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Summary

Digitization and robotization of laboratory equipment has recently contributed to

the generation of high content of data and its metadata. While this seems like an

advantage for science’s celerity, the analysis of such data became the limiting step

– a very narrow bottleneck. Such is the case for imaging data acquisition and its

analysis. After collecting Gigabytes of images, researchers spend several orders of

magnitude of more time to determine the regions of interest (ROIs) (e.g. cell) and to

measure relevant attributes (e.g. mean fluorescence intensity). This manual curation

of data promotes another issue that is related with the reproducibility of the analysis,

e.g., the same researcher will hardly select the exact same ROIs in the same data set.

Furthermore, there is also the possibility of bias in the selection of which cells to use

in the analysis by biased determination of the ROIs. All of these considerations can be

solved by automation of imaging data analysis. Given the same initial parameters, the

analysis program will select the same ROIs, measure and process those measurements

in the same, repetitive way, thus producing reproducible analysis. By checking its

input parameters, one can also analyze if there is a bias in the automatic selection

or in the analysis pipeline. Finally, the processing speed of current central processing

units (CPUs) and graphic processing units (GPUs) allow for fast analysis, which is

crucial to close the gap between data acquisition and analysis.

The idea of automation of imaging analysis is far from new and there are

many commercial and open sourced programs available for either simple or complex

analysis procedures. However, most of them can only be applied to specific model

organism types and, sometimes, only if they are used under a specific experimental

protocol. One major aspect hindering this progress is that most approaches rely on

segmentation algorithms (i.e. classification of pixels as ROI, background or debris)

and filtering (i.e. rejection/acceptance of ROIs according to their characteristics).

In practice, the computer algorithm does not know what it is looking for in the
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data and often includes different objects (including debris) or misses parts of the

objects at study. This aspect will promote bias in the subsequent analysis steps,

potentially creating artifactual data. We propose to use a mathematical model as

a priori knowledge of the target model cell to be fitted directly to imaging data.

Our hypothesis is that, by estimating the number and form of the particular objects

of interest that best describe an image (i.e. maximum likelihood), we can obtain

the most probable features and characteristics of those objects, thus improving their

detection, tracking and characterization.

Image analysis of spermatozoa is an example where image segmentation is the

primary method used, and therefore these cells were chosen as the biological case

study to explore our hypothesis. Spermatozoa are highly specialised motile cells

whose function is to find and fertilize the conspecific eggs during reproduction.

For this reason they are cells of the utmost fundamental importance and also of

major medical relevance, considering that sperm motility abnormalities are a major

cause of human couple infertility. Not surprisingly Computer Assisted Sperm Analysis

(CASA) systems, implementing image segmentation have been developed early and

made their way into routine clinical practice. In mammals, sperm cells must swim a

path thousands of times their own body length through a complex interior geometry,

often filled with highly viscous liquids and potentially hostile immune cells. The

overwhelming majority do not even reach the fallopian tubes, let alone the site of

fertilization. In marine invertebrates, fertilization occurs during broadcast spawning

events in which the sperm have to find their conspecific eggs literally in a sea of

eggs of multiple species. In the laboratory studies, sea urchin spermatozoa tend to

accumulate and swim confined to the liquid-solid boundary plane which made them

particularly suitable for imaging motility and chemotaxis in response to molecular cues

released by the egg. For this reason sea urchin sperm became an important biological

paradigm. Several studies have shown that sperm respond to sperm activating

peptides released from the egg jelly layer. The transduction of these signals results

in series of cytosolic calcium spikes that are concomitant with transient periods of

greater asymmetry of the flagellar bending waves that reorient the cellular trajectory.

In sperm of some species of sea urchin, such as Lytechinus pictus the calcium spike

trains are coordinated in space and time to produce chemotactic trajectories towards

the source of the peptides, while in sperm of Strongylocentrotus purpuratus the

calcium spikes produce disoriented behavior. However, the fact that the natural

ii



environment of the spermatozoa is a three dimensional volume has raised concerns

on the relevance and generality of the knowledge derived from studies in the plane.

Since spermatozoa are a class of very fast moving cells they are particularly demanding

on time-lapse and three-dimensional microscopy imaging instruments. Particularly

challenging is the measurement of fluorescent reporters on beating flagella in three

dimensions that cannot be imaged with currently available high-performance confocal

microscopes. To this end, imaging systems tailored to image sperm cells have

been developed in the last two decades. One of the systems, the 2D+Z(t) system

(i.e. reported in the literature as 3D+t), uses a piezoelectric device to oscillate

an objective at high frequencies, allowing us to take two-dimensional (2D) images

(frames) at different depths (Z axis) as a function of time. Using this microscopy

instrumentation it was shown that S. purpuratus sperm displayed different average

path velocity and curvature when confined or when free-swimming. Unfortunately,

the depth of each frame is not reported by the system and an algorithm based on

image correlation and on fitting the characteristic Z(t) function of the piezoelectric

was used to determine it. Although this method performed adequately in various

experimental data sets, it performed poorly in many others in which the real and the

inferred depth functions became out-of-phase. This has been impairing comparative

studies of the free-swimming motility and chemotaxis of spermatozoa from the two

sea urchin species.

The objective of this thesis was two-fold. The first was to develop and apply

image analysis methods based on a priori knowledge by fitting a mathematical model

of the object to be detected or tracked directly to imaging data. The second objective

was to develop and apply methods to compare the 3D motility of spermatozoa of L.

pictus and S. purpuratus.

Chapter 2 is a proof-of-concept that a cellular model can be used for 2D

imaging data analysis. A detailed mathematical model was developed describing the

spermatozoon morphodynamics and how it swims in a fluid, given the changes of its

morphology. Thus, this mechanistic model includes two modules: the shape, where

the head is a revolution ellipsoid and the flagellar beating is given by defining the local

curvature as traveling wave function and the local torsion as a constant value; and

the mechanics, where physics are modeled by Resistive Force Theory. This model

was compared to imaging data using the following procedure. First we take the

current model state and render a model image corresponding to that state, then we
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rescale it to the imaging data spatial and temporal resolutions and lastly convolve it

with the point-spread function characteristic of fluorescence microscopy, if that is the

case. The model image is compared to the corresponding time-point of imaging data

by correlation. It was shown that, under certain conditions, maximizing the cross-

correlation is equivalent to maximizing the likelihood (i.e. how likely the parameters

are given by the data). As our model is non-linear, we maximized the likelihood

of our model parameters by a simple evolutionary Monte Carlo simulation, which

selects and propagates the parameters with highest correlation coefficient (single

time-point) or highest correlation sum (multiple time-points, i.e. the summation of

the all correlation coefficients) over some iterations. The propagation step allows

for small changes in the parameters to explore the optimization landscape but these

changes become smaller at each iteration in order to promote exploitation.

We fitted the morphodynamical model of a sperm cell to different imaging data

sets. The first imaging data set was generated using the model itself (in silico)

to prove that the fitting algorithm is able to recover the parameters the original

parameters. We show we can decrease the distance between the initial parameter set

(i.e. randomized) and the parameter selected after fitting for three independent initial

sets. A second data set was used to compare the performance of our method and

that of a human. For this, an imaging data of L. pictus sperm was acquired with high

spatial and temporal resolution. A cell in this data set was tracked semi-automatically

by a collaborator reconstituting both position and flagellar conformations. The same

cell was fitted by our model to show that the solutions obtained also minimize the

distance between the human-determined and model-fitted conformations. Note the

discrepancies can originate on the assumption of our model that the flagellar shape

parameters are constant, which is more likely to break down as time elapses. To

assess whether our method can track cells in images with lower spatial and temporal

resolution, we fitted our model to imaging data of S. purpuratus in those conditions

and the results were similar to the ones with high resolution data. Finally, we

hypothesized that we should be able to estimate features of the cells that are modeled

but not visible in the imaging data. To test it we used imaging data obtained from

spermatozoa labelled with both a fluorescent membranar marker and a fluorescent

Ca2+ indicator. The former labels the whole cell and the latter labels only the head

in an unstimulated cell. On the same cell and at the same time, we can image both

markers using a light splitter to produce the corresponding two images in the same
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frame. Fitting the model independently to the whole cell or head-only imaging data

we arrived to very close parameter sets and flagellar positions. Altogether, these

results show we can fit a model directly to data and even estimate features that

cannot be directly measured in the data, an advantage over segmentation methods

that rely on the data itself.

Chapter 3 tackles the problem of analysing and comparing the motility of the

sperm of the two sea urchin species while confined to planar swimming or while

moving freely in a volume. Analysing spermatozoa swimming in a volume requires

special imaging systems. We used the system proposed by Corkidi et al., (2008)

which implies inferring the depth of each frame from its time-point before obtaining

the 3D coordinates of the cells. To deal with this inference problem we started

by estimating the times at which the piezoelectric was at either a maximum or

a minimum depth position. Based on the assumption that cells do not displace

significantly within a piezoelectric period, meaning frames at the same depth position

should be highly correlated, we used the collective information of the correlation of

all frames and their subsequent images. After we fitted the canonical, empirically

determined piezoelectric Z(t) function between those extremes. The computational

speed of the implementation of the method developed in Chapter 2 was low and its

application to data containing thousands of frames (i.e. as the ones produced by the

2D+Z(t) microscopy system) was not computationally feasible. As the optimization

of such algorithms is not the focus of this thesis, we used a mixed approach to detect

cells and reconstitute their 3D trajectories from 2D+t data. To detect cells we

used a more traditional 3D template of the spermatozoon composed by 2D frames,

each corresponding to a different diffraction pattern resulted from the relative offset

between the centroid of the cell and the objective. Each diffraction pattern was

cross-correlated to each frame and the position of the maximum correlation position

was saved, from which we calculated the centroid position after clustering (i.e. to

know which saved positions belong to the same cell). These detections were then

attributed to cells by clustering according to their distances in space and time. To

infer the average path of the cells (neglecting the fine wiggling of the heads), we

fitted the minimal set of helical segments that explained the trajectory points of

each cell using Bayesian information criteria as the scoring criteria of a Dynamical

Programming problem, a method we called piecewise helix fitting.

S. purpuratus spermatozoa were studied both in confined and free-swimming
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modes but we know nothing about the latter mode for L. pictus. As we also wanted

to assess the performance of our method, we used it to determine the velocity,

curvature and torsion of both species in both free and confined swimming. Our

results for confined swimming of both species and free-swimming for S. purpuratus

were consistent with previous studies. We show, for the first time, that the trajectories

of free-swimming spermatozoa from L. pictus have lower velocity than those of S.

purpuratus, contrary to when they are confined to the surface. Also, L. pictus sperm

have lower trajectory torsion than those of S. purpuratus. Interestingly, the trajectory

curvature L. pictus sperm does not change between confined and free swimming

modes, while it is different for S. purpuratus sperm. Recent studies with Arbacia

punctulata show their sperm trajectories are more similar to the ones of L. pictus. To

try to gain insight into the different confining behaviors of the spermatozoa of the

three species, we then used the mechanistic sperm model to simulate both free and

confined swimming when flagellar torsion is non-zero. We searched the parameter

sets which would produce trajectories similar to the ones of these species. We showed

the data can be explained if free swimming S. purpuratus sperm have higher mean

flagellar curvature (and possibly higher flagellar torsion) than in confined swimming.

We argue that this difference results from a higher sensitivity of the sperm of this

species to the higher viscosity of the liquid boundary, when compared to the sperm

of the two other species.

Using the 2D+Z(t) imaging analysis procedure developed in Chapter 3, we

then addressed the free-swimming chemotactic behavior of both L. pictus and S.

purpuratus sperm in Chapter 4. In studies of chemotaxis of these sperm in confined

swimming, a gradient of a chemoattractive peptide released by the conspecific egg

(Speract) was artificially created. To do this, a chemically blocked, caged form of

the peptide with 1000 fold less affinity for its receptor was used in solution and a

concentration gradient of the active form was produced by modulated ultraviolet

(UV) irradiation (uncaging). The uncaging procedure was used to produce a

chemoattractant gradient in the 3D microscopy system. Two conditions were tested:

with and without caged chemoattractant, irradiating both with UV light for 2

seconds, defining time intervals before, during and after irradiation. Trajectories

were reconstituted by piecewise helical fitting and time series for each of the helical

path parameters obtained. To deal with the dependency of data points within the

time intervals, we fitted linear mixed models to the data. Although this linear mixed

vi



model approach readily distinguished the parameters obtained for the two species, we

could not find any alteration of the parameters consistent with chemotaxis elicited

by uncaging of the chemoattractant. We interpret this result as a consequence of an

ineffective experimental creation of the gradient which was presumably undetected

by the cells. We then suggested several alterations to the protocol in order to assess

whether other experimental conditions might promote chemotaxis. In another study,

free-swimming chemotaxis of A. punctulata sperm was achieved by using sustained

UV irradiation throughout the experiment. A similar strategy might be effective also

with the sperm of the two species studied here. Alternatively, different gradients

could be created by modulating the irradiation profile using different optical fibers.

Finally, we discuss our thesis that using a priori knowledge in the form of

mathematical model of the target cell or organism to fit to data can increase our

resolution and allow us to infer features that are not visible nor able the to directly

measured from the data. It is possible to expand this framework to the target

biological model by making the appropriate adaptations. In the case study of sea

urchin sperm, we can envisage extending this framework to include a signaling module

to analyze sperm chemotaxis. We were also able to improve the determination of

the depths of the frames of the 2D+Z(t) system. Furthermore, we improved the

analysis of that data in order to resolve the different motility and confining behavior

of two different species. The application of our morphodynamical model allowed

us to suggest that the flagellar beating of S. purpuratus sperm has higher mean

curvature on free swimming when compared to confined. Unfortunately, we could

not significantly detect chemotaxis for either species in the conditions tested and

different gradients should be assessed either by changing the diameter of the UV

light fiber or the duration of the UV irradiation. Overall, the frameworks developed

here, together with other recent techniques and methods, may prove instrumental for

imaging data analysis and, more specifically, to understand spermatozoan chemotaxis.
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Sumário

A digitalização e robotização do equipamento de laboratório contribuiu para a recente

rápida aquisição de dados e dos seus meta-dados. Embora este facto possa parecer

uma vantagem para o avanço célere da ciência, a análise destes dados tornou-se no

fator limitante. Este é também o caso da aquisição e análise de dados de imagem.

Após colecionar Gigabytes de imagens, os investigadores investem uma quantidade

de tempo várias vezes superior ao de aquisição para determinar as regiões de interesse

(ROIs) (e.g. célula) e para medir as suas caracteŕısticas relevantes (e.g. intensidade

de fluorescência média). Esta manipulação manual tem várias desvantagens como

tornar a análise não-reproduźıvel, e.g. o mesmo investigador dificilmente escolherá

exatamente as mesmas ROIs, mesmo usando o mesmo conjunto de imagens. Através

da determinação enviesada das ROIs, é posśıvel enviesar os resultados pela escolha

de que células incluir na análise. Tudo isto pode ser evitado se a análise de imagens

for digitalizada e robotizada. Definindo os mesmos parâmetros iniciais, o programa

de análise irá selecionar as mesmas ROIs, medir e processar essas medições de forma

repetitiva e exata, produzindo análises reproduźıveis. Observando os parâmetros

iniciais, é posśıvel determinar se existe viés na seleção automática ou na sequência

de análise. Outra vantagem óbvia é que a capacidade e velocidade de processamento

das unidades centrais de processamento e das unidades de processamento gráfico

permitem análises rápidas, facto essencial para diminuir o tempo entre a aquisição e

análise de dados.

A ideia de automatizar a análise de imagens não é nova e já existem muitos

programas comerciais ou com código-fonte livre que permitem fazê-lo, seja com

algoritmos simples ou complexos. No entanto, a maioria deles só podem ser

aplicados a organismos espećıficos e, por vezes, apenas se usados em protocolos muito

espećıficos. O principal factor que bloqueia este progresso é o uso de algoritmos de

segmentação (i.e. classificação dos pixeis em ROIs, fundo ou detritos) e filtração
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(i.e. rejeição/aceitação de ROIs de acordo com as suas caracteŕısticas). Na prática,

o computador não sabe o que está à procura nas imagens e frequentemente inclui

objectos diferentes ou exclui partes do objecto em estudo. Isto poderá enviezar

os passos seguintes da análise, potencialmente criando artefactos. Propomos o

uso de modelos matemáticos como conhecimento a priori da célula modelo alvo

para ser ajustado diretamente às imagens. A nossa hipótese é que podemos

obter as caracteŕısticas mais prováveis desses objectos, estimando o número e

forma dos objetos de interesse que melhor descrevem uma imagem (i.e. máxima

verosimilhança), e assim melhorar a sua deteção, rastreamento e caracterização.

A análise de imagens de espermatozoides é um exemplo onde a segmentação

é o principal método usado. Desta forma, estas células foram escolhidas como

caso-estudo biológico para testar a nossa hipótese. Os espermatozoides são células

móveis altamente especializadas cuja função é encontrar e fertilizar o ovo conspećıfico

aquando da reprodução. Por esta razão, tratam-se de células extremamente

importantes tanto do ponto de vista fundamental como do ponto de vista médico,

se tomarmos em conta que as anormalias na motilidade dos espermatozoides são

das principais causas de infertilizade em casais. Não surpreendentemente, cedo se

desenvolveram sistemas de análise de expermatozoides assistidos por computador

(CASA) que implementam segmentação de imagem e que são rotineiramente usados

em análises cĺınicas. Em maḿıferos, as células espermáticas têm que nadar um

percurso milhar de vezes superior ao seu comprimento através de uma geometria

interior complexa, frequentemente cheios de flúıdos altamente viscosos e de células

imunes potencialmetne hostis. A grande maioria delas não chegarão aos tubos

de Falópio, quanto mais ao lugar de fertilização. Nos invertebrados marinhos,

a fertilização ocorre durante eventos de desova onde o espermatozoide tem que

encontrar o ovo conspećıfico literalmente num mar de ovos de múltiplas espécies.

Em laboratório, os espermatozoides de ouriço-do-mar tendem a acumular e a

nadar confinados no plano de interface entre o ĺıquido e o vidro, que fazem

deles particularmente adequados para adquirir imagens da sua motilidade e da sua

quimiotaxia em resposta a moléculas libertadas pelo ovo. Por esta razão, o esperma

de ouriço-do-mar tornou-se num paradigma biológico interessante.

Vários estudos mostraram que os espermatozoides respondem aos péptidos

activadores de espermatozoides (SAP). A tradução destes sinais resulta em sequências

de picos de concentrações intracelulares de cálcio que são concomitantes com
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os peŕıodos de assimetria das ondas do batimento flagelar e que reorientam a

trajetória celular. Em certas espécies de ouriço-do-mar, como Lytechinus pictus, as

sequências de picos de cálcio estão espacialmente e temporalmente coordenadas de

forma a produzirem trajetórias quimiotáticas direcionadas para a fonte dos péptidos,

enquanto noutras espécies, como Strongylocentrotus purpuratus, fá-los produzir

comportamenteos desorientados. No entanto, o facto do ambiente natural destes

espermatozoides ser um volume tridimensional tem levantado preocupações sobre a

relevância e aplicação dos estudos gerados no plano. Sendo os espermatozoides

uma classe de células extremamente rápidas, exigem muito dos instrumentos de

microscopia tridimensional e de séries temporais. Particularmente desafiante é a

medição tridimensional de marcadores fluorescentes nos flagelos em movimento que

não podem ser feitas nos actuais microscópios confocais de alta performance. Para

esse fim, nas duas últimas décadas foram desenvolvidos vários sistemas de microscopia

especificamente para estudar espermatozoides. Um deles, o sistema 2D+Z(t)

(i.e. reportado na literatura como 3D+t), usa um dispositivo de piezoelétrico para

oscilar a objetiva a altas frequências, permitindo adquirir imagens bidimensionais

(2D) a diferentes profundidades (eixo Z) em função do tempo. Usando este

sistema, foi demonstrado que S. purpuratus apresenta velocidades e curvaturas da

trajetória média maiores em natação livre, quando comparado com natação confinada.

Infelizmente, a profundidade a que cada imagem é adquirida não é reportada

pelo sistema pelo que foi desenvolvido um algoritmo baseado na correlação entre

imagens e no ajuste da função Z(t) caracteŕıstica do dispositivo piezoelétrico para a

determinar. Apesar deste método conseguir fazê-lo adequadamente em muitos dados

experimentais, noutros tantos não o consegue devido ao aumento do desfasamento

entre a profundidade real e a estimada. Este facto tem atrasado estudos comparativos

da mobilidade e quimioataxia de espermatozoides.

Esta tese teve dois objetivos. O primeiro foi desenvolver e aplicar métodos

de análise de imagem baseados em conhecimento a priori, ajustando modelos

matemáticos do objeto a ser detetado ou rastreado diretamente às imagens. O

segundo foi desenvolver e aplicar métodos para comparar a mobilidade 3D de L.

pictus e S. purpuratus.

O caṕıtulo 2 é uma prova de conceito de que um modelo celular pode ser usado

para analisar imagens em 2D. Constrúımos um modelo matemático detalhado da

morfodinâmica dum espermatozoide e de como este nada num flúıdo através das
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suas alterações morfológicas. Assim, este modelo mecânico é composto por dois

módulos: forma, onde assumimos que a cabeça é um elipsoide de revolução, que

a curvatura local do flagelo é dada pela onda progressiva e que a torção flagelar

é constante, definindo assim o batimento flagelar; e mecânica, onde a f́ısica é

aproximada pela Teoria de Força Resistiva. Este modelo foi comparado diretamente

com uma imagem usando o procedimento seguinte. Primeiro pegámos no estado

atual do modelo e constrúımos a imagem-modelo correspondente a esse estado,

depois reescalámos a imagem-modelo para a resolução espacial e temporal da imagem

experimental e, por fim, fizémos a sua convolução com a função de propagação de

ponto ótico (point-spread function) caracteŕıstica da microscopia de fluorescência,

se for o caso. A imagem-modelo foi comparada com a imagem correspondente

ao mesmo instante através de correlação. Foi reportado que, em certas condições,

maximizar a correlação-cruzada é equivalente a maximizar a verosimilhança (i.e. uma

medição de quanto os conjuntos de parâmetros são explicados pelos dados). Devido

ao nosso modelo não ser linear, maximizámos a verosimilhança dos parâmetros do

nosso modelo usando um simples modelo evolutivo baseado em simulações de Monte

Carlo, selecionando e propagando os conjuntos de parâmetros com maior coeficiente

de correlação (uma imagem) ou com a maior soma de correlações (várias imagens, i.e.

a soma de todos os coeficientes de correlação) durante algumas iterações. A etapa de

propagação permite pequenas alterações aos parâmetros de forma a permitir explorar

o espaço de parâmetros sendo as alterações tornam-se cada vez menores a cada nova

iteração.

Ajustámos o nosso modelo morfodinâmico de um espermatozoide a diferentes

conjuntos de imagens. O primeiro conjunto foi criado a partir do próprio modelo (in

silico) com o intuito de provar que conseguimos obter os parâmetros usados para

gerar as imagens. Mostrámos que a distância entre o conjunto de parâmetros real

e final (i.e. ajustado) diminui a cada iteração, após o ajuste independente de três

condições iniciais aleatórias. O segundo conjunto de imagens teve como objetivo

averiguar a eficácia do nosso método comparando-a à de um humano. Para este

fim, obtivemos images de alta resolução espacial e temporal de L. pictus. Uma

celúla deste conjunto de dados foi rastreada de forma semi-automática por um

colaborador, reconstruindo a posição e forma do flagelo. Ajustámos o nosso modelo

à mesma célula e mostrámos que soluções obtidas diminuem a distância entre o

modelo humano e modelo morfodinâmico. Note-se que as pequenas diferenças entre
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os dois modelos poderão ter origem na suposição do modelo de que os parâmetros

são constantes, o que é cada vez mais improvável quanto mais tempo passa. Para

determinar se o nosso método consegue rastrear células em imagens com baixa

resolução espacial e temporal, ajustámos o nosso modelo a imagens de S. purpuratus

com essas caracteŕısticas, tendo obtido resultados semelhantes aos de alta resolução.

