
Alexandre Filipe Zambujo de Brito

Licenciado em Ciências da Engenharia Electrotécnica e Computadores

Localization and Trajectory Control Algorithms
Applied on Drones

Dissertação para obtenção do Grau de Mestre em

Engenharia Electrotécnica e Computadores

Orientador: Doutor Luís Filipe Figueira de Brito Palma,
Professor Auxiliar, Faculdade de Ciências e
Tecnologia da Universidade Nova de Lisboa

Co-orientador: Doutor Fernando José Vieira do Coito,
Professor Associado, Faculdade de Ciências e
Tecnologia da Universidade Nova de Lisboa

Júri

Presidente: Luis Augusto Bica Gomes de Oliveira, Professor Auxiliar com Agregação
Arguente: João Almeida das Rosas, Professor Auxiliar

Vogal: Fernando José Vieira do Coito, Professor Associado

Março, 2018

Localization and Trajectory Control Algorithms Applied on Drones

Copyright © Alexandre Filipe Zambujo de Brito, Faculdade de Ciências e Tecnologia, Universidade

NOVA de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade NOVA de Lisboa têm o direito, perpétuo e

sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos

reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha

a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e

distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado

crédito ao autor e editor.

Este documento foi gerado utilizando o processador (pdf)LATEX, com base no template “unlthesis” [1] desenvolvido no Dep. Informática da FCT-NOVA [2].
[1] https://github.com/joaomlourenco/unlthesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/unlthesis
http://www.di.fct.unl.pt

AC K N O W L E D G E M E N T S

The realization of this dissertation represents the end and the start of a big step in my life, so I

would like to thank everyone that was part of it and that provided me this wonderful experience.

First of all, I would like to thank my advisor Professor Luís Filipe Figueira Brito Palma and

my co-advisor Professor Fernando José Vieira do Coito for the opportunity, patience, effort and

transmitted knowledge along the past year, that helped the realization of this dissertation. A special

word to MSc. Vasco Brito, who also provided very useful help and guidance throughout this work.

I would also like to show my gratitude to my colleagues and friends, Alexandre Silva, André

Quintanova, Carina Dias, Guilherme Almeida, Luís Alves, Nuno Pereira, Tiago Santos, Yaniel

Barbosa, among others for all the help and support not only for the thesis but for the whole univer-

sity years and of course for their valuable friendship.

Special thanks to my parents, João Manuel de Brito and Teresa da Piedade Pereira Zambujo

de Brito, and my sister Laura Isabel Zambujo de Brito for the unconditional love, support and

dedication to raise me, which made me the person I am today.

A special acknowledgment to my friends Maria Cristina, Jorge Lourenço, Giovanny Rodrigues,

Tozé Soares, Francisco Ferreira, Bernardo Ferreira, Andreia Santos, Rodrigo Caçorino for the

friendship and time spent together that helped me unwind from time to time.

Last but not least, I want to thank Faculdade de Ciências e Tecnologia of Universidade Nova

de Lisboa for allowing me to learn, grow and develop traits that will help me in my career and

personal life.

v

A B S T R A C T

In this dissertation, the trajectory control of the quadcopter is explored and developed with the

objective of finding the best way travel in terms of speed and energy consumption. The sensor

fusion of several GPS modules is implemented as an algorithm that provides better localization

measurements and reduces noise. An attempt to identify the NAZA® attitude controller in order

to obtain its mathematical model is also subjects of this thesis. Trajectory algorithms are designed

and tested with and without faults in the motors, on the X8 configuration in Simulink®. The

main contributions are the improved GPS signal reception and algorithms for an autonomous

trajectory following quadcopter. Experiments in the real-world quadcopter were done in order to

validate the performance of such contributions. The simulations and experiments presented good

performance of the quadcopter’s behavior when integrating the filtered GPS signal. Simulations

show the continuous improvement for trajectory generation and following of the drone between

the three controllers tested (from worst to best): PID, state space feedback and differential flatness.

Keywords: quadcopter, modeling, fault tolerance, fault tolerant control, kinematic and dynamic

systems, trajectory planning and following, sensor fusion, system identification, Arduino, Matlab®,

Simulink®.

vii

R E S U M O

Nesta dissertação, a exploração e o desenvolvimento de controlo de trajetória tem como objec-

tivo encontrar a melhor forma de completar trajectorias em termos de velocidade e consumo de

energia. A fusão sensorial de vários modulos GPS são implementados como algoritmo que melhora

a precisão de localização e diminui o ruído. A tentativa de identificação do controlador de atitude

NAZA® de forma a encontrar o seu modelo matemático é também um dos temas desta tese. Al-

goritmos de trajectoria são desenhados e testados, com e sem falhas nos motores, na configuração

X8 em Simulink®. As principais contribuições são a melhor recepção de sinal GPS e algoritmos

de seguimento de trajectória de quadcopteros de forma autónoma. Foram feitas experiências no

drone real de forma a validar o desempenho de tais contribuições. As simulações e experiências

revelaram um bom comportamento do quadcoptero ao integrar o sinal de GPS filtrado. As simu-

lações revelaram uma continua melhoria em relação à geração e seguimento de trajectória entre

controladores testados (do pior para o melhor): PID, retroação de espaço de estados e differential

flatness.

Palavras-chave: quadcopter, modelação, tolerância a falhas, controlo tolerante a falhas, cinemá-

tica e dinâmica de sistemas, planeamento e seguimento de trajectória, fusão sensorial, identificação

de sistemas, Arduino, Matlab®, Simulink®.

ix

C O N T E N T S

List of Figures xiii

List of Tables xvii

List of Acronyms xix

List of Symbols xxi

1 Introduction 1
1.1 Motivation . 1

1.2 Main Goals and Contributions . 1

1.3 Dissertation Structure . 2

2 State of the Art 3
2.1 Introduction . 3

2.2 Multicopter History . 3

2.3 Trajectory . 6

2.3.1 Algorithms based on geometric path primitives 6

2.3.2 Algorithms that minimize the derivative of the position trajectory 8

2.3.3 Optimal control considering the non-linearity of the system 9

2.4 Localization . 10

2.4.1 History . 11

2.4.2 GPS concept and fundamentals . 11

2.4.3 GPS Coordinates and metric Conversion 12

2.4.4 GPS Coordinate formats . 13

2.5 Control Approaches . 14

2.5.1 Proportional Integral Derivative Control 14

2.5.2 Model Predictive Control . 16

2.5.3 State Space Feedback Control . 18

2.5.4 Differential Flatness Control . 20

2.6 Sensor Fusion . 21

2.7 Related Work . 23

3 System’s Structure and Modeling 27

xi

C O N T E N T S

3.1 Introduction . 27

3.2 Architecture Overview . 27

3.3 Hardware Architecture and Components . 28

3.3.1 Quadcopter structure . 28

3.3.2 Attitude Controller . 29

3.3.3 Arduino Uno and Due . 29

3.3.4 Radio Communication devices . 30

3.3.5 GPS modules . 32

3.3.6 Absolute Orientation Sensor . 34

3.3.7 Power Supply . 34

3.4 X8-VB Quadcopter Modelling . 35

4 Identification and Control 41
4.1 NAZA Attitude Controller Identification . 41

4.2 Trajectory Control Algorithms . 43

4.2.1 Proportional Derivative Integral Control 45

4.2.2 State Space Feedback Control . 47

4.2.3 Differential Flatness Controller . 51

4.3 Localization Algorithms . 57

4.3.1 Naza GPS Data Output . 57

4.3.2 Sensor Fusion . 60

4.3.3 Data Management, Decoding and Encoding 61

5 Simulations and Experimental Results 63
5.1 Simulations . 63

5.1.1 Trajectory Tracking Algorithms . 63

5.1.2 Localization Algorithms . 68

5.2 Experimental Results . 71

5.2.1 NAZA Controller Identification . 71

5.2.2 Sensor Fusion . 73

6 Conclusions and Future Work 77

Bibliography 79

A Sensor Fusion Code (Arduino) 85

B Simulink - Block Diagram of the Control Architectures 97

xii

L I S T O F F I G U R E S

2.1 Leonardo da Vinci’s drawing (Gibbs-Smith, 1978). 4

2.2 Breguet-Richet Gyroplane (Heatly, 1986). 4

2.3 Oehmichen No.2 (Spooner, 1924). 5

2.4 DJI’s Phantom 4 Pro (DJI, 2016). 6

2.5 Quadcopter path definition with lines as geometric path primitives between waypoints

(Hoffmann et al., 2008). 7

2.6 Elementary polynomials: a) Varying only one coefficient; b) Varying an additional

coefficient for more flexibility (Yakimenko, 2006). 7

2.7 B-spline with the dots as control points. 8

2.8 Optimal trajectories. Left: no corridor constraints; Right: corridor constraints between

waypoints 1 and 2 (Mellinger, 2011). 9

2.9 Iterative time refinement of a pathway through waypoints (Richter et al., 2013). . . . 9

2.10 Illustration of maneuvers for horizontal displacement (Ritz et al., 2011). 10

2.11 Principle of satellite positioning (Hofmann-Wellenhof et al., 1994). 10

2.12 GPS’s trilateration method (El-Rabbany, 2002). 12

2.13 Signal reflection from the satellites resulting in the Multipath error (Floyd and Pala-

martchouk, 2015). 13

2.14 Determination of the parameter R and L (Åström and Wittænmark, 1997). 15

2.15 Illustration of model predictive control (Åström and Hägglund, 2006). 16

2.16 State space feedback control architecture (Ogata, 1970). 19

2.17 Differential Flatness Control architecture with feedback control as a stabilizer. 20

2.18 Bundle of minimum-energy trajectories of the quadrotor (Morbidi et al., 2016). . . . 24

2.19 Low-cost quadrotor (Gurdan et al., 2007). 24

2.20 Sensor fusion of GPS and IMU through fuzzy logic (Caron et al., 2006). 25

2.21 Architecture for the identification of the closed loop quadruple tank system (Parikh

et al., 2012). 25

3.1 NAZA-M Lite controller and respective connections. 28

3.2 X8-VB Quadcopter 3D model (Brito, 2016). 28

3.3 NAZA-M Lite attitude controller. 29

3.4 Arduino Uno (Arduino, 2018). 29

3.5 Arduino Due (Arduino, 2018). 30

xiii

L I S T O F F I G U R E S

3.6 FrSky Taranis X9D Plus on the left and its receiver on the right. 31

3.7 Wiring description of the 3DR radio V2. 31

3.8 Shield GPS Logger V2. 32

3.9 Mini Locator RoyalTek REB-5216. 33

3.10 Ultimate GPS Breakout V3. 33

3.11 NAZA GPS wiring. 34

3.12 9 Axes Motion Shield. 34

3.13 LiPo Batteries: 6000mAh on the left; 5000mAh on the right. 35

3.14 North−East−Down coordinate system (Figueiredo et al., 2014). 36

3.15 The three angular degrees of freedom of the quadcopter. The XYZ axis are represented

with RGB colors, respectively (Brito, 2016). 37

3.16 Quadcopter inputs translated to each n motor’s torque 40

4.1 Pitch PWM values given to the NAZA controller. 42

4.2 Pitch orientation of the structure along time. 43

4.3 Response of the NAZA controller to the motor 3. 43

4.4 Block Diagram of the cascade control integrated in the quadcopter. Adapted from

(Åström and Hägglund, 2006). 44

4.5 PID architecture used for trajectory tracking of the quadcopter. 45

4.6 Trajectory tracking in the x axis with the PID controller (dotted green line is the

reference and blue line is the actual trajectory). 46

4.7 Pitch performed by the quadcopter with the PID controller (black line is the reference

and blue line is the actual pitch). 46

4.8 Trajectory tracking in the z axis with the PID controller (dotted green line is the

reference and blue line is the actual trajectory). 47

4.9 Trajectory tracking in the x axis with the state space feedback controller (dotted green

line is the reference and blue line is the actual trajectory). 49

4.10 Pitch performed by the quadcopter with the state space feedback controller (black line

is the reference and blue line is the actual pitch). 50

4.11 Trajectory tracking in the z axis with the state space feedback controller (dotted green

line is the reference and blue line is the actual trajectory). 51

4.12 Differential Flatness controller with State Space Feedback as the feedback stabilizer. 53

4.13 Trajectories generated for ξ re f (blue) and ξ̈ re f (black). 54

4.14 Reference generated for γre f (blue) and control input γ̈re f (black). 54

4.15 Trajectory tracking in the x axis with the differential flatness controller (dotted green

line is the reference and blue line is the actual trajectory). 55

4.16 Pitch performed by the quadcopter with the differential flatness controller (black line

is the reference and blue line is the actual pitch). 55

4.17 Trajectories generated for Zre f (blue) and Z̈re f (black). 56

4.18 Trajectory tracking in the z axis with the differential flatness controller (dotted green

line is the reference and blue line is the actual trajectory). 57

xiv

L I S T O F F I G U R E S

4.19 NAZA GPS module data output. 58

4.20 Sensor fusion of two NAZA GPS modules’ data. 62

5.1 PID controller for trajectory tracking of the drone (dotted green line is the reference

and blue line is the actual trajectory). 64

5.2 PID actuation for trajectory tracking of the drone (black line is the reference and blue

line is the actuation). 65

5.3 State Space feedback controller for trajectory tracking of the drone (reference repre-

sented as dotted green and the actual trajectory as continuous blue). 66

5.4 State Space feedback actuation for trajectory tracking of the drone (reference repre-

sented as black and actuation as blue). 66

5.5 Differential Flatness controller for trajectory tracking of the drone (reference repre-

sented as dotted green and the actual trajectory as continuous blue). 67

5.6 Differential Flatness actuation for trajectory tracking of the drone (reference repre-

sented as black and actuation as blue). 68

5.7 Latitude and longitude of the position received by the two NAZA GPS modules, along

with its Kalman filtering. 69

5.8 Satelites in view and altitude of the position received by the two NAZA GPS modules,

along with its Kalman filtering. 70

5.9 Location of the GPS module on Google Maps on the left and its altitude on the right

(Green dot). 70

5.10 X8-VB Quadcopter featuring two GPS sensors for improved localization data. 71

5.11 Test bench for the NAZA controller identification. 72

5.12 Estimation (blue) and validation (green) data of the pitch input (below) and torque

motor output (above). 72

5.13 Model attempts of the NAZA pitch actuation. 73

5.14 Sensor fusion of two NAZA GPS modules in latitude, longitude and altitude (GPS1-

Blue, GPS2-Red, Filtered-Yellow. 74

5.15 Trajectory performed by the quadcopter with the sensor fusion providing the filtered

coordinates. 74

5.16 Validation of the coordinates obtained from the algorithm with Google Maps. 75

5.17 Validation of the altitude obtained from the algorithm with the topographic map of the

FCT UNL Campus (Green dots are the vertices of the square. 76

B.1 Simulink block diagram of the PID architecture. 98

B.2 Simulink block diagram of the state space feedback architecture. 99

B.3 Simulink block diagram of the differential flatness architecture. 100

xv

L I S T O F TA B L E S

2.1 GPS coordinate formats of the Aerodynamics and Control laboratory at the Electrical

Engineering Department in FCT UNL Campus. 14

2.2 Controller parameters obtained from the Ziegler-Nichols step response method. . . . 15

2.3 Controller parameters obtained from the Ziegler-Nichols ultimate-sensitivity method. 16

3.1 Arduino Uno versus Arduino Due specifications. 30

3.2 Shield GPS Logger V2 specifications. 32

3.3 Ultimate GPS Breakout V3 specifications. 33

3.4 LiPo batteries characteristics. 35

3.5 Inputs of the Quadcopter X8. 36

5.1 X8-VB Quadcopter’s characteristics. 64

5.2 Controller parameters obtained from the Ziegler-Nichols method. 64

5.3 Controller parameters obtained from the LQR method. 65

5.4 Rising time and overshoot comparison between controllers (x axis). 69

5.5 Model attempts of the NAZA pitch actuation signals. 73

xvii

L I S T O F AC R O N Y M S

CPU Central Processing Unit

CS Checksum

CS1 Checksum byte 1

CS2 Checksum byte 2

DC Direct Current

DF Differential Flatness

DOP Dilution of Precision

ESC Electronic Speed Controller

GPS Global Positioning System

ID Identification

IMU Inertia Measurement Unit

LED Light Emitting Diode

LiPo Lithium Polymer

LQR Linear Quadratic Regulator

MIMO Multiple Input, Multiple Output

NARX Nonlinear Autoregressive Exogenous

NED North-East-Down

NMEA National Marine Electronics Association

NNSS Navy Navigational Satellite System

xix

L I S T O F AC RO N Y M S

PID Proportional Integral Derivative

PWM Pulse Width Modulation

R/C Radio Communication

RX Reception

SI International System of Units

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

SS State Space

TDM Time Division Multiplexing

TWI Two Wire Interface

TX Transmission

UAV Unmanned Aerial Vehicle

USB Universal Serial Bus

UTM Universal Transverse Mercator

VTOL Vertical Take-Off and Landing

VU Versatile Unit

xx

L I S T O F S Y M B O L S

e Error

γ Angular position

I Inertia

Jt Inertial moment of rotation

m Body mass

φ Roll

ψ Yaw

T i Integration time

T d Derivative time

T u Period of oscilation

θ Pitch

u Input

w Motor’s rotation speed

x State

ξ Linear position

y Output

xxi

C
H

A
P

T
E

R

1
I N T R O D U C T I O N

1.1 Motivation

The operation of aircrafts, more specifically the quadcopter, requires a well-aware and efficient

pilot, be it human or machine. This starts with the quality of the sensors: accelerometer, barometer,

gyroscope, GPS, Inertia Measurement Unit (IMU) and Compass, which are crucial for the aware-

ness of the pilot during the flight. Efficiency of the pilot can be interpreted in many ways, but in

this case, it refers to how good his or its actions are performed on the drone.

One of the main topics of this dissertation is the trajectory planning and tracking with the drone,

and this research will explore what are the best ways to do it related with the polynomial form of

the path along the waypoints and how the accelerations should be manipulated for less flight time

or less energy consumed during the flight.

The other main topic regards the fact that the GPS, being the most used localization system

around the world for its innumerous advantages, still has its limitations. Since the quadcopter is

highly location dependent, finding ways to fight these limitations is another objective of this thesis.

1.2 Main Goals and Contributions

The main goal of this dissertation is to design algorithms that successfully plan feasible trajec-

tories from predefined waypoints and control the quadcopter through them, considering the energy

consumption and flight time. Since this dissertation is a continuation of Vasco Brito thesis “Fault

Tolerant Control of a X8-VB Quadcopter”, the further validation of the fault tolerant aspect of the

X8 quadcopter is also experimented here. The second goal of this thesis is related with location

precision, for which the sensor fusion of several GPS modules is addressed. A third goal is to

1

C H A P T E R 1 . I N T RO D U C T I O N

identify the NAZA attitude controller (from the DJI commercial quadcopter kit) in order to obtain

a more realistic model, since this controller operates on a real drone.

