiting list (given the values defined for  𝛿+and 𝛿(+ ). Moreover, in certain cases, 

the number of penalties increases considerably, meaning that more violations are being made to the 

daily loyalty. The impact on the travel time is not significant, varying from -6% (when patient #59 

leaves and patient #87 is admitted) to +3% (when patient #2 leaves and patient #86 is admitted). 
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Table 6: Simulation results for the semi-dependent patients, by leaving patient 

 
 

5.1.4  Complementary Analysis  

After a scheduling and routing plan has been set up for each team for a given week, meeting all the 

constraints that were imposed by the social workers and fulfilling the objectives of minimizing the 

travel time (for the optimized and full capacity plans) and the time deviation to the initial plan (when 

patients leave the system), we will now address two concerns. The first one pertains to a human 

resources management perspective, where the workload of each team will be assessed and a new 

plan will be defined so that the workload is balanced among teams. The second one regards the service 

provided to the patients and intends to assess the impact of “breaking” the loyalty constraints within 

a week (daily and weekly).   

• Workload 

The weekly workload for each team was assessed for the optimized plan (Figure 9). It can be observed 

that minimum walking/travelling time solutions are quite unbalanced in both case studies. 

Case A 

 

Case B 

 
Figure 9: Workload of each team in scenario 1 

 

Therefore, the team scheduling and routing model is now run with the objective function 𝑚𝑖𝑛 𝐹�, by 

using the lexicographic approach described above considering as the second objective function 𝑚𝑖𝑛 𝐹q 

Patient Out (#) Travel Time Penalties Time Deviation Patient In (#)
Baseline 876.1 10 - -

1 902.2 10 4.3 87, 87', 87''
2, 2', 2'', 2''' 894.7 10 96.7 86, 86', 86'', 86'''

3, 3', 3'' 868.3 11 7.1 87, 87', 87''
4 NA NA NA NA

5, 5', 5'' NA NA NA NA
6, 6' NA NA NA NA
56 NA NA NA NA

57, 57', 57'' NA NA NA NA
58, 58' 896.7 15 9.6 87, 87', 87''
59, 59' 821.8 15 0 87, 87', 87''
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and 𝜀 = 1.1. For both cases, balanced solutions are found, where all teams work almost the same 

number of hours per week (Figure 10). However, more balanced workload solutions can be obtained 

at the expenses of the travelling time. For case A, the walking time increases by 10%, from 714 

min/week to 785 min/week. For case B, an increase of 8% is observed for the semi-dependent patients 

(from 590 min/week to 636 min/week) and only 2% for the bedridden patients (from 690 min/week 

to 704 min/week).  

 Case A 

 

Case B 

 
Figure 10: Optimal workload solution (with the lexicographic approach) 

 

Just to illustrate the differences in terms of service areas when both objective functions are applied, 

Figure 11 shows the areas for each team and for each objective function for case A. One can see that 

patients assigned to each team are quite different between the solutions.  

 

Min walking time 

Walking Travel Time: 714 min/week 

 

MinMax workload  

Walking Travel Time: 785 min/week 

 

Figure 11: Case A service areas by team and total walking time for each objective function 

 

• Loyalty vs. Non-Loyalty 

Until this point, every plan complies with 1) daily loyalty, i.e., if a patient needs to be visited more than 

one time per day, those visits are made by the same team; and 2) weekly loyalty, i.e., within a week a 

patient is always visited by the same team. If daily and weekly loyalties were not imposed by the social 
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workers, what would be the impact in terms of travel time? How many new patients could be added? 

What is the “cost” of the loyalty constraints?   