Por último, levantámos a hipótese de ser posśıvel estimar caracteŕısticas modeladas

mas que não são viśıveis nos dados experimentais. De forma a testá-la, usámos

imagens obtidas de espermatozoides tratados com marcadores de fluorescência de

membrana (célula completa) e de cálcio (Ca2+, apenas a cabeça durante condições

não-quimiotáticas). É posśıvel obter a informação de ambos os marcadores na

mesma célula no mesmo instante usando um separador de feixes. Conseguimos

obter parâmetros e posições flagelares semelhantes depois do ajuste independente aos

dados onde a célula completa ou apenas a cabeça estão viśıveis. No seu conjunto,

os nossos resultados mostram que é posśıvel ajustar modelos diretamente a imagens

com a vantagem de conseguir estimar caracteŕısticas que não podem ser medidas

diretamente através desses dados, o que não é faźıvel através dos métodos tradicionais

de segmentação, que dependem muito dos próprios dados.

O caṕıtulo 3 trata do problema de analisar e comparar a motilidade dos

espermatozoides de duas espécies de ouriço-do-mar quando estão confinados ou

nadando livremente num volume. A análise de espermatozoides nadando num volume

necessita de sistemas de aquisição de imagens especiais. Usámos o sistema proposto

por Corkidi et al., (2008) que implica inferir a profundidade de cada imagem através

do tempo a que foi adquirida antes de obter as coordenadas 3D das células. Para

isso, começámos por estimar os instantes em que o piezoelétrico se posicionou

a profundidades máximas e ḿınimas. Apoiados na suposição de que as células

não se movem significativamente durante um peŕıodo do piezoelétrico (imagens

adquiridas à mesma profundidade deverão estar positivamente correlacionadas),

usámos a informação coletiva da correlação entre todas as imagens e as suas vizinhas

subsequentes (dentro de um peŕıodo do piezoelétrico). Depois ajustámos a função

canónica do movimento do piezoelétrico entre esses extremos. Para detetar as células

usámos um modelo 3D do espermatozoide médio composto por imagens 2D, cada

uma correspondente a um padrão de difração resultante da distância entre a objetiva e

o centroide da célula. Cada padrão de difração foi usado para fazer correlação-cruzada

com cada imagem, sendo gravadas as posições de correlação máxima através das quais
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o centroide da célula foi calculado, após o seu agrupamento (i.e. de forma a identificar

que posições pertencem à mesma célula, dentro de um peŕıodo do piezoelétrico).

Estas deteções foram atribúıdas a diferentes células através do agrupamento pela sua

distância no espaço e no tempo. De forma a averiguar os vários comportamentos

natatórios, ajustámos o menor conjunto de hélices que explicasse um conjunto de

pontos de uma trajetória. Para isso, usámos o critério de informação Bayesiano

como critério de pontuação de um problema de programação dinâmica, um método

que apelidámos como ajuste por pedaços helicoidais (piecewise helix fitting).

Os comportamentos de natação em modo livre ou confinado dos espermatozoides

de S. purpuratus foram estudados previamente, mas nada é conhecido acerca

da natação livre dos espermatozoides de L. pictus. Querendo também saber o

desempenho do nosso método de rastreio, usámo-lo para determinar a velocidade,

curvatura e torção das trajetórias médias de ambas as espécies para os dois

modos de natação. Os nossos resultados foram consistentes com o que está

reportado na literatura. Mostrámos, pela primeira vez, que as trajetórias de natação

livre dos espermatozoides de L. pictus têm velocidades menores do que a outra

espécie, ao contrário do que acontece no modo confinado. A torção média das

trajetórias espermáticas desta espécie é também menor do que a de S. purpuratus.

Interessantemente, a curvatura da trajetória dos espermatozoides de L. pictus não se

altera entre os modos de natação livre e confinado, enquanto esta Ãl’ diferente para

os de S. purpruatus. Estudos recentes com espermatozoides de Arbacia punctulata

mostram que as suas trajetórias têm caracteŕısticas semelhantes às de L. pictus. De

forma a poder explicar todos estes dados, adaptámos o nosso modelo morfodinâmico

para conseguir simular a natação confinada quando a torção flagelar é diferente

de zero e procurámos os conjuntos de parâmetros que produzissem trajetórias

semelhantes às destas espécies. Os nossos resultados sugerem que os espermatozoides

de S. purpuratus têm maior curvatura flagelar média (e, provavelmente, também

maior torção flagelar) quando nadam em modo livre, comparativamente à natação

confinada. Este efeito poderá dever-se ao aumento de viscosidade perto da superf́ıcie

que afeta mais o batimento flagelar dos espermatozoides nesta espécie do que nas

outras duas.

Usando o procedimento de análise de imagens do sistema 2D+Z(t) que

desenvolvemos no caṕıtulo 3, investigámos o comportamento quimiotático dos

espermatozoides de L. pictus e de S. purpuratus no caṕıtulo 4. Em estudos de
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quimiotaxia destes espermatozoides em natação confinada, foi criado um gradiente

de um péptido quimitático libertado pelo ovo (Speract). Para esse efeito, usou-se

uma forma bloqueada (enjaulada) do péptido cuja afinidade para o seu recetor é

1000 vezes menor e um gradiente de concentração da forma ativa foi modulada por

irradiação ultravioleta (UV) (desenjaulamento). Este processo the desenjaulamento

foi usado para produzir um gradiente quimiotático no sistema de microscopia 3D.

Duas condições foram testadas: com e sem quimioatrator enjaulado, tendo irradiando

ambas com UV durante dois segundos, definindo assim os intervalos temporais antes,

durante e depois da irradiação. As trajectórias das células foram reconstitúıdas

por ajuste por pedaços helicoidais e obtivémos séries temporais dos parâmetros dos

segmentos helicoidais. De forma a ter em consideração a dependência dos dados

dentro de cada intervalo temporal, ajustámos modelos lineares mistos aos dados.

Apesar desta estratégia ter sido capaz de distinguir os parâmetros obtidos para as

duas espécies, não conseguimos encontrar nenhuma alteração nos parâmetros que

fosse consistente com quimiotaxia provocada pelo desenjaulamento do quimioatrator.

Interpretámos este resultado como sendo consequência de uma criação deficiente do

gradiente que não foi, presumidamente, detetado pelas células. Depois sugerimos

várias alterações aos protocolos experimentais de forma a averiguar se existem outras

condições que promovam quimiotaxia. Noutro estudo, a quimiotaxia em natação

livre dos espermatozoides de A. punctulata foi conseguida usando irradiação UV

sustentada. Uma estratégia semelhante poderá ser eficiente para os espermatozoides

das duas espécies estudadas aqui. Alternativamente, poderemos criar gradientes

diferentes modulando o perfil de irradiação através do uso de fibras óticas diferentes.

Finalmente, discutimos a nossa tese de que o uso do conhecimento a priori sob a

forma de modelo matemático da célula- ou organismo-alvo para ajustar dados pode

aumentar a resolução e permitir estimar caracteŕısticas que não foram nem podem

ser medidas diretamente através desses dados. É posśıvel expandir o algoritmo

desenvolvido para o modelo biológico alvo fazendo as alterações apropriadas. No

caso apresentado, podemos adicionar um módulo de sinalização e estudar a natação

espermatozóide em ambientes quimiotáticos. Acreditamos que isto será crucial

para descobrir as causas e mecanismos dos casos de infertilidade em humanos

que ainda não compreendemos. Conseguimos também melhorar a determinação

da profundidade das imagens geradas pelo sistema 2D+Z(t) e ainda a análise

desses dados. Além disso, melhorámos a análise desses dados de forma a conseguir
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diferenciar a natação e comportamento de confinamento entre as duas espécies. A

aplicação do modelo morfodinâmico permitiu-nos sugerir que os espermatozoides de

S. purpuratus têm maior torção flagelar aquando a natação livre, quando comparado

com o modo confinado. Infelizmente, não conseguimos detetar comportamento

quimiotático nas condições testadas, pelo que outros gradientes deverão ser testados.

No geral, os métodos desenvolvidos aqui, em conjunto com outras técnicas recentes,

serão essenciais para a análise de imagem e, mais especificamente, para compreender

a quimiotaxia dos espermatozoides.
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discussions and much time spent during breaks, lunches and coding advice. I also
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Chapter 1

Introduction

Today biological sciences are generating imaging data at a huge pace. This is usually

followed by several weeks of painstaking analysis by researchers who usually select

the regions of (their) interest. As such, imaging data analysis is currently one of the

major bottlenecks in scientific productivity. Also, the analysis made by a person is

seldom reproducible, even if the same person were to reanalyze the same data (e.g. by

selecting different regions of interest). This has led to an effort to automate imaging

analysis but many methods cannot be generally applied to all cell types, markers,

etc., because the computer does not know what it is looking for and filters like size

and marker intensity are not enough to detect or track the cell efficiently. For these

reasons many scientists still resort to manual annotation and analysis of their imaging

data.

Sperm analysis is one such example. These fast cells require high temporal

resolution from the microscopy setup if one hopes to study their motility; this is

the reason why more data per second is generated in this kind of setup. If you couple

this with three dimensions (3D) stack imaging, a few Gigabytes are easily generated

and stored in a few seconds. Automatic image analysis is critical to deal with such

problem. This aspect has hindered comparative studies on how spermatozoa from

different species swim and, consequently, on how they react to different chemotactic

gradients. These kind of studies can give insights on human fertility problems which

causes are currently unknown.

In this thesis we explored automatic image analysis based on a priori knowledge

to detect and track spermatozoa in both 2D+t and 2D+Z(t) imaging data. We then

used this methodology to make a comparative study of the motility of spermatozoa
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CHAPTER 1. INTRODUCTION

from two different sea urchin species and to assess their chemotaxis behavior in 3D.

As this work involved diverse scientific fields, which made a continuous introductory

flow challenging, we will first introduce some of these fields independently. They will

be integrated and expanded as we introduce new ones. In more detail, we will start

by making an introduction to modeling and Modeling Relation, then we will move on

to current imaging analysis methods and how models have been used to do it and,

finally, we will introduce our biological case study – the sea urchin spermatozoon,

expanding its state-of-art in the light of modeling and image analysis. Thereafter,

the objective and outline of this thesis will be presented.

1.1 Modeling and Modeling Relation

Making supported statements about the world requires evidence. This evidence is

usually the result of fitting a model to data obtained somewhere and somehow. It

can be as simple as the case of assuming the model of people height in a class to

be Gaussian distributed and to assess if those distributions are different as we fit

the model to samples of different classes, using the appropriate statistical model.

However, a lot can go wrong in this simple process. Is the distribution of heights

on each class correctly modeled by a Gaussian one? Is the sample of each class

representative of their real distribution? Is the ruler well calibrated and suitable to

measure the expected differences? What is the error or noise of the measurements?

Are all the assumptions of the statistical test met, e.g., a Student’s t-test to test for

differences of the mean height assumes independent data but are we sure there is not a

student taking both classes present in both samples? A good experimental design will

deal with most of these issues but complex questions, sampling methods, measuring

devices or models might have characteristics which, in the particular ensemble used,

are incompatible to answer the question. Many times, the incompatible characteristic

is not obvious, it is difficult to identify or simply is not even noticed to exist. At the

end, there can be trouble in either or both model and data.

In order to better understand whether we should believe more in the data or the

model, we will first introduce the Modeling Relation developed by Rosen, (1991)

(fig. 1.1). In a nutshell, this is a framework that relates the natural system, how we

perceive it and how we can infer and validate the mechanisms occuring in it using

formal (i.e. mathematical) language. Thus, we find useful to describe the different
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1.1. MODELING AND MODELING RELATION
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Figure 1.1: Rosen’s Modeling Relation. Adapted from (Rosen, 1991).

types of inferential processes.

A natural system is a set of properties and the events that change those properties.

To understand the natural system we must know and understand the cause of such

properties and events (mapping 1). However, we cannot make direct assessment of

the causes in the natural system. Thus, we must use our senses to perceive it so

we take measurements of the properties and events – an encoded representation of

a subset of the natural system (mapping 2). We must also develop a model that

infers something about the encoded data (mapping 3). This, however, does not say

anything about the natural system. In order to achieve correspondence between the

inferential (mapping 3) and the causal (mapping 1) processes, the inferenced result

must be decoded back to the natural system (mapping 4), hence making a guess or

expectation of how the natural system changed. If this last step cannot be made,

then our model does not describe the causal process.

In the end, we can choose to believe the data, the model or a mixture of both.

Believing the data is the most popular approach. Researchers often collect data from

samples and then fit different models to it until one is found, usually the one most

significantly supported by the data. This can lead to data-driven models that merely

describe the data but that do not provide new knowledge. New samples or more data

points may need alterations to the previous model to accommodate them. Hence,

this is not the case of a phenomenological model.

Believing the model is the most infamous approach as there is the case of

believing the alternative hypothesis of a question and fitting different distributions
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and statistical models until the researcher is proved right. This is a typical case

when people with poor statistics knowledge“torture the data until the data confess”.

As this is considered bad scientific practice, we do not find it useful to discuss this

further. There is, however, a reasonable preference for model-driven beliefs if it is

impossible to perceive the external world with current technology if measurements

(mapping 4) are believed to suffer from the issues referred above (or others). The

former was the case of the prediction of the Higgs boson (ATLAS Collaboration, 2012;

CMS Collaboration, 2012) and also of the gravitational waves proposed by Einstein’s

General Relativity which could only be measured recently (Abbott et al., 2016).

Similarly, in biology there are many theoretical predictions awaiting for technology

to be able to measure them. Many metabolic and signaling pathways or membrane

channel functions and mechanisms, proposed by available data and knowledge, are

not easy to be tested in vivo due to lack of specific inhibitors and blockers. Also,

measurement off all components of the pathway is usually impractical as the available

methods can lead to artifactual behavior.

In my opinion, mixed-belief is where most scientist want to be. By formulating

a hypothesis and designing an experiment to test it, which is able to join both the

appropriate procedure for data collection and the correct statistical test, the scientist

formalizes a model (mapping 3) to which they will feed data (mapping 2) and from

which they get a prediction which is validated (mapping 4). Then (s)he is happy to

say that the cause of the natural system has correspondence to the inference process

of the model (mapping 3) and a new discovery (or a replicate assay) is confirmed.

In this case, the scientist is both confident on the properties of the collected data

characteristics and on the model details. Note that all model predictions from every

meaningful input data must be verified for effective correspondence of the inferential

and causal processes. For example, Newton’s law of gravity allowed Le Verier and

Adams to hypothesize the existence of an unknown planet affecting the predicted orbit

of Uranus, and their calculations predicted the position of Neptune, later confirmed

by Galle. Both data and gravitational model were believed to be corrected and,

consequentially, the solar system model was modified accordingly. Although the

gravitation model was formulated and calibrated from earthly objects and correctly

predicted the position and existence of many ’out-of-this-world’ objects, it was not

successful in modeling Mercury’s orbit. Only with Einstein’s General Relativity was

able to predict the correct amount of precession of the orbit’s eccentricity.
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Taking all this into consideration, we should be looking to build a model where,

independently of the measuring process, there is enough detail in the inferential

process that predicts several different aspects of the natural system (i.e. our biological

model). As an effort to confirm all predictions (mapping 4) should be made, from

all meaningful measurements (mapping 2), the model should also be simple enough

that the correspondence between inferential and causal processes can be attained.

1.1.1 Mathematical modeling

Looking at the Modeling Relation from the mathematics point-of-view, we define a

mathematical model which is a mapping that will take some input (as the form of

data) and generate some predictions (also measured in the form of data). This model

will be described by a set of assumptions and their consequent parameter set (θ).

Taking measurements of the natural world (i.e. data) is often affected by noise or

other transformations (see section 1.2 for more details) which can also be described

mathematically. How should we choose between two different representations of

the data? If we go for a more complex model (e.g. the extreme case of the

data itself), no or little information may be gained, and, if we go for the simpler

model, the abstraction or imprecision may be so great it could be representing either

this or completely different data. Both in statistics and other areas, there is the

tradition of choosing the most parsimonious model, meaning the simpler one that

can model the data well enough. Modeling the data well enough is usually given by

the likelihood (L), a measure that a set of parameters are supported by the data, and

the complexity is usually given by the number of parameters (k). Both Frequentist

and Bayesian schools derived the Akaike’s information criteria (AIC) and Bayesian

information criteria (BIC), respectively, which are scores that give different weights to

the likelihood and to the parameter number (Hastie et al., 2009). The first is derived

from information theory and both can be derived from the Bayesian framework. When

to use one or the other is a debate lasting for decades but it is generally considered

BIC gives more penalty to the number of parameters (Burnham and Anderson, 2002).

Whatever the criteria chosen, it is its relative difference that holds some meaning –

the model with lower score is the most parsimonious.

Consider now that we have two different inferential models (i.e. the measurement

models are the same) that may or may not have the same parameter set. How should

we choose between these competing models when they are applied to the same data?
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A lot of effort and debate has also been put to answer this question. As our inferential

model transforms measured data into predictive data, we can also use AIC or BIC to

compare models (Hastie et al., 2009). In the special case where the models are nested

(i.e. one of them is a sub-model of the other, e.g., with one of the parameters fixed),

we can use the likelihood ratio test: using the ratio of each model’s likelihood, we

can build a statistic that is chi-squared distributed and compute a confidence interval

for the difference. If there is no difference, the simpler model should be chosen.

How are Model Relations and model construction affected in imaging data

processing and analysis? To answer this question we must first think about what

is an image and how it is formed.

1.2 Imaging data

1.2.1 Imaging data acquisition: from scene to image

In a modern optical or electron microscopy setup, a sample is irradiated with photons

or electrons, respectively, and these alter their path by interacting with it. The

irradiated media is then captured by a detector which translates the information to

electric impulses, e.g. by a charged coupling device (CCD) or a complimentary metal

oxide semiconductor (CMOS) device, which are in turn saved as digital information.

The final imaging data (I, i.e. the measurement) will be a distorted representation

of the scene (S, i.e. the natural system) and this distortion can be the result of

four different transformations on the unstransformed representation of the scene, the

image (Iu) (Knill and Richards, 1996). These transformations are listed below (note

’A→ B’ means object A is mapped to object B):

• Noise and blur (S → (Iu ∗β)i + εi): the image is the result of the convolution

of the scene by the blurring kernel (β), to which background noise (b) and

sampling error (εi ∈ ε ∼ N (b, σ)) are added to the pixel i. This is the

transformation most commonly addressed in imaging analysis. The noise may

not be Gaussian, i.e. most times it is not, although we can use it as a

fair approximation in many of those cases. Note the symbol ’∗’ represents

convolution.

• Superposition (S ∼ (S1 + · · ·+ Sn) or σ(S1, . . . ,Sn)): it deals with the fact

that a complex scene or signal can usually be decomposed into simpler elements.

Wavelet functions and Fourier analysis are examples where linear combinations
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of wavelet or sinusoidal functions, respectively, are added to model a complex

signal. Alternatively, other types of rules (σ) might be applied to the set of

the simpler individual components. These methods can be used to decrease

the number of parameters necessary to describe a scene. The use of a subset

of components resulting from the Principal Component Analysis (PCA) of the

signal is also a popular approach.

• Domain warping (S → (Iu ◦ ψ)): different temporal and spatial contractions

or expansions (ψ) of the scene’s domain might occur when acquiring the signal

of the same object. An example is taking a photograph of a person’s face from

two different point-of-views – the object is the same but the resulting images

are different. Note the symbol ’◦’ represents function composition.

• Interruptions (S = {O1, O2} → Iu = {I1 | D′, I2 | D −D′}): many times a

scene is a composition of several objects (Oi), from which we only observe a

subdomain (D,D′), e.g., due to occlusions or missing data.

Because any combination of these transformations is possible, imaging data often

needs to be pre-processed and analyzed to extract the information the researcher

desires. Pre-processing usually involves low-level operators, e.g. background

correction, contrast enhancement or deconvolution, while image analysis tries to

detect and measure features on the images, e.g. track cells and measure their mean

fluorescence or size.

An important pre-processing method of fluorescent imaging data is deconvolution,

which is related to the first transformation referred above. In more detail, the non-

uniform generation of irradiation (i.e. excitation) source, its travel through the optical

components until it reaches the sample, the random emission in space and time by the

fluorescent marker and its caption through more optical components until it reaches

one of the several units of the detector causes the final image to be a distorted

representation of the original sample – a convoluted one. The distortion operator is

called point-spread function (PSF) and, if we know this function, we can deconvolute

the final image and obtain a sharper image which is a closer representation of the

object (Agard and Sedat, 1983; Zhang et al., 2007). Both 3D fluorescence microscopy

and super-resolution microscopy need to estimate accurate PSFs so the deconvolution

does not create artifacts or aberrations, the reason why different methods to calculate

the effective PSF of each system are currently being developed (Patwary and Preza,

2015). On the other hand, for most uses the PSF can be approximated by a Gaussian
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function using the information regarding the microscopy setup used (e.g. objective

numerical aperture and the excitation and the fluorophore’s emission wavelengths)

(Zhang et al., 2007). After recovering the deconvoluted image, and assuming this

process does not create artifacts, it is easier to analyze it, in order to estimate the

scene it encodes.

1.2.2 Imaging data analysis: from image to scene

The objective of imaging data analysis is to decode the scene encoded in images. Are

the imaged objects cells? Where are they located? What is their shape? What is their

size and what is the concentration of a specific marker inside them? These are the kind

of questions a researcher often does when analyzing imaging data and their respective

answers will provide the data to verify the hypotheses at hand. Although a human

can understand a scene represented by an image, a computer program needs to be

coded with the operations to perform such task. We can use a model with parameters

θ to represent a scene encoded by an image (I). Due to the signal transformations

introduced before, specifically the random sources, there is a probability (P (I | θ))

that a given scene/parameters results in a particular image. When we specify a

model, the set of possible images will follow a given distribution with total probability

summing to one. Inversely, we also have the likelihood of the parameters given a

particular image (L(θ | I)), meaning that we are measuring how likely it is for a

set of parameters (i.e. scene) to have formed that specific imaging data (i.e. the

sum over the parameter space can be different than one). It is not an unusual

practice to estimate the model’s parameters by maximizing the likelihood, usually

by solving to when the partial derivatives are zero. The parameters can also be

estimated by Bayesian inference. Bayes theory defines that the posterior probability

(P (θ | I)) is the likelihood (P (I | θ))1 times the prior probability (P (θ)) over the

expectedness of the image (P (I)): P (θ | I) = P (I | θ)P (θ)/P (I) (Knill and

Richards, 1996). Assuming the same imaging data, the expectedness is constant (i.e.

a normalizing factor) so the posterior is proportional to the likelihood times the prior

(P (θ | I) ∝ P (I | θ)P (θ)). While both the Frequentist and Bayesian approaches

make use of a model to generate the probability mass function (or probability density

function, in the case of a continuous model) only the latter takes prior knowledge into

account, i.e. in the shape of the probability of the parameters. Either case present

1Note they define the likelihood differently than the Frequentists.
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the same challenge when dealing with complex or numerical models, it is sometimes

impractical to get an algebraic function of the likelihood so different optimization

algorithms can be used to find the parameters which maximize P (θ | I).

A typical experimental pipeline where imaging analysis is used is summarized in

Dufour et al., (2015). Following a starting experimental design, microscopy data is

obtained and cells are detected. Their descriptions are then extracted and fed to a

machine learning algorithm which allow us to select the most relevant features to make

biological inferences. Finally, these allow us to propose new hypothesis and design

new experiments, closing the cycle. We will now detail some of the processes and

characteristics entailed by the current implementation of this experimental pipeline.

One of the crucial steps in image analysis is its segmentation in order to determine

the regions of interest (ROIs) (e.g. cells) in each image. We can consider two different

strategies to do this. The first is image-based and tries to assign each pixel to a given

class, e.g. cell, background, fluorescent marker or debris. This is the main method

used to study cell morphology (Smith et al., 2009b), protein colocalization, remote

signaling, magnetic resonance images (Ahmed and Mohamad, 2011), angiogenesis

and stem cell (Rabbani and Javanmard, 2011), to name a few representative studies.