One of the main contributions of this thesis is the clarification that the classic control algo-

rithms designed in the industry are not recommended or efficient for such a fast system like the

quadcopter. This means that the overshoot and slow rise time are not tolerated by a system like this,

which happens with any purely feedback control approach. To this end, the Differential Flatness

was addressed for optimal trajectory following and continuity, thanks to its feedforward aspect

which takes into account the system dynamic equations to calculate the best possible actuations.

Another contribution is the development of location improvement algorithms, that uses several

sensors for better localization of the quadcopter.

1.3 Dissertation Structure

This document is organized in five chapters and in the following structure:

• Chapter 1 presents the motivation, main goals, and contributions of the dissertation;

• Chapter 2 is the state-of-the-art, which starts by explaining background history of the quad-

copters and their evolution, followed by the trajectory and localization concepts addressed

in this research, with their respective control methodologies, and finally, the related work;

• Chapter 3 shows this research’s development, from the hardware units specifications and de-

scriptions to the quadcopter assembly and modelling and from the localization and trajectory

algorithms design to their respective control approaches;

• Chapter 4 presents the closed loop simulations and experimental results of the control al-

gorithms applied on the real-world quadcopter. Further comparison between trajectory

algorithms’ performances and improvement in localization precision are clarified;

• Chapter 5 covers the conclusions and the future work of this dissertation;

2

C
H

A
P

T
E

R

2
S TAT E O F T H E A R T

2.1 Introduction

The state of the art will present fundaments of the work done in this dissertation, covering two

main topics in the research area of quadcopters, trajectory and localization. In the trajectory area,

algorithms of trajectory generation and optimization already studied, verified and experimented

will be presented and discussed, alongside with their methods integrated in such an aerial vehicle

and their respective control approaches.

The localization research area will also be a theme in this thesis, so a brief history of its appear-

ance will be presented, how it evolved along the years and how it is now a powerful technology for

a wide range of applications.

2.2 Multicopter History

The quadcopter is essentially a helicopter with four rotors displayed in a square formation

equally displaced at the same distance from the center of its body. Just like the helicopter, the

quadcopter has a means to sustain its body aloft by pushing the air downwards, which categorizes

them as a Vertical Take-Off and Landing (VTOL) aircraft (Luukkonen, 2011).

The history of VTOL aircrafts starts in 1490 with a design considered to match the characteris-

tics of a helicopter made by the Italian artist and scientist Leonardo da Vinci. The drawing can be

observed in Figure 2.1. This helical or lifting screw was inspired by the Archimedes’ water screw

in which he believed that it could possibly take-off vertically (Heatly, 1986).

3

C H A P T E R 2 . S TAT E O F T H E A RT

Figure 2.1: Leonardo da Vinci’s drawing (Gibbs-Smith, 1978).

A wide variety of minor inventions contributed to the enhancement of the helicopter after the

fifteenth century, presenting a bulky and heavy structure but lacking suitable power. Only in the

latter half of the nineteenth century began to appear more realistic concepts used in nowadays

helicopters, like the proposed rotor with adjustable pitch and the tail rotor or screw to counteract

the torque provoked on the fuselage (Heatly, 1986). The aircraft propellers as we know today were

pioneered by the Wright brothers, realizing that the propeller is essentially the same as a wing , as

concluded from their wind tunnel experiments (Federal Aviation Administration, 2008).

The first known quadcopter, originally called gyroplane, has its debut appearance in France in

the year of 1907, invented by the French brothers Louis and Jacques Breguet. The machine can be

observed in Figure 2.2. This quadcopter was the first piloted aircraft able to lift vertically and it

managed to fly several times (Brito, 2016).

Figure 2.2: Breguet-Richet Gyroplane (Heatly, 1986).

4

2 . 2 . M U LT I C O P T E R H I S T O RY

Following this successful experiment, Etienne Oehmichen investigated on rotorcraft himself

and built the Oehmichen No.2 with four rotors and eight propellers powered by a single engine

as illustrated in Figure 2.3. This model presented a high level of stability and controllability for

its time, performed more than a thousand of test flights and broke several flight records among

helicopters (Spooner, 1924).

Figure 2.3: Oehmichen No.2 (Spooner, 1924).

Other quadcopter models were experimented, until the scientists realize that the single rotor

helicopter with a tail rotor to counterbalance the torque caused on the fuselage was the better

option, because of three major factors:

• The single rotor with tail rotor is naturally stable due to the weight being supported by only

one attachment point to the rotor, causing it to naturally hang straight down and correct

unwanted tilting with the force of gravity;

• The quadcopter is not naturally stable, therefore requiring some form of additional control

to keep it stable at all times, either by the pilot or by a computer, which was non-existent at

that time;

• More rotors imply more connections to the engines in the middle of the fuselage which

requires more and long extensions of belt to the arms, while on single rotor helicopters only

required a small connection to only one rotor (Krossblade Aerospace, 2017).

In the last decades, quadcopters have become more popular as Unmanned Aerial Vehicles

(UAV) for various applications. These smaller vehicles fill the niche of what full-sized manned

aircrafts like helicopters and airplanes can’t or are inadequate for the task. Applications like routine

surveillance, attack strategies in the military field and civilian applications from border protection

to search and rescue, are nowadays commonly performed by quadcopters (Bouabdallah, 2007).

One example of the most recent UAVs is the latest DJI Phantom 4 Pro represented in Figure 2.4.

5

C H A P T E R 2 . S TAT E O F T H E A RT

Figure 2.4: DJI’s Phantom 4 Pro (DJI, 2016).

2.3 Trajectory

Creating algorithms capable of generating collision-free trajectories in less time has been quite

the challenge since the quadcopters emerged. The constantly evolving technology finally allowed

fast and efficient controllers to actuate these naturally unstable aerial robots. The algorithms can

be classified as:

• Algorithms based on geometric path primitives, in which the waypoints from start to final

position are defined in space and then parameterizing these geometric path primitives along

the way such as lines, polynomials or splines;

• Algorithms based on minimum velocity trajectory, where the control input constraints the

velocities during flight through the differential flatness property of the quadcopter which

will approve its feasibility;

• Optimal control considering the non-linearity of the system, which consists in control al-

gorithms that directly considers the nonlinear dynamics of the quadcopter (Hehn and D

’andrea, 2015).

2.3.1 Algorithms based on geometric path primitives

The trajectory generation based on geometric path primitives accounts with the predefined set

of waypoints along the way. The quadcopter can travel consecutively between waypoints in a line,

facing directly the next target destination in the sequence, in the 3D space as illustrated in Figure

2.5.

In this example the quadcopter travels along the path P from a desired waypoint xd
i to xd

i+1

according to the along track uat and cross track uct inputs, which represents the most simplistic

6

2 . 3 . T R A J E C T O RY

Figure 2.5: Quadcopter path definition with lines as geometric path primitives between waypoints
(Hoffmann et al., 2008).

form of travelling but also the most inefficient. Because of the infinite curvature existing in each

waypoint the quadcopter is forced to stop in each of these occasions (Hoffmann et al., 2008).

Another kind of path parametrization is the polynomial, characterized by smoothing the edges

existing along the waypoints, resulting in a less clunky, more graceful way of travel. Among the

several types of polynomials, the elementary and Chebyshev have been particularly explored in

the research of trajectory optimization (Cowling et al., 2007).

In a typical case of the elementary polynomial where up to the second derivative of Cartesian

coordinates must be satisfied at both ends of the trajectory, the third-order polynomial represents

the appropriate smoothness desired. Integrating this polynomial twice results in a 4th and 5th order

polynomials for the first derivative and ith coordinate. This means that, if an additional flexibility

is needed, the order of approximation can be increased resulting in higher order derivatives and

additional variable parameters, as illustrated in Figure 2.6 (Yakimenko, 2006).

Figure 2.6: Elementary polynomials: a) Varying only one coefficient; b) Varying an additional
coefficient for more flexibility (Yakimenko, 2006).

The Chebyshev polynomial method is one way to construct a polynomial approximation to

the solution, in which both the states and control variables are expanded in terms of Chebyshev

polynomials with unknown generalized Fourier coefficients. The use of the properties of this

method implies the conversion of state equations, performance index and boundary conditions into

7

C H A P T E R 2 . S TAT E O F T H E A RT

algebraic or transcendental equations in terms of unknown coefficients (Fahroo and Ross, 2002).

Another method used in the trajectory generation algorithms is the B-Spline or Basic Spline

polynomials, that starts by defining the waypoints (except the first and last) as control points and

then generating an approximation of B-spline functions fitting the control points, resulting in a path-

way that nearly crosses each waypoint for a more smooth set of transitions (Bouktir et al., 2008),

as represented in Figure 2.7.

Figure 2.7: B-spline with the dots as control points.

2.3.2 Algorithms that minimize the derivative of the position trajectory

These kinds of algorithms use the quadcopter’s differential flatness property through the con-

trol inputs to minimize the derivative of the position trajectory, directly affecting its feasibility.

One example of this method is the minimum snap trajectory generation, that minimizes functionals

of the trajectories described by basis functions, presented by (Mellinger, 2011). This approach

is very useful for differential flatness control methodologies, since the trajectory references and

their derivatives that form the optimal and smoothest way to travel between waypoints, can be

provided by the trajectory generator. Another convenience of this method is the possibility of

adding constraints in the trajectory corresponding to environment objects and walls, as it can be

observed in Figure 2.8.

Another work that solves this optimization problem through a similar method is done by mini-

mizing the weighted sum of derivatives (Richter et al., 2013). In Figure 2.9 this process of iterative

refinement of segment times is illustrated, varying the weights of the derivatives for a faster travel-

ing time. This algorithm also adjusts these weights automatically depending on the environment

or when it knows it has to slow down to navigate through tight spaces without incurring excessive

snap.

8

2 . 3 . T R A J E C T O RY

Figure 2.8: Optimal trajectories. Left: no corridor constraints; Right: corridor constraints between
waypoints 1 and 2 (Mellinger, 2011).

Figure 2.9: Iterative time refinement of a pathway through waypoints (Richter et al., 2013).

2.3.3 Optimal control considering the non-linearity of the system

There is also another way to perform a trajectory with a quadcopter, not taking for granted the

linearized behavior provided by the controller, since these kinds of trajectory planning accounts

with the non-linear aspect of the quadcopter itself. This brings faster response from the quadcopter

movements since the controller will use its natural instability to perform faster rotations. Such

approach is done by Ritz (Ritz et al., 2011) using custom electronics that allow the deployment

of custom control algorithms. These algorithms generate control input based on the planned tra-

jectory and the feedback obtained from the board gyroscopes to control the quadcopter rotational

rates. Figure 2.10 illustrates the rotational rate (pitch) existing during the displacement of various

distances and as it can be observed, the angle obtained during these transitions is very aggressive

9

C H A P T E R 2 . S TAT E O F T H E A RT

when comparing with the common quadcopter’s overall agility.

Figure 2.10: Illustration of maneuvers for horizontal displacement (Ritz et al., 2011).

2.4 Localization

The UAVs nowadays rely heavily on the Global Positioning System (GPS) if its localiza-

tion/navigation across the surface of the Earth is needed. This system is composed by a satellite

constellation that, in order to provide continuous global positioning, requires at least four satellites

that are always electronically visible by the GPS receiver. After several constellation schemes pro-

posed, the scientists came to a consensus that 21 evenly spaced satellites in circular 12-hour orbits

can provide the global coverage with the least expense. The position coordinates provided by the

GPS are expressed by latitude, longitude and elevation, which are calculated through the distances

measured from the center of the earth to each satellite as illustrated in Figure 2.11. These satel-

lites are equipped with atomic clocks, which are the most accurate time and frequency standards

known, being able to provide good accuracy in the GPS position calculations (Hofmann-Wellenhof

et al., 1994).

Figure 2.11: Principle of satellite positioning (Hofmann-Wellenhof et al., 1994).

10

2 . 4 . L O C A L I Z AT I O N

2.4.1 History

The pioneer technique in electromagnetic localization was the High Ranging (HIRAN) system

developed during the World War II for aircraft positioning purposes. Some years later, this system

was used to attempt to determine the difference between Europe and America’s datum, measuring

HIRAN’s arcs of trilateration, which caused a technological breakthrough when the scientists expe-

rienced the Doppler Effect in the signal broadcasts, and came to a conclusion of its usefulness for

accurate time determining of satellite’s position. This knowledge alongside with the Kepler’s laws

led to the present capabilities of near-instantaneous and precise localization incorporated in the

GPS. The Navy Navigational Satellite System (NNSS) was the successor of this new technology,

developed in the U.S. Military and initially for military exclusive use to determine the positioning

of vessels and aircrafts. This system composed by six satellites is still operational and used by

thousands of small vessels and aircrafts, military or civilian, to determine their position worldwide

(Hofmann-Wellenhof et al., 1994).

Later in the year 1973, the GPS project was launched to overcome the limitations existing in

the NNSS, mainly the large time gaps on its global coverage and its poor navigation accuracy. It

was concluded that the previous system was not able to provide continuous positioning data to the

user with only six satellites. The new Global Positioning System was able to provide this with

very accurate time, position and velocity of the receiver device, using a total of 24 operational

satellites in the constellation according with the present policy (Hofmann-Wellenhof et al., 1994).

Other similar global positioning systems were later developed and launched by other organizations,

namely the Russian GLONASS (Polischuk et al., 2002), Chinese BeiDou (Nowakowski, 2015) and

the European Galileo ((GPS/Daily), 2014) satellite navigation systems, launched in 1982, 2000

and 2011, respectively.

2.4.2 GPS concept and fundamentals

As stated before, the current GPS constellation is formed by 24 satellites that communicate

through radio-frequency signals to provide the current position to its user accurately for an easy,

fast and safe navigation. This system can be found in cars, boats, airplanes and even smartphones.

The system itself relies upon the trilateration method to detect the position of the receiver.

This method is illustrated in Figure 2.12 and can be described first by imagining that the distance

from the position that has to be determined to one of the satellites is R1, and this position seen

from the satellite could be anywhere on the sphere of radius R1. If another satellite is to measure

that position, it will obtain R2 by chance and the distance from the desired coordinates to both

satellites will be reduced to their intersection, forming a circle in space of possible coordinates.

Adding a third satellite with distance R3 will reduce the possible coordinates to two and from these,

there could be a fourth measurement but usually one of these points is a ridiculous answer due to

11

C H A P T E R 2 . S TAT E O F T H E A RT

impossible position or velocity (El-Rabbany, 2002).

Figure 2.12: GPS’s trilateration method (El-Rabbany, 2002).

The GPS recievers obtain these metric measurements by calculating the time that the signal

takes to arrive from the satelites. To obtain accurate timing, the satellites are equipped with atomic

clocks, however the GPS receivers are not, which is why there must be a fourth satellites for timing

calculations, otherwise every GPS receiver had to have a built in atomic clock, which would make

this technology unaffordable for most users (El-Rabbany, 2002).

The signal propagation in vacuum, where the satellites orbit, happens at speed of light, but

when the signal crosses the atmosphere it gets slowed down by the ionosphere which causes un-

certainties in the metric distance calculations. This delay is minimized with the dual frequency

measurement where the signals are sent at two different frequencies and then compared by their rel-

ative speeds. Although this system is very sophisticated and convenient to a lot of users around the

world for navigation, it is not perfect, having its limitations. The very high accuracy of the atomic

clocks is not perfect and can account for some tiny errors. The system suffers from multipath error

resulting from the reflection of the signal bouncing back to the receiver as illustrated in Figure

2.13, and fails to work in indoor, forest, or urban environments due to blockage of line-of-sight

(El-Rabbany, 2002).

2.4.3 GPS Coordinates and metric Conversion

The metric system was invented by the French and many times reformulated around a bar that

would serve as a model for the SI unit, the meter. After one last convention with most countries

in Europe, it was finally defined that 10 million meters would be the distance between the equator

and a pole (Alder, 2002). As for the GPS coordinates, dividing this distance by the 90º that forms

between the equator and the pole, yields 111111 meters per degree. Since the coordinates are

given in degrees for the decimal degrees format, one can intuitively calculate the precision of each

decimal digit:

• tens digit – precision of about 1111 Km;

12

2 . 4 . L O C A L I Z AT I O N

Figure 2.13: Signal reflection from the satellites resulting in the Multipath error (Floyd and Pala-
martchouk, 2015).

• units digit – precision of about 111 Km, as calculated above;

• first decimal digit – precision of about 11 Km;

• second decimal digit – precision of about 1111 m;

• third decimal digit – precision of about 111 m;

• fourth decimal digit – precision of about 11 m;

• fifth decimal digit – precision of about 1,111 m;

• sixth decimal digit – precision of about 0,111 m;

• seventh decimal digit – precision of about 11 mm.

This conversion makes it easier for humans to understand how much precision a GPS module

yields, depending on the number of decimal places, and how impactful each decimal place is re-

lated to the conventional SI unit of distance (meter).

2.4.4 GPS Coordinate formats

There are several formats to display the coordinates. Table 2.1 presents an example of some

of these formats for the coordinates of the Aerodynamics and Control laboratory at the Electrical

Engineering Department in FCT UNL Campus.

The GPS modules provide data in the formats enumerated in Table 2.1 and more, but the ones

that were subject of this dissertation only used the examples listed.

13

C H A P T E R 2 . S TAT E O F T H E A RT

Table 2.1: GPS coordinate formats of the Aerodynamics and Control laboratory at the Electrical
Engineering Department in FCT UNL Campus.

Coordinates format Latitude Longitude

Decimal Degrees 38.6604117 -9.205056

Degrees, min, sec N 38º39’37.5" W 9º12’18.2"

Decimal Minutes N 3839.625 W 912.303

UTM 29N 482159 4279113

2.5 Control Approaches

2.5.1 Proportional Integral Derivative Control

The Proportional Integral Derivative or PID controller is a very common solution in feedback

control of industrial processes. As designated in its name, it is composed by three elements:

• The proportional element, which deals directly with the difference between the desired

setpoint and the measured process variable with a proportional gain;

• The integral element, that can be interpreted by the accumulation of the past error and used

in the present iterations;

• The derivative element, is predicting the future error and using this knowledge to act on the

control input preemptively (Araki, 2002).

These three components form the PID and the control input is described by the equation (2.1).

u(t) = K
(

e(t)+
1
Ti

∫ t

0
e(τ)dτ +Td

de(t)
dt

)
(2.1)

In the continuous time, u is the input, e is the error or the difference between the reference

and the measured output signal, K is the proportional gain, T i is the integration time and T d is the

derivative time.

This controller was originally developed analogically, with pneumatic valves, relays, motors,

transistors and integrated circuits, through a lot of experiences and development stages. The PID,

nowadays, are mainly digital due to the digital technology advancements, in which the appearance

of microprocessors accelerated drastically the development of this controllers and allowed the de-

velopment of additional features like automatic tuning, gain scheduling and continuous adaptation

(Åström and Hägglund, 2006).

14

2 . 5 . C O N T RO L A P P ROAC H E S

2.5.1.1 Ziegler-Nichols method

The PID will not work if the gains related with each of the three elements are left unattended.

This mean that K, Ti and Td must be chosen somehow. To choose these gains, one of the two

classical heuristic methods like the step-response method or the ultimate-sensitivity method is

usually used to tune efficiently a PID controller.

In the step-response method, the step response of the open-loop process is experimentally

obtained and from the intersection L of the steepest slope R during the rising time is marked on

the graphic illustrated in Figure 2.14.