Two scenarios are studied regarding the type of loyalty: one where weekly loyalty is removed, and 

another where both daily and weekly loyalties are removed. Those results will be compared with the 

baseline scenario (Scenario 1). Table 7 shows the results for both cases. On one hand, removing the 

weekly loyalty has little impact in the travel time: for case A it has no impact; for case B semi-

dependent the travel time decreases by -1.7%, and for the bedridden patients, the travel time 

increases by 3.4%, but the number of penalties decreases from 10 to 8. This decrease means that 

without weekly loyalty is possible to comply with daily loyalty for more bedridden patients.  On the 

other hand, by removing daily loyalty, a more significant impact is observed, especially for case B: for 

the bedridden patients, the travel time decreases by 26%, and for the semi-dependent it decreases by 

9.5%. Despite this significant impact (especially for the bedridden patients), one needs to be aware 

that the quality of the service provided can be jeopardized in this scenario. Removing daily loyalty can 

only be implemented if a good information system supports the homecare operation, since it is 

essential to the care provided to a patient that the information be well transmitted between 

caregivers along the day. Moreover, this decrease of 26% allows the full capacity plan to include three 

more bedridden patients, instead of two (as in Scenario 2). Likewise, for the semi-dependent patients, 

the full capacity plan can now include four new patients, instead of three (as in Scenario 2).  

 

Table 7: Impact of relaxing daily and weekly loyalties 

 
 

To provide further insights on this matter, some benchmark instances were used to test the weekly 

loyalty regarding the solution quality and the computational time. We use the benchmark instances 

from the work of Trautsamwieser and Hirsch (2014)2, where the planning horizon is of 1 week, as in 

our work. However, since both problems are different, some simplifications were made to the 

benchmark instances. For each nurse (in our case, team), we considered the shift length provided for 

each benchmarking instances, but ignored the qualification level, the speaking language, the breaks, 

and the fact that some nurses could start their journey from their own houses since those issues are 

                                                             
2 Available at: http://www.wiso.boku.ac.at/en/pwl/forschung/instances/ 
 

Case A Case B: Semi-Dependent
Walking Time Travel Time Penalties Travel Time

Scenario 1 (With Daily and Weekly Loyalty) 714.2 790.2 10 590.0
Scenario 1.A (Without Weekly Loyalty) 714.2 816.8 8 580.0
Scenario 1.B (Without Daily and Weekly Loyalty) 693.9 602.4 - 525.2

Case B: Bedridden



 

30 
 

outside of the scope of our work. For each client, we considered the service duration, the time-

windows and the frequency required.  

Table 8 shows the results for 19 instances, where the number of teams (|A|) varies from 2 to 12, the 

number of patients (|P|) varies from 10 to 60 and the planning horizon (|T|) is always 7 days. Those 

instances were solved by our full model with weekly loyalty between patient-team (constraint [14]) 

and without weekly loyalty. A comparison is made regarding the objective function value (OFV) and 

the computational time (CPU), being the latter limited to 9000 seconds.  

It can be observed that the model with weekly loyalty has a worst performance when compared with 

the results from the model without weekly loyalty. Only four instances were solved to optimality with 

weekly loyalty, while 17 instances were solved to optimality without weekly loyalty in a short time (a 

maximum of 1024 seconds is observed at instance 6). Both models failed to provide an integer solution 

for the largest instances (instances 8 and 9) within the 9000-second limit. 

Regarding the solution quality, relaxing the weekly loyalty provides an average improvement of 7.7%, 

with a minimum of 0.2% for instance 4f and a maximum of 21.6% for instance 4d. It must be recalled 

that a fair comparison can only be done when both models provide the optimal solutions, i.e., for 

instances 2, 3, 4b and 4j, where an average improvement of 7.4% is observed.   

  

Table 8: Results for benchmarking instances with and without weekly loyalty 

 
OFV: Objective Function Value 
GAP (%):  Percentage deviation between the upper bound and the lower bound in the branch-and-cut algorithm of the CPLEX after the 
computational time limit has been reached 
CPU: Computational Time (in seconds) 
 