There are two main approaches: pixel-based, where the multidimensional information

of each pixel is used by supervised and unsupervised methods to classify it; and object-

oriented classification, a bottom-up approach were neighboring pixels are sequentially

clustered according to some homogeneity criteria and the different groups are then

classified using, e.g., pixel intensity, shape or texture features (Inglis et al., 2010). The

homogeneity criteria is usually a score or an energy function that represents similarity

or dissimilarity to be maximized or minimized, respectively, and its formulation is

crucial to solve the problem at hand without creating artifacts. Correlation or least

squared distance are popular as similarity measures (Hastie et al., 2009). Pixel-based

methods are perhaps the most widely used ones and can be as simple as defining

an intensity threshold. Then, every pixel which intensity is above that threshold is

retained while those which do not are set to zero. A body of work was done in

order to define the threshold value(s) automatically (Ren et al., 2010). The second

segmentation strategy is model-based and tries to estimate the data that produced

an image or to fit some kind of model directly to the image. Given an explicit or

implicit parametric model it is possible to maximize a score function to e.g. obtain

the boundary regions of an object, e.g. using active contours (Xu and Prince, 1998).
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In these cases, objects’ detection and descriptors can be obtained in a single step.

As explained before, the parameters of stochastic models can be estimated or fitted

using the maximum likelihood estimation (MLE) or different criteria in the case of

Bayesian inference (e.g. maximum a posteriori or minimum mean squared-error,

(Knill and Richards, 1996)).

Immediately after detection, the descriptors of a cell model can be as complex

as the position and intensities of all pixels within the ROI. Image segmentation is

then usually followed by fitting parametric lines, ellipses or other shape models to

individual clusters of pixels of the same class (Brokaw, 1984; Baba and Mogami,

1985) or simply by measuring their size and mean intensity in order to reduce the

complexity of the model. Prior knowledge is very often introduced at this stage in

the form of filtering the detections according to the desired range of each feature.

In the case where model-based procedures were used, the estimated parameters can

be directly used as descriptors. On the other hand, many of these algorithms only

select the ROIs, thus feature extraction from the imaging data must still follow. After

reducing the models’ complexity, the selected cells and their features can be used by

machine learning algorithms (e.g. Principal Component Analysis, Linear Discriminat

Analysis and Deep-learning algorithms) in order to select the relevant features that

allow us to distinguish significantly different classes of cells (e.g. the percentage of

cells affected by a treatment or the response between different treatments).

An example of the image-based approach is the super-resolution reconstitution of

3D structures using electron microscopy (EM) (Vulović et al., 2013; Kervrann et al.,

2016). The main idea is to model the complex image formation of the microscopy

system and, from many slices of the structure at different orientations, to estimate

the position and relative orientation of every part of the object such that it would

reproduce those slices. This method even allows to distinguish between different

frequent conformations of the same structure. However, it cannot be applied to cells

which are constantly moving or deforming and assuming shapes that are (slightly)

different to other cells.

In the case of tracking, several semi- and full automatic algorithms exist which

link the detection of one frame with the most similar object in the next frame in terms

of position, shape and texture (Tsai et al., 2012). Consequentially, the atemporal

parametric models fitted individually to an object at each frame (i.e. time-point) can

be used to fit temporal models (Friedrich et al., 2010). Other algorithms simply use
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the current detection as initial condition to estimate the one on the next frame given

a motility model (de La Gorce et al., 2008). This however can lead to poor fitting

when the displacement between consecutive frames is significant. Different tracking

methods assume both motility and statistical models to estimate the position of the

object at the next time-point and correct it using the object closest to the prediction.

To the best of our knowledge, there is no report in the literature about a model-

based approach to characterize cells that change shape and position in time using

parametric functions that explicitly define their shape and the physics governing their

motility. We propose such strategy will be instrumental for objective, fast, detailed

and rigorous analysis of imaging data. As such, we present a framework which uses

this apporach in Chapter 2.

1.3 Sea urchin spermatozoa

Sea urchins have been popularly known by man since pre-historic times as a food

source. Their gonads are specially appreciated by many cultures even today,

generating a global market value around >109 millions dollars per year. Before

the 20th century they were thought to cure several different illnesses, including

treating kidney stones and helping digestion, while their shells were used as personal

apothecaries, lamps, necklaces, amulets and to produce indelible ink (i.e after grinded

up). (Harvey, 1956)

These marine invertebrates belong to the phylum Echinodermata, class

Echinoidea. They are animals with 5-fold radial symmetry that live in benthic,

intertidal and pelagic ecosystems, usually living in groups on rocky substrates but can

also be found isolated during low tides of intertidal areas (Hernández and Russell,

2010). Adult females and males spawn their gametes almost synchronously to the sea

during interspecies broadcast spawning events (Johnson et al., 2013). Spermatozoa

must outcompete their intra- and interindividual male counterparts to be able to

fertilize an ovule. After fertilization, the embryo develops into a larvae during the

morphogenesis phase in pelagic ecosystems. Later, they suffer metamorphosis and

settle in benthic habitats as juveniles, a more identifiable form resembling the adult

phase. At two years of age, they maturate and become sexually active (Dupont

et al., 2013). How their spermatozoa are able to locate and reach the conspecific

ovule during broadcast spawning events is a challenge yet to be understood. To help
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us understand these challenges we will look at the spermatozoan morphology, motility

and chemotaxis, preferably the ones related to sea urchin, whenever possible.

1.3.1 Sperm cell morphology

The first whole cell analysis of a matured sea urchin spermatozoon with EM was

performed by Afzelius, (1955). These cells are very compact, meaning they are

almost deprived of cytoplasm, and have their organelles highly organized. Similar to

sperm of other taxa, this cell is divided into head and flagellum. The head contains

the nucleus and the mitochondrion, and the flagellum the axoneme (fig. 1.2A).

Usually the head has a wedge or conical shape, measuring 3-4 µm long, and

harbors the nucleus, the acrosome and two centrioles. The nucleus is surrounded by

a double membrane and appears homogeneous, although it can present granulation.

The acrosome is a Golgi-like structure with approximately 0.25 µm radius located at

the tip of the head. It is filled with hydrolytic enzymes that will allow the penetration

of sperm into the ovule protective layers (Ikawa et al., 2010; Li et al., 2010). There

are two centrioles: a proximal, longer one which is coupled to the flagellar basal body

located in a posterior cave of the nucleus named centriolar fossa; and a distal, short

one which is freely located between the mitochondria and the nucleus (Afzelius, 1955;

Marshall and Luykx, 1973). No ribossomal machinery nor protein translation were

detected in these cells.

Although in some cases the flagella close to the head is more similar to mammalian

sperm midpiece, in sea urchin sperm it is better described as an extension of the head.

It is filled with mitochondrial material in a ring shape around the basal plate and the

axoneme (Afzelius, 1955).

In many sperm cells, the flagellum represents the major part of the cell length

(Bishop, 1962) and was later proposed to promote optimal progression of the cell

(Tam, 2008). The backbone of the flagellar basal body is composed by a central pair

of singlets surrounded by nine triplet filaments of microtubules (Marshall and Luykx,

1973). In the flagellar piece close to the head, the outer triplets turn into doublets

by losing the outer tubule and, in the last micrometers of the flagellum, the central

pair also vanishes. The standard structure of the sea urchin axoneme is depicted in

figure 1.2B. The central singlets are connected to each other by a proteic bridge and

they form the central pair complex in conjunction with other material. The central

pair complex can be connected to each outer doublet by a radial spoke, an array
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Figure 1.2: Morphology of a sea urchin sperm cell. A: head, Copyright:
doi:10.1152/physrev.00028.2010, with permission from Alberto Darszon. B: flagellar
axoneme.

of components that control kinases and phosphatases on the doublet microtubules

(Nicastro et al., 2006). Each outer doublet is composed by a major (A) and a

minor (B) subtubule and is connected to the next by nexin links and two rows of

dyneins. The dynein regulatory complex connects the radial spokes to the doublets.

Each doublet is numbered relatively to the plane defined by the central pair and its

perpendicular plane that passes through the center of the axoneme. The doublet

that crosses this plane is doublet number 1 – the order then follows clockwise (i.e.

considering anteroposterior orientation of the flagellum). Usually, there is also a

protein bridge between doublets number 5 and 6.

1.3.2 Sperm motility

Sea urchin spermatozoa are among the fastest cells of the animal kingdom. As it

happens with most biological cells, they swim under a low Reynolds number regime.

This means that, due to their size and velocity relative to the kinematic viscosity of the

fluid in which they typically swim in, the viscous forces dominate over the inertial ones

(Purcell, 1977). In practice, the cell can only be displaced in the fluid when it exerces

force on it and stops swimming almost immediately when force exertion ceases. Sea

urchin sperm cells can achieve velocities up to 300 µm.s-1 with a flagellar beating

frequency of 20-30 Hz (Corkidi et al., 2008). Bishop, (1962) sates that, in 1898,

motility was attributed to be the sole function of the sperm flagellum. The flagellar
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patterns of both sea urchin and bull sperm were identified as propagating waves which

originate at the flagellar body (Bishop, 1962), contrary to the beating patterns of

many bacteria and mammalian sperm which tend to be helicoidal (Su et al., 2012).

The wave propagation pattern suggested the flagellum is controlled by a whiplash

mechanism but several early and recent studies demonstrated it was not the case.

One showed that the energy source required for motility (i.e. adenosine triphosphate

(ATP)) is available in all the flagellum and others detected local activation of the

flagellum in developing spermatids, in reactivated sperm cells and in demembranated

flagella (Bishop, 1962; Chen et al., 2015).

Most sea urchin spermatozoa have a quasi-planar beating (Gray and Hancock,

1955; Cosson et al., 2003) and this was shown to optimize the velocity for cells with

spherical heads up to ∼ 2.5 µm of radius (Brokaw, 2003). This plane is defined

perpendicularly to the one defined by the central pair of microtubules of the axoneme

(fig. 1.2 B). The asymmetry in the flagellar beating, characterized by a principal

wave which displaces more to one side of the cell, allows the cell to swim in circles

when it is confined near a water-surface interface (Brokaw, 1965; Cosson et al., 2008;

Corkidi et al., 2008; Friedrich et al., 2010) and in helices otherwise (Crenshaw et al.,

2000; Corkidi et al., 2008; Jikeli et al., 2015). It was shown that several external

conditions significantly affect both the beating patterns and the overall trajectory. For

example, at high viscosities the beating frequency, the maximum wave amplitude, the

wavelength and the cell velocity are decreased (Brokaw, 1966) and, in the case of

bull sperm, the flagellar amplitude near the head decreases while it is maintained

near the tip (Rikmenspoel, 1984). Also in bull sperm, the average path curvature

is decreased at high viscosities (Friedrich et al., 2010). Some sperm even change

their quasi-planar beating into helicoidal patterns at increased viscosity (Woolley and

Vernon, 2001).

The kinesins and dyneins promote relative sliding between the axoneme filaments

of opposite sides (Nicastro et al., 2006) and asymmetry is proposed to be induced

by the 5-6 bridge of the axoneme or to arise due to non-linear instabilities in flagellar

dynamics (Gadêlha et al., 2010). Adenosine biphosphate has been shown to influence

flagellar curvature in bull sperm, supposedly by directly increasing the affinity of

dyneins to the microtubule filaments (Lesich et al., 2008). Local control of dynein

activity has been proposed to be regulated by local flagellar curvature (Brokaw, 1971),

to simply arise from force-dependent sliding control (Brokaw, 1975; Camalet and
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Jülicher, 2000) or to be a natural consequence of varying inter-doublet distance as

the flagellum bends (Lindemann, 1994). The control of a quasi-planar beating pattern

has also been proposed to be more complex than the helicoidal counterpart because

of the radial symmetry of the axoneme, but its mechanism is not fully understood

(Brokaw, 2003; Riedel-Kruse et al., 2007; Gadêlha et al., 2010; Chen et al., 2015).

Although much is known about the mechanistic process, we are yet to understand

how the several components act together in order for the cell to control its flagellar

shape and deformation and, thus, its swimming trajectory.

1.3.3 Sperm chemotaxis

Sperm chemotaxis – the ability of a spermatozoon to detect and find the conspecific

egg by decoding chemical gradients – is believed to be essential for the reproduction

of many species (Kaupp, 2012). Most of our knowledge of spermatozoan chemotaxis

comes from experiments with sea urchins. This is because they produce more cells

than mammals, both in number and in concentration, and the media where they

swim is also easy and cheap to reproduce, contrary to the highly heterogeneous and

viscous fluid in the female mammalian genital tract. Also, they swim in circles when

confined (i.e. swimming close to a water-glass or water-air interface), allowing us to

follow the same cell for several minutes (Harvey, 1956; Cosson et al., 2003; Darszon

et al., 2008; Gaffney et al., 2011; Guerrero et al., 2010).

The chemotaxis of animal cells was first proposed in sea urchin sperm by Lillie,

(1912) but it was only after isolation of resact from Arbacia punctulata’s eggs and

its establishment as a sperm chemoattractant that animal chemotaxis was accepted

(Hansbrough and Garbers, 1981; Ward et al., 1985). It has been shown L. pictus

sperm display chemotaxis at small distances from the gradient center when releasing

the chemoattractant (Speract) from its caged form (Guerrero et al., 2010). A 2-

nitrobenzyl group was inserted at a backbone amide that greatly decreases Speract’s

affinity for the sperm receptors and can be removed by ultraviolet (UV) light. Sperm

swim up the gradient by first increasing and then decreasing the asymmetry of the

flagellar beating, which promotes an acute turn followed by a straighter trajectory.

Calcium (II) has been shown to affect the flagellar curvature on demembranated

flagella (Brokaw, 1979) and these turn-and-run events have also been shown to be

related with internal calcium (II) concentration ([Ca2+]i) spiketrains (Böhmer et al.,

2005; Guerrero et al., 2010). Later it was established in complete spermatozoa that
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the rate of change of its concentration controls chemotaxis (Wood et al., 2003;

Alvarez et al., 2012). The mechanism by which calcium affects the flagellar shape is

still unknown.

There is a considerable body of work done to establish the signalling cascade

from the sperm activating peptide (SAP) binding to guanylyl cyclase (GC, i.e.

the receptor) to changes in [Ca2+]i (Darszon et al., 2011; Kaupp, 2012; Seifert

et al., 2015; González-Cota et al., 2015). Briefly (fig. 1.3), the binding elicits

synthesis of cyclic guanosine monophosphate (cGMP) which will activate the K+-

selective cyclic nucleotide-gated (KCNG) channels. The exit of potassium ions will

hyperpolarize the cell membrane and thus activate the Na+-H+ exchanger (NHE) and

the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels which will

alkalinize the cytosol and depolarize the membrane, respectively. The depolarization

activates the voltage-dependent Ca2+ (CaV) channels which will increase the [Ca2+]i.

The increase in intracellular pH (pHi) will presumably activate CatSper, a pHi and

mildly voltage dependent Ca2+ channel, thus also increasing the [Ca2+]i. Returning to

basal [Ca2+]i levels after stimulation is done by the Na+-Ca2+-K+ exchanger (NCE)

and a phospodiesterase (PDE) which hydrolyzes cGMP. Also, a calcium-dependent

K+ (BK) channel hyperpolarizes de membrane to the basal membrane potential.

While some of these components have been identified in sea urchin sperm and their

function has been established, others remain elusive. The identity of the CaV channel

is still unknown and the function of NHE has not been firmly proved. There is

also evidence for a different calcium-dependent K+ channel which can modulate

the calcium spiketrain (Espinal et al., 2011; Espinal-Enŕıquez et al., 2014). Also,

the ensemble and proportions of calcium channels present in the sea urchin sperm

flagellum are yet to be determined.

Contrary to L. pictus, for the same chemoattractant molecule and gradient, S.

purpuratus sperm react by eliciting turn-and-run episodes but they do it in random

directions (Guerrero et al., 2010), a behavior that can hardly be called chemotaxis. As

these studies were performed when the cells are confined to the water-glass interface,

we cannot exclude the hypothesis that far from the boundary, in 3D, cells would be

able to turn in a chemotactic way. The chemotaxis of A. punctulata free swimming

sperm has been characterized in 3D (Jikeli et al., 2015) but the question whether

all sea urchin species sperm react the same way remains to be answered. Because

small local changes of the trajectory curvature can have an huge impact on the global
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Figure 1.3: Chemotactic signaling cascade of sea urchin sperm. The plasmatic
membrane can be hyperpolarized (Hyper.) or depolarized (Depo.). Blue boxes
represent different membranar channels (see section 1.3.3 for details). Black arrows
represent ion transport, state transferences and reactions, depending on the context.
Green and red solid arrows represent activation and inhibition, respectively, of
channels and processes. Dashed arrows represent inhibition by low pHi (red) and
activation by high pHi (green).

trajectory (Guerrero et al., 2011), further studies on sperm motility are required to

understand how sperm cells swim and reorient in space in order to have more insights

on spermatozoan chemotaxis.

1.3.4 3D imaging of sperm cells

Multidimensional recording of biological processes is a standard approach in biological

research and it can encompass spatial dimensions, time and color (i.e. usually by

different fluorescent labels). This scaling in dimensions has been instrumental to study

aspects and details (e.g. by correlation) that were not possible before, including in

the study of sperm motility and chemotaxis. Using fluorescent probes and a confocal

microscope we are now able to get 3D spatial reconstruction of cells and their labelled

structures by focusing at different Z positions (slice). However, most of these assays

require immobile or fixed material. To make 3D temporal screenings, different cells

are fixed at different time-points e.g. after treatment. Imaging motile shape-changing

cells in 3D plus time, however, has been challenging, specially when they swim at

200-300 µm.s-1.

Some 3D imaging setups have previously been developed and can help to address
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this issue but they can only detect the head of the cell. Examples include using two

perpendicular cameras to observe a 3D volume (Crenshaw, 1991) or using an objective

coupled to a piezoelectric device in order to take XY slices at different Z positions

at an enormous rate (Corkidi et al., 2008). The major disadvantage of the latter is

the non-negligible error on the estimation of the Z position of the cell while scanning

considerable volumes (i.e. determined by the Z amplitude of the piezoelectric device).

Su et al., (2012) developed different system based on holography where over 1,500

cells can be tracked with submicron precision on a volume as big as 17 mm3. The

same system was later used to study the 3D chemotaxis of Arbacia punctulata sperm

(Jikeli et al., 2015). Nevertheless, combining this system with fluorescent labeling is

not straightforward (Rosen and Brooker, 2008; Nadeau et al., 2016), a feature that

is essential to study spermatozoan chemotaxis, namely, how does the [Ca2+]i and

the pHi change. Also, the flagella cannot be yet resolved in any of these setups and

we know that the cell’s trajectories are not sufficient to understand 3D chemotaxis

(Crenshaw, 1989). On the other hand, the 2D+Z(t) system of Corkidi et al., (2008)

has already been shown to be able to segment the human sperm flagellum (Silva-

Villalobos et al., 2014) and has the potential to use fluorescent markers. In that

study, they scanned only 16 µm in the Z-axis with a piezoelectric frequency of 90

Hz and a framerate of 5000 Hz, corresponding to a mean spacing between slices is

∼ 0.6 µm and the Z-error mentioned becomes negligible. However, this is not the

case if we track multiple cells in a considerable large volume, as in Pimentel et al.,

(2012), so an improvement of the cell’s coordinate precision is required. Although its

promising potential to elucidate chemotaxis, no significant output has been produced

with the 2D+Z(t) system. Solving its few issues will be intrumental to add another

dimension to 3D sperm chemotaxis.

1.3.5 Mathematical modeling of spermatozoa

Spermatozoa do not have the machinery necessary to synthesize proteins so it is not

possible to use a genetic manipulation approach to study them. Hence, much of

the research on spermatozoa have been made using different markers and drugs such

as inhibitors. For the case of sperm motility, the theoretical approach has been a

precious instrument. Gray and Hancock, (1955) were the first to successfully model

invertebrate sperm motility. They proposed the Resistive Force Theory (RFT) where

the flagellum is approximated as a set of infinitely small rods. As the axoneme motors
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elicit movement of the cell, each flagellar piece moves, creating a force on the fluid,

which will in turn exert an opposite force on that flagellar piece (i.e. Newton’s action-

reaction law). They came to the conclusion that, in order for the cell to move forward,

the flagellar drag coefficients perpendicular and parallel to the flagellar centreline need

to have a ratio higher than one. Half a century later it was shown that this theory can

model bull (Friedrich et al., 2010) and sea urchin (Jikeli et al., 2015) sperm with high

precision, in either confined or free-swimming assays. For confined swimming, ad hoc

increases of flagellar ratios are usually considered or measured in order to compensate

the neglect of long-range hydrodynamic forces (Smith et al., 2009a; Friedrich et al.,

2010).

RFT is in fact an approximation (i.e. neglects long-range hydrodynamic forces) of

the more general framework – Slender Body Theory (SBT), which explicitly describes

the fluid flows generated by the cell(s) and how the fluid also affects the spermatozoan

conformation using Navier-Stokes equations (Johnson and Brokaw, 1979). Later

it was established that one could implement this theory using stokelets, a faster

numerical approximation (Gillies et al., 2009; Cortez, 2001). These and other similar

frameworks allow to study the confining process (Smith et al., 2009a; Elgeti et al.,

2010), i.e. how cells become trapped in the water-glass interface, as they can model

the forces the boundary exerts both on the fluid and on the cell. As confined swimming

is more prevalent in internal fertilizing species, most of these studies are performed

assuming a mammalian spermatozoan model. Although no off-plane components of

the flagellar beating were required for accumulation in surfaces, it was also possible

to confine cells with helicoidal flagellar beating (Smith et al., 2009a). For the sea

urchin sperm model, it was shown that attraction to the cell surface is the result of

hydrodynamic interactions between the flagellum, the surface and the forward thrust

of the cell. Those forces promote both a torque on the swimmer that aligns it parallel

to the boundary and a force that approximates it to the wall, including a tail repulsion

(thus, a head attraction) at short distances from the surface (Elgeti et al., 2010).

On the other hand, it was also shown for the active flagellar model (i.e. eukaryotic)

that the confining behavior depends on many factors and cannot be known a priori

(Evans and Lauga, 2010).

These and other theoretical frameworks have been developed to study other

perspectives of the sperm cell. In interspecies comparative studies, the optimal

morphology for motility for uniflagellated cells was shown to be dependent on the ratio
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between head and flagellar length, rather than their absolute values (Humphries et al.,

2008), and that for each head length there is a finite optimal flagellar length (Tam,

2008). The optimal flagellar stroke characteristics (displacement given expended

energy) were found to be very similar to the biological cases (Tam, 2008; Spagnolie

and Lauga, 2010; Lauga and Eloy, 2013). These include the existence of half-

integer wavelength, which is proposed to reduce rotation and increase the translational

velocity, similar wave amplitude to flagellar length ratio and the decrease in curvature

along the propagating wave. Lauga and Eloy, (2013) even suggest that eukaryotic

flagella are mechanically optimal.

Note there are also studies which model the sliding tubules of the axoneme

explicitly (Camalet and Jülicher, 2000; Cibert, 2002; Riedel-Kruse et al., 2007) and

some even explicitly include the dynein machinery (Hines and Blum, 1978; Hines and

Blum, 1979; Brokaw, 2014).

Spermatozoan chemotaxis has also been the object of many theoretical

studies. Simpler models for motility and chemotaxis which also neglect long-

range hydrodynamical forces or the flagellum altogether. One example using

ordinary differential equations (ODEs) also measured chemotaxis in population by

assuming stochastic processes of agglomeration (i.e. as an inverse process of

diffusion) with different degrees of behavioral and environmental assumptions (Keller

and Segel, 1970; Horstmann, 2003). Other approaches use either the stimulus

(chemoattractant) or the derivative of [Ca2+]i to affect the average path curvature

directly (Friedrich and Jülicher, 2007; Alvarez et al., 2012). In a consequent study

where both stimulus and calcium derivative model chemotaxis by affecting the mean

flagellar curvature, two different behaviors were identified: an ’on response’, where the

cell steadily but slowly redirects its trajectory to maximize the mean stimulation (i.e.

towards the center of a chemoattractant source-point); and an ’off response’, where

the cell performs an abrupt change in direction when it swims down the gradient (Jikeli

et al., 2015). Notwithstanding, we cannot give meaning to the simple adaptation

module (i.e. signaling module) parameters in terms of the components described for

the biological signaling cascade. There are some mathematical models that translate

the signaling cascade to boolean networks (Espinal et al., 2011) and those that

use ODEs are under development (Daniel Espinosa, manuscript under preparation,

personal communication). However, we have yet to see an integrative model where

shape, mechanics and signaling cascade are present (also under developement).
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1.4 In this thesis

As introduced before, there is a bottleneck between imaging data acquisition and its

analysis. This occurs at several levels, including speed, objectivity, reproducibility and

robustness. Automatic analysis by computers can address these issues but painstaking

work is generally needed to adapt an algorithm to the system in study, as they are

not generaly appliable to all of them. One example where this occurs is the lack of

comparative study of sea urchin sperm free-swimming motility and chemotaxis, which

we will use here as a case study.