Figure 2.14: Determination of the parameter R and L (Åström and Wittænmark, 1997).

With R and L, one can calculate a = RL and obtain the gains for each element of the PID

through Table 2.2.

Table 2.2: Controller parameters obtained from the Ziegler-Nichols step response method.

Controller K Ti Td

P 1
a

PI 0.9
a 3L

PID 1.2
a 2L L

2

As for the ultimate-sensitivity method, the key idea is to find the limit of stability of the process

with the controller in closed-loop by varying the proportional gain alone. The ultimate gain Ku and

period of oscillation T u obtained in this experience are then used to calculate the gains of the PID

according with Table 2.3 (Åström and Hägglund, 2006).

15

C H A P T E R 2 . S TAT E O F T H E A RT

Table 2.3: Controller parameters obtained from the Ziegler-Nichols ultimate-sensitivity method.

Controller K Ti Td

P 0.5Ku

PI 0.4Ku
Tu
1.2

PID 0.6Ku
Tu
2

Tu
8

2.5.2 Model Predictive Control

The model predictive control is essentially the prediction of the process behavior based on

its equivalent model. This feedback control method will observe the process response of a given

input and knowing its model behavior, it will iteratively apply additional control input to obtain

the desired output, as illustrated in Figure 2.5.2. It is mostly used for sampled systems, due to its

simplicity and convenience that the control input and output constraints can be taken into account

(Åström and Hägglund, 2006).

Figure 2.15: Illustration of model predictive control (Åström and Hägglund, 2006).

This predictive control method can be approached in a basic formulation, assuming the process

model is linear, the cost function is quadratic and the constraints are presented as linear inequalities.

These will be represented in state-space and are assumed time-invariant.

16

2 . 5 . C O N T RO L A P P ROAC H E S

Considering the model of a plant represented by the set of equations (2.2), (2.3) and (2.4),

x(k+1) = Ax(k)+Bu(k) (2.2)

y(k) =Cyx(k) (2.3)

z(k) =Czx(k) (2.4)

where x is a n-dimensional state vector, u is a l-dimensional input vector, y is a my-dimensional

estimated output vector and z is a mz-dimensional vector of outputs which are to be controlled.

Model predictive control repeatedly optimizes the current time-step input taking into account

the future time-step inputs and response of the system, and as such, the cost function related

with this optimization must be minimized. The cost function will penalize the deviations of the

predicted controlled outputs ẑ(k+ i) related to the reference trajectory r(k+ i) and is defined by

equation (2.5),

V (k) =
Hp

∑
i=Hw

||ẑ(k+ i)− r(k+ i)||2Q(i)+
Hu−1

∑
i=0
||∆û(k+ i)||2R(i) (2.5)

where ẑ is an estimation of z, Q and R are the quadratic forms (||x||2Q and ||u||2R respectively), Hw

and Hp are the beginning and end of the prediction horizon, respectively, and Hu is the control

horizon.

The constraints can be denoted in the following form to hold the control and perdition horizons:

E vec(∆û(k), ...,∆û(k+Hu−1),1)< vec(0) (2.6)

F vec(û(k), ..., û(k+Hu−1),1)< vec(0) (2.7)

G vec(ẑ(k+Hw), ..., ẑ(k+Hp),1)< vec(0) (2.8)

in which E, F and G are matrices of suitable dimensions and vec(0) denotes an empty vector of

suitable dimensions. This kind of representation can be interpreted as actuator slew rates, actuator

ranges and constraints on the controlled variables.

This model-based predictive control methodology is on of the few advanced control technique

to have a major impact in the process control industry. The reason being that it is a generic con-

trol method able to deal with equipment and their safety constraints, routinely. It is also easy to

understand, to extend its formulation to multivariable processes and it is more powerful than PID

17

C H A P T E R 2 . S TAT E O F T H E A RT

control overall, without being much harder to tune. The operation in the constraint environment of

the model predictive control allows for the most efficient and therefore, most profitable operation

in many cases (Maciejowski, 2002).

2.5.3 State Space Feedback Control

The state of a system, in state space feedback control, is defined as the full description of

it at any time. A well formulated model of a system, in state space, must include the relevant

information about its input u(t), output y(t) and state x(t) variables (Ogata, 1970).

Generically, a system can be described through the system dynamics equation (2.9) and the

measurement equation (2.10),

ẋ(t) = Ax(t)+Bu(t) (2.9)

y(t) =Cx(t)+Du(t) (2.10)

where A, B, C and D are constant matrices of appropriate dimensions, in which:

• A stands for the dynamic matrix;

• B is the input matrix;

• C is the output matrix;

• D represents the direct transmission matrix.

This formulation is illustrated in Figure 2.16 and represents how the system reacts about its

own set of rules, the rules of the surrounding environment and when applying a set of inputs, in

which the transition from one state to another must obey all of these rules.

Before implementing control feedback in the system, one must assure that all the needed state

variables are measurable and available for feedback. The controllability of the system should also

be verified, as this will guarantee that the poles can be placed as desired in the closed-loop system,

through an adequate state feedback gain matrix K. This feedback control is represented by equation

(2.11).

u(t) =−Kx(t) (2.11)

The system is completely state controllable if equation (2.12) is verified.

rank[B|AB|...|An−1B] = n (2.12)

18

2 . 5 . C O N T RO L A P P ROAC H E S

Figure 2.16: State space feedback control architecture (Ogata, 1970).

The objective is to find the K gain matrix that places the poles of the system in the left half of

the s plane, which drives the equation (2.13)

ẋ(t) = (A−BK)x(t) (2.13)

into a stable controllable state. This means that the stability and transient response of the system is

determined by the eigen values of the matrix A-BK (Ogata, 1970).

2.5.3.1 Linear Quadratic Regulator

The Linear Quadratic Regulator is a powerful and popular design method among MIMO

(multiple-input, multiple output) systems. This methodology was chosen to find the K matrix

in the previous section, since it automatically ensures a stable closed-loop system, provides guar-

anteed levels of stability and is simple to compute (Anderson B., 1990).

Considering the system described in equations (2.9) and (2.10), the quadratic cost functional

(2.14)

J =
∫

∞

0

(
xT Qx+uT Ru

)
dt (2.14)

is to be minimized, subject to the dynamics constraints of the open-loop system dynamics, provid-

ing this way, the optimal full state feedback control law.

In the quadratic cost functional J, Q is the matrix that attributes weights to each of the state

variables x and R is the weight of the input u.

Solving the algebraic Riccati equation (2.15) for S:

AT S+SA−SBR−1BT S+Q = 0 (2.15)

19

C H A P T E R 2 . S TAT E O F T H E A RT

where S is the unique, symmetric, positive semidefinite solution, which will be resorted to find the

gain matrix K through equation (2.16).

K = R−1BT S (2.16)

The gain matrix K produced this way guarantees an asymptotically stable closed loop dynamics

of the system.

2.5.4 Differential Flatness Control

Differential flatness can be interpreted as the expression of the state and control variables of a

system in terms of the output values (Fliess, 1990). A nonlinear system characterized by equation

(2.17) is differentially flat if there exists variables y ∈ Rm, designated by flat outputs, in the form

of (2.18) such that x ∈ Rn and u ∈ Rm can be recovered from by the equations (2.19) and (2.20),

respectively,

ẋ = f (x,u) (2.17)

y = h(x,u, u̇, ...,u(r)) (2.18)

x = l(y, ẏ, ...,y(q)) (2.19)

u = g(y, ẏ, ...,y(q)) (2.20)

where x is the system’s state, u is the input vector, and h, l and g are smooth functions.

Figure 2.17: Differential Flatness Control architecture with feedback control as a stabilizer.

Given the initial x0 and final x f conditions of the states of a system x and theirs derivatives,

the flat outputs y and their derivatives can provide the ideal inputs u that will drive the system to

perform a smooth transition from one state to another while also respecting such conditions. This

20

2 . 6 . S E N S O R F U S I O N

control algorithm is categorized as feedforward control methodology, which actuates the inputs

of the system while being unaware of the system’s state. For this reason, feedforward control

algorithms are, more often than not, complemented by a feedback control method to guarantee that

any inconsistency or perturbation in the system doesn’t deviate it from the desired setpoint. The

differential flatness architecture is illustrated in Figure 2.17

2.5.4.1 Trajectory Generation

The smooth functions h, f and g mentioned in the previous section have to be produced some-

how, so that the differential flatness controller can compute the inputs based on the reference.

Such problem is usually approached by resorting to basis functions, that together form the polyno-

mial desired as the reference. The polynomial can be calculated by means of simple monomials

(Yakimenko, 2006), Chebyshev polynomials (Vlassenbroeck and Van Dooren, 1988), Laguerre

polynomials (Balaji, 2007) among others. For this thesis, the monomial methodology was resorted,

in which the resulting polynomial P(t) can be described as equation (2.21).

P(t) =
M

∑
n=0

akBk(t) (2.21)

where ak is the coefficient aggregated with the respective monomial and Bk(t) is the monomial

itself. Associating this polynomial with the desired reference, one can simple derivate or integrate

as many times as the differential flatness controller requires.

2.6 Sensor Fusion

Sensor fusion is the combination process of information acquired from multiple sources. This

technique combines data from multiple sensors and related databases to achieve more accurate and

detailed inferences than it would with only one sensor. This is the main advantage that the sensor

fusion provides and the reason why it is needed overall.

This concept has its origins from humans and animals in the sense that they evolved with the

capability of using various biological sensors (vision, smell, taste, audio and touch) for survival.

Because they are equipped with various different sensors that provide information about different

characteristics of the environment, a more complete perception of it is possible to understand (Hall

and Llinas, 1997).

There are several techniques to computationally perform sensor fusion regarding signal, image

and symbols, namely arithmetic mean, Kalman filter, logic filter and Fuzzy logic.

The Kalman filter is essentially a group of mathematical equations that provide an efficient

way to estimate the process states in a recursive fashion. This filter can estimate the past, present

21

C H A P T E R 2 . S TAT E O F T H E A RT

and future of these states, even when the model of the system is not completely known.

The filter was invented and later published in 1960 by the Mathematician Rudolf Kalman. The

published paper described a recursive solution to the discrete-data linear filtering problem, which

since then, due to the recent development of the digital computer, has been an extensive research

subject in many investigation areas. This control approach is characterized by its estimation about

the process and the proper correction (Welch and Bishop, 2006).

Considering the discrete-time state x ∈ Rn of a given process described by the linear stochastic

difference equation (2.23),

xk = Axk−1 +Buk−1 +wk−1 (2.22)

with a measurement as equation (2.23),

zk =Cxk + vk (2.23)

where wk and vk represent the process and measurement noise, respectively. These are assumed

independent from each other, white and with normal probability distributions (2.24) and (2.25),

p(w)∼ N(0,Q) (2.24)

p(v)∼ N(0,R) (2.25)

in which Q is the process noise co-variance and R is the measurement noise co-variance and both

are assumed constant, although they might change with each iteration.

The discrete Kalman filter algorithm is formed by two key process updates: the a priori esti-

mation x̂k of the next time step k and a posteriori correction considering the current measurement

zk. The time update equations project the state ahead (2.26) as well as the co-variance error (2.27).

x̂k−1 = Ax̂k−1 +Buk−1 (2.26)

Pk−1 = APk−1AT +Q (2.27)

The measurement update calculates the Kalman gain (2.28), updates the estimate with the

measurement (2.29) and updates the covariance error (2.30),

Kk = Pk−1CT (CPk−1CT +R)−1 (2.28)

x̂k = x̂k−1 +Kk(zk−Cx̂k−1) (2.29)

22

2 . 7 . R E L AT E D W O R K

Pk = (I−KkC)Pk−1 (2.30)

where zk−Cx̂k−1 represents the measurement innovation which reflects the discrepancy between

the predicted measurement Cx̂k−1 and the obtained measurement zk. K is the Kalman gain which

minimizes the a posteriori co-variance error.

These two process updates are computed in every iteration, taking into account the previous a

posteriori estimates used to predict the new a priori estimates. This algorithm is not only great at

what it does but is also very practical and convenient, since it can be applied on a system and filter

its data in real time, in which the information about the previous and present iteration is enough

for full performance.

2.7 Related Work

Along the years, countless researches and developments have been done on drones, since this

system became such a trend in the 2010’s. This system attracts scientists and engineers due to

its complex dynamics and also due to the promising future as a solution for an ever increasing

amount of applications. Some research works have been done regarding the energy efficiency in

drones and also in the polynomial trajectories while avoiding obstacles. One of which was done

by Fabio Morbidi, Roel Cano and David Lara for the IEEE International Conference on Robotics

and Automation, presenting algorithms for minimum-energy path between the initial and final

configuration of a quadrotor by solving an optimal control problem with respect to the angular

accelerations of the four propellers. The quadcopter used in this research was a DJI Phantom 2. In

Figure 2.18 can be observed a bundle of trajectories minimizing energy consumption as concluded

in their work (Morbidi et al., 2016).

Another work related with energy efficiency is the research done by Daniel Gurdan et al. which

tackled the energy problems of the quadcopter by constructing one with minimal requirements to

fly, in all aspects. This quadcopter is mainly composed by low-cost hardware and software and runs

at low frequencies which cause it to have uncertainties in position control and unstable behavior.

The disadvantages of this trade-off are fixed by their highly-optimized control algorithms (Gurdan

et al., 2007). Their quadcopter is illustrated in Figure 2.19.

23

C H A P T E R 2 . S TAT E O F T H E A RT

Figure 2.18: Bundle of minimum-energy trajectories of the quadrotor (Morbidi et al., 2016).

Figure 2.19: Low-cost quadrotor (Gurdan et al., 2007).

Several works can be found in the literature about sensor fusion for a wide range of applications.

This methodology usually brings increased accuracy in tracking the true value and significantly

attenuates noise. One of such works was done by a research group in France, led by Francois

Caron, that developed a GPS/IMU multisensor fusion algorithm while validating contextual vari-

ables through fuzzy logic. Tests considering poor GPS data reception and drift were done, in which

the algorithm weights how accurate the readings are in relation to the IMU data. The results of

this sensor fusion algorithm can be observed in Figure 2.21, where it shows the error obtained for

north, east and south readings of the GPS/IMU and the fused data error in the middle of each graph

(Caron et al., 2006).

Identification of systems procedures can be approached in several ways and usually implies

extensive work to find the right tools that allow for a precise identification, especially when it’s a

black box identification and there are various hidden variable changing the outputs. The work done

by Parikh shows such case where the objective is to identify a quadruple tank system in closed loop.

24

2 . 7 . R E L AT E D W O R K

Figure 2.20: Sensor fusion of GPS and IMU through fuzzy logic (Caron et al., 2006).

The methodology to identify this system is illustrated in Figure 2.21. The identification process

starts by replacing the multivariable controller with suitable equivalent proportional feedback

controllers and accounts with noise signals (dither) added to the inputs and controller outputs.

During the process, the identification is done by generating an estimate of the multivariable plant

dynamic using the identification data related with the noise, the output and inherent relationships

of the closed loop.

Figure 2.21: Architecture for the identification of the closed loop quadruple tank system (Parikh
et al., 2012).

25

C
H

A
P

T
E

R

3
S Y S T E M ’ S S T R U C T U R E A N D M O D E L I N G

3.1 Introduction

This dissertation follows a previous work done by Vasco Brito (Brito, 2016) regarding his adap-

tation of the NAZA quadcopter kit into a X8-VB quadcopter, and as such, all of its structure and

components will be briefly described. The description of every piece of technology integrated in a

quadcopter and additional parts used during the development of this dissertation will be illustrated

and explained in this section. Additionally, the moddeling of the quadcopter X8 will be described

in detail with the objective of elucidating the reader about the complex dynamic and kinematic

model of this system.

3.2 Architecture Overview

Everything done in this dissertation is resolved around the NAZA controller illustrated in Fig-

ure 3.1. All trajectory tracking algorithms are designed to control the inputs (roll, pitch, throttle

and yaw) so that the quadcopter can perform trajectories automatically. The GPS signal it receives

is also a subject of this dissertation and the objective was to improve its precision by integrating

more GPS signals and fuse them. Another objective was to create a model of the NAZA controller

itself by exciting the inputs and observing the outputs, in order to identify it and obtain a more

realistic model of the controller, instead of the previously obtained strictly from mathematical

equations.

The NAZA possesses several inputs and outputs, but the ones relevant to this dissertation

are illustrated in Figure 3.1. The LED device is responsible to indicate all kinds of states of the

quadcopter namely: calibration, GPS signal, faulty motors, unplugged devices, flight mode, etc.

27

C H A P T E R 3 . S Y S T E M ’ S S T RU C T U R E A N D M O D E L I N G

Figure 3.1: NAZA-M Lite controller and respective connections.

The Radio Communication receiver (R/C) is the device that receives the commands from the pilot

and acts on the inputs of the NAZA controller, including the flight mode (manual, attitute or GPS).

The Electronic Speed Controllers (ESCs) are responsible to provide the power to the motors as

well as the respective PWM signals. The Versatile Unit (VU) is responsible to transform the power

that comes from the battery to the adequate power for each device (NAZA controller, ESCs and

R/C receiver).

3.3 Hardware Architecture and Components

3.3.1 Quadcopter structure

Figure 3.2: X8-VB Quadcopter 3D model (Brito, 2016).

The X8-VB Quadcopter was adapted from the DJI Flamewheel 450 kit by assembling addi-

tional pieces so that four extra rotors could be attached to the lower side of each arm, allowing

this way, the fault tolerance aspect of the X8-VB Quadcopter. The result of this adaptation can be

observed in Figure 3.2 along with its arm adapters and body extensions so that the propellers on

28

3 . 3 . H A R DWA R E A R C H I T E C T U R E A N D C O M P O N E N T S

the bottom side of each arm won’t intersect the drone’s legs.

3.3.2 Attitude Controller

The DJI quadcopter kit provides the attitude controller NAZA-M Lite, which contains 3-axis

gyroscope, 3-axis accelerometer and a barometer. This way, the controller can measure altitude

and attitude and take action on the motors to maintain the structure stable at the desired state. The

NAZA-M Lite is illustrated in Figure 3.3.

Figure 3.3: NAZA-M Lite attitude controller.

3.3.3 Arduino Uno and Due

The arduino Uno, illustrated in Figure 3.4, is arguably one of the most consumed micro con-

trollers in the market due to its simplistic interaction between software and hardware. The software

is easy to use and flexible enough for more complex tasks.

Figure 3.4: Arduino Uno (Arduino, 2018).

29

C H A P T E R 3 . S Y S T E M ’ S S T RU C T U R E A N D M O D E L I N G

This Micro controller is equipped with analog and digital input and output pins that interface

with various expansion boards, shields and other circuits. It interfaces with the computer with USB

and can communicate with other devices through Serial (TX, RX), PWM, SPI and TWI. The pins

2 and 3 can also provide communication through interrupts (Arduino, 2018).

The arduino Due, illustrated in 3.5, provides a more powerful performance in many ways,

when compared to arduino Uno. This comparison can be observed in 3.1.

Figure 3.5: Arduino Due (Arduino, 2018).

Table 3.1: Arduino Uno versus Arduino Due specifications.