5.2 The caregiver assignment model 

Instances |A| |P| |T| OFV1 GAP (%) CPU1 OFV2 GAP (%) CPU2

1 2 10 7 1091 0.0 0.3 - -
2 3 15 7 1795 0.0 11 1646 0.0 0.7 -8.3% -93.6%
3 4 20 7 1964 0.0 297 1925 0.0 30 -2.0% -89.9%
4 6 30 7 3459 11.1 9000 3266 0.0 28 -5.6% -99.7%
4a 6 30 7 2172 13.1 9000 2004 0.0 41 -7.7% -99.5%
4b 6 30 7 2311 0.0 6444 2190 0.0 29 -5.2% -99.5%
4c 6 30 7 2407 10.3 9000 2224 0.0 67 -7.6% -99.3%
4d 6 30 7 2391 18.6 9000 1874 0.0 184 -21.6% -98.0%
4e 6 30 7 2500 14.2 9000 2338 0.0 27 -6.5% -99.7%
4f 6 30 7 3450 15.0 9000 3444 0.0 748 -0.2% -91.7%
4g 6 30 7 2833 17.5 9000 2599 0.0 80 -8.3% -99.1%
4h 6 30 7 2861 16.1 9000 2757 0.0 46 -3.6% -99.5%
4i 6 30 7 2676 13.5 9000 2529 0.0 112 -5.5% -98.8%
4j 6 30 7 2375 0.0 6295 2039 0.0 15 -14.1% -99.8%
5 7 35 7 3177 14.6 9000 2977 0.0 36 -6.3% -99.6%
6 8 40 7 3047 0.0 1024 - -
7 9 45 7 4006 19.6 9000 3466 0.0 152 -13.5% -98.3%
8 10 50 7 - -
9 12 60 7 - -

With Weekly Loyalty Without Weekly Loyalty Comparation

Infeasible

(𝑂𝐹𝑉2 −𝑂𝐹𝑉1)
𝑂𝐹𝑉1

(𝐶𝑃𝑈2 −𝐶𝑃𝑈1)
𝐶𝑃𝑈1
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At the previous section, we obtained a scheduling and a routing plan for each team, for each day of 

the week, for both case studies. In this section, we must define the weekly allocation of each caregiver 

to a team. The time horizon is one of the caregiver assignment model sets (set 𝑇) and its cardinality is 

not known a priori. Therefore, we use an iterative process through which the number of weeks is 

increased until a feasible solution is found. Notice that we aim at finding the smallest time horizon 

allowing for a rolling horizon scheme for the allocation of caregivers to teams.  

Case A has six caregivers to be assigned to three teams of two people. In case B, nine caregivers are 

to be assigned to six teams, where three teams are composed by two people and three are teams of 

just one person. For the latter, we assume three fictitious caregivers (see section 4.2.2).  

A feasible solution is reached with a time horizon of 8 weeks for case A and 12 weeks for case B. This 

means the solutions found can be repeated after 8 weeks (for case A) and 12 weeks (for case B), 

satisfying all the constraints. Figure 12 depicts case A solution, wherein each caregiver is illustrated by 

a different colour. All requests made by the social workers are met: one caregiver is on the same team 

only for two or three weeks in a row, all 15 different pairs of caregivers are present in the solution and 

all caregivers (all colours) are also present in all teams.  

 

 
Figure 12: Allocation of caregivers to teams over a time horizon of 8 weeks for case A (each caregiver is represented by a 

different colour) 

 

The solution for case B is shown in Figure 13. Each of one of the nine real caregivers is assigned to one 

of the six teams. For example, caregiver #1 is assigned to team 1 during the two first weeks and then 

is assigned to team 2, where he/she stays for two more weeks, and so on. The caregivers assigned to 

the semi-dependent teams (grey rows) do not stay at the same team for more than two consecutive 

weeks (see for example caregiver #4 is assigned to team 5 at week 4 and 5, but at week 6 is assigned 

to team 4). All caregivers rotate among every team. Each caregiver stays 8 weeks with the bedridden 

teams and 4 weeks with the semi-dependent teams during a planning horizon of 12 weeks, satisfying 

constraint [ 40 ]. 
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Figure 13: Allocation of caregivers to teams over a time horizon of 12 weeks for case B  

 

6. Conclusions 

Two Portuguese home social care service providers motivated this paper, where the social workers in 

charge pursue a scheduling plan for their caregivers that should impose loyalty within a day and within 

a week between patient and caregiver, but non-loyalty between weeks and between team members. 