As a part of the speciatiation process, one expects sperm from different species to

react differently to the chemoattractants released by the homologous eggs. However,

the nature of such difference is unknown. It has been speculated that species-specific

chemotaxis plays a key role in increasing the chances of fertilization during broadcast

spawning. Motility and its coordination are the cornerstones of chemotaxis which

justifies the demand for comparative studies of sperm of different species. Since sea

urchin spermatozoa are released and presumably fertilize the eggs in a 3D setting,

it is essential to understand how spermatozoa from different species swim freely in

the volume. These 3D comparative studies have been hindered by the limitations

of 3D imaging methods of fast cells and the lack of reliable and robust imaging

analysis methods that can deal with this data type and amount. We propose that

methods using a priori knowledge, in the form of a mathematical model that describes

both the form and deformation of the cell and the mechanics that propel it forward

within a fluid, will improve the detection and tracking quality, with the advantage

of easy change of the form and physic descriptors. Due to its potential to study

chemotaxis, we decided to use the 2D+Z(t) microscopy setup (Corkidi et al., 2008)

but an improvement of the accuracy and precision of the cell’s position in 3D is

of paramount importance to obtain reliable data. Thus, the objective of the work

presented in this thesis is two-fold:

1. To develop and apply an automatic method for spermatozoan detection and

tracking in imaging data using a mechanistic model of these cells as a priori

information;

2. To develop and test tools for the analysis of spermatozoan motility and

chemotaxis that enable comparative studies across species and planar and 3D

modes of swimming.

To accomplish the first objective we hypothesize that we can use a mechanistic
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model of the spermatozoon as a priori knowledge to be fitted directly to imaging

data by maximum likelihood. Due to its physical nature and high level of detail, the

model should impose morphological and kinematic constrains that accurately describe

the object(s) depicted in the imaging data. If this methodological hypothesis holds

true, then these methods is expected to allow us to distinguish different treatments

or conditions as they will result in disparate parameterization of the model.

For the second objective we will address several issues, mostly related to the

2D+Z(t) microscopy system and the data it generates. Can we improve the

detection’s precision and accuracy of the cell’s position? Furthermore, can we use

the approach developed for the first objective to describe spermatozoan motility and

chemotaxis? If so, is there a difference in 3D sperm motility between L. pictus and

S. purpuratus?

In Chapter 2 we developed a simple framework for biological model-based image

analysis by comparing in silico imaging data produced by a morphodynamical model

to microscopy images in order to estimate the position, orientation, form and physical

parameters of a spermatozoon and its surrounding media. We proved our framework

allows us to track shape-shifting cells quite precisely (as well as a human does it).

Better yet, we show we can infer the invisible flagellar bending patterns and positions

by tracking only the head. The study in this chapter is the core of a manuscript in

preparation.

The 3D comparative study is described in Chapter 3. Using the mechanistic

models approach turned out to be computationally not feasible due the dimension

of potential parameter space and data sets. We had to reduce the combinatorial

and computational problem using a mixed approach. In a more traditional approach,

that involved the development of an accurate estimation of the Z position associated

with each frame, we used prior knowledge on the defocused appearance of the cells

to estimate cell centroids in space and time. Then, a simplified kinematic model

of the helical swimming paths was used to reconstitute the trajectories by piecewise

helical segment fitting. Using this method we were able to reconfirm the trajectory

parameters of previous manual analysis (Corkidi et al., 2008; Guerrero et al., 2010)

and, more importantly, to reveal a difference in confining behavior between the

two species considered. We then used the morphodynamical model to infer that

S. purpuratus sperm have higher mean flagellar curvature in free as compared to

confined swimming.
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In Chapter 4 we used the detection method developed in the third chapter to

assess the free-swimming chemotactic behavior of L. pictus and S. purpuratus. By

fitting linear mixed models to the data, we concluded that no chemotaxis was detected

in the experimental conditions used.

Finally, we make a general discussion and conclusion connecting the previous

chapters, highlighting the thesis contributions and future perspectives in Chapter 5.

1.5 Mathematical notation

For convenience of the reader, we present a few details of the mathematical notation

used throughout this thesis.

Generally, bold symbols represent tensors (either column vectors or matrices) and

normal typeface represent scalars. Parametric functions are represented normally by

f(x) but sometimes, abusing the notation, they can be represented without their

variable(s) (f). Note that, due to the high number of parameters and variables used

throughout this thesis, the same symbol can have different meanings in different

chapters.
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González-Cota, A. L., Silva, P. Â., Carneiro, J., and Darszon, A. (2015).“Single cell imaging

reveals that the motility regulator speract induces a flagellar alkalinization that precedes

and is independent of Ca 2+ influx in sea urchin spermatozoa”. FEBS letters 589,

pp. 2146–2154.

Gray, J. and Hancock, G. (1955). “The propulsion of sea-urchin spermatozoa”. Journal of

Experimental Biology 32.(4), pp. 802–814.

Guerrero, A., Carneiro, J., Pimentel, J. A., Wood, C. D., Corkidi, G., and Darszon, A. (2011).

“Strategies for locating the female gamete: the importance of measuring sperm trajectories

in three spatial dimensions”. Molecular Human Reproduction 17.(8), pp. 511–523.

Guerrero, A., Nishigaki, T., Carneiro, J., Yoshiro Tatsu, Wood, C. D., and Darszon, A. (2010).

“Tuning sperm chemotaxis by calcium burst timing.” Developmental Biology 344.(1),

pp. 52–65.

Hansbrough, J. R. and Garbers, D. L. (1981).“Speract. Purification and characterization of a

peptide associated with eggs that activates spermatozoa.”Journal of Biological Chemistry

256.(3), pp. 1447–1452.

Harvey, E. B. (1956).“The American arbacia and other sea urchins”. Ed. by Drukkerij, N. V.

and Thieme, G. J. Princeton, New Jersey: Princeton University Press.

Hastie, T., Tibshirani, R., and Friedman, J. (2009).“The elements of statistical learning: data

mining, inference and prediction”. Second. Vol. 27. (2). Springer, pp. 1–278.

Hernández, J. C. and Russell, M. P. (2010). “Substratum cavities affect growth-plasticity,

allometry, movement and feeding rates in the sea urchin Strongylocentrotus purpuratus.”

The Journal of experimental biology 213.(3), pp. 520–525.

Hines, M. and Blum, J. J. (1978).“Bend propagation in flagella I. Derivation of equations of

motion and their simulation.” Biophysical journal 23.(1), pp. 41–57.

— (1979).“Bend propagation in flagella II. Incorporation of dynein cross-bridge kinetics into

the equations of motion.” Biophysical journal 25.(3), pp. 421–441.

36



REFERENCES

Horstmann, D. (2003). “From 1970 until present: the Keller-Segel model in chemotaxis

and its consequences”. Jahresbericht der Deutschen Mathematiker-Vereinigung 105.(3),

pp. 103–165.

Humphries, S., Evans, J. P., and Simmons, L. W. (2008). “Sperm competition: linking form

to function.” BMC evolutionary biology 8, p. 319.

Ikawa, M., Inoue, N., Benham, A. M. A., and Okabe, M. (2010). “Fertilization: a sperm’s

journey to and interaction with the oocyte”. The Journal of Clinical Investigation 120.(4),

pp. 984–994.

Inglis, T., De Sterck, H., Sanders, G., Djambazian, H., Sladek, R., Sundararajan, S., and

Hudson, T. J. (2010). “Multilevel space-time aggregation for bright field cell microscopy

segmentation and tracking.”International journal of biomedical imaging 2010, p. 582760.

Jikeli, J. F., Alvarez, L., Friedrich, B. M., Wilson, L. G., Pascal, R., Colin, R., Pichlo, M.,

Rennhack, A., Brenker, C., and Kaupp, U. B. (2015). “Sperm navigation along helical

paths in 3D chemoattractant landscapes.” Nature Communications 6, pp. 1–10.

Johnson, D. W., Monro, K., and Marshall, D. J. (2013). “The maintenance of sperm

variability: Context-dependent selection on sperm morphology in a broadcast spawning

invertebrate”. Evolution 67.(5), pp. 1383–1395.

Johnson, R. E. and Brokaw, C. J. (1979). “Flagellar hydrodynamics. A comparison between

resistive-force theory and slender-body theory”. Biophysical Journal 25.(1), pp. 113–127.

Kaupp, U. B. (2012). “100 Years of Sperm Chemotaxis.” The Journal of general physiology

140.(6), pp. 583–6.

Keller, E. F. and Segel, L. A. (1970). “Initiation of slime mold aggregation viewed as an

instability”. Journal of Theoretical Biology 26.(3), pp. 399–415.

Kervrann, C., Sorzano, C., Acton, S. T., Olivo-Marin, J.-C., and Unser, M. (2016).“A guided

tour of selected image processing and analysis methods for fluorescence and electron

microscopy”. IEEE Journal of Selected Topics in Signal Processing 10.(1), pp. 6–30.

Knill, D. C. and Richards, W., eds. (1996). “Perception as Bayesian inference”. Cambridge

University Press.

Lauga, E. and Eloy, C. (2013).“Shape of optimal active flagella”. Journal of Fluid Mechanics

730, R1.

Lesich, K. A., Pelle, D. W., and Lindemann, C. B. (2008). “Insights into the mechanism of

ADP action on flagellar motility derived from studies on bull sperm”. Biophysical Journal

95, pp. 472–482.

Li, C.-Y., Jiang, L.-Y., Chen, W.-Y., Li, K., Sheng, H.-Q., Ni, Y., Lu, J.-X., Xu, W.-X.,

Zhang, S.-Y., and Shi, Q.-X. (2010). “CFTR is essential for sperm fertilizing capacity

and is correlated with sperm quality in humans.”Human reproduction (Oxford, England)

25.(2), pp. 317–27.

Lillie, F. R. (1912). “The production of sperm iso-agglutinins by ova”. Science 36.(929),

pp. 527–530.

37



CHAPTER 1. INTRODUCTION

Lindemann, C. B. (1994). “A ”Geometric Clutch” hypothesis to explain oscillations of the

axoneme of cilia and flagella”. Journal of Theoretical Biology 168.(2), pp. 175–189.

Marshall, R. D. and Luykx, P. (1973). “Observations of the centrioles of the sea urchin

spermatozoon”. Development Growth and Differentiation 14.(4), pp. 311–323.
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Abstract

Modern imaging analysis techniques rely on a priori knowledge to detect and track

objects in imaging data. These methods are either unsupervised, in which the

resulting detections are filtered a posteriori by criteria based on the target object,

or supervised, where training data sets are used to generate templates or calibrate

them. These method often fail to find target objects or include extraneous, undesired

ones, thus requiring painstaking manual curation before or after the analysis. Here we

present a new framework that uses morphodynamical models as a priori knowledge.

We will make a proof-of-concept using the imaging of spermatozoa as case study.

In this case, the model will include the form and deformation of these cells, the

physics that propel them forward and the imaging acquisition process. We fitted

the model to both synthetic and experimental imaging data showing we can recover
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the true parameters used to generate the synthetic data and that we can track a

spermatozoon as good as a human can. Using this framework we were even able to

infer the form and position of the flagellum by tracking only the head, i.e., in the

images in which the flagella where not visible. Using such morphodynamical models

as a priori knowledge might give the necessary information that automated imaging

analysis methods demand in order to become more reliable, independent and robust.
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performed the work and Jorge Carneiro supervised. Adán Guerrero and Alberto

Darszon provided the 2D+t imaging data. Pedro Ângelo Silva, Alberto Darszon

and Jorge Carneiro contributed to writing the manuscript. This work was funded by

Fundação para a Ciência e Tecnologia, Portugal, (SFRH/BD/79261/2011), Instituto

Gulbenkian de Ciência, Portugal, and Instituto de Biotecnoloǵıa, UNAM, Mexico.
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2.1 Introduction

The automation of microscopy systems and the emergence of multidimensional

measurement of biological data has recently been producing data at a overwhelming

pace, one that current imaging analysis procedures are unable to cope with. There

has been an effort to automate image analysis but the specifics of each study makes it

difficult to have general tools that allow to extract information from the imaging data.

Therefore, scientists often wander on empirical testing of these tools parameters. This

creates not only highly biased results but also irreproducible ones, as many of these

parameters are rarely reported in many studies. As such, automatic methods for

image analysis which do not require parameter tweaking and can be generally used

in an wide array of studies are desired.

The major difference between a computer and a human when extracting

information from imaging data is that the latter is rich in a priori, implicit knowledge.

Based on past experiences, a person uses implicit models to distinguish between

background, cell, nucleus, and so on. In comparison, the computer algorithms are

very limited in the resources they can deploy, which are restricted to raw spectral,

spatial and temporal data, and a set of statistical tools but no model to connect

them all. What if the computer was endowed with a priori knowledge on the object

to study, including its morphology and dynamics, and of the microscopy setup such as

the point-spread function and lighting conditions? It should then be possible for the

computer algorithms to extract information as good as any human. Better, in fact, if

we consider the reproducibility of the deterministic methods. Not only that, what if

the computer can extract information that a human cannot, e.g. a feature non-linearly

correlated with morphological dynamics which is not directly measurable/noticeable

in the imaging data?

When one is dealing with imaging data, there is a distinction between image

processing (i.e. low-level image manipulation such as reduction of noise and

background subtraction) and image analysis – the extraction of information from

imaging data. For this end, there is a long tradition of segmenting the image

or fitting parametric models to each time-point independently and only then the

extracted information is used to fit morphodynamical models (Brokaw, 1984; Baba

and Mogami, 1985; Friedrich et al., 2010; Su et al., 2012; Su et al., 2013; Jikeli

et al., 2015). In the computer vision field, face-recognition and tracking usually

resorts to the Lucas-Kanade algorithm as it allows to deform templates in order to
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identify them in the next frame (Baker and Matthews, 2004). Other methods use

maximum likelihood to estimate the data that produced a given imaging data set of

immobile structures (Vulović et al., 2013; Kervrann et al., 2016). To the best of our

knowledge, methods where the form and deformation of the object, its interaction

with surrounding media and transformation of the imaging process are all combined

as purely mathematical and theoretical descriptors have not been implemented to

estimate the morphology and position of motile cells that change their shape in time.

Our objective is to develop a framework to detect and track cells using a

morphodynamical model. We will generate synthetic imaging data based on the model

and compare the synthetic images rendered from this model directly to experimental

imaging data by correlation, a proxy of likelihood (Zucker, 2003). We will show here

that this method is able to detect and track sea urchin spermatozoa as good as

a human and even outperform the human ability to recognize patterns by inferring

flagellar positions and conformations when these structures are not visible in the

images. As such, the use of mechanistic models within the image analysis procedures

is instrumental by increasing the resolution of the analysis and by allowing to infer

structures that are missing from the imaging data.

2.2 Materials and Methods

2.2.1 Morphodynamical model

Consider a mathematical model of a cell in which the morphology changes are defined

within the model itself – this is a morphodynamical model. In our particular case,

the spermatozoon cell model (S) is defined by the shape (Σ) and mechanics (Φ)

modules.

Shape

We can define the morphology of a spermatozoon by defining two regions, the

head and the flagellum. We assume the head is a revolution ellipsoid with half

axes a and b = c. The flagellum is composed of N rods with total length L

(µm). The conformation of the flagellum at a particular time t is given by its

curvature κ along flagellar arclength s, a first order traveling wave: κ(s, t) =

K0 + (A0 + A1e
−A1s) cos (ωκt− λκs+ φ), which is defined by the mean flagellar

curvature (K0), basal curvature amplitude (A0), exponential term of curvature
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amplitude (A1), angular velocity of beating (ωκ) and curvature wavelength (λκ).

The phase (φ) near the apical part of the flagellum (first 0.5 µm) is φ1 while for the

remaining flagellum is φ0. For a planar beating, we assume the flagellar torsion along

arclength to be zero (τ(s, t) = T0 = 0 rad.µm-1). The intrinsic flagellar position

(rf (s, t)) is calculated by arclength integration of the Cosserat frame (Cao et al.,

2006; Jikeli et al., 2015), which is defined by the orthonormal basis e1(s, t), e2(s, t)

and e3(s, t) : ∂rf (s, t)/∂s = e3(s, t), ∂e3(s, t)/∂s = κ(s, t)e1(s, t), ∂e1(s, t)/∂s =

−κ(s, t)e3(s, t)+ τ(s, t)e2(s, t), ∂e2(s, t)/∂s = −τ(s, t)e1(s, t). Note e3 represents

the centreline along the flagellum, rf (0, t) = {−a, 0, 0}, e1(0, t) = {0,−1, 0},
e2(0, t) = {0, 0, 1} and e3(0, t) = {−1, 0, 0}. At a given time t, the centroid of

the head has extrinsic position Rh(t) and orientation matrix Θ(t), which rotates

from extrinsic to intrinsic coordinates. We can define the orientation matrix as

combination of rotations on the X, Y and Z axes – Euler angles. In our specific case

Θ = RXRYRZ , where:

RX =

1 0 0

0 cos(νX) sin(νX)

0 − sin(νX) cos(νX)

 ;RY =

cos(νY ) 0 − sin(νY )

0 1 0

sin(νY ) 0 cos(νY )

 ;RZ =

 cos(νZ) sin(νZ) 0

− sin(νZ) cos(νZ) 0

0 0 1


are rotation matrices on the X, Y and Z axes, respectively. Notice we dropped the

time from the previous equations for simplicity. Thus, the orientation of a cell at a

given time is specified by the parameters νX(t), νY (t) and νZ(t). In the confined

swimming case we assume νX(t) = 0 and νY (t) = 0.

Mechanics

As the cell moves within a viscous fluid, the latter exerts drag forces which, under some

conditions, propel the cell in the media. The physics behind it have been shown to be

approximated by Resistive Force Theory (RFT) (Gray and Hancock, 1955; Friedrich

et al., 2010; Jikeli et al., 2015), which we will use here. Briefly, the drag force density

that fluid exerts on the flagellar piece is f(s, t) = ξ‖∂ṙf,‖(s, t)/∂t+ξ⊥∂ṙf,⊥(s, t)/∂t,

where ṙf,‖ and ṙf,⊥ are the tangent and normal components, respectively, of the mean

flagellar piece velocity ṙf (s, t) = (Ψ′(δθ(t))·r(s, t+δ)+δv(t)−r(s, t+δ))/δ during

the time interval δ. Note v and θ are the intrinsic head translational and rotational

velocities, respectively, Ψ′(ν) is the an approximation of Rodrigues rotation formula

(Ψ′(ν)) for small angles (sinβ ' β and cosβ ' 1) and ξ‖ and ξ⊥ are the tangent and

normal drag coefficients of the force the fluid exerts on the flagellum, respectively.
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We can obtain the intrinsic head velocities by solving the system of force and torque

equilibria defined by ξTv(t)
∫ L

0 f(s, t)∂s = 0∧ξRθ(t)−
∫ L

0 f(s, t)×rf (s, t)∂s = 0,

where ξT and ξR are the translational and rotational drag coefficients of the head

and the symbol × denotes the crossproduct operator. The intrinsic head velocities are

transformed into extrinsic velocities by multiplication of the transposed orientation

matrix and applied to the cell to calculate the new extrinsic position Rh(t + δ) =

Rh(t) + δΘ(t)T · v(t) and orientation Θ(t + δ) = Ψ(δΘ(t)T · θ(t)) ·Θ(t). Note

we used the approximated Rodrigues rotation matrix to calculate the local flagellar

velocity in order to make the system linear but this approximation is not needed when

we calculate the extrinsic velocities from the intrinsic ones.

Assuming a dynamic viscosity η we can calculate the translational and rotational

drags for the head based on its size using Perrin’s formulas (Perrin, 1936). As we

used Euler integration method, we will update the system every δ time steps and

then we solve it for the intrinsic translational and rotational velocities assuming they

are constant within each time period δ. For spatial integration of the flagellum, we

discretized it in N segments and calculated the intrinsic midpoint position κ[i, t]

where i = L/N We determined N = 149 and δ = 50 µs to produce errors below

1% when calculating the intrinsic translational and rotational velocities, comparing

to N = 499 and δ = 10 µs.

The spermatozoon model S(Σ,Φ) is thus completely defined by its shape

parameters Σ = (a, b, c, L,N,Rh,Θ,K0, A0, A1, φ0, φ1, ωκ, λκ, T0) and its physical

or mechanical parameters Φ = (ξT , ξR, ξ‖, ξ⊥). Although not explicit here, some of

these parameters are dependent on time, as shown above.

To measure the difference between two models instances, say Sa and Sb, we

defined a convenient list of 14 parameters, composed of some of basic parameters

and their ratios. The distance between the parameter lists, P a and P b, of the two

models is computed as:

χ2 =
∑
j

(paj − pbj)2

(pbj)
, (2.1)

where j ∈ {1, ..., 14} is the index of the parameter or ratio in the list

{a, a/b, L,K0, A0, A1, ωκ, λκ, φ0, φ1, ξTx , ξTy/ξTx , ξ‖, ξ⊥/ξ‖}. Note we did not

include in this measure some parameters as they will not affect the cell’s motility if we

assume planar flagellar beating, which we did in this chapter. Also note only the ratios
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between some of parameters affect the swimming path of the cell, the reason why we

compare the distance of those ratios and not of the parameters themselves. We will

usually refer to the distance to the ground truth model or to the true parameters,

meaning this set of parameters is considered as the model Sb in the formula above.

2.2.2 Comparing and fitting the model to imaging data

We generated a model instance at time ti with a given set of parameters S and

rendered it in a new image (IS;t=ti) with weights (i.e. adimensional pixel intensity)

wh and wf for the head and flagellum, respectively. Then, we convolved the IS;t=ti

with a Gaussian filter G(0, (σ/6)2) (kernel of size σ, down-scaled by area interpolation

(refer to OpenCV function resize) to match the spatial and temporal resolution of

the experimental imaging data (It=ti)). The correlation score of a parameter set

of the model is the sum of the correlation coefficients between the imaging data

(It=ti) and IS;t=ti , only of the pixels that are within the ρr radius around the object:

Score(S, ti, tj , ρr, σ, wh, wf ) =
∑j

k=i Correlation(It=tk , IS;t=tk | ρr, σ, wh, wf ), for

i ≤ j, ti ≤ tj , ∀i, j ∈ N0, where N is set of the natural numbers. Note that we will

also refer to the average correlation coefficient as Score(S, ti, tf , ρr, σ, wh, wf )/(j −
i+ 1).

The likelihood is the probability of a parameter set given the data. Thus, we

searched the parameter space for the set which best describes the data by maximizing

this probability. Our model has many parameters, is non-linear and the solution space

is not convex, which makes it difficult to define the maximum likelihood algebraically

and also to find it with optimization algorithms. To overcome this difficulty we

used the result of (Zucker, 2003) who have shown that under some conditions, by

maximizing the cross-correlation between a model and imaging data one is effectively

maximizing the likelihood. We implemented a simple Monte Carlo (MC) evolutionary

algorithm (fig. 2.2 B), where the fitness function is given by the correlation score.

To understand the procedure, let us introduce the following symbol: Sgk is the sperm

model indexed k at iteration g of the evolutionary algorithm. At iteration zero (g = 0)

we input our initial parameter set S0 and replicated it Nc = 1000 times while adding

Gaussian noise to the parameters, except for one set which is an exact replicate.