Arduino Uno Due

Processor ATmega328P ATSAM3X8E

CPU Speed [MHz] 16 84

Analog Pins(In/Out) 6/0 12/2

Digital Pins(In/Out) 14/6 54/12

SRAM [kB] 2 96

Flash [kB] 32 512

3.3.4 Radio Communication devices

3.3.4.1 Radio Controller and Receiver

In order to actuate on the NAZA controller with the desired control inputs, there needs to be a

form of communication between the human and the quadcopter attitude controller. The acquired

FrSky Taranis X9D Plus, illustrated in Figure, will serve for this purpose.

This radio Controller communicates with its receiver through radio signal, using its hopping

technology that covers the whole 2.4 GHz band to provide a wide range and reliability in its com-

munication. It features 8 output channels, allowing multiple important information to be acquired

30

3 . 3 . H A R DWA R E A R C H I T E C T U R E A N D C O M P O N E N T S

Figure 3.6: FrSky Taranis X9D Plus on the left and its receiver on the right.

during the flight and displayed on the screen, namely: altitude, GPS coordinates, battery status.

The receiver provides the PWM inputs required by the NAZA controller: roll, pitch, throttle,

yaw and mode.

3.3.4.2 Radio Frequency Communication

In order to extract real-time data from the quadcopter during the flight, a communication line

via radio was deployed. The chosen device to do so was the 3DR radio V2 , illustrated in Figure

3.7 with the respective wiring, that communicates at 433 Mhz. The two modules of this device

communicate in a two way full-duplex through adaptive TDM (Time Division Multiplexing), which

enable transmitting and receiving of data, although it was used in a one way data transmition. The

communication between the receptor and the arduino is done via serial at a 57600 baud rate.

Figure 3.7: Wiring description of the 3DR radio V2.

31

C H A P T E R 3 . S Y S T E M ’ S S T RU C T U R E A N D M O D E L I N G

3.3.5 GPS modules

3.3.5.1 Shield GPS Logger V2

The Shield GPS Logger V2, illustrated in Figure 3.8, has its GPS GTOP PA6B integrated

along with a micro SD port for data logging. It provides several GPS related information through

the NMEA (National Marine Electronic Association) protocol such as, time, coordinates, altitude,

number of satellites, precision dilution, etc. Its specifications are listed in Table 3.2.

Figure 3.8: Shield GPS Logger V2.

Table 3.2: Shield GPS Logger V2 specifications.

Specifications Value

Sensitivity [dBm] -165

Frequency [Hz] 10

Channels 66

Current draw [mA] 20

3.3.5.2 Mini Locator RoyalTek REB-5216

This GPS module is capable to track the GPS and Glonass constelations at the same time,

which was the main reason for its purchase. It also features 52 track verification channels and

an active jammer removal to select the which constellation to track or both. To be noted that this

device lacks documentation on how to use it, which is why it wasn’t used in the sensor fusion

algorithm.

32

3 . 3 . H A R DWA R E A R C H I T E C T U R E A N D C O M P O N E N T S

Figure 3.9: Mini Locator RoyalTek REB-5216.

3.3.5.3 Ultimate GPS Breakout V3

This GPS device is illustrated in Figure 3.10 and has the specifications listed in Table 3.3.

Figure 3.10: Ultimate GPS Breakout V3.

Table 3.3: Ultimate GPS Breakout V3 specifications.

Specifications Value

Sensitivity [dBm] -165

Frequency [Hz] 10

Channels 66

Current draw [mA] 20

3.3.5.4 NAZA GPS Module

The NAZA GPS module is illustrated in Figure 3.11 with its respective wiring description.

This device provides both GPS and Compass data as soon as its powered, at a 115200 baud rate

(115.2 KHz) with the PWM protocol. It sends GPS coordinates in the decimal degrees format

exemplified in Table 2.1 after being decoded as explained further ahead in Section 4.3.3.

33

C H A P T E R 3 . S Y S T E M ’ S S T RU C T U R E A N D M O D E L I N G

Figure 3.11: NAZA GPS wiring.

3.3.6 Absolute Orientation Sensor

The 9 Axes Motion Shield, illustrated in Figure 3.12, is based on the BNO055 absolute ori-

entation sensor from Bosch Sensortec. It features a triaxial accelerometer, triaxial gyroscope and

triaxial geomagnetic sensor.

Figure 3.12: 9 Axes Motion Shield.

3.3.7 Power Supply

The LiPo batteries were chosen to power the quadcopter, since this kind of power supply pro-

vides the power density needed to the brush-less DC motors. The power units used in this research

are illustrated in Figure 3.13. The characteristics of the batteries are further described in Table 3.4.

The LiPo batteries have a particular volatile characteristic, so there should be always extra

caution when handling, charging, discharging and storing theses batteries. If at least one cell’s

voltage of the battery reaches 3V or lower, the battery might not work as intended and even get

34

3 . 4 . X 8 - V B Q UA D C O P T E R M O D E L L I N G

Figure 3.13: LiPo Batteries: 6000mAh on the left; 5000mAh on the right.

Table 3.4: LiPo batteries characteristics.

Battery 6.0 5.0

Capacity (mAh) 6000 5000

Discharge Rate (C) 25-50 25-35

Nº cells 4 4

Voltage per cell (V) 3.7 3.7

damaged to a point of ignition.

3.4 X8-VB Quadcopter Modelling

The dynamic and kinematic model of the quadcopter will be presented in this section, where

the four inputs of the drone itself are correlated with the torques of each motor and consequently its

six degrees of freedom. This model will consider the X8-VB architecture, which has eight motors

instead of the usual four. As it can be observed in Figure 3.15, this quadcopter is shaped like a

cross, with two rotors at the end of each arm, anti-parallel to each other.

Before the mathematical model of the system is described, some assumptions have to be con-

sidered regarding that the structure is rigid and symmetric, and that the quadcopter’s position is

described by reference coordinates. These reference coordinates are composed by a fixed and a

mobile referentials. The fixed referential is placed on earth (usually the starting coordinate of the

quadcopter) and the mobile referential is placed at the center of mass of the system, both described

by the NED (North−East−Down) system as observed in Figure 3.14 (Figueiredo et al., 2014).

The linear ξ (3.1) and angular γ (3.2) positions can be obtained by measuring the displacement

35

C H A P T E R 3 . S Y S T E M ’ S S T RU C T U R E A N D M O D E L I N G

Figure 3.14: North−East−Down coordinate system (Figueiredo et al., 2014).

of the mobile referential related with the fixed referential. The mobile referential also provides the

linear ξ̇ and angular γ̇ velocities, and forces fn and torque t.

ξ = [x y z]T (3.1)

γ = [φ θ ψ]T (3.2)

where x, y and z represent the position of the center of mass and φ , θ and ψ its orientation.

In order to perform any rotational or linear movement, each rotors’ torque must be varied

accordingly. Each input U1,U2,U3,U4 is responsible for a combination of all eight rotors’ thrust

so that the quadcopter can change its attitude and move in any direction (Brito, 2016).

Table 3.5: Inputs of the Quadcopter X8.

Input Effect Movement

U1 = ∑
8
n=1 fn Throttle Z axis

U2 = f4 + f8− f2− f6 Roll Y axis

U3 = f3 + f7− f1− f5 Pitch X axis

U4 = f1 + f3 + f6 + f8− f2− f4− f5− f7 Yaw -

The input vector u = [U1 U2 U3 U4]
T contains the four control inputs commonly known as

throttle (U1), roll (U2), pitch (U3) and yaw (U4), which introduce torque contributions fn into the

respective n motors. The throttle is represented by equation (U1) in Table 3.5 which contributes

equally in all rotors in order to move in the Z axis. The Roll is represented in equation (U2) which

allows the quadrotor to perform a roll (φ) rotation represented as red in Figure 3.15, which allows

the quadcopter to move in the y axis. The Pitch in equation (U3) will provide the pitch (θ) rotation

represented as green in the same Figure 3.15, which enables the movement in the x axis. The last

equation (U4) in Table 3.5 allows the drone to do a yaw (ψ) rotation around the vertical axis, also

36

3 . 4 . X 8 - V B Q UA D C O P T E R M O D E L L I N G

represented in Figure 3.15 as blue.

Figure 3.15: The three angular degrees of freedom of the quadcopter. The XYZ axis are represented
with RGB colors, respectively (Brito, 2016).

The angular position or attitude (γ) is defined by the three rotations (φ , θ and ψ) of the mobile

referential related with the fixed referential. Each of these rotations is mathematically described

by the rotation matrices (Lee et al., 2009):

• Roll rotation matrix (3.3);

Rφ =


1 0 0

0 cos(φ) −sin(φ)

0 sin(φ) cos(φ)

 (3.3)

• Pitch rotation matrix (3.4);

Rθ =


cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)

 (3.4)

• Yaw rotation matrix (3.5).

37

C H A P T E R 3 . S Y S T E M ’ S S T RU C T U R E A N D M O D E L I N G

Rψ =


cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 (3.5)

Therefore, the inertial position coordinates and the body reference coordinates can be obtained

from the product of the three elementary rotation matrices, resulting in Rγ 3.6.

Rγ =


cos(θ)cos(ψ) sin(φ)sin(θ)cos(ψ)− cos(φ)sin(ψ) cos(φ)sin(θ)cos(ψ)+ sin(φ)sin(ψ)

cos(θ)sin(ψ) sin(φ)sin(θ)sin(ψ)+ cos(φ)cos(ψ) cos(φ)sin(θ)sin(ψ)− sin(φ)cos(ψ)

−sin(θ) sin(φ)cos(θ) cos(φ)cos(θ)


(3.6)

Respecting the Newton-Euler equations of motion of a rigid body and defining the vectors

containing the linear and angular position of the earth referential (3.7) and of the quadcopter

referential (3.8), these are linked by equations (3.9) and (3.10), respectively.

Υ = [ξ γ] = [x y z φ θ ψ]T (3.7)

Λ= [ζ χ] = [u v w p q r]T (3.8)

ξ̇ = R ·ζ (3.9)

γ̇ = T ·χ (3.10)

where T is the angular transformation matrix 3.11

T =


1 sin(φ)tan(θ) cos(φ)tan(θ)

0 cos(φ) −sin(φ)

0 sin(φ)
cos(θ)

cos(φ)
cos(θ)

 (3.11)

The kinematic model of the quadcopter is described by the set of equations (3.12).

38

3 . 4 . X 8 - V B Q UA D C O P T E R M O D E L L I N G



ẋ = w[sin(φ)sin(ψ)+ cos(φ)cos(ψ)sin(θ)]− v[cos(φ)sin(ψ)− cos(ψ)sin(φ)sin(θ)]+u[cos(ψ)cos(θ)]

ẏ = v[cos(φ)cos(ψ)+ sin(φ)sin(ψ)sin(θ)]−w[cos(ψ)sin(φ)− cos(φ)sin(ψ)sin(θ)]+u[cos(θ)sin(ψ)]

ż = w[cos(φ)cos(θ)]−u[sin(θ)]+ v[cos(θ)sin(φ)]

φ̇ = p+ r[cos(φ)tan(θ)]+q[sin(φ)tan(θ)]

θ̇ = q[cos(φ)]− r[sin(φ)]

ψ̇ = r[cos(φ)
cos(θ)]+q[sin(φ)

cos(θ)]

(3.12)

Now taking in consideration the forces, moments and gyroscopic effects acting on the struc-

ture’s mass already explained in (Brito, 2016), the dynamical and kinematic model of the drone is

described by the set of equations (3.13).

ẍ =
(

sin(φ)sin(ψ)− cos(φ)cos(ψ)sin(θ)
)

U1−FDx
m

ÿ =
(

cos(ψ)sin(φ)+ cos(φ)sin(ψ)sin(θ)
)

U1−FDy
m

z̈ =−g+
(

cos(φ)cos(θ)
)

U1−FDz
m

φ̈ = 1
Ixx

(
(Iyy− Izz)θ̇ ψ̇− Jt θ̇ω +U2

)
θ̈ = 1

Iyy

(
(Izz− Ixx)φ̇ ψ̇− Jt φ̇ω +U3

)
ψ̈ = 1

Izz

(
(Ixx− Iyy)φ̇ θ̇ +U4

)
(3.13)

Where g is the gravity acceleration, m is its mass, Ixx, Iyy and Izz represent the body inertia in

each linear degree of freedom, Jt is the rotor inertia, ω is the resulting angular velocity in radians

per second of all rotors and, FDx, FDy and FDz are the drag forces, contrary to its movement,

FD =C
ρv2

2
A; (3.14)

in which C refers to the drag coefficient, ρ the air density and A the impact area with air.

Figure 3.16 illustrates how the input u is translated into the torques of each motor which will

affect the quadcopter attitude and position, considering faults and eventual perturbations of the

wind.

39

C H A P T E R 3 . S Y S T E M ’ S S T RU C T U R E A N D M O D E L I N G

Figure 3.16: Quadcopter inputs translated to each n motor’s torque

40

C
H

A
P

T
E

R

4
I D E N T I F I C AT I O N A N D C O N T R O L

This chapter will present the theory behind the three major thematics of this dissertation: the

identification of the mathematical model of the NAZA® attitude controller; trajectory control al-

gorithms on the quadcopter X8; and the sensor fusion of the GPS modules.

4.1 NAZA Attitude Controller Identification

In order to identify the NAZA® controller, several experiments were done by applying the

PWM inputs (roll, pitch, throttle and yaw) and observing its behavior (angle variations and rotor

speeds).

As mentioned in Section 3.4 the control inputs u = [U1 U2 U3 U4]
T will apply their respective

contributions to their respective motors. By varying these inputs slowly and for a long time, cover-

ing the whole spectrum of possible values and observing the right variables, it should be possible

to identify the controller and replicate it as a model through NARX or Hammerstein-Wienner

methods. The variables to be observed, in this case, should be the PWM values that the controller

provides to the ESCs and the change in the orientation.

One of the experiments consists in maintaining every input idle except for the pitch input.

The pitch value is changed between 1000 (inclined backwards) and 2000 (inclined forward) in

PWM with small steps (5 PWM values) each second, covering all the spectrum of possible values.

The PWM values given by the controller to the ESCs is measured between values 1000 (slowest

rotor speed) and 2000 (fastest rotor speed). The orientations along time are also measured with a

gyroscope.

As clarified by the pitch equation (U3) in Table 3.5, any variations in U3 will affect the motors

41

C H A P T E R 4 . I D E N T I F I C AT I O N A N D C O N T RO L

Figure 4.1: Pitch PWM values given to the NAZA controller.

1, 3, 5 and 7 accordingly. Since these contributions are equal or symmetric between rotors, the

response of one of these motors is enough to model the pitch. A similar approach will happen for

the other inputs U1, U2 and U4.

In Figure 4.1, the begining of the signal where the PWM value reaches 1000 is related with

the start of the motors. The start of the motors with the NAZA® controller happens when the

throttle and pitch are held down (1000 PWM value) and the yaw and roll are held right or left

(1000 or 2000 PWM values) for three seconds. Right after that and before the 1800 seconds there

is a calibration process so that the nonlinearities of the NAZA® controller won’t go to instability

(the controller would apply high values of PWM and the motors would rotate really fast). The rest

of the signal are the slow variations (5 PWM values) to cover all the possible values of pitch as

explained earlier.

The measured orientation of the quadcopter when performing the pitch commanded along time

can be observed in Figure 4.2. As it can be observed, the 9 Axes Motion Shield detected the pitch

movements as well as the peak variations that the NAZA® controller causes sometimes. These

peaks can be observed in the graphic 4.2 and are not desired for the modeling of the controller.

From the pitch experiments on the attitude controller, the signal given to motor 3 and 5 is

illustrated in Figure 4.3. The response of the controller to the oposed motors(1 and 7) would have a

symetric effect, in the sense that from 4000 to 7000 second, the signal would present higher PWM

values (around 1250) and from 7000 to 10000 second it would stay as 1175 PWM values. This

response is very noisy and inconsistent, which is also not desired for the controller modeling.

42

4 . 2 . T R A J E C T O RY C O N T RO L A L G O R I T H M S

Figure 4.2: Pitch orientation of the structure along time.

Figure 4.3: Response of the NAZA controller to the motor 3.

4.2 Trajectory Control Algorithms

The quadcopters must have an integrated attitude controller that stabilizes the structure hori-

zontally with the rotors pointing up, by actuating on each of these rotors individually in order to

maintain it at the equilibrium point. Essentially, the attitude controller maintains the quadcopter

in hover state, where all of the system variables and inputs are constant. This attitude controller

accepts u as the set of inputs, which is usually remotely controlled by a human. One of the main

objectives of this thesis is to substitute the human in the loop for another controller that will change

the inputs u to drive the quadcopter along a predefined trajectory. This method is called cascade

43

C H A P T E R 4 . I D E N T I F I C AT I O N A N D C O N T RO L

control, Figure 4.4, where the attitude controller will be controlled by a subsequent trajectory

controller.

Figure 4.4: Block Diagram of the cascade control integrated in the quadcopter. Adapted from
(Åström and Hägglund, 2006).

A well tuned and robust attitude controller is desired so that the outer loop won’t be able to

bring the whole system into instability. The tuning process of this control scheme follows the

steps:

1. Tune the inner loop controller according to its process variable;

2. Set the inner loop controller to automatic with internal setpoint;

3. Tune the outer loop controller according to its process variable;

4. Switch the inner loop to external setpoint;

5. Switch the outer loop to automatic;

If this procedure is not followed properly, undesired switching transients may arise and corrupt

the well functioning of the closed-loop system (Åström and Hägglund, 2006).

In this work, the attitude controller proposed by (Brito, 2016) was used as the inner loop and

all the trajectory controllers presented in this section took its behavior into consideration. This

attitude controller consists of a PID for each angular degree of freedom γ . The symmetry of the

quadcopter is also true for its movement in the x and y axis, in the sense that the control algo-

rithms developed for trajectory tracking in the x axis by varying the pitch (θ) can be replicated

to control the movement in y by varying the roll (φ). Although this is true for the PID and State

Space Controllers, the Differential Flatness is particularly different and this symmetry is explained

further ahead in section 4.2.3. In all the trajectory controller, the yaw was stabilized by the attitude

controller, which maintained it at zero degrees at all times.

44

4 . 2 . T R A J E C T O RY C O N T RO L A L G O R I T H M S

4.2.1 Proportional Derivative Integral Control

The first controller designed to perform trajectory tracking of the quadcopter was the PID. The

PID presents the most simple form of efficient control of any system, so as the first control attempt

to apply on a system in a cascade architecture, it appeared to be a good starting tool. The PID also

makes it easier to understand possible transients or inconsistencies happening in the cascade control

loop, and it doesn’t require the full knowledge or understanding of this very complex system that

is the quadcopter. Three PIDs were designed to control each linear degree of freedom ξ = [x y z]T

separately. This happens by comparing the distance between the reference and the actual position

through the PID, providing a reference for the attitude controller. The PID architecture designed is

illustrated in Figure 4.5.

Figure 4.5: PID architecture used for trajectory tracking of the quadcopter.