The loyalty feature is very common in home care context. However, the non-loyalty feature has never 

been addressed by the academia, to our best knowledge, but is present in practice. The reasons 

behind the non-loyalty are related to social relationship issues between patients and caregivers, 

between caregivers when forming teams, and to prevent job-related injuries and illnesses. Moreover, 

both services face frequent changes in the set of patients to visit and a long waiting list. When a patient 

leaves the system, the “freed space” should be assigned to a new patient without disturbing the 

already visited patients’ schedules. Again, the planning of a home social care problem assuming a 

previous plan has not been addressed in the literature.   

In this work, we address both the caregiver assignment problem and the scheduling and routing 

definition having, for the former, a specific set of rules to comply with and, for the latter, a previous 

plan that should be taken into account. With the introduction of the concept of “teams”, we are able 

to break down our problem into two independent subproblems without losing solution optimality. 

Two new MILP models are proposed: the multi-objective team scheduling and routing model and the 

caregiver assignment model with a rolling horizon.  
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The caregiver assignment model assures the non-loyalty between weeks by assigning caregivers to 

teams. Eight and twelve weeks are the smallest number of weeks that allows a feasible solution of a 

rolling horizon scheme with the requested rules, for case A and B, respectively.   

In the scheduling and routing model, daily and weekly loyalty are assured, and the solution obtained 

is to be repeated every week until some patient leaves the system. When it happens, a new patient 

from the waiting list is admitted that (optimally) fits the previous visiting plan with controlled changes 

in the previous starting times of visits and with a minimum increase in the caregivers total travelling 

times. By removing some constraints, the model can optimize the patients’ visiting schedule and 

routing, assuming that no previous plan exists.  As main results, we are able to reduce 23% in walking 

time for case A and 6% in car travelling time for case B when comparing with the current solution 

(Scenario 1). This reduction allows an increase in the number of patients that can be served by both 

organizations without increasing the number of caregivers (Scenario 2). The simulations pertaining to 

patients that leave the system showed that the model is an adequate tool to support the social 

workers’ decision making in regards to the selection of new patients and the scheduling of visits. . 

Moreover, the current patients will not have their schedules changed more than desired (Scenario 3).  

When balancing workload, more equitable schedules for each team are achieved with small increases 

in travel time. Lastly, it was also assessed the impact of imposing daily and weekly loyalty. The main 

conclusions are: relaxing only weekly loyalty does not impact much the solution quality for the real 

case-studies, while for the benchmarking instances the impact in on average of 7%; relaxing both daily 

and weekly loyalty at the same time led to a considerable reduction on the travel time and, 

consequently, increased the ability to assist more patients in the real case-studies. Regarding the 

computational performance over the benchmarking instances, the model with non-loyalty constraints 

performs better as expected. Nonetheless, one should not forget that managing a non-loyalty service 

will demand much more coordination between the social workers and the caregivers so that the needs 

of the patients are adequately fulfilled. 

As for future work, two main ideas will be explored. Firstly, the decomposition approach could be 

improved to account for both patients’ typologies simultaneously. We aim at investigating the benefits 

in term of solution quality if the same caregiver is allowed to visit both semi-dependent patients and 

bedridden patients on the same day. Second, the model can also be extended to deal with uncertainty. 

Several uncertainty sources exist in home care problems, such as the duration of the service as we are 

dealing with a high-level customer contact service which has a major impact on the duration of the 

service; the absent of caregivers on a given day (e.g., one may get sick); patients may be absent from 

their homes (to go to doctor’s appointments or may go to relatives’ home for some days). These are 
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just few examples of sources of uncertainty that motivate a stochastic approach, which despite being 

a common practice in other VRP applications, has not yet caught the attention in HC problems (Fikar 

and Hirsch, 2017).        
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