We then started the iteration 1 at time ti and computed the individual score of

each parameter set (Score(S1
k), notice the abuse of notation by discarding all the

remainder parameters). Then we selected the Nb = 10 fittest parameter sets (i.e.
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the top highest Score(S1
k)) and each one of these generated 100 new children (S2

k)

to be evaluated and at next iteration. We repeated this for Ni = 20 iterations.

Unless stated otherwise, we first performed preliminary optimization of only the

shape parameters (Σ0) at the initial time (ti = tf ) and subsequently performed the

optimization of the all the mechanical and temporal parameters (see section 2.3.1) on

the whole imaging data set (ti 6= tf ). The Gaussian perturbations to the parameters

were performed using a zero-centered Gaussian with standard deviation 5% of the

parameter value, except for angles which were 5% of π rad. At each passing iteration

g ∈ N0, the percentage dropped as 5%/(1+g). Some logical constrains were applied,

e.g. 1 < ξ⊥/ξ‖ < 2 and a > b = c > 0. To increase the speed of the algorithm

while fitting the mechanical and temporal parameters, we aborted the computation

of the correlation score for children with average correlation that was below 0.5 at

time t∅, where ti ≤ t∅ < tf , and the correlation score for that model was assumed

to be Score(Sgk, ti, t∅, ρr, σ, wh, wf ). Similarly, the computation of the score was

aborted for candidate solutions with an average score that is lesser or equal to half

the average score of the best solution obtained until that stage in the execution of

MC evolutionary algorithm.

2.2.3 Implementation details

Unless stated otherwise, all the algorithms for image manipulation, model definition

and optimization were developed and encoded in C/C++ using the free computer

vision library OpenCV 3 (Intel, Santa Clara, United States of America). Simulations

were run in a Intel® i7-6700HQ CPU @ 2.60GHz×8 processor (Intel, Santa Clara,

United States of America) in Ubuntu 16.04 (Canonical, London, United Kingdom)

using the parallel (Tange, 2011) to run several simulations at the same time. Plots,

statistics and figures were performed using R v.3.0.3 (R Foundation for Statistical

Computing, Vienna, Austria) and LATEXusing the tikZ package, respectively.

2.2.4 Imaging data

L. pictus and S. purpuratus

All in vivo imaging data was obatined as described in Guerrero et al., (2010), with a

few alterations. A brief description follows.
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Materials. L. pictus and S. purpuratus spermatozoa (Marinus Inc., Long Beach,

CA, USA; Pamanes S. A. de C.V., Ensenada, Mexico) were extracted undiluted

by intracoelomic injection of 0.5 M KCl, stored on ice and used within 24 hours.

artificial sea water (ASW) was prepared with 486 mM NaCl, 10 mM KCl, 10 mM

CaCl2, 26 mM MgCl2, 30 mM MgSO4, 2.5 mM NaHCO3, 10 mM HEPES and 1

mM EDTA, up to 950-1000 mOsm. Final pH was 8.0 and 7.4 for S. purpuratus and

L. pictus, respectively. Low Ca2+ ASW was prepared similarly to ASW but using

1 mM CaCl2 and setting the pH to 7.0. Fluo-4-AM and pluronic F-127 were from

Molecular Probes, Inc. (Eugene, OR, USA). All other reagents were from Sigma-

Aldrich (Toluca, Edo de Mexico, Mexico), unless stated otherwise.

Labeling spermatozoa and loading to incubator chamber. Ten volumes of

low Ca2+ ASW containing 0.2% wt/vol pluronic F-127 and 20 µM of Fluo-4 AM

were used to suspend undiluted spermatozoa of S. purpuratus. After incubation for

two hours at 14 °C, spermatozoa were stored in the dark and on ice. To prevent cells

to adhere to the glass, all coverslips were coated in PolyHEME (poly(2-hydroxyethyl

methacrylate)). Sperm from either species were diluted in ASW into a reusable

chamber and maintained at 15 °C throughout the experiment.

Fluorescence imaging of S. purpuratus spermatozoa. Images were acquired

with Nikon Plan Fluor 40× 1.3 NA objective using a Chroma filter set (ex, HQ470/

40×; DC, 505DCXRU; em, HQ510LP) and recorded on a EMCCD Andor camera

(DV887, Andor iXon). Stroboscopic lighting was used such that 2 ms of flash was

synchronized with the camera exposure (also 2 ms). Images were collected with Andor

iQ 1.8 software (Andor Bioimaging, NC) with framerate 200 Hz in cropped-chip mode

(window = 60×60 µm). Pixel resolution is 1.56 µm.pixel-1.

A light splitter was used to produce side-by-side image frames in which the

whole spermatozoa or only the sperm heads were visible. We noticed that the

light splitter produced misaligned images. The image side where sperm head where

labelled and visible was misaligned (−3.15, 2.36) and -0.0605 rad relative to the side

of the image where the whole-cell label was visible. The misalignment was corrected

by estimating of the affine transformation matrix that maximizes the Enhanced

Correlation Coefficient (Evangelidis and Psarakis, 2008) of the projections of the

two imaging data sets. The projection was performed using the bitwise OR operator

of the first fifteen images at ten by ten intervals of each data set (i.e. frames number
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{0, 10, ..., 140}). The algorithm was implemented using the OpenCV and NumPy

libraries in Python 2.7.12. The affine transformation was applied to the initial position

and orientation of the model fitted to the image with invisible flagella of S. purpuratus

to project the coordinates onto the image where the flagella are visible.

Imaging of L. pictus spermatozoa L. pictus images were acquired with

Optronics CR500X2 camera at a framerate of 500 Hz in full chip in a bright-field

Olympus inverted microscope (IX71) with a 60 × 1.6 0.7 NA long working distance

objective. Pixel resolution is 0.33 µm.pixel-1. Later these were processed in ImageJ

as follows: (1) Image type 16 bits, (2) Smooth, (3) Subtract background (Rolling

bar radius = 13px, Light background), (4) Create an average time projection (1000

frames) (5) Subtract the resultant image to each frame of the stack (32 bit result),

(6) Enhance contrast (Normalize, Use stack histogram), (7) Invert and (8) Image

type 16 bits. Trajectories and flagella were tracked using BohBoh software v3.29

(BohBohSoft, Tokyo, Japan).

In silico

The model coordinates were transformed to image coordinates taking into account

the image origin, spatial resolution and time. With the parameters used, there can

be an error up to 50 µs between image and model, due to their temporal resolutions.

The head was rendered as an ellipse with the appropriate parameters (see section

Comparing imaging data to model) with basal intensity multiplied by wh and the

discrete flagellum was rendered as linear segments with width w and basal intensity

multiplied by wf (wf = 1 to draw the flagellum and wf = 0 to not draw it). The

point-spread function (PSF) function was approximated by a Gaussian filter with σ/6

standard deviation (i.e. approximated as an odd integer in image discrete dimensions)

that was convolved to the rendered model image. The mask to be used to compute

the correlation (see section 2.2.2) was produced by the same procedure that renders

the model sperm image using a radius r that was added to both head half axis and

flagellar width. Parameters used: a = 2.50 µm, b = c = 1.25 µm, L = 45 µm,

N = 150, Rh(0) = {45, 45, 0} µm, Θ(0) = Identity Matrix, ξT = {3.06, 3.51, 3.51}
pN.s.µm-1, ξR = {8.55, 15.96, 15.96} pN.s.µm, ξ‖ = 0.300 pN.s.µm-2, ξ⊥ = 0.525

pN.s.µm-2, K0 = 0.035 rad.µm-1, A0 = 0.144 rad.µm-1, A1 = 0.100, ωκ = 182.485

rad.s-1, λκ = 0.184 rad.µm-1, φ1 = 1.571 rad and the remainder are zero.
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2.3 Results

2.3.1 Correlation scores sensitivity to RFT parameters

We built a morphodynamical model of a sea urchin spermatozoon where the shape

of the head is given by an ellipse, the flagellum is parameterized by the curvature

along its length and the mechanics of the interactions with the fluid is described by

Resistive Force Theory (RFT). Although an approximation of the physical reality

(more realistically described by Slender Body Theory (SBT) (Johnson and Brokaw,

1979)), this framework has been shown to model the swimming behavior of sperm

cells quite accurately (Gray and Hancock, 1955; Friedrich et al., 2010; Jikeli et al.,

2015). The state of the model at any given time is a specification of the position,

orientation and form of the spermatozoon. To compare the model to imaging data,

the state was used to render a synthetic image, this image was convolved with PSF

expected for the microscopy setup used and then correlated it with the corresponding

frame of the experimental imaging data. The maximization of correlation between the

image rendered from the model and the experimental image allows to maximize the

likelihood of the model parameters given the latter image. To accelerate computation

and reduce effects of spurious noise the correlation is only performed up to a maximum

radius around the modeled cell (fig. 2.1 A).

To assess whether this method allows to make precise and accurate estimates of

the parameters of spermatozoon model, we generated a synthetic imaging data set (in

which the real parameter set by which it was generated are known by definition, the

ground truth) and we explored how changing the different parameters independently

or in groups affected the correlation. The first question was how does the procees

to render the model image affects the correlation coefficient? To address this, we

took the initial frame and correlated it with the ground truth model but changing the

width of the flagellum (w), the standard deviation (σ/6) of the Gaussian function

that approximates the PSF and the radius (ρr) around the cell that defines the area

used for correlation (fig. 2.1B). We confirmed that the correlation is maximal for

the expected standard deviation and flagellar width (σ = 5 µm, w = 0.5 µm). As

we increase the area of correlation by increasing ρr, the peak of every flagellar width

used converges to the expected standard deviation. For this reason we decided to

use higher radius values but not so high it would be affected by other sperm cells or

debris on the experimental data so we set r = 15 µm for all subsequent analysis.
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Figure 2.1: Comparing model to imaging data. A – the model state (blue) specifying
the position, orientation and conformation of the spermatozoon at a given time is
used to render the model image (red), which is then correlated to the imaging data
(green). B – Correlation radius (ρr), flagellar width (w) and Gaussian kernel size of
the PSF (σ) effect on the correlation; Dashed line limits the correlation area.
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The second question was: how do the shape and mechanic parameters affect

the correlation score and how sensitive this score is to changes in these parameters?

Again, taking the ground truth model, we perturbed each parameter independently

and checked how the correlation coefficient changed along time. We observed

different types of sensitivities (fig. 2.2A) and decided to categorize them as Low

sensitivity (A1, φ1 and η), High sensitivity (X and Y ) and Temporal sensitivity

(νZ , K0, A0, φ0, λκ, ωκ, ξ‖ and ξ⊥) (please refer to section 2.2.1 for parameter

description). As expected, the correlation is very sensitive to most mechanical

parameters as time progresses and this also occurs for some shape descriptors

(i.e. flagellar shape and initial head orientation) as they affect how and where

the cell swims. The initial position slightly affects the correlation score but this

is rather insensitive to the exponential term of the curvature amplitude, the initial

apical flagellar phase and the media viscosity. By closer examination of the initial

time-point, it is possible to see that the correlation score is sensitive to shape

parameters, suggesting that it should be possible to estimate these parameters using

the information of a single frame.

We then needed to choose the method to fit the model to the imaging data.

Although many different optimization algorithms exist, it was not within the scope

of the present work to compare them and select the one that performs better. For

this reason, we used a simple MC by tournament (fig. 2.2 B) – the best scoring

parameter sets of the current iteration are mutated and give rise to the candidate

parameter sets in the next iteration, whereas the remainder sets do not propagate.

Moreover, the mutations lose strength with each passing iteration, to ensure local

exploitation. Knowing that rendering the model image and correlating it to the

experimental imaging data is the most expensive computational step and taking the

previous results into account, we decided to first fit the shape parameters (Σ) to the

initial time-point for some iterations and only then fit all the mechanical and flagellar

shape parameters (Σ and Φ) to the whole imaging data set. Also note that, for the

same computational reasons, parameter sets that lead to average correlation scores

across the images that were lower than half of the current best maximum correlation

coefficient were not further iterated and only the cells at the last iterated time-point

were considered for the next iteration (section 2.2.2 for more details). With a model,

a comparison criteria and an optimization strategy we were prepared to characterize

spermatozoa in imaging data.
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Table 2.1: Chi-squared distance of the estimated parameters to the true parameters.

Species Condition Sample χ2

In silico

Whole cell

#1
Initial 7.28
Final 0.13

#2
Initial 0.47
Final 0.67

#3
Initial 1.05
Final 0.14

Head-only

#4
Initial 7.71
Final 0.81

#5
Initial 9.95
Final *2.43

#6
Initial 3.23
Final 1.50

S. purpuratus Head-only #8
Initial 0.37
Final 0.66

(*) Parameter set does not describe the data (MSE distance to true parameters
greater than 5 µm).

2.3.2 Precise estimation of model parameters using either in silico
or L. pictus data

Contrary to the most standard approaches to image analyses where segmented shape,

texture, moments and many other descriptors of both template and target objects

are compared, our premiss is that we can use a mechanistic model of the biological

object of interest and compare the imaging data it would generate to the imaging

data obtained experimentally. It is worth emphasizing here that the mechanistic

model of the cell, given a set of parameters, will generate the form and deformation

dynamics of the cell independently of the experimental image data. The task is to

find the parameters that lead to rendered images that match as closely as possible

the experimental data. To validate this approach we need to assess the efficacy of our

method to: a) correctly detect and track a spermatozoon and b) to obtain unbiased

estimations of the cellular and physical parameters. To do this we resorted again

to the synthetic imaging data set, as ground truth, to quantify the mean squared

distance of the flagellum (MSE) and the relative error of the parameters (χ2, eq.

2.1) of three randomly perturbed models, relatively to the ground truth parameters

(fig. 2.3). We can see that the mean correlation of the best ten parameter sets
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increase at each iteration when searching for the shape parameters (up to iteration

20) an also when the mechanical parameters are fitted (iterations 21-40). Comparing

the flagellar positions obtained with our method to the ground truth we can see the

MSE decreases to submicron accuracy as the algorithm progresses.

Encouraged by the results obtained with synthetic images, we use the method

with experimental images of L. pictus sperm. A single spermatozoon was tracked

semi-automatically for comparison with our method – this was taken as our pseudo-

ground truth for this imaging data. For the initial estimation of the shape parameters

and flagellar beating frequency we performed Fourier analysis of the curvature along

arclength in intrinsic coordinates. The initial mechanical and temporal parameters

where first estimated by manual ad hoc fitting. After MC fitting, the results were

qualitatively similar to the previous ones (fig. 2.4): the correlation increased during

the fitting of the shape parameters to the initial frame while the distance to the

pseudo-ground truth decreased. For the fitting of the mechanical and temporal

parameters the distance to the pseudo-ground truth also decreased. The mean

correlation, however, remained near the threshold throughout the temporal fitting,

an indication that either there can be better parameters sets that explain the data,

which could be attained with different initial parameters, or that our model is not

adequate to fit spermatozoa of this species.

2.3.3 Inference of flagellar conformations by tracking only the head

Our model describes the form and deformation of the whole spermatozoon, its

swimming mechanics and, once rendered into synthetic images, how it would be

detected in a fluorescence microscope. Assuming that a cell is swimming by deforming

and that its trajectory is a direct consequence of the deformations, there should not

be many flagellar conformational changes that cause a given translation and rotation

from one instant in time to the next. The translation and rotation at subsequent time-

points should constrain the possible initial and subsequent conformations and also

the physical parameters. Based on this line of thought we hypothesized that it should

be possible to infer the flagellar conformation by fitting the model of a spermatozoon

to imaging data where only the head is visible. To test this hypothesis we compared

the fitting of the model to two different imaging data sets of the same cell, one in

which only the head is visible and another in which the head and the flagellum are

visible. We used two fluorescent markers on the same cell, one that is distributed
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Figure 2.3: Fitting a model to in silico data. Points in the plots represent the cells
that propagate to the next iteration. Iterations 0 (top image sequence) and 40 (red
dot, bottom image sequence) of a representative run (whole cell, #3, table 2.1) are
depicted for comparison. Colors of the image sequence are the same as in figure 2.1A.
The green channel intensity was rescaled for better depiction of the cell. Scale bar is
10 µm.
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Figure 2.4: Fitting a model to L.pictus data. Please refer to figure 2.3 legend for
details. Scale bar is 10 µm.

58



2.4. DISCUSSION

on the whole cell and other that marks only the head. Using a light splitter, the

photons with wavelengths of the two markers were separated and captured by the

same charged coupling device (CCD) camera, appearing side by side on each frame.

One side that can be used to fit the model when the information on flagellar position

and form is missing and the other can be used to confirm the quality of the predictions

of the fitting.

This strategy was used on a preparation of S. purpuratus swimming confined to

a plane in the absence of any stimulus. We fitted the model to the side of the image

data set containing information on the whole S. purpuratus cell following the approach

described above for L. pictus spermatozoon images. This fitted spermatozoon

became the pseudo-ground truth for this experiment (fig. 2.5). We can see reasonable

agreement between imaging data and fitted model in all imaging data set, with the

exception of the earlier time-points, presumably because the targeted cell is not truly

stationary. We then proceeded to fit the model to the side of the images where the

information on the flagella is missing. To set unbiased initial values of the parameters

we did spatial and temporal rescaling of the parameters of the reference L. pictus,

according the flagellar size and beating frequency described for the S. purpuratus.

Note this rescaling was enough to obtain a small parameter distance from the start

(χ2 ∼ 0.37). Because the flagellum is not visible in the images, we skipped the

initial step of fitting flagellar conformations to the initial frames and proceeded to

fit all parameters to the whole data. The final fitting to the head marker data was

very similar to the one obtained with the whole cell marker, both in terms of model

parameters and cellular position and conformations (fig. 2.5). The parameters sets

resulting from fitting the whole cell or the head have a χ2 ∼ 0.66. Although the

parameter distance of the final fitting was higher than the one the inital guess, it is

clearly visible the former provides better fitting.

2.4 Discussion

In this article we explored the possibility that a mechanistic model of a spermatozoon

can be successfully deployed for quantitative image analyses. We have shown that one

can use a biologically meaningful model to track cells and to estimate the different

characteristics of the cells as detailed in the model. Given a parameter set we rendered

synthetic images which can be directly compared to the experimental imaging data.
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Figure 2.5: Fitting a model to noisy, low-resolution S. purpuratus data by fitting
data where the whole spermatozoon is present (top) or by fitting to data where only
the head is visible (middle and bottom). The middle sequence is the initial condition
upon rescaling of the L. pictus mechanistic model and the top and bottom represent
the best fitted models. Note only the imaging data with the flagellum visible is shown
for better comparison of the experimental and model flagellar form and deformation.
Please refer to figure 2.3 legend for details. The green channel intensity was rescaled
for better depiction of the cell. Scale bar is 20 µm.
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Better yet, we were able to infer invisible structures and their dynamics by making

good predictions of the flagellar positions and forms on series of images where only

the head was visible. Although fitting parametric models to statistical data or to

a set of points extracted from imaging data has been done for a long time, to our

knowledge, this is the first time a mechanistic model, able to realistically reproduce

the behavior of cells, was fitted directly to imaging data in order to track and measure

such cells. The power of this approach is evidenced by the measurement of cellular

components which are not present nor can be directly measured in the imaging data.

Visual examination of the observed and fitted sperm conformations indicates that

there are small deviations. One can interpret this pessimistically as indicating that

the image analysis based on model-fitting is not performing well enough. Models

have a purpose and if our purpose was to estimate average parameters of the

swimming trajectory or of the flagellar bending waves the quality of the fitting

would be sufficient. In contrast, the fitting would not be good enough if one

would be interesting in using the model predictions as a fine resolution mask to

make further measurements on the image. This leads to the other, perhaps more

interesting interpretation of the small discrepancies between modeled and observed

conformations: the image analysis method proposed here allows to infer that model

is oversimplifying the mechanics or degrees of freedom of the flagellar bending waves.

As a model inference tool these results are rather promising.

There is no general and definitive conclusion on what is the best scoring criteria

to compare two images, from which correlation-based and lp norm-based are the most

commonly used (Evangelidis and Psarakis, 2008). While using the sum of per pixel

intensity distance of the two images can be used to calculate the likelihood of the

parameters given the data directly, this measurement is more sensitive to differences

in contrast and brightness levels. On the other hand, maximizing the cross-correlation

is equivalent to maximizing the likelihood (Zucker, 2003) and correlation normalizes

the intensity distances by the mean of each image, which increases the robustness of

the method to those photometric effects.

We decided to use the sum of correlation as the criteria to optimize in the time-

lapse imaging data. For computational efficiency we aborted the calculation of the

correlation score for parameters sets in which the average correlation dropped below

0.5 or below half the maximal average correlation coefficient found by the optimization

procedure until that iteration. This implies that at least one correlation coefficient
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at a given frame was below this threshold. By doing this we might have missed

parameter sets which have higher correlation sum over the series of images but poor

correlation in a subset of the images. As the final solutions obtained do not have

any time-point with correlation coefficient below this threshold (data not shown) we

are confident that the solution found is better than all the candidates solutions that

were discarded.

In the optimization procedures we used fixed flagellar width, PSF standard

deviation and radius of correlation area. We could have fed the optimizer with these

parameters and fit them along the others. Doing so might improve the correlation

coefficients obtained when comparing rendered images and experimental images.

This should have higher impact when fitting a model to imaging data without pre-

processing. Note however that correlation assumes the constant average background

so phenomena such as uneven lighting should be addressed before fitting the model.

Another possible approach would be to include such effects in the model itself at the

expense of increasing the number of parameters to fit and to estimate.

To perform an unbiased test when inferring the flagellum by fitting the model to

time-lapse images where only the head is visible, we used the spatial and temporal

rescaling of L. pictus high resolution model as initial guess of the parameters to

model S. purpuratus cell. We remained within the spirit of our premiss which is to

use a priori information to fit a model to data. To use the mean flagellar length or

a measure of the sort and the flagellar beating frequency, which can be estimated

by the Fourier analysis of the head orientation, is thus acceptable. The point is that

we were able to obtain similar parameters, shapes, positions and orientations when

tracking the whole cell in images where on the heads of visible and in images where

the flagellum was not visible.

We did not explore the effect of noise on the ability of our method to estimate the

correct parameters. To test both the robustness and limit of this framework we can

generate in silico imaging data with different signal-to-noise ratios (SNRs). However,

we do not expect this to be different than from a ordinary statistics correlation where

a lower bound of SNR exists from which the method cannot differentiate the cell

from the background.
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2.4.1 Expanding our knowledge-based model

The objective of this work was to merely do a proof-of-concept and not to develop,

test or compare different algorithms for parameter initialization and optimization.

For this reason we implemented a simple MC evolutionary algorithm and some ad

hoc guesstimates were used as initial parameters. It is possible to further automate

the image analysis processing with our framework and to increase both the speed

of convergence and the goodness-of-fit of the final model by taking advantage of a

great body of work regarding the estimation of parameters from imaging data (Cootes

et al., 1998; Baker and Matthews, 2004). These methods include both the issue of the

initial estimation (Wu et al., 2013), on the search method and some of them also deal

with effects such as uneven illumination or background. Also, parallelization using

graphics processing units for producing the model image, to correlate them with the

imaging data and even for the parameter optimization are expected to increase the

computational speed and will help to deploy our method in tracking multiple cells in

a useful time frame.

Our model assumes that a cell has constant behavior, meaning it will swim

in perfect circles with the same periodic oscillations in translation and rotation.

However, the trajectory of a cell can be altered if it is perturbed by local changes in

physicochemical properties of the environment (media or surface), if it bumps into

other cells, or even by endogenous changes of the cellular state . Also, circular drifting

of trajectories have been reported under chemoattractant effect and our model does

not account for it (Böhmer et al., 2005; Friedrich and Jülicher, 2007; Guerrero et al.,

2010). For all these reasons, the best possible fit to experimental data with our

current model will eventually accumulate errors due to trajectory perturbations. A

priori, there is nothing preventing us to extend the mechanistic model of the cell to

include time-dependent variables that adapt the swimming behavior. The additional

complexity would render the data fitting more challenging. Another alternative is

to fit the same model in a piecewise manner, and choose the most parsimonious

combination of time-dependent parameters sets that best fits the data. For example,

a cell which changed its beating frequency from a constant value to another can be

described by no less and no more than two single model parameter sets. This global

model can be stated as a dynamical programming (DP) problem and its parsimony

could be achieved using Akaike’s information criteria (AIC) or Bayesian information

criteria (BIC) as scoring criteria (see Chapter 3 for an combined implementation of
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these frameworks).