4.2.1.1 Forward, Backward and Sideways Movement

The attitude controller actuates on the motors so that a pitch (θ) rotation is performed to move

in the x axis, and similarly, a roll (φ) rotation to move in the y axis. Due to symmetry of the struc-

ture, the PID controller designed to move the quadcopter in the x axis through pitch (θ) actuations

could be replicated for the movement in the y axis through (φ) actuations.

The PIDs were tuned by following the Ziegler-Nichols ultimate-sensitivity method described in

section 2.5.1.1. The gains obtained were K = 0.0001, Ti = 0.02 and Td = 300. The performance of

this controller while guiding the quadcopter through the several predefined setpoints is illustrated

in Figure 4.6, and the respective attitude references and actuation of the drone are represented

in Figure 4.7. This controller presents a slow rising time and undesired overshoot with the gains

obtained (at its best). It takes 10 seconds for the quadcopter to move 5 meters forward which is

slow. From these figures and from the fact that the PID is a pure feedback methodology, its easy

to understand why it is not adequate for this kind of problem.

45

C H A P T E R 4 . I D E N T I F I C AT I O N A N D C O N T RO L

Figure 4.6: Trajectory tracking in the x axis with the PID controller (dotted green line is the
reference and blue line is the actual trajectory).

Figure 4.7: Pitch performed by the quadcopter with the PID controller (black line is the reference
and blue line is the actual pitch).

4.2.1.2 Movement in Altitude

The quadcopter movement in the z axis is caused by varying the input U1 which is directly

related with the increase or decrease of the collective torque of the motors. The PID was designed

to actuate on U1 depending on the difference between the reference altitude and the current altitude.

The gains obtained were: K = 33, Ti = 0.1 and Td = 6. Figure 4.8 illustrates the performance of

the PID while tracking the altitude reference. Just like the PIDs designed for the x and y movement,

this one presents slow rising time and high overshoot.

46

4 . 2 . T R A J E C T O RY C O N T RO L A L G O R I T H M S

Figure 4.8: Trajectory tracking in the z axis with the PID controller (dotted green line is the
reference and blue line is the actual trajectory).

4.2.2 State Space Feedback Control

Considering the set of equations (3.13) that describe the dynamic and kinematic open-loop

system that is the quadcopter, its representation in state space was produced in order to posteriorly

close the loop with a control algorithm. The objective is to control the altitude acceleration z̈ and

angular accelerations γ̈ = [φ̈ θ̈ ψ̈]T , so that the ξ = [x y z]T and ψ of the quadcoper is changed

to the desired state. The system to be controlled in this problem is nonlinear and as such, it has

to be linearized about an operating point (Maccarleyi, 1984). The chosen operating point for the

quadcopter was its hover state, characterized by equations (4.1) (4.2) (4.3) and (4.4),

Υ0 = [x0 y0 z0 0 0 0]T (4.1)

Υ̇0 = [0 0 0 0 0 0]T (4.2)

Ϋ0 = [0 0 −g 0 0 0]T (4.3)

u0 = [g 0 0 0]T (4.4)

where Υ0 is the equilibrium point of the quadcopter at hover state, Υ̇0 and Ϋ0 its derivatives (veloc-

ity and acceleration), u0 the input values at hover state and g is the gravitational force. With this

operating point in mind, the next step is to linearize the system’s equations (3.13) around it. This

47

C H A P T E R 4 . I D E N T I F I C AT I O N A N D C O N T RO L

linearization comes from the fact that the system’s equations are heavily dominated by trigono-

metric functions. Since the difference between the argument and the result of the trigonometric

functions are negligible, these can be approximated to the argument when working with small

values of roll, pitch and yaw. This way, the following assumptions took place: sin(α) ≈ α and

cos(α)≈ 1− α2

2 , (Boas, 2005). With the linearized model, one can develop each linear degree of

freedom in state space, along with the respective angular degree of freedom that directly affects it.

4.2.2.1 Forward, Backward and Sideways Movement

The quadcopter movement in the x axis is caused by changing its pitch (θ) orientation (assum-

ing the other attitude variables φ = ψ = 0 for simplification), then its state space representation is

described in (4.10).


ẋ

ẍ

θ̇

θ̈

=


0 1 0 0

0 0 U1−FDx
m 0

0 0 0 1

0 0 0 0




x

ẋ

θ

θ̇

+


0

0

0
1

Iyy

U3 (4.5)

The controllability matrix is then calculated to verify that (2.12) is true:

rank[B | AB | A2B | A3B] = rank


0 0 0 U1−FDx

mIzz

0 0 U1−FDx
mIzz

0

0 1
Izz

0 0
1
Izz

0 0 0

= 4 (4.6)

After confirming that the movement in the x axis is controllable by pitch actuations, the LQR

method was resorted to find the optimal control gain matrix by minimizing the quadratic cost

function (2.14). In this system, Q is the matrix that atributes weights to each of the state variables

and R is the weight of the input u. These values were tuned according to the system dynamics

contraints, how fast is the response of each state variable (Q) and how aggressive is the input signal

(R). After some iterative attempts and consideration for the energy consumption and flight time,

the values that presented the best results were:

Q =


0.2 0 0 0

0 0.5 0 0

0 0 0.01 0

0 0 0 0.01

 (4.7)

48

4 . 2 . T R A J E C T O RY C O N T RO L A L G O R I T H M S

R = 100 (4.8)

by calculating the gain matrix K through (2.15) and (2.16), which resulted in K = [0.6 1.5 9 0.6]T .

As explained in section 4.2, due to symmetry of the system, the controller for the movement

in the x axis by changing the pitch (θ) will be replicated for the movement in the y axis by varying

the roll (φ). The trajectory tracking of the state space feedback controller is illustrated in 4.9 and

its pitch orientation along the time can be observed in 4.10.

Figure 4.9: Trajectory tracking in the x axis with the state space feedback controller (dotted green
line is the reference and blue line is the actual trajectory).

From Figure 4.9 it can be understood that the controller performs well in tracking the desired

reference with less than 10 seconds of rising time and absolute dampness of the overshoot. Figure

4.10 presents an oscillatory actuation of the pitch due to the correlation between the attitude

controller and the trajectory controller. Nevertheless, this pitch actuation guides the quadcopter

fast and smooth to the 5 meter reference.

49

C H A P T E R 4 . I D E N T I F I C AT I O N A N D C O N T RO L

Figure 4.10: Pitch performed by the quadcopter with the state space feedback controller (black
line is the reference and blue line is the actual pitch).

4.2.2.2 Movement in Altitude

The quadcopter movement in the z axis is caused by varying the input U1 which is directly

related with the increase or decrease of the collective torque of the motors. The state space

representation is described in (4.9).

ż

z̈

=

0 1

0 0

z

ż

+
0

1
m

U1 (4.9)

The controllability matrix is then calculated to verify that (2.12) is true:

rank[B | AB] = rank

0 1
m

1
m 0

= 2 (4.10)

After confirming that the movement in the z axis is controllable, the LQR method was resorted

to find the optimal control gain matrix K. After some iterative attempts and consideration for the

energy consumption and flight time, the values that presented the best results were:

Q =

1 0

0 10

 (4.11)

R = 0.01 (4.12)

by calculating the gain matrix K through (2.15) and (2.16), which resulted in K = [10 32.4037]T .

50

4 . 2 . T R A J E C T O RY C O N T RO L A L G O R I T H M S

Figure 4.11: Trajectory tracking in the z axis with the state space feedback controller (dotted green
line is the reference and blue line is the actual trajectory).

The trajectory tracking of the state space feedback controller is illustrated in Figure 4.11. It

presents a rising time of 5 seconds and negligible overshoot, which is adequate for this kind of

problem where speed and precision in trajectory tracking is crucial to avoid obstacles.

4.2.3 Differential Flatness Controller

From the set of equations (3.13) that describe the kinematics and dynamics of the quadcopter

and from the intput u equations in Table 3.5, one can obtain the control vector u expressed in terms

of the system’s states and their derivatives, as represented in equation (4.13).

U1 =
√

ẍ2
re f + ÿ2

re f +(g+ z̈re f)2

U2 = φ̈ re f

U3 = θ̈ re f

U4 = ψ̈re f

(4.13)

This means that input U1 is related with the desired accelerations in the three linear degrees of

freedom and inputs U2, U3 and U4 are tied with the desired angular accelerations, respectively.

Since the quadcopter is differentially flat (Mellinger, 2011), the attitude variables φ and θ can

be calculated from (3.13), by following the properties of differential flatness described in section

2.5.4:

φ re f = arcsin
(ÿre f√

ẍ2
re f + ÿ2

re f +(g+ z̈re f)2

)
(4.14)

51

C H A P T E R 4 . I D E N T I F I C AT I O N A N D C O N T RO L

θ re f = arctan
(−ẍre f

g+ z̈re f

)
(4.15)

and after some calculations, the first and second derivatives of (4.14) and (4.15) can be obtained

and hereby complete the set of control inputs u needed for the differential flatness controller (For-

mentin and Lovera, 2011).

In order to compute any control input ud f , there needs to be a smooth reference that brings the

system from one state to another. For this reason, a trajectory generator was developed, in which

the various setpoints are defined in space and time, and it’s the trajectory generator’s task to create

smooth functions that should be the optimal or quasi-optimal references for the linear position ξ re f

and its derivatives ξ̈ re f .

The trajectory generator is responsible to create ideal trajectories through each couple of

setpoints. The basis functions’ technique was used in this approach, in which the initial and final

state must be declared, in order to find the ideal coefficients that drive the basis functions into

the optimal reference trajectory. As mentioned in section 2.5.4.1 the monomial basis functions

were chosen for this problem, which can be expressed as equation (2.21). Since the quadcopter

has a total of six degrees of freedom, at least six monomials (M = 5) are recommended for full

approximation. Starting by approximating the second derivative of each component of ξ results in

equation (4.16).

ξ̈ (t) = ax2 +ax3t +ax4t2 +ax5t3 =
M

∑
n=2

aktn−2 (4.16)

Their respective velocity ξ̇ and position ξ can be obtained by simple integrations. The coeffi-

cients can be obtained by solving equation (4.16) in order to ak.

Defining the position, velocity and acceleration of the aircraft for a specific linear degree of

freedom in matrix (4.17),

X =



X0

Ẋ0

Ẍ0

X f

Ẋ f

Ẍ f


(4.17)

where X0 and X f are the starting and final positions, respectively. And defining the time t f that

requires the quadcopter to move from X0 to X f , the time matrix (4.18) can be developed so that the

coefficients axi can be calculated.

52

4 . 2 . T R A J E C T O RY C O N T RO L A L G O R I T H M S

T =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 t f
t2

f
2

t3
f
6

t4
f

12
t5

f
20

0 1 t f
t2

f
2

t3
f
3

t4
f
4

0 0 1 t f t2
f t3

f


(4.18)

Matrix A, which contains all the coefficients axi, can be calculated through TA = X and there-

after, included in ξ̈ (t) 4.16 and its integrations ξ̇ (t) and ξ (t). Given these references, a control

input ud f = γ̈re f can be generated from the differential flatness directly to the quadcopter, bypassing

the attitude controller through a switch. This switch will let the state space feedback and attitude

controller provide its uss only when the differential flatness controller is idle. The differential

flatness arquitecture is illustrated in Figure 4.12.

Figure 4.12: Differential Flatness controller with State Space Feedback as the feedback stabilizer.

This kind of feedforward controller is indeed not sufficient to control a volatile and unstable

system like this, as any perturbation from the wind or from other sources will deviate the quad-

copter’s state (ξ , γ) from the desired one (ξ re f , γre f). To solve this inconvinience, a state space

feedback controller was added into the control loop, correcting any deviation from the desired state

while also providing stability.

4.2.3.1 Forward, Backward and Sideways Movement

The reference functions for sideways movement will be produced the same way as the forward

and backward reference functions, so the following descriptions of the trajectory generator algo-

rithm can be understood for the movements in both degrees of freedom. The first step is to define

the starting X0 position, the ending X f position and the time t f to move from one position to the

53

C H A P T E R 4 . I D E N T I F I C AT I O N A N D C O N T RO L

other. With X0 = 0, X f = 5 and t f = 5 it was obtained the ξ re f and ξ̈ re f references (Figure 4.13)

that brings the drone from one position to the other while respecting the starting and ending points’

conditions.

Figure 4.13: Trajectories generated for ξ re f (blue) and ξ̈ re f (black).

Given the reference trajectories needed for the differential flatness controller, the U2 = φ̈ re f

and U3 = θ̈ re f can be calculated through equations (4.14) and (4.15), respectively.

Figure 4.14: Reference generated for γre f (blue) and control input γ̈re f (black).

Following the architecture represented in Figure 4.12, the reference trajectories for both linear

54

4 . 2 . T R A J E C T O RY C O N T RO L A L G O R I T H M S

movement (ξ re f and ξ̈ re f) and angular orientation (γre f and γ̈re f) along time can be fed to the

switch and to the state space feedback controller. The performance of this control approach is

illustrated in Figure 4.15 and 4.16.

Figure 4.15: Trajectory tracking in the x axis with the differential flatness controller (dotted green
line is the reference and blue line is the actual trajectory).

Figure 4.16: Pitch performed by the quadcopter with the differential flatness controller (black line
is the reference and blue line is the actual pitch).

As expected, the quadcopter follows perfectly the reference, since the feedforward part of

the controller is providing the optimal control inputs to do so, while the feedback controller is

55

C H A P T E R 4 . I D E N T I F I C AT I O N A N D C O N T RO L

maintaining this control scheme stable. The pitch actuation follows what the differential flatness

controller commanded: to do a parabolic pitch forward in the first 2.5 seconds and the symmetric

in the next 2.5 seconds. After second 105 in the graphic, the state feedback controller took control

of the system, maintaining it stable at the desired setpoint. The figure presents noisy actuation

resulting from the fact that this is still a cascade control scheme.

4.2.3.2 Movement in Altitude

The movement in altitude (z axis) will require the same kind of linear references (ξ re f and ξ̈ re f)

as the movements described in section 4.2.3.1, except the fact that this movement is not related

with any angular rotation. The quadcopter movement in the z axis is caused by varying the input

U1 which is directly related with the increase or decrease of the collective torque of the motors.

Once again, the starting and ending states are defined, although with a particular difference that is

the influence of gravity. The states were defined as Z0 = 0, Ż0 = 0, Z̈0 = g, Z f = 5, Ż0 = 0, Z̈0 = g

and t f = 5, where g is the force of gravity. By giving these starting and ending conditions to the

trajectory generator, the references Zre f and Z̈re f are formed (Figure 4.17).

Figure 4.17: Trajectories generated for Zre f (blue) and Z̈re f (black).

Feeding this trajectory reference to the differential flatness controller as illustrated Figure 4.12

will result in the throttle actuation U1 required to move the quadcopter from Z0 to Z f . The trajec-

tory performed by the quadcopter in the simulation can be observed in Figure 4.18.

Once again the differential flatness controller performs almost perfectly, the feedforward part

provides perfect actuation which results in near optimal trajectory tracking in the z axis. After the

quadcopter reaches the reference, it appears to have an undershoot due to the fact that the state

space feedback controller is not taking into account the force of gravity.

56

4 . 3 . L O C A L I Z AT I O N A L G O R I T H M S

Figure 4.18: Trajectory tracking in the z axis with the differential flatness controller (dotted green
line is the reference and blue line is the actual trajectory).

4.3 Localization Algorithms

The main objective of this development regarding the GPS data acquired by the drone, is to

improve the precision of this data related with the true location. The fusion of several GPS Mod-

ules should and will improve the accuracy to locate the drone in the three dimensions (Latitude,

Longitude and Altitude). The following sections related with localization will present the several

GPS modules explored, the ones chosen to bring the data closest to the true location, and the

algorithms used to fuse them.

Several GPS modules were used and tested in this dissertation, such as the Mini Locator Roy-

alTek REB-5216, Ultimate GPS Breakout v3, Shield GPS Logger V2 and the NAZA GPS module,

but none of them performed as well as the latter. This GPS module grants a precision of 11 mm (7

decimal digits) versus the 0.111 m (6 decimal digits) of the other GPS modules available.

Considering all these GPS modules, the final decision was to use the two best GPS modules

(both NAZA GPS). The addition of more or all the GPS modules in the sensor fusion would corrupt

the localization data due to lack of precision.

4.3.1 Naza GPS Data Output

The Naza GPS Module sends data continuously as soon as it is powered, at a 115200 baud

rate (Pawelsky, 2013). The device will send data related with its location (GPS) and orientation

(compass) as illustrated in Figure 4.19, in which the compass data is sent every 30 milliseconds,

57

C H A P T E R 4 . I D E N T I F I C AT I O N A N D C O N T RO L

following the sequence:

55 AA 20 06 CX CX CY CY CZ CZ CS CS

where each couple of characters represents a byte, which have the following meaning, respectively:

Figure 4.19: NAZA GPS module data output.

Header:

• byte 1-2: message header (always 55 AA);

• byte 3: message ID (20 for compass message);

• byte 4: length of the payload (06 for compass message).

Payload:

• byte 5-6 (CX): compass X axis data;

• byte 7-8 (CY): compass Y axis data;

• byte 9-10 (CZ): compass Z axis data.

Checksum:

• byte 11-12 (CS): checksum.

The payload (except the 9th byte) is XORed with a mask that is calculated based on the 9th

byte. The GPS data is sent every 250 milliseconds, following the sequence:

55 AA 10 3A DT DT DT DT LO LO LO LO LA LA LA LA AL AL AL AL HA HA HA HA

VA VA VA VA XX XX XX XX NV NV NV NV EV EV EV EV DV DV DV DV PD PD VD VD

ND ND ED ED NS XX FT XX SF XX XX XM SN SN CS CS

which follows the same guidelines as the compass data streams:

Header:

58

4 . 3 . L O C A L I Z AT I O N A L G O R I T H M S

• byte 1-2: message header (always 55 AA);

• byte 3: message ID (10 for GPS message);

• byte 4: length of the payload (3A for GPS message).

Payload:

• byte 5-8 (DT): date and time;

• byte 9-12 (LO): longitude (comes multiplied by 107, decimal degrees format);

• byte 13-16 (LA): latitude (comes multiplied by 107, decimal degrees format);

• byte 17-20 (AL): altitude (comes in millimeters);

• byte 21-24 (HA): horizontal accuracy estimate;

• byte 25-28 (VA): vertical accuracy estimate;

• byte 29-32 (XX): always zero;

• byte 33-36 (NV): NED (North, East, Down) north velocity;

• byte 37-40 (EV): NED east velocity;

• byte 41-44 (DV): NED down velocity;

• byte 45-46 (PD): position DOP;

• byte 47-48 (VD): vertical DOP;

• byte 49-50 (ND): northing DOP;

• byte 51-52 (ED): easting DOP;

• byte 53 (NS): number of satellites (not XORed);

• byte 54 (XX): always zero;

• byte 55 (FT): fix type (0 – no lock, 2 – 2D lock, 3 – 3D lock);

• byte 56 (XX): always zero;

• byte 57 (SF): fix status flags;

• byte 58-59(XX): always zero;

• byte 60 (XM): (XOR mask);

• byte 61-62 (SN): sequence number (not XORed);

59

C H A P T E R 4 . I D E N T I F I C AT I O N A N D C O N T RO L

Checksum:

• byte 63-64 (CS): checksum.

The payload is again XORed with the mask (byte 60). The latitude and longitude coordinates

are obtained and calculated with 7 decimal digits, which guarantees a precision of 11 millimeters.

4.3.2 Sensor Fusion

With two NAZA GPS modules providing data, it is possible to fuse them to improve the local-

ization precision (Magnusson and Odenman, 2012). The Kalman filter enables the use of several

sensors and build an estimation based on them, which results in the so called sensor fusion. This

method will estimate the state variables of the GPS signal from incomplete noisy measurements

and fuse them to improve the estimation of the present state values, in an online recursive fashion.

In this procedure, the Arduino Due reads both GPS signal through Serial protocol, processes

it and returns it in a 3rd serial connection to the controller. After reading, the longitude, latitude

and altitude are extracted from both GPS data streams and included in the Kalman filter algorithm,

which returns the filtered data for each of the three location parameters. All steps of this algo-

rithm will be explained further ahead, from the decoding of the GPS modules to the fusion of both

datum and the process of reconstructing the data stream that provides localization to the quadcopter.

The first step is to set up the Kalman filters for latitude, longitude and altitude:

•

Q = 0.00001 (4.19)

•

R =

0.0001 0

0 0.0001

 (4.20)

•

P = 0 (4.21)

•

x = x0 (4.22)

•

C =

1

1

 (4.23)

60

4 . 3 . L O C A L I Z AT I O N A L G O R I T H M S

The Q is the process noise co-variance and R is the measurement noise co-variance, in which

both were determined experimentally by measuring the amplitude and variance of the noise for

the latitude, longitude and altitude. The covariance error starts at P = 0 and the algorithm will

constantly update it to the true value. The starting position x = x0 is set to be the location just

outside the Aerodynamics and Control lab at the Electronics Engineering Department in the FCT

UNL campus: Lat = 38.6604170 (degrees), Lon =−9.2050560 (degrees) and Alt = 145 (meters).

The C matrix is the output matrix and in this case, two sensors are being measured and they are

both 1 because they contribute equally for the sensor fusion process.

After initializing the Kalman filter, the measurements of both GPS modules have to be read and

decoded. A circular vector for each GPS module was created to save the bytes of the respective data

streams. These bytes would be decoded by following the descriptions in section 4.3.1 to extract

the localization parameters. Now with the measurements m1 and m2 available and after defining

the measurement matrix Z, the Kalman update takes place, following the algorithm described in

section ??.

Z =

m1 0

0 m2

 (4.24)

With the measurements being fused in every iteration, the final task of this algorithm is to

encode the data back to the data stream of bytes so that the NAZA controller can understand it.

The decoding and encoding of these data streams will be explained in the next section 4.3.3. This

procedure describes the sensor fusion of two sensors, but it can be easily expanded for more sensors

by adjusting the respective matrices mentioned in this section.

4.3.3 Data Management, Decoding and Encoding

As mentioned in section 4.3.2, the sensor fusion algorithms accounts with the decoding of

the NAZA GPS module output, data management of it and finally the encoding the fused data so

that the NAZA attitude controller can understand the fused data. All this procedure starts with

the decoding of the GPS module output, byte by byte, of the data streams related with the GPS

enumerated in section 4.3.1.

For each GPS module, each byte is stored in a cyclic vector so that the old bytes won’t progres-

sively occupy the storage of the processor and can be erased automatically. The data is extracted

from each vector by decoding it (XOR each byte with the mask), fused by the Kalman filter and

then saved in an extra vector. This extra vector will have the same information as one of the

others but after the fusion occurs, the fused data will be overwritten where the GPS data stream is

supposed to be, as illustrated in figure 4.20.

61

C H A P T E R 4 . I D E N T I F I C AT I O N A N D C O N T RO L

Figure 4.20: Sensor fusion of two NAZA GPS modules’ data.

The checksum of each data stream (last two bytes of each data stream CS1 and CS2) are the val-

idating bytes of the whole stream. If the data would become corrupted or missing, the checksum of

that stream wouldn’t correspond with the rest of the data, so it would end up ignored. Because the

filtered GPS data stream is a copy of the GPS Module 1 (so that the Compass data can remain intact

like its coming directly from the GPS module) and the new filtered GPS location is re-encoded

where the previous location data was, the checksum will not correspond with the payload.

The checksum follows the iterative instructions for each byte of the payload:

CS1 =CS1+ input;

CS2 =CS2+CS1;

where the input is a byte of the payload, CS1 and CS2 are the bytes 63 and 64, respectively. After

these calculations, the resulting checksum can be updated so that the NAZA attitude controller

accepts the newly fused localization data.

62

C
H

A
P

T
E

R

5
S I M U L AT I O N S A N D E X P E R I M E N TA L R E S U LT S

The simulations and experimental results are the proof of the theory presented in Chapters 2

and 3. This Chapter will present all the simulations related with trajectory tracking algorithms

as well as localization algorithms. A comparison of the performance between trajectory tracking

controllers and an overview of how the controllers behaved in simulations and experiments in the

real drone will take place at the end of this section. The trajectory algorithms were not experimented

in the real quadcopter X8 since the safeguard conditions were not met. In order to guarantee the

safety of both the quadcopter and the environment around, there needs to be a safe zone where the

quadcopter can fly freely but restrained in case any unpredicted behavior might cause damage (

cut something with the fast spinning propellers or damage any part of the structure due to eventual

collisions).

5.1 Simulations

5.1.1 Trajectory Tracking Algorithms

The trajectories chosen to test the performance of the controllers proposed were the same to

make it easier to understand their different behaviors. These controllers were developed in Matlab

and Simulink with the solver ode45 and 0.01 seconds time step. All simulations have a fault in rotor

1 at time 350 seconds. According to (Brito, 2016), to correct the quadcopter’s behavior when a ro-

tor fault happens, in order to keep it flying safely, the opposite rotor (motor 7) should be deactivated.

The simulations also take into account the values of the quadcopter obtained during modeling

in the work (Brito, 2016). These values are presented in Table 5.1 along with their respective value.

63

C H A P T E R 5 . S I M U L AT I O N S A N D E X P E R I M E N TA L R E S U LT S

Table 5.1: X8-VB Quadcopter’s characteristics.

Constant Description Value

Jt[Kgm2] Inertial moment of rotation 5

w[rad/s] Motor’s rotation speed 0

m[Kg] Body mass 0.02

Ixx[Nms2] X-axis inertia 0.006

Iyy[Nms2] Y-axis inertia 0.006

Izz[Nms2] Z-axis inertia 0.0166

5.1.1.1 Trajectory Tracking with PID Controller

The PID controllers were tuned through the Ziegler-Nichols method as explained in Section

4.2.1. The gains obtained are listed in Table 5.2.

Table 5.2: Controller parameters obtained from the Ziegler-Nichols method.

Controller K Ti Td

Altitude 33 0.1 6

Roll 0.0001 0.02 300

Pitch 0.0001 0.02 300

The performance of this controller can be observed in in Figure 5.1, and the respective attitude

references and actuation of the drone are represented in Fig. 5.2.

Figure 5.1: PID controller for trajectory tracking of the drone (dotted green line is the reference
and blue line is the actual trajectory).

As it can be observed, the fault at time 350 seconds does not compromise the quadcopter’s

64

5 . 1 . S I M U L AT I O N S

Figure 5.2: PID actuation for trajectory tracking of the drone (black line is the reference and blue
line is the actuation).

well being, in fact, it is almost unaffected by it, as it continues to fly and completes the planned

trajectory, although the yaw controller seems to have difficulty in keeping the desired setpoint.

This happens because after the fault, two rotors spinning in the same direction were deactivated

and thus the total yaw torque is unbalanced and the yaw PID is not prepared for this occasion.

Overall, the controller presents slow actuation and some overshoot while tracking the predefined

trajectories, which is not desired in any trajectory performance of any aircraft. Since the PID is

purely feedback oriented and works with only some of the relevant variables (e.g. error between

the desired and the actual pitch), it will always underperform in such a fast system and in trajectory

tracking in particular.

5.1.1.2 Trajectory Tracking with State Space feedback Controller

The State Space was tuned through the LQR method as explained in Section 4.2.2. The

weightings of each parameter were set with a balanced energy consumption versus flight time trade

off. The gains obtained are listed in Table 5.3.

Table 5.3: Controller parameters obtained from the LQR method.

Controller ξ ξ̇ γ γ̇

Altitude 10 32.4 - -

Roll 0.6 1.5 9 0.6

Pitch 0.6 1.5 9 0.6

65

C H A P T E R 5 . S I M U L AT I O N S A N D E X P E R I M E N TA L R E S U LT S

The performance of the State Space feedback tuned with the LQR method can be observed

in Figure 5.3 while moving along the predefined waypoints. The actuations that caused these

movements are illustrated in Figure 5.4.

Figure 5.3: State Space feedback controller for trajectory tracking of the drone (reference repre-
sented as dotted green and the actual trajectory as continuous blue).

Figure 5.4: State Space feedback actuation for trajectory tracking of the drone (reference repre-
sented as black and actuation as blue).

From these simulations, it can be concluded that the state space controller performs good

66

5 . 1 . S I M U L AT I O N S

trajectory tracking throughout the setpoints. This controller presents fast actuation in order to

move to the next waypoint rapidly and has complete dampness in the overshoot, since the pitch and

roll actuation are allowed to have that much responsiveness on the state of the system. However,

this comes at a cost of altitude tracking issues, since the loss of sustentation is imperative with

such aggressive roll and pitch actuations. Once again, the fault at time 350 seconds does not

compromise the quadcopter’s safety, as it continues to fly and completes the planned trajectory,

although the yaw controller seems to have the same difficulties in keeping the desired setpoint as

the PID controller.

5.1.1.3 Trajectory Tracking with Differential Flatness Controller

The performance of the Differential Flatness controller with the State Space architecture as

feedback to stabilize the system’s response can be observed in Figure 5.5 while moving along the

predefined waypoints. The actuations that caused these movements are illustrated in Figure 5.6.

Figure 5.5: Differential Flatness controller for trajectory tracking of the drone (reference repre-
sented as dotted green and the actual trajectory as continuous blue).

Just like the previous controllers, this one is unaffected by the fault at time 350 seconds and

has difficulty in maintaining the yaw angle. Through the graphics it can be observed that the

trajectory of the drone is almost on par with the reference, having a near perfect trajectory tracking.

This happens because the trajectory generator along with the differential flatness block provide the

optimal references and actuations to move the drone from one set point to another while respecting

the initial and final conditions of hover state (all attitude and linear variables are constant).

67

C H A P T E R 5 . S I M U L AT I O N S A N D E X P E R I M E N TA L R E S U LT S

Figure 5.6: Differential Flatness actuation for trajectory tracking of the drone (reference repre-
sented as black and actuation as blue).

5.1.1.4 Comparison between Trajectory Tracking Controllers

Three trajectory tracking control approaches were developed and compared in this work. All

three controllers were unaffected by the motor fault throughout the full trajectory, although all of

them presented issues in tracking the yaw orientation after it happened at time 350 seconds. The

PID is the slowest controller, providing a low actuation in the inputs and still presenting overshoot,

which clarifies that this methodology is not indicated for trajectory tracking purposes. The State

Space controller has complete dampness in the overshoot, even with aggressive roll and pitch

actuations. These actuations bring considerable altitude loss, which makes this controller adequate

up to a certain degree. The Differential Flatness has the best performance, since the optimal control

inputs are computed beforehand considering each couple of waypoints conditions. This results in

almost perfect reference tracking, with no overshoot and negligible deviation from the reference.

This outstanding performance explains why most solutions for trajectory tracking on drones, and

practically every problem related with trajectory, is solved by differential flatness. The comparison

of rising times and overshoots are presented in Table 5.4.

5.1.2 Localization Algorithms

To test and validate the sensor fusion algorithm, an experiment took place at the Aerodynamics

and Control laboratory at the Electronics Engineering Department at the FCT UNL Campus. The

result of this experiment can be observed in Figures 5.7 and 5.8 which show the latitude, longitude

68

5 . 1 . S I M U L AT I O N S

Table 5.4: Rising time and overshoot comparison between controllers (x axis).

Controller Rising Time [seconds] Overshoot [percentage]

PID 10 0.05

SS 10 0

DF 5 0

and altitude of both received from both GPS modules and their fusion. The blue signal is the

NAZA GPS module 1 and as red is the NAZA GPS module 2. The yellow signal is the sensor

fusion between the two GPS modules. The filtered signal presents a smoother localization and

more precise with the reality. The values obtained from this experience were validated with Google

Maps for the latitude and longitude coordinates and with the FCT UNL topographic map for the

altitude. Figure 5.8 also shows the satellites in view which will be relevant for the precision of the

signals.

Figure 5.7: Latitude and longitude of the position received by the two NAZA GPS modules, along
with its Kalman filtering.

The filtered signal (yellow) presents considerably less noise than the data received directly

from the NAZA GPS modules (blue and red) and corresponds to the true value, according with

Google Maps and the FCT UNL topographic map. The filtered signal presents an outstanding

performance with the altitude in particular, since the difference between the two senors reaches the

20 meters. In Figure 5.9 can be observed the true latitude and longitude. The altitude of the sensor

can also be obtained by adding the height of the building at the second floor at that place (∼ 10

69

C H A P T E R 5 . S I M U L AT I O N S A N D E X P E R I M E N TA L R E S U LT S

Figure 5.8: Satelites in view and altitude of the position received by the two NAZA GPS modules,
along with its Kalman filtering.

Figure 5.9: Location of the GPS module on Google Maps on the left and its altitude on the right
(Green dot).

70

5 . 2 . E X P E R I M E N TA L R E S U LT S

meters).

5.2 Experimental Results

This section will present the experimental results by applying the control algorithms simulated

before, on the quadcopter and observe its behavior. The X8-VB Quadcopter subject to the experi-

ments of this dissertation is illustrated in Figure 5.10 featuring the two NAZA GPS modules for

improved localization data through sensor fusion.

Figure 5.10: X8-VB Quadcopter featuring two GPS sensors for improved localization data.

5.2.1 NAZA Controller Identification

In order to identify the NAZA controller, several experiments were done by applying the PWM

inputs (roll, pitch, throttle and yaw) and observing its behavior (angle variations and rotor speeds).

This was possible by assembling a test bench that would allow the NAZA controller to actuate on

the motors and the whole structure could change its orientation accordingly. This test bench can

be observed in Figure 5.11. To model the pitch of the controller, two experiments were performed

in order to get estimation and validation data Figure5.12.

Due to the nonlinearity of the controller and its noisy output signals, there was no method

that could model the pitch of the quadcopter. These signals could possibly be filtered but at the

cost of information, which is not recommended to such a fast system. Some of the best results of

this experiment can be observed in Figure 5.13. Several attempts to model it with these noisy and

inconsistent signals were done, with NARX (various combinations of number of terms for the input

and output) and Hammerstein-Wiener (several combinations of number of units for the input and

71

C H A P T E R 5 . S I M U L AT I O N S A N D E X P E R I M E N TA L R E S U LT S

Figure 5.11: Test bench for the NAZA controller identification.

Figure 5.12: Estimation (blue) and validation (green) data of the pitch input (below) and torque
motor output (above).

output) but none of them presented good enough results to serve as a model for the quadcopter’s

controller.

After looking closely to the results obtained, it appears that the PWM signals generated from

the arduino Uno and Due seem to have inconsistencies, which might be the cause of the noise

obtained from the NAZA controller and an alternative for a PWM generator should be explored.

Also, the NAZA controller has several sensors integrated (such as gyroscope, accelerometer and

barometer) that might influence the output signals, so a further look into how to identify the

controller taking into account these internal variables will stay as future work. Table 5.5 describes

which methods were used to create the models illustrated in Figure 5.13.

72

5 . 2 . E X P E R I M E N TA L R E S U LT S

Figure 5.13: Model attempts of the NAZA pitch actuation.

Table 5.5: Model attempts of the NAZA pitch actuation signals.

Signal color Method Input terms Output terms Fit percentage

Black motor 3 reference - - -

Red Hammerstein-Wiener 10 10 58.36

Purple Hammerstein-Wiener 12 12 44.87

Blue Hammerstein-Wiener 8 8 44.87

Green NARX 2 2 - 48.9

5.2.2 Sensor Fusion

The Sensor fusion algorithm featuring the Kalman filter was deployed successfully on the

quadcopter, the NAZA controller accepted the encoded signal with the filtered data from the two

GPS modules and performed a smooth flight trajectory illustrated in Figure 5.14.

The Kalman filter does a good approximation of the real location on the quadcopter along the

trajectory, while minimizing the noise present in each GPS’s signal.

The Trajectory illustrated in 5.14 was performed near the FCT UNL Library. A view from

above can be observed in Figure 5.15 and was validated with the latitude and longitude in Google

Maps as can be observed in Figure 5.16 and its altitude in Figure 5.17.

As observed in Figure 5.16, the obtained coordinates match the trajectory performed with the

quadcopter. The Kalman filter brings a better approximation and less noisy GPS signal, which will

result in smoother flights, with less vibrations on the structure when in GPS mode.

73

C H A P T E R 5 . S I M U L AT I O N S A N D E X P E R I M E N TA L R E S U LT S

Figure 5.14: Sensor fusion of two NAZA GPS modules in latitude, longitude and altitude (GPS1-
Blue, GPS2-Red, Filtered-Yellow.

Figure 5.15: Trajectory performed by the quadcopter with the sensor fusion providing the filtered
coordinates.

74

5 . 2 . E X P E R I M E N TA L R E S U LT S

Figure 5.16: Validation of the coordinates obtained from the algorithm with Google Maps.

75

C H A P T E R 5 . S I M U L AT I O N S A N D E X P E R I M E N TA L R E S U LT S

Figure 5.17: Validation of the altitude obtained from the algorithm with the topographic map of
the FCT UNL Campus (Green dots are the vertices of the square.

76

C
H

A
P

T
E

R

6
C O N C L U S I O N S A N D F U T U R E W O R K

During this work, several trajectory and localization algorithms were proposed for the X8-VB

quadcopter. The main goal of this dissertation was to improve the GPS data acquired by the quad-

copter and to design control algorithms that control the quadcopter along a trajectory considering

the flight time, energy consumption and eventual faults.

The localization of the quadcopter was improved and tested in real experiments with good

results. The NAZA® controller accepted the filtered signal and flew with less perturbations caused

by the noise in the GPS signal. Among trajectory tracking algorithms, the differential flatness con-

troller presented the best performance in the simulations, following the reference perfectly. The

state space controller, as a purely feedback controller, follows the reference with no overshoot and

with average rising time. From the simulations one can understand that the PID controller is not

adequate of this kind of problem, since it is a purely feedback algorithm and is limited to just some

of the variables of the system. The modeling of the NAZA® attitude controller was not successful

due to inconsistencies and noise in the output signals (motors). The trajectory algorithms were not

tested in the real quadcopter as there weren’t conditions to safeguard the drone or the environment

if something were to happen out of what was planned. Although, the construction of a custom

room for quadcopter testing is in the works and soon all the algorithms related with attitude and

trajectory control of the quadcopter shall be tested and further developed.