Another challenge for future research is to fit the cellular model to a set of images

containing several spermatozoa. This was not implemented in this work because our

objective was to test a new framework where a parametric model of a cell generates

the observed data. While tracking multiple spermatozoa was not essential for this

seminal proof-of-concept it is important to address if the comparison criteria chosen

(i.e. correlation coefficient) is suitable to track different spermatozoa in more complex

scenarios. A highly correlated model image suggests most pixels are explained by

that number of cells at those positions, orientations, shapes and with those physical

properties. Using our current parameter optimization we envisage that choosing the

correct right number of cells can be a challenge. This is a problem similar to the

finding the appropriate number of clusters in cluster analysis, and strategies devised

for unsupervised cluster analysis may serve as inspiration. This notwithstanding,

there are some specifics to the problem at hand that are worth mentioning. While

the need for one more cell can be assessed by different parsimony criteria (e.g. AIC

or BIC), including one more cell with the wrong parameters can decrease either the

correlation coefficient or the parsimony criteria. To avoid this, the new added cell

should be allowed to converge before calculating its contribution to the global picture.

Similarly to the case of a cell which changes its behavior we can use DP to choose

between models with different number of cells at different time-points.

There is no limit to the biological detail that can be introduced in a

morphodynamical model of a cell. We can apply it to others cells by changing the

shape module accordingly and we can further expand it to e.g. grow according

to cell cycle rules or to use a different mechanics module for e.g. locomotion

by filopodia or even the signaling module for e.g. regulation of immune cells.

In fact the mathematical and computational biology field is plenty of models of

the cell capable of generating meaningful behaviors. In the case of sperm cells,

the mechanics module can be implemented as SBT, which models the long range

hydrodynamic forces and how these affect the flagellar shape, or to finite elements

(Yang et al., 2008), which allow to model confinement and direct interaction with

other sperm. The shape function can also be modified. One can also increase the

complexity of the shape module by modeling the axoneme directly (Riedel-Kruse et al.,

2007). Finally, the signaling cascades from receptor binding to internal calcium (II)

concentration ([Ca2+]i) have been modeled (Espinal et al., 2011) and we know that
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the flagellar curvature can be estimated by the derivative of [Ca2+]i (Alvarez et al.,

2012). This aspect can be of utmost value because spermatozoa agglomerate at the

center of the chemoattractant gradient and it becomes extremely difficult for either

computer or human to track cells in these conditions. Using an adequate model for

chemotaxis should allow our method to track cells even in these conditions and to

distinguish how different treatments or conditions are affecting the cells. Note that

extending the cell model can increase its number of parameters and their estimation

from the imaging data might be more difficult. The difficulties can be mitigated by

noticing that once a mechanistic model is successfully fitted to time-lapse imaging we

have more than just tracked the cells, we have inferred all the biological meaningful

parameters contained in the model.

2.5 Conclusion

In this chapter, we were able to prove a new concept: we generated a

morphodynamical model, based on biological and mathematical principles, and fitted

it directly to timelapsed two dimensional imaging data in order to detect and track

spermatozoa. Using the a priori knowledge of a sperm morphology, flagellar bending

waves and the physics of their motility, we could expand the capabilities of the

microscope by being able to estimate the position of the flagellum in imaging data

where this structure was not labeled and therefore not visible. This feature of our

approach can be generally applied to other systems, provided the appropriate model

is developed, and will allow to estimate what was is currently difficult to be measured

directly. Overall, this technological achievement opens the door to new avenues for

imaging analysis in general.
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Abstract

How sea urchin spermatozoa swim and orient in space to find their conspecific egg

during broadcast spawning events is a fascinating problem. Most of our current

understanding of this problem was derived from quantitative imaging studies of

spermatozoa of different species swimming confined to the liquid-solid boundary

plane. Whether these quantitative studies in the plane can be extrapolated to the

natural free swimming in three dimensions is an open question that has motivated

the development of special imaging systems able to track these fast swimming cells

in a volume. Several studies have reported the three dimensional trajectories of

some species of sperm but a comparative analysis across species and swimming

environments is hitherto lacking. The objective of this article is to provide a
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quantitative comparison of L. pictus and S. purpuratus spermatozoa swimming

trajectories when confined to a plane and when swimming freely in a volume.

We adopted the three-dimensional imaging system proposed by Corkidi and

collaborators that uses a piezoelectric device to oscillate an objective at high

frequencies, allowing to acquire images at different depths as a function of time.

In this system the oscillations of the focal plane and the image acquisition are

independent and concurrent leading to time-stamped bidimensional images (2D+t)

from which the vertical Z(t) coordinate must be inferred before cells can be tracked.

Earlier approaches to this inference problem proved to be inaccurate leading to

occasional systematic phase shift of the estimated Z(t) function that compromised

the reconstitution of the sperm trajectories. We report here a full revision of the

method to derive sperm trajectories from the 2D+t data. The first methodological

result is the development of a new algorithm able to generate accurate Z(t) from

the image correlogram. The second methodological contribution is the use of the

defocused patterns of the cell to obtain Z-coordinates of cells that have a precision

that is higher than the nominal precision associated with the image resolution

and acquisition rate. The third result is the introduction of piecewise helical

trajectory fitting to reconstitute the trajectories of spermatozoa and identify changes

in swimming path.

Using these algorithms we reconstituted the trajectories of spermatozoa of the

two species of sea urchin and compared these trajectories with those observed in

planar swimming. We identified a trend in the way spermatozoa alter their swimming

path when interacting with a surface. We found that, during free swimming, the

progressive speed of L. pictus sperm is higher than that S. purpuratus but the latter

has higher trajectory torsion. Also, the trajectory curvature of S. purpuratus sperm

is reduced when confined to the surface but not for those of L. pictus. Intrigued by

this finding we modeled the flagellar morphodynamics and sperm trajectories using

Resistive Force Theory in three dimensions. By fitting the model to data in free and

confined swimming we identified the potential causes of the observed differences. The

species-specific sensitivity to the planar confinement is likely related to the viscosity

at the liquid-solid interface, suggesting that the smaller S purpuratus sperm cells

swim closer to the interface that those of L. pictus and therefore face an effectively

more structured and viscous environment.
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3.1 Introduction

Sperm are essential for sexual reproduction of multicellular organisms and thus one

of the most important cells in their life cycle. In many animal species, there will be

no progeny for an individual whose spermatozoa are unable to either locate, reach

or fertilize a conspecific egg. Most of our current knowledge on sperm motility

comes from sea urchin models confined to planar swimming (Guerrero et al., 2011).

However, the knowledge obtained from such convenient setup might not apply to

the real three-dimensional (3D) world where these cells swim to find and fertilize

their conspecific egg. To deal with this problem, efforts have been made to image

these fast cells when swimming freely in 3D (Crenshaw, 1991; Corkidi et al., 2008;

Su et al., 2012). However, a full analysis comparing 2D and 3D swimming patterns

is lacking, as well as more interesting interspecies comparisons between different sea

urchin species.

Although many studies tried to establish the differences between confined and

free swimming spermatozoa (Cosson et al., 2003; Riedel-Kruse et al., 2007; Friedrich

et al., 2010), these studies were mostly based on models of the three-dimensional

behavior that were not directly compared to experimental free swimming data. Several

studies describe experimental 3D trajectories of sea urchin (Crenshaw et al., 2000;

Corkidi et al., 2008; Jikeli et al., 2015), human (Su et al., 2012) and horse (Su

et al., 2013) spermatozoa have been reported but an exhaustive comparison to those

obtained when the sperm cells are confined was lacking. Furthermore, both theoretical

and experimental studies suggested differences in spermatozoa swimming close or far

from a surface boundary (Corkidi et al., 2008; Guerrero et al., 2010; Jikeli et al.,

2015). Here we present the first comparative study of two different sea urchin species

– Lytechinus pictus and Strongylocentrotus purpuratus – in both free and confined

swimming.

An algorithm to detect and track spermatozoan cells in 3D using the microscopy

setup developed by Corkidi et al., (2008) (Pimentel and Corkidi, 2010; Pimentel et al.,

2012) has been described. However, the resulting trajectories have non-negligible

noise in the Z component that made the estimation of trajectory parameters virtually

impossible based on standard filtering and smoothing methods (e.g. smoothing and

regression splines, discrete geometry (Crenshaw et al., 2000; An et al., 2011)). Some

methods allow estimation of such parameters by fitting helical segments to data with

only two dimensions (Gurarie et al., 2011; Cherin et al., 2014), notwithstanding, these
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cannot be applied to our data as we do not meet the minimum requirements to apply

them (e.g. our data has different noise in the Z component, compared to the other

two dimensions). Thus, it is necessary not only to improve both detection accuracy

and precision, but also to develop a method able to estimate the trajectory parameters

out of our data. Here we describe a new and improved method to detect and track

cells using the referred microscopy setup, which is a full revision and improvement of

all steps necessary to transit from 2D+t imaging data to 3D+t tracking of individual

cells, and trajectory characterization.

To gain insight into the flagellar beating differences between constrained (i.e.

confined to planar swimming by a planar boundary) and unconstrained swimming,

we followed an approach similar to the one used by Friedrich et al., (2010) and Jikeli

et al., (2015). We applied a 3D version of Resistive Force Theory (Gray and Hancock,

1955) to model a flagellum attached to an elliptical head swimming either confined

to a planar boundary or freely in three dimensions (3D).

In this study, we were able to improve the method to detect and track spermatozoa

in 3D+t from 2D+t data, to develop a new method based in Dynamical Programming

and Bayesian Information Criteria to fit helical segments to data with asymmetric

noise in order to assess the differences in swimming behavior of two sea urchin species

and to bridge the confined and free swimming models. The mathematical model

allowed us propose that S. purpuratus sperm have significantly different flagellar

beating when they confine, while the others from L. pictus do not.

3.2 Materials and Methods

3.2.1 Biological materials and image acquisition

Undiluted spermatozoa from S. purpuratus or L. pictus (Marinus Inc., Long Beach,

CA, USA; Pamanes S. A. de C.V., Ensenada, Mexico) were obtained by intracoelomic

injection of 0.5 M KCl and stored on ice until used within a day. Artificial

seawater (ASW) was 950-1000 mOsm and contained (mM): 486 NaCl, 10 KCl,

10 CaCl2, 26 MgCl2, 30 MgSO4, 2.5 NaHCO3, 10 HEPES and 1 EDTA (pH 8.0)

for S. purpuratus. To reduce the number of spontaneous acrosome reaction, L.

pictus spermatozoa were suspended in slightly acidified artificial sea water (pH 7.4).

[Ser5; nitrobenzyl-Gly6]speract, referred to throughout the text as “caged speract”,

was prepared as previously described (Tatsu et al., 2002). PolyHEME (poly(2-53
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hydroxyethyl methacrylate)) and other reagents, unless indicated, were from Sigma-

Aldrich (Toluca, Edo de Mexico, Mexico). A dilution of cells was prepared with ASW

stored on ice and 2µl were added to 200 µl of ASW at 14◦C in a imaging camera

previously coated with PolyHEME.

Acquisition of 2D+Z(t) imaging data of both sea urchin species were obtained

using the microscopy setup developed by Corkidi et al., (2008), using the settings

defined in Pimentel et al., (2012). Briefly, a piezoelectric device coupled to the

objective (Olympus 40X/0.60 N.A., Olympus America Inc. U.S.A.) installed in

an inverted optical microscope Olympus IX71, oscillating at 30 Hz with ∼250 µm

amplitude was used. Framerate acquisition was at 2000 Hz with a high-speed camera

(Optronics CR5000x2, Optronics GmbH, Germany). Images were pre-processed by

subtracting the background (average intensity of the first 100 frames), transforming

to 8-bit and horizontal line filtering by applying a horizontal low-pass filter of 95%.

3.2.2 3D trajectories of free swimming spermatozoa

To characterize the trajectories of free swimming spermatozoa we processed the 2D+t

imaging data as illustrated on figure 3.2. Briefly, the data are a series of time-stamped

bidimensional image frames Iti (with i ∈ {1, ..., f}) captured by a high speed camera

while the piezoelectric oscillations scan a volume in an independent and concurrent

manner. Since the microscope system does not return the Z position at which each

imaging frame was acquired this needs to be inferred from the image data itself.

Once the function Z(ti) is reconstructed one has to identify and measure the spatial

and temporal coordinates of the centroid of the head of each sperm cells index s.

This implies estimating the positions of the centroids {X,Y, Z}s[ti] of each cell s

at each time ti and then tracking the cell during the period of the analysis. The

methods used in each of these steps are described in the following sections. They

were inspired on the previously proposed methods Pimentel et al., (2012) but have

been fully revised at each step.

Inference of the depth function Z(t)

To accurately estimate the Z(ti) of each frame i, we built on the seminal idea by

Pimentel et al., (2012). Sperm cells have an average path velocity of 250 µm/s and

the frequency of the piezoelectric and the high acquisition frame rate ensure sperm

cells are not significantly displaced between two consecutive frames at the same Z
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position, i.e., within a piezoelectric period debris are virtually static and cells do not

displace more than two times the average head size. Under these conditions, frames

at the same Z position should be highly correlated whereas frames with different

Z should not, and therefore the Z positions can be inferred by correlation. This

notwithstanding, there is a threefold challenge: first, neither the position Z(ti) nor

the velocity are produced by the microscopy setup; second, the piezoelectric moves

non-linearly due to the mass of the objective such that consecutive images are not at

the same distance in the Z-dimension; and third, the vibrations of the piezoelectric

produces horizontal wobbling of the objective translating the referential for the (X,Y )

coordinates that can spoil the expected image correlations.

The new algorithm to reconstitute the function Z(ti) implements a strategy

to overcome these challenges. First, we constructed a correlogram in which the

correlation coefficient ρi,i+k is the maximum of the cross-correlation between the

normalized ith image frame and a normalized inset of the (i+k)th image, computed

in Fourier space. Using the inset of 7.8µm (or 10 pixels) allowed to accommodate

and correct for the translations in the horizontal plane introduced by the small

but not negligible vibrations of the piezoelectric. The bidimensional correlogram

obtained shows a conspicuous periodic structure (fig. 3.2B). The next step involves

realizing that if at some instant t the focal plane is at the minimum or maximum Z

position then the images acquired before and after a fixed time lapse are a the same

depth and therefore should be highly correlated (if the function Z(t) is approximately

symmetric). Based on this realization we defined a new image index m = i + k/2

such that the local maxima of the function ρm = Average(ρi,i+k) correspond to the

extremes of the vertical positions of the focal plane. The dots following slanted lines

on top of the correlogram figure 3.2B, correspond to the indicated m values. As m

increases the slanted line slides to the right and the average correlation under the line

is maximal at the extremes. The figure also explains the choice of k ∈ {3, ..., 64} as

the expected period of 30 Hz corresponds to about 66.7 frames. The average ρm is

plotted in figure 3.2C as a function of m. Since by construction the first extreme is a

minimum then the series of minima and maxima is obtained in straightforward way.

Finally, to reconstruct the function Z(t) a linear rescaling of each half of characteristic

piezoelectric periodic function (Pimentel and Corkidi, 2009) was applied in time to

fit the series of extremes in a piecewise manner. An example of the reconstructed

function Z(t) is depicted in figure 3.2D.
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Cell detection and tracking

The previously proposed algorithm (Pimentel et al., 2012) segmented regions

containing concentric rings of dark and light intensity, characteristic of the out-

of-focus patterns of the sperm cells, selected those in which the pattern appeared

inverted in consecutive neighboring image frames and averaged the Z position. It

turned out that this method yields Z estimates of the sperm head centroids with

significant uncertainty. To improve the performance of the method we explored

quantitatively the relationship between the diffraction patterns characteristic of the

out-of-focus cells and the offset between the plane of the sperm cell and the focal

plane (fig. 3.2E). Note that the asymmetry of the patterns when the focal plane of

the objective is imaging above and below the focal plane of the cell (a feature that was

incorrectly misinterpreted by Pimentel et al., (2012)). Averaging over hundreds of

images sperm heads, we constructed an ordered template set, (P k) with k = 1, ..., 9,

where patterns are ordered according to the offset from the vertical position of the

focus plane of the cell to the focal plane of the objective (fig. 3.2E). It is important

to emphasize that these patterns are ordered but the exact offset values are unknown.

Each pattern k in the template set is used to perform cross-correlation with every

image frame i in the downward movement of the piezoelectric (to reduce the amount

of data to be processed), and the detection events are collected every time the

coefficient is higher than 0.7. In this way, one obtains a collection of detected objects

{X,Y, Z(ti), k, r}, where X and Y are the coordinates of the center pattern on the

image frame, Z(ti) is the vertical coordinate or depth of the frame, k is the index of

the pattern in the ordered template set and r is the correlation coefficient between

the template and the frame. The objects are clustered in space (X,Y and Z) and

time (t) by a friends of friends algorithm using a link-threshold of 5µm and 1.5 ms.

The number of objects in each cluster is reduced by retaining the object with highest

correlation coefficient r for each (ti, k) pair and eliminating the remaining ones.

Associated to each sperm head we obtain a set of up to 9 ordered objects indexed

k corresponding to the highest correlation for each template (cells moving close to

the limits of the imaged volume, inside or outside, will be represented by less than 9

objects). We call this the diffraction set of a cell (fig. 3.2E). After this selection, we

regressed the Z coordinate over the template index k with weights w = (r−0.7)/0.3

within each diffraction set of a cell. The regression slope is averaged over all the

diffraction sets obtaining an average slope β. We recalculate the regression of Z
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over k imposing the average slope β across the diffraction set and the Z-coordinate

corresponding to Z(k = 5) is obtained and taken as the vertical coordinate of the

cell. The bidimensional coordinate (X,Y ) is obtained by weighted average with the

weights w, and t is obtained by linear interpolation. It is important to emphasize

that the coordinates of the cell {X,Y, Z, t} will have higher precision than nominal

precision associated with image resolution and temporal acquisition rate.

Tracking of the individual sperm heads in the whole data set (fig. 3.2H) was

performed using two clustering steps. In the first step, we clustered the points by

normalized {X,Y, Z, t} Euclidean distances with the friends-of-friends agglomeration

method, using a normalized maximal distance of 0.238. To resolve distinct cells that

happen to cross near each other, we applied space-wise friends-of-friends clustering

(i.e. agglomerating points by increasing spatial distance) ensuring a maximal spatial

(X,Y and Z) euclidean distance of 25 µm between all cluster members if their

temporal distance was equal to or below 0.1 s. This method breaks the trajectories

of two crossing cells into exactly five different clusters. The region where two cells

meet in space and time were discarded and the clusters belonging to the same cell

were determined as such by clustering in normalized trajectories parameter space (see

below). We now have collections of distinct sets of points, each corresponding to

time series of the centroid of the head of distinct spermatozoa.

Piecewise helix fitting

The final step in tracking the spermatozoa in the imaging data set was to estimate

the individual trajectories and their parameters. To this end, we performed piecewise

helical segment fitting to the sets of points obtained in the previous step using

Dynamical Programming and Bayesian information criteria (BIC) (fig. 3.2I). This

method chooses the most parsimonious model that best fits the data, meaning the

minimal number of helical paths necessary to approximate the points in a trajectory.

For single helix fitting, the coordinate-based Point Distance Method (Liu and Wang,

2008) was applied to measure the distance between model and data points. Note

the set of helices which describe a trajectory are non-continuous in space. Also, our

method allows for different weights for different dimensions. In this case, we used

weight 1 for either X and Y and 0.2 for Z axis, to account for the higher uncertainty

in the Z estimates.

Consider a parametric curve r(p, t) defined by its parameters p = {p1, ..., pm},
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m ∈ N and p, t ∈ R. We will consider a curve in Euclidean R3 space. In this study,

every curve is an helix described as follows:

r(p, t) =

X(t)

X(t)

Z(t)

 = RXRYRZ

r cos(2πt/T )

r sin(2πt/T )

‖a‖t

 + c1 (3.1)

where the parameter vector is p = {‖a‖, r, T, νX , νY , νZ , cX , cY , cZ}T , Ri are

reference frame rotation matrices on i axis, r is the helix radius, T is the helix

revolution period and ‖a‖ is the progressive speed (i.e. helix pitch over revolution

period). The rotation matrices are also a function of a subset the parameter vector

p:

RX =

1 0 0

0 cos(νX) sin(νX)

0 − sin(νX) cos(νX)

 ;RY =

cos(νY ) 0 − sin(νY )

0 1 0

sin(νY ) 0 cos(νY )

 ;RZ =

 cos(νZ) sin(νZ) 0

− sin(νZ) cos(νZ) 0

0 0 1



and the translation vector is c1 = {cX , cY , cZ}T .

Consider the experimental data column vector ėT = {ei}ni=1, where ei is the

position defined experimentally at time ti (t ∈ {t1, . . . , tn}), n ∈ N. The sum of

squared errors distance (coordinate-based (Ahn, 2004)) between experimental and

modeled state is given by the sum of squared errors

SSE = (ṁ− ė)TW TW (ṁ− ė) (3.2)

where ṁT = {r(ti)}ni=1 and W = diag({w}ni=1) is a weight (non-singular) matrix

defined by w = {w1, . . . , wm}. As this error measure depends on the model and

these depend on the parameters used, the error also depends on the model parameters

(SSE(p(t))).

Suppose you have experimental data ėT as defined above and that p(t) is constant

(p). It is possible to calculate which parameters of your model best fit the data. Using

equation 3.2 as our distance measure between model and experimental data, we want

to find which parameters minimize this distance:

argmin
p

SSE(p) (3.3)

By using initial conditions of p close to the solution we can (hopefully) find the global
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minima using hill-climbing algorithms like the quasi-newton methods. In particular we

applied the optim function with argument method="BFGS" in R statistical software.

The initial conditions were set as follows, assuming the data defines a helix with

several revolutions and radius smaller than the helix height. We started by estimating

the timescale of the line â = ‖rn − r1‖/∆t1,n. Principal Component Analysis gives

us the principal axis vector of the helix (z′) and the center of mass of the point

cloud (cc). Then, c1 is estimated by the displacement between the closest point to

the center of mass (rc) along the principal axis: ĉ1 = cc − tcâz′. The revolution

period T can be estimated as the low frequency (1/T̂ less than 10% of the calculated

Nyquist frequency) with higher magnitude of the angles between each sampled point

and PC2 as a function of time (∠t(rt − cc, PC2)). PC2 gives us a radial vector

(e.g. passes through the center of the circle) and the radius can be estimated using

three points as in Coeurjolly and Svensson, (2003): let di,j = ‖rtj − rti‖ and s =

(di−k,idi−k,i+kdi,i+k)/2 then r̂ = s/(2Area(4rti−k ,rti ,rti+k
)). In this work, i was

chosen to be the closest point to cc (rc) and k is a random point under the restriction

|ti±k − ti| ≤ T̂ /4. If we solve z′ = RX(νX)RY (νY )RZ(0){0, 0, 1}T we obtain

νY = arcsin(−z′X) and νX = arctan{(−z′Y / cos(νY ))/(z′Z/ cos(νY ))}. Note we

should calculate νX taking the quadrants into account, so we must use the function

atan2. Also note that Euler angles systems (i.e. the rotation system used here) have

two solutions and here we consider the one where −π/2 ≤ νY ≤ π/2. Finally, we

estimate νZ as the angle between r(ti, p̂) and ri.

Consider the possible time uniform knot set Ω = {ṫ1, . . . , ṫo}, ṫi = t1 + (tn −
t1)(i − 1)/(o − 1), i ≤ o, o > 1 and i, o ∈ N, we will determine the subset Ω̇ ⊆ Ω,

ṫ1, ṫo ∈ Ω̇ that minimizes the BIC. This is needed to make a balance between number

of parameters (i.e. number of helices fitted) and the error of that fit. In detail, we

want to find Ω̇ that minimizes the cost function d(ṫo) = d(ṫ1, ṫo). As we are not

assuming C0 nor G0 continuities, the general problem have independent smaller sub-

problems problems that are part of the general problem solution. Thus, we can use

solve it using Dynamical Programming. Formally, the general problem d(ṫo) has

sub-problems

d(ṫj) = min
i,j∈N

(ni + ni,j) ln (
SSEi + SSEi,j

ni + ni,j
) + (Ki +Ki,j + 1) ln (ni + ni,j) (3.4)

where 1 ≤ i < j ≤ o, ni,j is the number of sample points where ṫi ≤ tk ≤ ṫj ,
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SSEi,j = SSE(pi,j) and Ki,j is the number of parameters of the fitting between

knots ṫi and ṫj , respectively. Also, ni = n1,i and this is similar in SSEi and Ki.