From the work done in this dissertation it can be concluded that the usual feedback controllers

are enough to plan and execute trajectories with aircrafts but present a far from optimal perfor-

mance. The addition of feedforward control brings the precision and speed that is required for this

kind of problem. Also, the sensor fusion of GPS modules does in fact improve the localization

precision and attenuates noise.

77

C H A P T E R 6 . C O N C L U S I O N S A N D F U T U R E W O R K

As for future work, there are some aspects about this work that can be explored, namely:

improvement of the differential flatness architecture; test of the trajectory controllers in the real

quadcopter X8; and identification of the NAZA® attitude controller.

The trajectory algorithms developed in this dissertation contributed to a paper published on

IEEE and presented in the international conference named "YEF-ECE 2018 - 2nd International

Young Engineers Forum on Electrical and Computer Engineering" (Alexandre Brito, Vasco Brito,

Luis Brito Palma, Fernando Coito, Paulo Gil).

78

B I B L I O G R A P H Y

Alder, K. (2002). “The_Measure_of_All_Things_The_Seven-Year_Odyssey”. In:

Anderson B., M. J. (1990). Anderson B., Moore J.-Optimal control_ Linear quadratic methods

(no p.229)-PH (1989)(1).pdf.

Araki, M (2002). “PID control”. In: Control systems, robotics and automation 2 II, pp. 1–23.

Arduino (2018). Arduino Uno. U R L: https://store.arduino.cc/arduino-uno-rev3

(visited on 03/12/2018).

Åström, K. J. and B. Wittænmark (1997). Computer Control System - Theory and Design. Third

Edit. Prentice Hall, p. 569. I S B N: 7302050082. D O I: 10.1002/1521-3773(20010316)40:

6<9823::AID-ANIE9823>3.3.CO;2-C. arXiv: arXiv:1011.1669v3.

Åström, K. J. and T. Hägglund (2006). Advanced PID Control, p. 460. I S B N: 1556179421. D O I:

978-1-55617-942-6.

Balaji, D. (Nov. 2007). “Multivariable Laguerre-Based Indirect Adaptive Predictive Control A

Reliable Practical Solution for Process Control”. In:

Boas, M. L. (2005). Mathematical Methods in The Physics Sciences. Vol. 17, p. 839. arXiv:

0605511.

Bouabdallah, S (2007). “Design and Control of Quadrotors With Application To Autonomous

Flying”. PhD thesis. Phd Thesis, École Polytechnique Fédérale de Lausanne, p. 61. D O I:

10.5075/epfl-thesis-3727. U R L: http://biblion.epfl.ch/EPFL/theses/2007/

3727/EPFL{_}TH3727.pdf(2015-10-24).

Bouktir, Y., M. Haddad, and T. Chettibi (2008). “Trajectory planning for a quadrotor helicopter”.

In: 2008 16th Mediterranean Conference on Control and Automation, pp. 1258–1263. D O I:

10.1109/MED.2008.4602025.

Brito, V. (2016). “Fault Tolerant Control of a X8-VB Quadcopter”. MSc. FCT-UNL.

Caron, F., E. Duflos, D. Pomorski, and P. Vanheeghe (2006). “GPS/IMU data fusion using mul-

tisensor Kalman ltering: introduction of contextual aspects”. In: Information Fusion 7(2),

pp. 221–230. I S S N: 15662535. D O I: 10.1016/j.in.

79

https://store.arduino.cc/arduino-uno-rev3
https://doi.org/10.1002/1521-3773(20010316)40:6<9823::AID-ANIE9823>3.3.CO;2-C
https://doi.org/10.1002/1521-3773(20010316)40:6<9823::AID-ANIE9823>3.3.CO;2-C
http://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/978-1-55617-942-6
http://arxiv.org/abs/0605511
https://doi.org/10.5075/epfl-thesis-3727
http://biblion.epfl.ch/EPFL/theses/2007/3727/EPFL{_}TH3727.pdf (2015-10-24)
http://biblion.epfl.ch/EPFL/theses/2007/3727/EPFL{_}TH3727.pdf (2015-10-24)
https://doi.org/10.1109/MED.2008.4602025
https://doi.org/10.1016/j.in

B I B L I O G R A P H Y

Cowling, I. D., O. a. Yakimenko, J. F. Whidborne, and A. K. Cooke (2007). “A Prototype of an

Autonomous Controller for a Quadrotor UAV”. In: European Control Conference, pp. 1–8.

DJI (2016). Phantom 4. U R L: http://store.dji.com/new-release?from=store{\%

}7B{_}{\%}7Dindex{\%}7B{_}{\%}7Dbanner.

El-Rabbany, A. (2002). Introduction to GPS : the Global Positioning System. Artech House,

p. 176. I S B N: 1596930160.

Fahroo, F. and I. M. Ross (2002). “Direct Trajectory Optimization by a Chebyshev Pseudospectral

Method”. In: Journal of Guidance, Control, and Dynamics 25(1), pp. 160–166. I S S N: 0731-

5090. D O I: 10.2514/2.4862. U R L: http://arc.aiaa.org/doi/10.2514/2.4862.

Federal Aviation Administration (2008). Pilot ’ s Handbook of Aeronautical Knowledge. Okla-

homa, p. 7. I S B N: 1602397805. D O I: 10.1016/S0740-8315(86)80070-5.

Figueiredo, H., A. Bittar, and O. Saotome (2014). “Platform for quadrirotors: Analysis and

applications”. In: 2014 International Conference on Unmanned Aircraft Systems, ICUAS 2014

- Conference Proceedings(May), pp. 848–856. D O I: 10.1109/ICUAS.2014.6842332.

Fliess, M. (1990). “Generalized Controller Canonical Forms for Linear and Nonlinear Dynamics”.

In: IEEE Transactions on Automatic Control 35(9), pp. 994–1001. I S S N: 15582523. D O I:

10.1109/9.58527.

Floyd, M and K Palamartchouk (2015). “Fundamentals of GPS for geodesy”. In:

Formentin, S. and M. Lovera (2011). “Flatness-based control of a quadrotor helicopter via feed-

forward linearization”. In: Proceedings of the IEEE Conference on Decision and Control,

pp. 6171–6176. I S S N: 01912216. D O I: 10.1109/CDC.2011.6160828.

Gibbs-Smith, C. (1978). The Inventions of Leonardo Da Vinci.

(GPS/Daily) (2014). Galileo works, and works well. U R L: http://www.gpsdaily.com/

reports/Galileo{_}works{_}and{_}works{_}well{_}999.html (visited on

01/31/2017).

Gurdan, D., J. Stumpf, M. Achtelik, K. M. Doth, G. Hirzinger, and D. Rus (2007). “Energy-

efficient autonomous four-rotor flying robot controlled at 1 kHz”. In: Proceedings - IEEE

International Conference on Robotics and Automation(April), pp. 361–366. I S S N: 10504729.

D O I: 10.1109/ROBOT.2007.363813.

Hall, D. L. and J Llinas (1997). “An introduction to multisensor data fusion”. In: Proc. of the

IEEE 85(1), pp. 6–23. I S S N: 00189219. D O I: 10.1109/5.554205. arXiv: 9605103 [cs].

Heatly, M. (1986). Illustrated History of Helicopters. I S B N: 0-671-07527-6.

80

http://store.dji.com/new-release?from=store{\%}7B{_}{\%}7Dindex{\%}7B{_}{\%}7Dbanner
http://store.dji.com/new-release?from=store{\%}7B{_}{\%}7Dindex{\%}7B{_}{\%}7Dbanner
https://doi.org/10.2514/2.4862
http://arc.aiaa.org/doi/10.2514/2.4862
https://doi.org/10.1016/S0740-8315(86)80070-5
https://doi.org/10.1109/ICUAS.2014.6842332
https://doi.org/10.1109/9.58527
https://doi.org/10.1109/CDC.2011.6160828
http://www.gpsdaily.com/reports/Galileo{_}works{_}and{_}works{_}well{_}999.html
http://www.gpsdaily.com/reports/Galileo{_}works{_}and{_}works{_}well{_}999.html
https://doi.org/10.1109/ROBOT.2007.363813
https://doi.org/10.1109/5.554205
http://arxiv.org/abs/9605103

B I B L I O G R A P H Y

Hehn, M. and R. D ’andrea (2015). “Real-Time Trajectory Generation for Quadrocopters”. In:

Ieee Transactions on Robotics 31(4), pp. 877–892. I S S N: 1552-3098. D O I: 10.1109/TRO.

2015.2432611.

Hoffmann, G. M., S. L. Waslander, and C. J. Tomlin (2008). “Quadrotor Helicopter Trajectory

Tracking Control”. In: Electrical Engineering 44(August), pp. 1–14. I S S N: 0022-3727. D O I:

10.1088/0022- 3727/44/20/205001. U R L: http://hoffmann.stanford.edu/

papers/GNC08{_}QuadTraj.pdf.

Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins (1994). Global Positioning System :

Theory and Practice. Springer Vienna. I S B N: 3709133114.

Krossblade Aerospace (2017). History of Quadcopters and Multirotors — Krossblade Aerospace

Systems. U R L: http : / / www . krossblade . com / history - of - quadcopters - and -

multirotors/ (visited on 01/11/2017).

Lee, D., T. C. Burg, D. M. Dawson, D. Shu, B. Xian, and E. Tatlicioglu (2009). “Robust tracking

control of an underactuated quadrotor aerial-robot based on a parametric uncertain model”. In:

Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics(

October), pp. 3187–3192. I S S N: 1062922X. D O I: 10.1109/ICSMC.2009.5346158.

Luukkonen, T. (2011). “Modelling and Control of Quadcopter”. In: Journal of the American

Society for Mass Spectrometry 22(7), pp. 1134–45. I S S N: 1879-1123. D O I: 10 . 1007 /

s13361-011-0148-2.

Maccarleyi, C. A. (1984). “State-feedback control of non-linear systems]”. In:

Maciejowski, J. (2002). [Jan_Maciejowski]_Predictive_Control_with_Constrai(BookZZ.org).pdf.

Magnusson, N. and T. Odenman (2012). “Improving absolute position estimates of an au- tomotive

vehicle using GPS in sensor fusion”. In: p. 82.

Mellinger, D. (2011). “Trajectory Generation and Control for Quadrotors”. In: 2011 IEEE

International Conference on Robotics and Automation, pp. 2520–2525. I S S N: 1050-4729.

D O I: 10.1109/ICRA.2011.5980409.

Morbidi, F., R. Cano, D. Lara, F. Morbidi, R. Cano, D. Lara, M.-e. P. Generation, F. Morbidi,

R. Cano, and D. Lara (2016). “Minimum-Energy Path Generation for a Quadrotor UAV To

cite this version : Minimum-Energy Path Generation for a Quadrotor UAV”. In: International

Conference on Robotics and Automation(May), pp. 2–8. I S S N: 10504729. D O I: 10.1109/

ICRA.2016.7487285.

Nowakowski, T. (2015). China launches Long March 3B rocket with Beidou-3 navigation

satellite - SpaceFlight Insider. U R L: http : / / www . spaceflightinsider . com /

81

https://doi.org/10.1109/TRO.2015.2432611
https://doi.org/10.1109/TRO.2015.2432611
https://doi.org/10.1088/0022-3727/44/20/205001
http://hoffmann.stanford.edu/papers/GNC08{_}QuadTraj.pdf
http://hoffmann.stanford.edu/papers/GNC08{_}QuadTraj.pdf
http://www.krossblade.com/history-of-quadcopters-and-multirotors/
http://www.krossblade.com/history-of-quadcopters-and-multirotors/
https://doi.org/10.1109/ICSMC.2009.5346158
https://doi.org/10.1007/s13361-011-0148-2
https://doi.org/10.1007/s13361-011-0148-2
https://doi.org/10.1109/ICRA.2011.5980409
https://doi.org/10.1109/ICRA.2016.7487285
https://doi.org/10.1109/ICRA.2016.7487285
http://www.spaceflightinsider.com/missions/commercial/china-launches-long-march-3b-rocket-with-beidou-3-navigation-satellite/
http://www.spaceflightinsider.com/missions/commercial/china-launches-long-march-3b-rocket-with-beidou-3-navigation-satellite/
http://www.spaceflightinsider.com/missions/commercial/china-launches-long-march-3b-rocket-with-beidou-3-navigation-satellite/

B I B L I O G R A P H Y

missions/commercial/china-launches-long-march-3b-rocket-with-beidou-3-

navigation-satellite/ (visited on 01/31/2017).

Ogata, K. (1970). Modern Control Engineering. Vol. 17, p. 912. I S B N: 9780136156734.

D O I: 10 . 1109 / TAC . 1972 . 1100013. arXiv: 0605511 [cond-mat]. U R L: http : / /

www.pearsonhighered.com/educator/product/Modern- Control- Engineering/

9780136156734.page.

Parikh, N. N., S. C. Patwardhan, and R. D. Gudi (2012). Closed loop identification of quadruple

tank system using an improved indirect approach. Vol. 8. PART 1. IFAC, pp. 355–360.

I S B N: 9783902823052. D O I: 10.3182/20120710- 4- SG- 2026.00177. U R L: http:

//dx.doi.org/10.3182/20120710-4-SG-2026.00177.

Pawelsky (2013). DJI NAZA GPS communication protocol - NazaDecoder Arduino library - RC

Groups. U R L: https://www.rcgroups.com/forums/showthread.php?1995704-DJI-

NAZA- GPS- communication- protocol- NazaDecoder- Arduino- library (visited on

03/23/2018).

Polischuk, G. M., V. I. Kozlov, V. V. Ilitchov, a. G. Kozlov, V. Bartenev, V. E. Kossenko, N. a.

Anphimov, S. Revnivykh, S. B. Pisarev, a. E. Tyulyakov, B. V. Shebshaevitch, a. B. Basevitch,

and Y. L. Vorokhovsky (2002). “The Global Navigation Satellite System GLONASS: Develop-

ment And Usage In The 21st Century”. In: 34th Annual Precise Time and Time Interval (PTTI)

Meeting, pp. 151–160. U R L: http://www.dtic.mil/cgi-bin/GetTRDoc?Location=

U2{\&}doc=GetTRDoc.pdf{\&}AD=ADA484380.

Richter, C., A. Bry, and N. Roy (2013). “Polynomial trajectory planning for quadrotor flight”.

In: International Conference on Robotics and Automation(Isrr), pp. 1–16. U R L: http :

//www.michigancmes.org/papers/roy7.pdf.

Ritz, R., M. Hehn, S. Lupashin, and R. D'Andrea (2011). “Quadrocopter performance

benchmarking using optimal control”. In: IEEE International Conference on Intelligent Robots

and Systems, pp. 5179–5186. I S S N: 2153-0858. D O I: 10.1109/IROS.2011.6048382.

Spooner, S. (1924). “1956 - 1564 - Flight Archive”. In: Flight. U R L: http : / / www .

flightglobal.com/pdfarchive/view/1956/1956-1564.html.

Vlassenbroeck, J. and R. Van Dooren (1988). “A Chebyshev technique for solving nonlinear

optimal control problems”. In: IEEE Transactions on Automatic Control 33(4), pp. 333–340.

I S S N: 00189286. D O I: 10.1109/9.192187. U R L: http://ieeexplore.ieee.org/

document/192187/.

Welch, G. and G. Bishop (2006). “An Introduction to the Kalman Filter”. In: In Practice 7(1),

pp. 1–16. I S S N: 10069313. D O I: 10.1.1.117.6808.

82

http://www.spaceflightinsider.com/missions/commercial/china-launches-long-march-3b-rocket-with-beidou-3-navigation-satellite/
http://www.spaceflightinsider.com/missions/commercial/china-launches-long-march-3b-rocket-with-beidou-3-navigation-satellite/
http://www.spaceflightinsider.com/missions/commercial/china-launches-long-march-3b-rocket-with-beidou-3-navigation-satellite/
http://www.spaceflightinsider.com/missions/commercial/china-launches-long-march-3b-rocket-with-beidou-3-navigation-satellite/
https://doi.org/10.1109/TAC.1972.1100013
http://arxiv.org/abs/0605511
http://www.pearsonhighered.com/educator/product/Modern-Control-Engineering/9780136156734.page
http://www.pearsonhighered.com/educator/product/Modern-Control-Engineering/9780136156734.page
http://www.pearsonhighered.com/educator/product/Modern-Control-Engineering/9780136156734.page
https://doi.org/10.3182/20120710-4-SG-2026.00177
http://dx.doi.org/10.3182/20120710-4-SG-2026.00177
http://dx.doi.org/10.3182/20120710-4-SG-2026.00177
https://www.rcgroups.com/forums/showthread.php?1995704-DJI-NAZA-GPS-communication-protocol-NazaDecoder-Arduino-library
https://www.rcgroups.com/forums/showthread.php?1995704-DJI-NAZA-GPS-communication-protocol-NazaDecoder-Arduino-library
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2{\&}doc=GetTRDoc.pdf{\&}AD=ADA484380
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2{\&}doc=GetTRDoc.pdf{\&}AD=ADA484380
http://www.michigancmes.org/papers/roy7.pdf
http://www.michigancmes.org/papers/roy7.pdf
https://doi.org/10.1109/IROS.2011.6048382
http://www.flightglobal.com/pdfarchive/view/1956/1956 - 1564.html
http://www.flightglobal.com/pdfarchive/view/1956/1956 - 1564.html
https://doi.org/10.1109/9.192187
http://ieeexplore.ieee.org/document/192187/
http://ieeexplore.ieee.org/document/192187/
https://doi.org/10.1.1.117.6808

B I B L I O G R A P H Y

Yakimenko, O. A. (2006). “Direct Method for Real-Time Prototyping of Optimal Control”. In:

Proceedings of the International Conference "Control 2006". U R L: http://www.nps.navy.

mil/faculty/yakimenko/RapidPrototyping/Control2006-Yakimenko-ID190.pdf.