Finally, d(ṫ1) = 0. Note the BIC formula in the equation above.

The solution to argmin
Ω̇

d(ṫo) is obtained iteratively by orderly solving sub-

problems from d(ṫ1) to d(ṫo). We then extract the parameters vectors pi,j where

ṫi, ṫj ∈ Ω′ to attain our piecewise helix fitting.

After obtaining the first fittings with this method, we fitted all trajectories with

three initial conditions: the one estimated and the median parameters of either sea

urchin species. Finally, cells were uniformly resampled using their respective piecewise

helix model at the piezoelectric frequency.

3.2.3 2D imaging data of spermatozoa and trajectories

L. pictus and S. purpuratus imaging data was kindly provided by Guerrero et al.,

(2010). Trajectories were manually obtained using the MtrakJ plugin (Meijering

et al., 2012) of ImageJ v1.4. As caged Speract was present, we only analyzed data

in the 0-3 s interval, before UV irradiation in order to study sperm motility in non-

chemotactic conditions.

Trajectory parameters were estimated as in the 3D case, but constraining

progressive speed to zero, so we fitted circle arcs instead of helices. Note that this

method calculates the velocity, curvature and torsion along the average path.

Trajectory parameters were estimated as in the 3D case, but constraining

progressive velocity to zero, so we fitted circle arcs instead of helices. Note that

this method calculates the velocity, curvature and torsion along the average path.

3.2.4 Data

All piecewise fitted trajectories included in this study were manually inspected

and discarded if appropriate, keeping trajectories with one and only one cell with

reasonable speed (50 ≤ ‖v‖ ≤ 300 µm.s-1), curvature (0 ≤ |κ| ≤ 1 rad.µm-1) and

torsion (0 ≤ |τ | ≤ 1 rad.µm-1). Furthermore, only trajectories spanning more than

one second were considered.

Data was analyzed using R statistical program v.3.0.3 (R Foundation for

Statistical Computing, Vienna, Austria). Comparison of empirical cumulative

distributions was performed by two-sample Kolmogorov-Smirnov while the median
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was compared using the Mann-Whitney test. For all tests we assumed a type I error

of α = 0.05. When stated, Bonferroni correction was applied with a α/α′ factor,

where is α′ the type I error considered for that specific statistical test.

3.2.5 Morphodynamical model

Consider a mathematical model of a cell in which the morphology changes are defined

within the model itself – this is a morphodynamical model. In our particular case,

the spermatozoon cell model (S) is defined by the shape (Σ) and mechanics (Φ)

modules.

Shape

We can define the morphology of a spermatozoon by defining two regions, the

head and the flagellum. We assume the head is a revolution ellipsoid with half

axes a and b = c. The flagellum is composed of N rods with total length

L. The conformation of the flagellum at a particular time (t) is given by its

flagellar curvature (κ) along flagellar arclength (s), a first order traveling wave:

κ(s, t) = K0 + A0 cos (ωκt− λκs+ φ), which is defined by the mean flagellar

curvature (K0), basal curvature amplitude (A0), angular velocity of beating (ωκ),

curvature wavelength (λκ) and phase (φ). We assume the flagellar torsion (τ(s, t) =

T0) along arclength to be constant. The intrinsic flagellar position (rf (s, t)) is

calculated by arclength integration of the Cosserat frame (Cao et al., 2006; Jikeli

et al., 2015), which is defined by the orthonormal basis e1(s, t), e2(s, t) and

e3(s, t) : ∂rf (s, t)/∂s = e3(s, t), ∂e3(s, t)/∂s = κ(s, t)e1(s, t), ∂e1(s, t)/∂s =

−κ(s, t)e3(s, t)+ τ(s, t)e2(s, t), ∂e2(s, t)/∂s = −τ(s, t)e1(s, t). Note e3 represents

the centreline along the flagellum, rf (0, t) = {−a, 0, 0}, e1(0, t) = {0,−1, 0},
e2(0, t) = {0, 0, 1} and e3(0, t) = {−1, 0, 0}. At a given time t, the centroid of

the head has extrinsic position Rh(t) and orientation matrix Θ(t), which rotates

from extrinsic to intrinsic coordinates.

Mechanics

As the cell moves within a viscous fluid, the latter exerts drag forces which, under some

conditions, propel the cell in the media. The physics behind it have been shown to be

approximated by Resistive Force Theory (RFT) (Gray and Hancock, 1955; Friedrich
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et al., 2010; Jikeli et al., 2015), which we will use here. Briefly, the drag force density

that fluid exerts on the flagellar piece is f(s, t) = ξ‖∂ṙf,‖(s, t)/∂t+ξ⊥∂ṙf,⊥(s, t)/∂t,

where ṙf,‖ and ṙf,⊥ are the tangent and normal components, respectively, of the

mean flagellar piece velocity ṙf (s, t) = (Ψ′(δθ(t)) ·r(s, t+δ)+δv(t)−r(s, t+δ))/δ

during the time interval δ. Note v and θ are the intrinsic head translational and

rotational velocities, respectively, Ψ′(ν) is the an approximation of Rodrigues rotation

formula (Ψ′(ν)) for small angles (sinβ ' β and cosβ = 1) and ξ‖ and ξ⊥ are the

tangent and normal drags exerted on the flagellum, respectively. We can obtain the

intrinsic head velocities by solving the system of force and torque equilibria defined

by ξTv(t)
∫ L

0 f(s, t)∂s = 0∧ξRθ(t)−
∫ L

0 f(s, t)×rf (s, t)∂s = 0, where ξT and ξR

are the translational and rotational drag coefficients of the head and the symbol ×
denotes the crossproduct operator. The intrinsic head velocities are transformed into

extrinsic velocities by multiplication of the transposed orientation matrix and applied

to the cell to calculate the new extrinsic position Rh(t+ δ) = Rh(t) + δΘ(t)T · v(t)

and orientation Θ(t+ δ) = Ψ(δΘ(t)T ·θ(t)) ·Θ(t). Note we used the approximated

Rodrigues rotation matrix to calculate the local flagellar velocity in order to make the

system linear but this approximation is not needed when we calculate the extrinsic

velocities from the intrinsic ones.

Assuming a dynamic viscosity η we can calculate the translational and rotational

drags for the head based on its size using Perrin’s formulas (Perrin, 1936). As we

used Euler integration method, we will update the system every δ time steps and

then we solve it for the intrinsic translational and rotational velocities assuming they

are constant within each time period δ.For spatial integration of the flagellum, we

discretized it in N segments and calculated the intrinsic midpoint position κ[i, t],

where i = L/N . We determined N = 49 and δ = 50 µs to produce errors

(
∑

(obs− exp)/exp× 100) below 5% when calculating the intrinsic translational and

rotational velocities, comparing to N = 499 and δ = 10 µs. Note the simulations

were performed with N=49 in order for the exploration of the parameter space to be

accomplished in feasible time.

The spermatozoon model S(Σ,Φ) is thus completely defined by its shape

parameters Σ = (a, b, c, L,N,Rh,Θ,K0, A0, φ, ωκ, λκ, T0) and its physical or

mechanical parameters Φ = (ξT , ξR, ξ‖, ξ⊥). Although not explicit here, some of

these parameters are dependent on time, as shown above.
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Table 3.1: Parameters used in the RFT model.

Parameter Units Lp Sp Ap*

a, b µm 3.25,1.625 2.88,1.44 2.50,1.25
L µm 44 38 41
N – 49 49 49
η Pa.s 0.00900 0.01115 0.01080
ξ‖ pN.s.µm-2 0.01427867 0.01041734 0.010692
ξ⊥ pN.s.µm-2 0.02855734 0.02073051 0.01935252
ξT pN.s.µm-1 (0.332,0.380,0.380) (0.364,0.417,0.417) (0.306,0.351,0.351)
ξR pN.s.µm (1.567,2.924,2.924) (1.353,2.522,2.522) (0.855,1.596,1.596)
s µm 0.898 0.776 0.837
K0 rad.µm-1 0.03483757 0.04110697 0.0351
A0 rad.µm-1 0.17597653 0.20163048 0.160
A1 rad.µm-1 0 0 0
λκ rad.µm-1 0.1927098 0.22425032 0.2122698
ωκ rad.s-1 180.72 195.42 273.32
T0 rad.µm-1 0 0 0.00477

Parameter description and fitted values to a confined spermatozoon of L. pictus (Lp) and S.
purpuratus (Sp). (*) Free swimming parameters of A. punctulata (Ap) as reported on other work
(Jikeli et al., 2015).

One of the proposed mechanisms for the confined swimming mode near the water-

glass interface is that the boundary and the hydrodynamic forces therein constrain the

(quasi-)planar beating waves of the flagellum to be parallel to that surface (Cosson

et al., 2008). This suggested the following simplification to the modeling of the

confined swimming. We projected the 3D free swimming translational velocity on the

plane defined by the first two principal components of all flagellar positions within a

beating period. The angular velocity was projected into the third principal component.

An Euler integration with the same timestep as in the free swimming mode was used

to calculate the confined position and orientation of the cell along time using the

projected velocity vectors.

3.2.6 Comparing and fitting the model to trajectories

To fit the model to experimental trajectories we first estimated the flagellar shape

parameters by random walk and then by gradient descent optimization using high

temporal and spatial resolution imaging data of each species sperm in confined

swimming (Table 3.1). The cost function to minimize was the mean flagellar distance

between data and model as returned by an alignment by the Kabsch method (see R
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New method

Pimentel et al., (2012)

Figure 3.1: Determining the Z position of each imaging frame. The same stationary
cell as detected by the new method (top) and by Pimentel and Corkidi, (2010)
(bottom). Notice the different Z variance at 4-7 s. Axis length is 10 µm.

function pracma::kabsh). Using the resulting fitting, we searched the parameter

space (effective viscosity, mean flagellar curvature, flagellar curvature amplitude

and flagellar torsion) by random walk, in order to obtain the sets which generate

free and confined trajectories within the first and third quartiles of the trajectory

speed, curvature and torsion observed for each species. For each species and each

swimming type, we randomly chose ∼1000 independent parameter sets which are

uniformly distributed within the experimental trajectory quantiles and computed the

ratios between free and confined swimming. For the test between the parameter

medians between the two swimming modes a Bonferroni corrected type I error was

used (α′ = 0.0042). The representative trajectories of each species were chosen by

selecting the parameter set which generates the trajectory closest to the median values

observed for free swimming and then by multiplying the parameters by the median

parameter ratio to generate the confined swimming trajectory. These parameter

ratios were calculated as all possible ratios between the sampled parameter sets of

the swimming modes, for each species.

3.3 Results

3.3.1 Accurate and precise reconstitution of 3D sperm trajectories

To study sperm motility and to establish the species-specific differences between

sperm swimming confined to a boundary plane or free from a boundary, we need

accurate and precise trajectory data. The microscopy setup developed by Corkidi

et al., (2008) was used in this study to obtain the 2D+t imaging data but the
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previously proposed algorithms to derive the 3D sperm trajectories from these data

(Pimentel et al., 2012) proved to be insufficiently accurate and precise or were

insufficiently expedite to be deployed in automatic and objective analysis. These

limitations of the available algorithms motivated a systematic revision of the different

steps of the imaging analysis and trajectory reconstitution algorithms.

The inference of the vertical coordinate associated of each image frame Iti is the

first challenge for image analysis. The Z(t) position of each frame as generated by

the methods reported by Pimentel et al., (2012) did not perform reliably for some

imaging data sets, often producing a phase shift of the estimated Z(t) (fig. 3.1). The

method was improved by producing a correlogram based on the correlation coefficients

of each frame and its neighboring frames within the theoretical piezoelectric period.

This correlogram shows a regular periodic structure with maxima that correspond

to the instants when the piezoelectric device inverts the direction movement of the

focal plane (fig. 3.2B and C). These correlation maxima occur either when the Z(t)

is at its upper or lower extremes. An empirical characteristic piezoelectric function

(Pimentel et al., 2012) was then rescaled in time to fit the pairs of consecutive upper

and lower extremes in a piecewise manner, obtaining the full series of Z(t) position.

This method increased the accuracy in determining the Z position of each frame,

reducing some spurious variance in Z(t) and avoiding the progressive phase-shift in

the function Z(t) produced by the previous method (fig. 3.1).

The method to detect and measure the position of cells in 3D proposed by

Pimentel et al., (2012) generated Z values that were very noisy. The resulting high

variance in the measurements impaired the resolution of different cells that swam

within Z distance of ∼50µm, thus also precluding the estimation of the trajectory

parameters such as speed, curvature and torsion. As the diffraction patterns are

asymmetric when the focal plane of the objective is above or below the plane of

the center of the cell, we used the offset characteristic of each pattern for the same

imaging settings (fig. 3.2E) to improve the precision of the measurements of the

center of the cell (fig. 3.2F).

3.3.2 Piecewise helix fitting allows discrimination of both species
by their trajectory parameters in free swimming

Sea urchin spermatozoa swim in helical trajectories in 3D (Crenshaw, 1996), and,

in the limit, any curve can be locally approximated by an helical segment. To
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Figure 3.2: Diagram of the algorithm to estimate speed, curvature and torsion of spermatozoan
trajectories from 2D+Z(t) imaging data. Estimation of the Z(t) position of each time-stamped frame
(A) using the cross-correlation matrix (B) and estimated piezoelectric extreme position (C). Then,
detection of the position of the center of each cell (D) using templates of average 2D diffraction
patterns of a cell (E), each corresponding to a given expected Z offset, and consequent precise
estimation of the cell Z position (F) using the estimated offset of each diffraction pattern (G).
Tracking was performed by two-step clustering in space and time (H) and trajectories parameters are
estimated by piecewise helix fitting (I). Scale of three-dimensional plots is in micrometers.
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estimate the speed, curvature and torsion of the sperm cell, helical segments were

fitted in a piecewise manner to the trajectory data. Constant helical trajectories (i.e.

characterized by constant speed, curvature and torsion during the time under analysis)

should be fitted with only one helix path, while trajectories where either one of the

parameters changes or has directional changes during the analysis should be fitted

with multiple different helical segments, each being a good local approximation of the

trajectory. To define where and when a helical segments stops and another starts we

used Dynamical Programming to screen all possible solutions under a given temporal

resolution, using BIC as a cost function. The BIC allows to choose the modeling

solution with the lowest number of helical segments which describes the trajectoriy

appropriately. Because the data coordinates X and Y have higher accuracy and

precision than those of Z, different weights were given to each spatial dimension,

during the piecewise fitting procedure. A smaller weight for the Z axis is especially

critical when cells are detected near the piezoelectric extremes, because only the

upper or lower diffraction patterns are imaged when the cell is near the minimum

or maximum, respectively, of the piezoelectric displacement amplitude. This biased

information introduces a potential artifact such that cells appear to swim parallel to

the upper or lower limits of the imaged volume. The smaller weight on Z minimizes

this artifact. In fact, depending on the orientation of a true helical trajectory, it is

possible to estimate its true parameters from the projection of the plane XY plane if

we assume the weight on the Z axis to be zero. Furthermore, the application of the

linear offset function while determining the cellular centroids allows to infer positions

beyond the piezoelectric movement extremes. Thus, using the detection and tracking

methods developed here, it is possible to infer cellular positions that are outside the

imaged volume.

Using these improved methods, we were able to obtain and characterize the

average trajectories of both free and confined swimming spermatozoa with little

human intervention (fig. 3.3 and table 3.2). In order to validate our approach,

we compared our estimates of the trajectory patterns with those obtained in previous

studies and found the available values to be consistent with those we obtained (table

3.2). Contrary to confined swimming, both speed and curvature are significantly

higher for S. purpuratus. The novelty is that torsion is also higher for this species.

Furthermore, we see more variability between the different quantiles of the helices

fitted to L. pictus free swimmers than to the other species. Note these helices were
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defined as the closest experimental helix to the first, second and third quartiles of

speed, curvature and torsion for that species. Finally, the distribution of progressive

speed is significantly different between species, and the ratio (S. purpuratus over L.

pictus) of their mean and median values are 0.83 and 0.93, respectively.

3.3.3 S. purpuratus radius of osculating circle is different between
free and confined swimming

It is worth examining the distributions of the trajectory parameters with more detail.

Both speed and radius of the osculating circle (i.e. reciprocal of curvature) of the free

and confined trajectories of L. pictus sperm were not found to be significant different

(p-value>0.05 for both t-Student and Wilcoxon test). In contrast, the speed and

curvature of the S. purpuratus sperm free trajectories were both significantly higher

than those of the confined trajectories (p-value<0.001). The ratio between the mean

free-swimming helix radius and the mean confined radius of the osculating circle was

0.50 and 0.42 for L. pictus and S. purpuratus, respectively. Also, the revolution

period was significantly different only in the case of S. purpuratus (p-value<0.001).

These species-specific differences might be a consequence of the factors that promote

higher torsion on the free trajectory, which are expected in turn to result from a higher

asymmetry in the the z component of the flagellar beating.

3.3.4 Higher asymmetry of flagellar beating accounts for the
observed curvature ratio

We speculated whether the difference in radius of curvature between confined and

free swimming observed in the case of S. purpuratus sperm is the result of greater z

asymmetry in the flagellar bending, provoking both higher torsion when the cell is free

and greater interaction with the boundary than the other species when it confines to

the interface. To test this hypothesis, we simulated spermatozoa in silico using RFT

in 3D, not only for the two species referred before but also for Arbacia punctulata.

For parameterization of the model of L. pictus and S. purpuratus spermatozoa, we

fitted the model to high temporal and spatial resolution imaging data of a confined

spermatozoon from each species. The sizes of the head and flagellum were measured

directly in the imaging data while the remainder parameters (including the functions

that model the flagellar shape) were obtained by performing non-linear least-squares

fitting of the simulated trajectories to the experimental ones after an initial search
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Figure 3.3: The helical trajectories of the spermatozoa of the two species are more
distinct during free swimming than when confined to the plane. Left: Distribution
of speed, curvature and torsion of the helical pieces fitted for L. pictus (brown) and
S. purpuratus (purple) in both free (top) and confined (bottom) swimming. Size of
circle is proportional to the time a cell spent swimming with such parameters. Right:
Helices and circle arcs (black lines) closest (i.e. scaled Euclidean distance) to the
first (+), second (*) and third (×) quartile sets of speed, curvature and torsion are
displayed on the right, for each condition. Grey points represent the experimental
data points used to fit the helices. Arrows represent direction of swimming. Total
swimming time varies. All helices are right-handed and all confined turn clockwise.
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Table 3.2: Trajectory parameters in the literature for the species studied here.

Species Swim Parameter (mean±sd)1 (mean±se)2 (mean±sd)*

|r| (µm) n.a. 24.9±1.0 25.8±7.7
|a| (µm/s) – – –

Confined 1/|T | (s−1) n.a. 1.67±n.a. 0.9±0.3
v (µm/s) n.a. ( 261.3) 143.6±30.4
1/κ (µm) n.a. 24.9±1.0 25.8±7.7

L. pictus τ (µm−1) – – –
r (µm) n.a. n.a. 13±3.7
a (µm/s) n.a. n.a. 89.4±25.5

Free 1/T (s−1) n.a. n.a. 1.5±0.5
v (µm/s) n.a. n.a. 149.4±24.4
1/κ (µm) n.a. n.a. 24.6±12.3
τ (µm−1) n.a. n.a. 0.04±0.01

r (µm) 16.3±0.3 17.8±1.0 16.1±3.8
a (µm/s) – – –

Confined 1/T (s−1) 1.3±0 1.45±n.a. 1.3±0.2
v (µm/s) 134.7±9.3 ( 162.2) 128.6±17.2
1/κ (µm) 16.3±0.3 17.8±1.0 16.1±3.8

S. purpuratus τ (µm−1) – – –
r (µm) 6.8±0.6 n.a. 6.7±0.9
a (µm/s) ( 55.5) n.a. 74.6±15

Free 1/T (s−1) 4±0.5 n.a. 3.7±0.7
v (µm/s) 179.7±11.4 n.a. 175.5±30.9
1/κ (µm) ( 7.5) n.a. 8.3±1.1
τ (µm−1) ( 0.04) n.a. 0.06±0.01

Mean spermatozoon radius (r), progressive velocity (a, pitch/period), frequency
(1/T ), velocity (v), radius of curvature (1/κ) and torsion (τ). Values in parenthesis
were not available in the study but were estimated using the experimental data that
was available for that experiment. For this we assumed helical trajectories. (1)
Corkidi et al., (2008); (2) Guerrero et al., (2010); (*) Present study; (n.a.) not
available; (–) not applicable.
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A B

Figure 3.4: Fitting the 3DRFT model to confined swimming experimental data.
Model fitting (white) to a spermatozoon of L. pictus (A, brown) and S. purpuratus
(B, purple) in confined swimming. Scale bar is 5 µm.

by random walk (fig. 3.4). The parameterization of A. punctulata was previously

described by others (Jikeli et al., 2015).

A previous study analyzed the free swimming motility of spermatozoa by assuming

constant torsion along the flagellum (Jikeli et al., 2015). Another one discussed and

suggested different models of 3D quasi-planar flagellar shape (Cosson et al., 2003).

Here, we increased flagellar asymmetry in Z by assuming constant torsion along the

flagellum τ(s, t) = T0. To model the boundary interaction, we assumed the forces

at play are such that the plane defined by the two first principal components of the

flagellar positions within a beating period are always parallel to the boundary surface

(see section 3.2.5 for details). The drag coefficients are known to increase as an

object approaches the boundary, relative to its size (Ramia et al., 1993). Because

sperm cells have a quasi-planar beating pattern when confined and the discretization

of the flagellum used makes a flagellar piece very small relative to the head radius,

we assume the drag ratio between head and flagellum can increase when the cell

is confined. We model this by changing the effective dynamic viscosity used to

calculate the drag coefficients of the head. Also, it has been described that both

flagellar mean curvature and flagellar curvature amplitude decrease with increased

viscosity (Brokaw, 1966; Friedrich et al., 2010; Chen et al., 2015). Finally, we also

assume the mechanism by which increased viscosity reduces the flagellar curvature

can affect the flagellar torsion in a similar manner.

We took the fitted models for confined L. pictus, S. purpuratus and A. punctulata
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Table 3.3: Quantiles of parameter ratios between free and confined swimming.

Ratios L. pictus A. punctulata* S. purpuratus

η 0.21 1.00 4.95 -0.10 0.79 3.7 0.22 0.70 1.40
K0 0.68 1.01 1.59 0.21 1.00 1.70 0.98 1.56 2.05
A0 0.68 0.99 1.45 0.58 1.22 2.26 0.61 1.03 1.62
T0 0.11 0.98 657.74 0.10 0.53 535.52 0.31 4.62 2592.69

Minimum, median and maximum quantiles for the effective viscosity (η), mean
flagellar curvature (K0), flagellar curvature mean amplitude (A0) and mean flagellar
torsion (T0) ratios obtained by the model. (*) Parameterized as reported on other
work (Jikeli et al., 2015).

and searched the parameter space (i.e. effective viscosity, mean flagellar curvature,

flagellar curvature amplitude and flagellar torsion) that generated trajectories that lied

within the first and third quartiles of the experimentally observed speed, curvature

and torsion of the trajectories (fig. 3.5A). We then computed the ratio between free

and confined parameters for each species (fig. 3.6 and table 3.3), which we expect

to be one for the parameters that do not change significantly between these two

swimming modes and depart from the unit for those that change. The parameter

ratios obtained when L. pictus sperm are confined do not change significantly as

compared to when they swim freely (probability of parameter ratios being equal or

below 1 is 0.50, 0.47, 0.53 and 0.52 for drag, mean curvature, curvature amplitude and

torsion, respectively). For A. punctulata sperm, both mean curvature and curvature

amplitude ratios have lower probability but these are not statistically significant

(probabilities 0.71, 0.51, 0.15 and 0.79). Both drag and curvature amplitude ratios

are similar between the two swimming modes for S. purpuratus (probabilities of 0.98

and 0.42, respectively). Although not significant, the flagellar torsion is higher for

free swimming sperm this species, relative to confined (probability of torsion ratio is

0.066). Also, the mean curvature is significantly higher when S. purpuratus sperm is

free swimming (probability of <0.001). These results suggest the flagellar bending of

S. purpuratus sperm is more affected when they confine, when compared to both L.

pictus and A. punctulata sperm. Using the median parameter ratios (table 3.3) we

were able to recover both free and confined median trajectories for all three species

(fig. 3.5B).
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Figure 3.5: 3DRFT model recovers the experimental median trajectories of L. pictus
(brown), S. purpuratus (purple) and A. punctulata (pink). (A) Parameters that
generate trajectories which properties are within the first and third quartiles of the
experimental values observed. (B) Using the median parameterization ratios we
generated trajectories (black) that fit the median trajectory (color).