83

http://www.nps.navy.mil/faculty/yakimenko/RapidPrototyping/Control2006-Yakimenko-ID190.pdf
http://www.nps.navy.mil/faculty/yakimenko/RapidPrototyping/Control2006-Yakimenko-ID190.pdf

A
P

P
E

N
D

I
X

A
S E N S O R F U S I O N C O D E (A R D U I N O)

1 # include <NazaDecoderLib .h>
2

3 int k = 0;
4 int h = 0;
5 int n = 0;
6 int m = 0;
7 int o = 0;
8 int newData = 0;
9 int newData2 = 0;

10 int ready1 = 0;
11 int ready2 = 0;
12 int data;
13 int payload [60];
14 int trama [1000];
15 int trama2 [1000];
16 int start = 0;
17 int start2 = 0;
18 double latitude2 ;
19 double lat;
20 double longitude2 ;
21 double lon;
22 double altitude2 ;
23 double alt;
24 double absoluteLat ;
25 double prevLat2 ;
26 double absoluteLon ;
27 double prevLon2 ;
28 double absoluteAlt ;
29 double prevAlt2 ;
30 int ini = 0;
31 uint8_t mask;

85

A P P E N D I X A . S E N S O R F U S I O N C O D E (A R D U I N O)

32

33 int seq = 0;
34 int cnt = 0;
35 int msgId = 0;
36 int msgLen = 0;
37 int cs1 = 0;
38 int cs2 = 0;
39

40 double lati;
41 double longi;
42 double gpsAlt ;
43 double spd;
44 // NazaDecoderLib :: fixType_t NazaDecoderLib :: getFixType () { return fix; }
45 uint8_t sat;
46 double headingNc ;
47 double cog;
48 double gpsVsi ;
49 double hdop;
50 double vdop;
51 uint8_t year;
52 uint8_t month;
53 uint8_t day;
54 uint8_t hour;
55 uint8_t minute ;
56 uint8_t second ;
57

58

59 // kalman state struct
60 struct Kstate {
61 double q; // process noise covariance
62 double r [2][2]; // measurement noise covariance
63 double x; // value
64 double p; // estimation error covariance
65 double k [1][2]; // kalman gain
66 };
67 struct Kstate Lat , Lon , Alt;
68

69 double C [2][1];
70 double Z [2][1];
71

72 // auxiliar matrices
73 double Ct [1][2];
74 double PxCt [1][2];
75 double CxP [2][1];
76 double CxPxCt [2][2];
77 double PeR [2][2];
78 double CxE [2][1];
79 double ZmE [2][1];
80 double KxZ [1][1];
81 double KxC [1][1];

86

82

83 // kalman vars
84 double q = 0.00001;
85 double r1 = 0.01;
86 double r2 = 0.01;
87 double p = 0;
88 double init_lat = 38.6604170;
89 double init_lon = -9.2050560;
90 double init_alt = 145.000;
91

92 // kalman function declarations
93 void kalman_init (Kstate * result , double Q, double R1 , double R2 ,...
94 double P, double intial_value);
95

96 void kalman_update (Kstate * state , double measurement1 , double measurement2);
97

98 // kalman functions
99 void kalman_init (Kstate * result , double Q, double R1 , double R2 ,...

100 double P, double intial_value)
101 {
102 result ->q = Q;
103 result ->r [0][0] = R1*R1;
104 result ->r [0][1] = 0;
105 result ->r [1][0] = 0;
106 result ->r [1][1] = R2*R2;
107 result ->p = P;
108 result ->x = intial_value ;
109 }
110

111 void kalman_update (Kstate * state , double measurement1 , double measurement2)
112 {
113 // prediction phase
114 // omit x = x
115 state ->p = state ->p + state ->q;
116

117 // measurement update
118 //Z = [Z1(k);Z2(k)];
119 Z [0][0] = measurement1 ;
120 Z [1][0] = measurement2 ;
121

122 // update phase
123 // state ->k = state ->p / (state ->p + state ->r);
124 //K = Pka*C ’*((C*Pka*C ’+R)^ -1)
125 Trans ((double *)C, 2, 1, (double *)Ct);
126 Mult (& state ->p, (double *)Ct , 1, 1, 2, (double *) PxCt);
127 Mult ((double *)C, &state ->p, 2, 1, 1, (double *) CxP);
128 Mult ((double *)CxP , (double *)Ct , 2, 1, 2, (double *) CxPxCt);
129 Ad((double *) CxPxCt , (double *) state ->r, 2, 2, (double *) PeR);
130 Inv ((double *)PeR , 2);
131 Mult ((double *)PxCt , (double *)PeR , 1, 2, 2, (double *) state ->k);

87

A P P E N D I X A . S E N S O R F U S I O N C O D E (A R D U I N O)

132

133 // Print ((double *)Z, 2, 1, "Z");
134 // Print (& state ->p, 1, 1, "P");
135 // Print ((double *)C, 2, 1, "C");
136 // Print ((double *) state ->k, 1, 2, "K");
137

138 // state ->x = state ->x + state ->k * (measurement - state ->x);
139 //Ek = Eka + K*(Z - C*Eka);
140 Mult ((double *)C, &state ->x, 2, 1, 1, (double *) CxE);
141 Sub ((double *)Z, (double *)CxE , 2, 1, (double *) ZmE);
142 Mult ((double *) state ->k, (double *)ZmE , 1, 2, 1, (double *) KxZ);
143 double KXZ = KxZ [0][0]; // transform 1 by 1 matrix to number
144 state ->x = state ->x + KXZ;
145

146 // state ->p = (1 - state ->k) * state ->p;
147 //Pk = (1-K*C)* Pka;
148 Mult ((double *) state ->k, (double *)C, 1, 2, 1, (double *) KxC);
149 double KXC = KxC [0][0]; // transform 1 by 1 matrix to number
150 double mKxC = 1 - KXC;
151 state ->p = mKxC*state ->p;
152

153 // Serial .print ("P"); Serial . println (state ->p ,6);
154 // Serial .print ("Q"); Serial . println (state ->q ,6);
155 // Serial .print ("R"); Serial . println (state ->r ,6);
156 // Serial .print ("X"); Serial . println (state ->x ,6);
157 // Serial .print ("K"); Serial . println (state ->k ,6);
158 // Serial .print ("M"); Serial . println (measurement ,6);
159 }
160

161 void codeLong (int idx , double value)
162 {
163 union { uint32_t l; uint8_t b[4]; } val;
164 val.l = value;
165 for(int p = 0; p < 4; p++)
166 {
167 trama[idx + p] = val.b[p] ^ mask ;
168 }
169 }
170

171 void calcNewCS ()
172 {
173 union { uint32_t l; uint8_t b[4]; } CS1;
174 union { uint32_t l; uint8_t b[4]; } CS2;
175 union { uint16_t l; uint8_t b[2]; } CSA;
176 union { uint16_t l; uint8_t b[2]; } CSB;
177 union { uint32_t l; uint16_t b[2]; } aux;
178 aux.b[1] = 0;
179 for(int p = 0; p < 60; p++)
180 {
181 aux.b[0] = trama[k - 61 + p];

88

182 // Serial . println (aux.l);
183 CS1.l += aux.l;
184 CS2.l += CS1.l;
185 }
186 CSA.b[0] = CS1.b[0];
187 CSA.b[1] = 0;
188 CSB.b[0] = CS2.b[0];
189 CSB.b[1] = 0;
190 trama[k -1] = CSA.l;
191 trama[k] = CSB.l;
192 }
193

194 int32_t decodeLong (uint8_t idx , uint8_t mask)
195 {
196 union { uint32_t l; uint8_t b[4]; } val;
197 for(int i = 0; i < 4; i++) val.b[i] = payload [idx + i] ^ mask;
198 return val.l;
199 }
200

201 int16_t decodeShort (uint8_t idx , uint8_t mask)
202 {
203 union { uint16_t s; uint8_t b[2]; } val;
204 for(int i = 0; i < 2; i++) val.b[i] = payload [idx + i] ^ mask;
205 return val.s;
206 }
207

208 void updateCS (int input)
209 {
210 cs1 += input;
211 cs2 += cs1;
212 }
213

214 double getLat () { return lati; }
215 double getLon () { return longi; }
216 double getGpsAlt () { return gpsAlt ; }
217 double getSpeed () { return spd; }
218 // NazaDecoderLib :: fixType_t NazaDecoderLib :: getFixType () { return fix; }
219 uint8_t getNumSat () { return sat; }
220 double getHeadingNc () { return headingNc ; }
221 double getCog () { return cog; }
222 double getGpsVsi () { return gpsVsi ; }
223 double getHdop () { return hdop; }
224 double getVdop () { return vdop; }
225 uint8_t getYear () { return year; }
226 uint8_t getMonth () { return month; }
227 uint8_t getDay () { return day; }
228 uint8_t getHour () { return hour; }
229 uint8_t getMinute () { return minute ; }
230 uint8_t getSecond () { return second ; }
231

89

A P P E N D I X A . S E N S O R F U S I O N C O D E (A R D U I N O)

232

233 void decoder (int input)
234 {
235 if ((seq == 0) && (input == 85)) { seq ++; }

// header (part 1 - 0x55)
236 else if ((seq == 1) && (input == 170)) { cs1 = 0; cs2 = 0; seq ++; }

// header (part 2 - 0xAA)
237 else if(seq == 2) { msgId = input; updateCS (input); seq ++; }

// message id
238 else if ((seq == 3) && ((msgId == 16) && (input == 58))) ...
239 { msgLen = input; cnt = 0; updateCS (input); seq ++; }
240 else if(seq == 4) { payload [cnt ++] = input; updateCS (input);...
241 if(cnt >= msgLen) { seq ++; } } // store payload in buffer
242 else if(seq == 5) { seq ++; }

// verify checksum #1
243 else if(seq == 6) { seq ++; }

// verify checksum #2
244 else seq = 0;
245

246 if(seq == 7) // all data in buffer
247 {
248 seq = 0;
249 // Decode GPS data
250 if(msgId == 16)
251 {
252 uint8_t mask2 = payload [55];
253 uint32_t time = decodeLong (0, mask2);
254 second = time & 0 b00111111 ; time >>= 6;
255 minute = time & 0 b00111111 ; time >>= 6;
256 hour = time & 0 b00001111 ; time >>= 4;
257 day = time & 0 b00011111 ; time >>= 5; if(hour > 7) day ++;
258 month = time & 0 b00001111 ; time >>= 4;
259 year = time & 0 b01111111 ;
260 longi = (double) decodeLong (4, mask2) / 10000000;
261 lati = (double) decodeLong (8, mask2) / 10000000;
262 gpsAlt = (double) decodeLong (12, mask2) / 1000;
263 double nVel = (double) decodeLong (28, mask2) / 100;
264 double eVel = (double) decodeLong (32, mask2) / 100;
265 spd = sqrt(nVel * nVel + eVel * eVel);
266 cog = atan2(eVel , nVel) * 180.0 / 3.1415;
267 if(cog < 0) cog += 360.0;
268 gpsVsi = -(double) decodeLong (36, mask2) / 100;
269 vdop = (double) decodeShort (42, mask2) / 100;
270 double ndop = (double) decodeShort (44, mask2) / 100;
271 double edop = (double) decodeShort (46, mask2) / 100;
272 hdop = sqrt(ndop * ndop + edop * edop);
273 sat = payload [48];
274 uint8_t fixType = payload [50] ^ mask2;
275 uint8_t fixFlags = payload [52] ^ mask2;
276 // switch (fixType)

90

277 // {
278 // case 2 : fix = FIX_2D ; break;
279 // case 3 : fix = FIX_3D ; break;
280 // default : fix = NO_FIX ; break;
281 // }
282 // if((fix != NO_FIX) && (fixFlags & 0x02)) fix = FIX_DGPS ;
283 newData2 = 1;
284 }
285 }
286 }
287

288

289 void setup ()
290 {
291 Serial .begin (57600);
292 Serial1 .begin (115200);
293 Serial2 .begin (115200);
294 Serial3 .begin (115200);
295

296 // Kalman init
297 kalman_init (&Lat ,q,r1 ,r2 ,p, init_lat);
298 kalman_init (&Lon ,q,r1 ,r2 ,p, init_lon);
299 kalman_init (&Alt ,q,r1 ,r2 ,p, init_alt);
300

301 //C matrix setup
302 C [0][0] = 1;
303 C [1][0] = 1;
304 }
305

306 void loop ()
307 {
308

309 if(Serial1 . available ())
310 {
311 if(start == 1)
312 {
313 if(k > 999)
314 {
315 Serial3 .write(trama [0]);
316 // Serial . println (trama [0]);
317 }
318 else
319 {
320 Serial3 .write(trama[k+1]);
321 // Serial . println (trama[k+1]);
322 }
323 }
324 // Serial . println (trama[k]);
325 trama[k] = Serial1 .read ();
326 int input = trama[k];

91

A P P E N D I X A . S E N S O R F U S I O N C O D E (A R D U I N O)

327 uint8_t decodedMessage = NazaDecoder . decode (input);
328

329 switch (decodedMessage)
330 {
331 case NAZA_MESSAGE_GPS :
332 newData = 1;
333 }
334

335 if(newData == 1)
336 {
337 mask = trama[k -4];
338

339 newData = 0;
340 ready1 = 1;
341 }
342

343 k++;
344

345 if(k >=1000)
346 {
347 k = 0;
348 start = 1;
349 }
350 }
351

352 if(Serial2 . available ())
353 {
354 trama2 [h] = Serial2 .read ();
355

356 if(start2)
357 {
358 if(h > 999)
359 decoder (trama2 [0]);
360 else
361 decoder (trama2 [h+1]);
362 }
363

364 if(newData2)
365 {
366 // Serial .print(getHour ()); Serial .print (":");
367 // Serial .print(getMinute ()); Serial .print (":");
368 // Serial .print(getSecond ()); Serial .print (" - ");
369 // Serial .print (" GPS2 - ");
370 // Serial .print(getLat (), 7);
371 // Serial .print (" "); Serial . println (h);
372 latitude2 = getLat ();
373 longitude2 = getLon ();
374 altitude2 = getGpsAlt ();
375

376 newData2 = 0;

92

377 ready2 = 1;
378 }
379

380 h++;
381

382 if(h >=1000)
383 {
384 h = 0;
385 start2 = 1;
386 }
387 }
388

389 if(ready1 && ready2)
390 {
391

392 if (! ini)
393 {
394 prevLat2 = latitude2 ;
395 prevLon2 = longitude2 ;
396 prevAlt2 = altitude2 ;
397 ini = 1;
398 }
399

400 absoluteLat = abs(prevLat2 - latitude2);
401 absoluteLon = abs(prevLon2 - longitude2);
402 absoluteAlt = abs(prevAlt2 - altitude2);
403

404 // Serial . println (absoluteLat);
405 // Serial . println (absoluteLon);
406 // Serial . println (absoluteAlt);
407

408 if(absoluteLat > 0.00002)
409 latitude2 = prevLat2 ;
410

411 if(absoluteLon > 0.00002)
412 longitude2 = prevLon2 ;
413

414 if(absoluteAlt > 2)
415 altitude2 = prevAlt2 ;
416

417

418 // Serial .print(NazaDecoder . getHour ()); Serial .print (":");
419 // Serial .print(NazaDecoder . getMinute ()); Serial .print (":");
420 // Serial .print(NazaDecoder . getSecond ()); Serial .print (" - ");
421

422 // Serial .print (" Lat1 - ");
423 Serial .print (NazaDecoder . getLat (), 7); Serial .print(";");
424 // Serial .print (" Lat2 - ");
425 Serial .print (latitude2 , 7); Serial .print(";");
426 // Serial .print (" LatF - ");

93

A P P E N D I X A . S E N S O R F U S I O N C O D E (A R D U I N O)

427 kalman_update (&Lat , NazaDecoder . getLat (), latitude2);
428 Serial .print (Lat.x, 7); Serial .print(";");
429 lat = Lat.x *10000000;
430

431 // Serial .print (" Lon1 - ");
432 Serial .print (NazaDecoder . getLon (), 7); Serial .print(";");
433 // Serial .print (" Lon2 - ");
434 Serial .print (longitude2 , 7); Serial .print(";");
435 // Serial .print (" LonF - ");
436 kalman_update (&Lon , NazaDecoder . getLon (), longitude2);
437 Serial .print (Lon.x, 7); Serial .print(";");
438 lon = Lon.x *10000000;
439

440 // Serial .print (" Alt1 - ");
441 Serial .print (NazaDecoder . getGpsAlt (), 3); Serial .print(";");
442 // Serial .print (" Alt2 - ");
443 Serial .print (altitude2 , 3); Serial .print(";");
444 // Serial .print (" AltF - ");
445 kalman_update (&Alt , NazaDecoder . getGpsAlt (), altitude2);
446 Serial .print(Alt.x, 3); Serial .print(";");
447 alt = Alt.x *10000000;
448

449

450 // Serial .print (" NumSat1 - ");
451 Serial .print (NazaDecoder . getNumSat ()); Serial .print(";");
452 // Serial .print (" NumSat2 - ");
453 Serial .print (getNumSat ()); Serial . println (";");
454

455 // Serial . println (k);
456

457 prevLat2 = latitude2 ;
458 prevLon2 = longitude2 ;
459 prevAlt2 = altitude2 ;
460

461 if(k <53)
462 {
463 n = k+946;
464 codeLong (n, lat);
465 }
466

467 if(k >=53)
468 {
469 n = k -52;
470 codeLong (n, lat);
471 }
472

473 if(k <57)
474 {
475 m = k+942;
476 codeLong (m, lon);

94

477 }
478

479 if(k >=57)
480 {
481 m = k -56;
482 codeLong (m, lon);
483 }
484

485 if(k <49)
486 {
487 o = k+950;
488 codeLong (o, alt);
489 }
490

491 if(k >=49)
492 {
493 o = k -48;
494 codeLong (o, alt);
495 }
496

497 calcNewCS ();
498 ready1 = 0;
499 ready2 = 0;
500 }
501 }

95

A
P

P
E

N
D

I
X

B
S I M U L I N K - B L O C K D I A G R A M O F T H E

C O N T R O L A R C H I T E C T U R E S

This chapter will present the control architectures developed in MATLAB R2014b - Simulink.

97

A P P E N D I X B . S I M U L I N K - B L O C K D I AG R A M O F T H E C O N T RO L
A R C H I T E C T U R E S

Figure B.1: Simulink block diagram of the PID architecture.

98

Figure B.2: Simulink block diagram of the state space feedback architecture.

99

A P P E N D I X B . S I M U L I N K - B L O C K D I AG R A M O F T H E C O N T RO L
A R C H I T E C T U R E S

Figure B.3: Simulink block diagram of the differential flatness architecture.

100

20
18

L
oc

al
iz

at
io

n
an

d
Tr

aj
ec

to
ry

C
on

tr
ol

A
lg

or
ith

m
sA

pp
lie

d
on

D
ro

ne
s

A
le

xa
nd

re
B

ri
to

	List of Figures
	List of Tables
	List of Acronyms
	List of Symbols
	Introduction
	Motivation
	Main Goals and Contributions
	Dissertation Structure

	State of the Art
	Introduction
	Multicopter History
	Trajectory
	Algorithms based on geometric path primitives
	Algorithms that minimize the derivative of the position trajectory
	Optimal control considering the non-linearity of the system

	Localization
	History
	GPS concept and fundamentals
	GPS Coordinates and metric Conversion
	GPS Coordinate formats

	Control Approaches
	Proportional Integral Derivative Control
	Model Predictive Control
	State Space Feedback Control
	Differential Flatness Control

	Sensor Fusion
	Related Work

	System's Structure and Modeling
	Introduction
	Architecture Overview
	Hardware Architecture and Components
	Quadcopter structure
	Attitude Controller
	Arduino Uno and Due
	Radio Communication devices
	GPS modules
	Absolute Orientation Sensor
	Power Supply

	X8-VB Quadcopter Modelling

	Identification and Control
	NAZA Attitude Controller Identification
	Trajectory Control Algorithms
	Proportional Derivative Integral Control
	State Space Feedback Control
	Differential Flatness Controller

	Localization Algorithms
	Naza GPS Data Output
	Sensor Fusion
	Data Management, Decoding and Encoding

	Simulations and Experimental Results
	Simulations
	Trajectory Tracking Algorithms
	Localization Algorithms

	Experimental Results
	NAZA Controller Identification
	Sensor Fusion

	Conclusions and Future Work
	Bibliography
	Sensor Fusion Code (Arduino)
	Simulink - Block Diagram of the Control Architectures