3.4 Discussion

Spermatozoa must deliver their genetic material to the female gamete. In most

species these cells have evolved elaborate mechanisms to regulate their flagellar

beating and swimming behavior to find the oocyte and achieve fertilization. The

environment where these cells swim is a 3D one but historicaly they have been studied

mostly in two dimensions (2D), when the cell is confined to the water-glass interface.

The question whether these studies were representative of the free swimming mode

was raised, as small transient changes in the path curvature result in small changes

in the overall confined trajectory but significant changes in 3D helical trajectories

(Guerrero et al., 2011).

Here we proposed a new method to address detection and tracking of spermatozoa

imaged in 2D at oscillating Z depths which was used to measure the different

confining behavior of L. pictus and S. purpuratus sperm. Then, to address the

mechanism by which this difference arises, we used a mathematical approach based

on Resistive Force Theory to model confined and free swimming sperm of these two

species and also of A. punctulata. Our model suggests mean flagellar curvature is

significantly diminished when S. purpuratus sperm confines, while flagellar torsion is
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Figure 3.6: Cumulative histograms of parameter ratios between free and confined
swimming obtained to L. pictus (brown), S. purpuratus (purple) and A. punctulata
(pink). The parameters represented are the effective viscosity (η), the mean flagellar
curvature (K0), the flagellar curvature mean amplitude (A0) and the mean flagellar
torsion (T0) ratios obtained by the model.
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not.

3.4.1 From 2D+Z(t) to 3D trajectories

The use of priors are known to improve statistical inference. It is a classical issue how

much we believe our priors and how much we believe the data. In the present case

we made use of the knowledge that spermatozoa display helical trajectories when

swimming freely in three dimensions. Piecewise fitting of helical path segments to

sets of points (X,Y, Z, t) allowed us to parameterize and resolve the paths of two

species of spermatozoa. It is interesting to note that attempts to use moving averaged

data and/or splines fitting did generate trajectories and path parameters with local

noise that failed to resolve the two species (data not shown; implicit in figure 3.1).

The piecewise fitting of helical path segments allows to reach the most parsimonious

account of a full trajectory, identifying in an objective way when and where sperm

changed their behavior, as the discrete transitions between two segments. These

discrete transitions may reflect responses of the cell to external cues on intrinsic

dynamics of the cell. The heuristic potential of these new methods in scenarios of

chemotaxis remains to be explored. A criticism that can be made to the method

is that it will tend to present as discrete events smooth continuous changes in the

parameters of a path. Such scenarios should leave a signature in the residuals of

the fitting. Defining whether swimming cells undergo continuous changes or more

discrete transitions in behavior remains to be clarified.

Here we proposed a new method to address detection and tracking of spermatozoa

imaged in 2D at oscillating Z positions. Our method required little human

intervention, primarily for rechecking tracking efficiency. Many trajectories were

discarded due to poor fitting, most with a small helix radius. This was because under

this situation the noise becomes significant and the fitting ended up approximating the

helix axis instead of the helix itself. This was particularly relevant for S. purpuratus,

as its helical radius is substantially smaller. For this reason, we might have a biased

estimation of the trajectory parameters. Although we cannot exclude the possibility

that other non-helical swimming patterns do exist for these species and that simpler

models (i.e. with less parameters) would characterize the trajectories adequately, the

piecewise helix fitting method should able to describe those trajectories by segments

of helical arcs.

Other work focused on estimating swimming parameters by helical fitting or by
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obtaining helical parameters from 2D information only (Crenshaw et al., 2000; Gurarie

et al., 2011; Cherin et al., 2014). Notwithstanding, these methods cannot be applied

to our study as some of their assumptions do not apply to our data. A number of

methods are unable to resolve helices where the helical axis is parallel to Z, some

need more data points per trajectory than what we have and others assume equal

noise in all dimensions. There are other alternatives methods to study changes in

animal behavior (i.e. movement) (Gurarie et al., 2016). These, however, need many

parameters or assume data independece, which does not occur for the same cell.

Although having the disadvantage of only fitting helices, the only parameter of the

piecewise helix fitting method developed here is the desired time resolution, making

it easier and straightforward to be applied to helicoidal data than the other methods.

The strategy we have used is discontinuous on transition points, for example

time-points where a helix ends and another begins in the same trajectory; caution

must be advised when interpreting swimming behavior near these points. This should

not affect the conclusions at which this work arrives, as we are studying the main

swimming behaviors that these species display in two different boundary conditions.

In the study of taxis, our method should be able to detect changes in speed, curvature,

torsion or direction. However, this method has limitations when studying fine events

such as acute turning, as these occur near the transition points.

We can apply this method since our study deals with the average path (i.e. the

maximum temporal resolution we have for this volume in this microscopy system). If

we take the flagellar beating into account, the trajectory should be a chiral ribbon as

described for some human and horse spermatozoa (Su et al., 2012; Su et al., 2013).

This can be implemented by changing the helix function to be fitted but one must

be aware that more information might be needed to fit the extra parameters of more

complex functions.

Finally, it is worth noting that new microscopy systems based on holography are

emerging, being able to track fast cells in 3D with submicron resolution (Su et al.,

2012; Jikeli et al., 2015). Although our system has less resolution, it has the potential

to be coupled to fluorescent measurements of the flagellum. Also, it is possible to

increase the spatial and temporal resolution of our system by scanning a smaller

volume (i.e. lower Z amplitude), which allowed us to image the flagellum in 3D

(Silva-Villalobos et al., 2014). Together with the improvements made in this work,

the 2D+Z(t) microscopy system remains an up-to-date, powerful tool to study sea
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urchin chemotaxis.

3.4.2 Free swimming trajectories

A few free swimming trajectories of sea urchin sperm have been characterized, namely

for A. punctulata (Crenshaw et al., 2000; Jikeli et al., 2015) and S. purpuratus

(Corkidi et al., 2008) species. Although the first focuses on the speed, curvature

and torsion of a trajectory, the second focuses on the helical path parameters like

radius and revolution speed, but does not analyze progressive speed. In spite of

the fact that these two definitions of helical trajectories are redundant, as one can

be calculated from the other, the six parameters here described are important to

establish differences and similarities between cellular trajectories.

3.4.3 Confined vs free swimming

A discrepancy between free swimming helix radius and confined osculating circle

radius was been previously described for S. purpuratus sperm. In the present

work we confirmed that this difference is also observed in L. pictus spermatozoa.

However, the free swimming osculating circle radius had not been described for

these species until now. Interestingly, the trajectory curvature was comparable in

free and confined swimming for L. pictus but markedly different for S. purpuratus

spermatozoa. According to the parameters of the trajectories of A. punctulata sperm

reported in the literature these sperm seem to be an interpolation between the two.

We hypothesized and then proved that higher asymmetry in the z component

of the flagellar beating (i.e. in this case provided by constant flagellar torsion on an

increasingly asymmetrical curved flagellum) is sufficient to increase the free swimming

trajectory torsion, but not to increase the trajectory’s velocity and curvature. As

previously reported, we cannot discard the possibility that hydrodynamic interactions

near the boundary affect the swimming behavior (Fauci and Dillon, 2006; Smith

et al., 2009) but here we simplified such interactions by forcing the plane of flagellar

beating to be parallel to the bounding surface. Using this rationale we were able

to quantitatively explain the experimental data of all three sperm species, assuming

that average flagellar curvature and average torsion are lower when the S. purpuratus

sperm are confined. Note that by construction, the framework used in this study

assumes the boundary exerts forces on the flagellum but these do not deform it if the

flagellar shape parameter are the same (e.g. flagellar parameter ratio between free
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and confined are equal to one). Therefore, one does not need to evoke any change in

the spermatozoon internal machinery to explain confinement and planar swimming of

L. pictus and A. punctulata sperm but that such alterations are required to explain

the observations on those of S. purpuratus. Instead, different flagellar stiffness might

account for the differences observed. Another interpretation would be that higher

flagellar torsion of S. purpuratus sperm provokes higher off-plane beating asymmetry

which propels the cell closer to the boundary. As the effective drag exerted on

the cell increases exponentially as the cell gets closer to the surface, the flagellar

beating quickly becomes planar if the internal axonemal forces remain the same for

both free and confined swimming. Nosrati et al., (2015) studied human and bull

sperm swimming close to surfaces using total internal reflection fluorescence (TIRF)

microscopy and concluded that bull spermatozoa swim closer to the boundary and

have more marked changes in their trajectory. Also, these sperm experience more

flattening of the flagellar beating waves. Likewise, we speculate that S. purpuratus

sperm swim so close to the boundary that its flagellar beating becomes more planar

than that of L. pictus, even though the former have a higher flagellar torsion in free

swimming.

The comparison of the parameters of the swimming trajectories and the modeling

identified a trend in the way spermatozoa alter their swimming path when interacting

with a surface. The speed and the curvature of the swimming path tends to decrease

when the sperm get confined, but in the case of the S. purpuratus this change is

very marked. Mathematical modeling of the morphodynamics of these cells led us

to hypothesize that the confinement brings the cells to a more viscous environment

at the liquid-solid interface that changes both the drag ratios and the torsion and

curvature of the flagellar bending waves. The smaller S. purpuratus spermatozoa

would be more sensitive to these changes in viscosity and/or may swim closer to the

solid surface being subjected to a higher viscosity than L. pictus and A. punctulata

spermatozoa.

We reproduced the observed free swimming trajectories using a model

parameterized based on the data from confined spermatozoa and setting flagellar

torsion to a positive values. This suggests that is possible to infer A. punctulata or

L. pictus free swimming trajectories from the studies on confined settings, or at least

define a shorter family of possibilities. However, the properties of planar motility

cannot be extrapolated for 3D in the case of S. purpuratus sperm. This raises a
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cautionary note when trying to extrapolate swimming behavior from experiments

where natural free-swimmers are studied under planar confinement, at least for some

species. We cannot discard the possibility that in previous chemotaxis studies using

S. purpuratus (Guerrero et al., 2010) the cells responded in such a way that would

bring them closer to the gradient center if they were swimming far from the surface

but the proximity to the boundary impaired such response by cancelling either or both

flagellar curvature and torsion.

3.4.4 Conclusion and future work

Here we present the first characterization of L. pictus sperm free swimming

trajectories in the absence of any nominal stimulus and complemented this with

a meta-analysis of the available data on S. purpuratus and A. punctulata. For the

first time, sea urchin species were compared regarding their swimming behavior in

unconstrained and constrained environments. This comparative study allowed us to

to better understand how spermatozoa swim and is an example of the importance

of interspecies studies. Our results indicate that the conclusions on the motility

and chemotaxis studies performed on sperm confined to planar movement might

be convenient but not directly extrapolated to the behavior in natural conditions.

This emphasizes the need to characterize the strategies used by sperm to steer the

swimming path in 3D.

References

Ahn, S. J. (2004).“Least squares orthogonal distance fitting of curves and surfaces in space”.

PhD thesis. Berlin Heidelberg: University of Stuttgart, Germany.

An, Y., Shao, C., Wang, X., and Li, Z. (2011).“Geometric properties estimation from discrete

curves using discrete derivatives”. Computers & Graphics 35.(4), pp. 916–930.

Brokaw, C. J. (1966). “Effects of increased viscosity on the movements of some invertebrate

spermatozoa”. Control 45, pp. 113–139.

Cao, D., Liu, D., and Wang, C. H.-T. (2006). “Three-dimensional nonlinear dynamics of

slender structures: Cosserat rod element approach”. International Journal of Solids and

Structures 43.(3-4), pp. 760–783.

Chen, D. T. N., Heymann, M., Fraden, S., Nicastro, D., and Dogic, Z. (2015). “ATP

consumption of eukaryotic flagella measured at a single-cell level.” Biophysical journal

109.(12), pp. 2562–73.

99



CHAPTER 3. COMPARATIVE STUDY OF SEA URCHIN SPERM MOTILITY –
CONFINED AND FREE SWIMMING

Cherin, N., Cordier, F., and Melkemi, M. (2014). “Modeling piecewise helix curves from 2D

sketches”. Computer-Aided Design 46, pp. 258–262.

Coeurjolly, D. and Svensson, S. (2003).“Estimation of curvature along curves with application

to fibres in 3d images of paper”. Proceedings of the 13th scandinavian conference on

image analysis. Lecture notes in computer science. Ed. by Bigun, J. and Gustavsson, T.

Vol. 2749. Berlin Heidelberg: Springer-Verlag, pp. 247–54.

Corkidi, G., Taboada, B., Wood, C. D., Guerrero, A., and Darszon, A. (2008).“Tracking sperm

in three-dimensions.” Biochemical and Biophysical Research Communications 373.(1),

pp. 125–129.

Cosson, J., Groison, A.-L., Suquet, M., Fauvel, C., Dreanno, C., and Billard, R. (2008).

“Marine fish spermatozoa: racing ephemeral swimmers.” Reproduction (Cambridge,

England) 136.(3), pp. 277–94.

Cosson, J., Huitorel, P., and Gagnon, C. (2003). “How spermatozoa come to be confined to

surfaces.” Cell motility and the cytoskeleton 54.(1), pp. 56–63.

Crenshaw, H. C. (1991). “A technique for tracking spermatozoa in three dimensions without

viscous wall effects”. Comparative Spermatology 20, pp. 353–357.

— (1996).“A new look at locomotion in microorganisms: rotating and translating”. American

Zoologist 36.(6), pp. 608–618.

Crenshaw, H. C., Ciampaglio, C. N., and McHenry, M. (2000). “Analysis of the three-

dimensional trajectories of organisms: estimates of velocity, curvature and torsion from

positional information”. Journal of Experimental Biology 203, pp. 961–982.

Fauci, L. J. and Dillon, R. (2006). “Biofluidmechanics of Reproduction”. Annual Review of

Fluid Mechanics 38.(1), pp. 371–394.

Friedrich, B. M., Riedel-Kruse, I. H., Howard, J., and Jülicher, F. (2010). “High-precision
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Abstract

Sperm chemotaxis is a fundamental biological process by which male gametes climb

a gradient of concentration of a chemoattractant released by the conspecific egg. It

was shown that spermatozoa of Lytechinus pictus and Strongylocentrotus purpuratus

respond differently to the sperm activating peptide Speract when studied in conditions

in which the motility is confined to the plane of the water-glass interface. While sperm

of the former species display chemotactic responses the latter do not under the same

conditions. Since the natural environment where sea urchin sperm swim is the three

dimensional (3D) volume and not the convenient interface plane, it is important

to ascertain whether the chemotactic responses are also observed when the sperm

are swimming freely in 3D, and whether the reported species-specific differences

are retained in this setting. Attempts to assess the 3D chemotaxis for the sperm

of these two species based on the analysis of radial cell densities relative to the
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center of sperm activating peptide (SAP) gradient were inconclusive due to several

confounding factors, including cells entering and leaving the observation domain at

different times. In the present study we tested the significance of chemotactic effects

in data generated by the 2D+Z(t) microscopy setup. The trajectories of spermatozoa

were reconstituted by piecewise fitting of helical segments. The analysis of the

distributions of the parameters of the helical trajectories displayed by sperm cells

in the presence and in the absence of an artificial Speract gradient did not detect

any effect of this chemoattractant on the swimming trajectories. We concluded that

chemotaxis was not revealed under the conditions of the experiment.
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4.1 Introduction

Chemotaxis refers to the ability of a cell to move up the gradient of chemical

attractants. It is believed that chemotaxis is necessary to allow the sperm cell

to find the egg and subsequently fertilize it. Evidence for chemotaxis was first

described for sea urchin sperm by showing that A. punctulata sperm accumulate at

the center of a gradient of the sperm activating peptide (SAP) Resact purified from

conspecific eggs (Lillie, 1912). These seminal population studies were complemented

by time-lapse imaging and tracking of individual cells in the presence of an artificial

controlled gradient of species-specific SAP. The original studies on A. punctulata

sperm responses to Resact (Ward et al., 1985) were extended to spermatozoa of

Lytechinus pictus spermatozoa and Strongylocentrotus purpuratus in response to

Speract (Guerrero et al., 2010). Intriguingly, while L. pictus spermatozoa were

shown to redirect their circular trajectories preferentially towards the center of the

chemoattractant gradient, the S. purpuratus sperm, despite being able to sense the

same environmental cues, reoriented their swimming in a random way, unrelated to

the Speract concentration.

All these studies on sperm chemotaxis were based on two dimensional analysis

of sea urchin sperm when the cells are confined to the water-glass interface. It

is relevant to ask if these chemotactic responses observed in two dimensions (2D)

are relevant for the 3D volume where these cells swim in nature (Guerrero et al.,

2011). Recently, the 3D chemotactic motility of A. punctulata was studied and

the authors of the report suggest two different swimming modes under chemotactic

conditions (Jikeli et al., 2015). The contribution of these swimming modes may be

different whether the cell is confined or free-swimming. Studying the free-swimming

chemotactic behavior of other species sperm is mandatory to assess the generality of

these findings. Furthermore, it is unclear whether the lack of chemotactic responses

previously described for S. purpuratus sperm is also observed in 3D, and conversely

if L. pictus (Guerrero et al., 2010; Guerrero et al., 2011) retains its chemotactic

capabilities when swimming freely. The sperm of these two species were studied in

3D using the 2D+Z(t) microscope setup developed by Corkidi et al., (2008) and

their chemotactic behavior was assessed using population densities (Pimentel, 2013).

However, the analysis of this data led to no definitive conclusions presumably due to

confounding factors associated with cells leaving and entering the observation volume

and because the statistical procedures assumed independence of the observations,
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which did not hold (A. Pimentel, personal communication).

The objective of this chapter is to reassess the 3D chemotactic behavior of both

L. pictus and S. purpuratus sperm. We will still use the same data analysed before

produced by the 2D+Z(t) microscope setup. We took advantage of the piecewise

helix fitting method developed in Chapter 3 to estimate the trajectory parameters and

used linear mixed models to address the dependence of the data points. We applied

this method to data on free (3D) swimming sperm in the presence and absence of

a Speract gradient and we could not detect chemotaxis for either species for the

conditions tested. We show that the chemoattractant gradient does not affect the

average trajectory speed, curvature, torsion and speed to gradient center.

4.2 Methods

4.2.1 Sperm imaging data

Sperm of either species were collected after intracoelomic injection of 0.5 M of KCl

stored on ice and used within 24 hours. Immediately before imaging, cells were

transferred to two different solutions of artificial sea water, one with and another

without 0.1 µM of caged speract (see Guerrero et al., (2010) for further details).

The 2D+Z(t) imaging system was previously described in Corkidi et al., (2008) and

Pimentel et al., (2012). Briefly, a piezoelectric device moves the objective up and

down allowing to take different Z sections at a fast rate. This is needed to scan

a considerable volume where cells swim very fast (spermatozoa swim at 200-300

µm.s-1). A subset of the imaged field-of-view was irradiated with ultraviolet (UV)

light within the time interval 2-4 s. Please refer to section 3.2.1 for further details

on sperm preparation, microscopy settings and image acquisition.

4.2.2 Imaging data analysis

The 2D+Z(t) imaging data was analyzed according to section 3.2.2. Briefly, we

inferred the depth of each frame using a correlogram of the imaging data, detected

the position of cells using a 3D cell template of the diffraction patterns, tracked

the cells by clustering and estimated the parameters of the trajectories by piecewise

helix fitting. Here we also define the velocity to the gradient center as follows.

Consider the tangent vector of the helical trajectory v(t) and the unit vector u(t) =
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(g − r(t))/‖g − r(t)‖ defined by current cell position (r(t)) and the fixed gradient

center g. Then, the velocity component relative to the gradient center is the dot

product of the two: vg(t) = v(t) · u(t).

4.2.3 Statistical analysis

All piecewise fitted trajectories included in this study were manually inspected and

discarded if inadequate, keeping trajectories with one and only one cell with realistic

speed (50 ≤ ‖v‖ ≤ 300 µm.s-1), curvature (0 ≤ |κ| ≤ 1 rad.µm-1) and torsions

(0 ≤ |τ | ≤ 1 rad.µm-1). Furthermore, only trajectories spanning more than one

second were considered.

Data was analyzed using R statistical program v.3.0.3 (R Foundation for

Statistical Computing, Vienna, Austria). The data can be categorized into the

following factors: Species (L.pictus or S.purpuratus), Treatment (with (CS) or

without (None) caged Speract), UV irradiation (according to time intervals of UV

irradiation: 0-2 s (Before), 2-4 s (During), 4-6 s (AfterI) and 6-8 s (AfterII))

and Sperm (unique cell identification number). Linear mixed models were fitted

using the R function lmer4::lmer assuming the random effect of Sperm factor

within the UV Irradiation factor (UV |Sperm), taking into account the dependence

of the observations on each individual Sperm within the time intervals relative of UV

uncaging. Models spanning all possible combinations of Species, Treatment and UV

Irradiation as main effects and their interactions were fitted to the data. The model

that best fits the data was selected by log-likelihood ratio.

Note the following notation used in the definition of the several linear mixed

models: symbol (+) means an added effect (e.g., p ∼ A + B, p is modeled by the

main effects of A and B), symbol (:) represents and interaction (correlation) between

factors (e.g., p ∼ A + B + C + A : B, p is modeled by the main effects of A, B

and C and also the interaction of A and B) and the symbol (|) represents a random

effect (e.g., p ∼ A+ (B|C), p is modeled by the main effects of A, given the random

effects of C within B).
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4.3 Results

4.3.1 3D experiments with caged Speract

To investigate chemotaxis in 3D, sperm of S. purpuratus and L. pictus where imaged

using the 2D+Z(t) microscope setup (Corkidi et al., 2008). UV irradiation of caged

Speract was used to produce a gradient of this SAP under conditions previously shown

to elicit responses by sperm of these two species (Guerrero et al., 2010; Guerrero

et al., 2011). Speract is a small peptide extracted from the eggs of S. purpuratus

and its caged form contains a 2-nitrobenzyl group at a backbone amide, which lowers

its affinity to its receptors by several orders of magnitude. This caging-group can

be released under UV irradiation making the Speract active and detectable by the

cell. The sperm of the two species were imaged under two different conditions, one

where caged Speract is present (CS) and other where it is not (None). Within the

time interval 2-4 s, all samples were irradiated with UV, thus releasing Speract and

creating a gradient of this SAP in the CS treatment but not in the None treatment.

Cells that detect and react to the SAP should alter the average trajectory parameters

such as velocity, curvature or torsion. If, additionally, the cells display chemotactic

behavior, the magnitude of the velocity component relative to the vector between the

position of the cell and the center of the gradient should increase and become more

positive (Pimentel, 2013) (see section 4.2.2).

We used the methodology developed in Chapter 3 to fit piecewise helical segments

to the data. We aggregated the parameter estimates of these trajectories by time

intervals relative to UV irradiation (UV ): 0-2s (Before), 2-4 s (During), 4-6 s

(AfterI) and 6-8 s (AfterII). Note we only considered cells swimming at speeds

above 50 µm.s-1, neglecting all slower objects. As the same cell is being measured

several times within and across UV irradiation periods, the observations are not

independent. To deal with such cases we can use linear mixed models (Henderson,

1982). The interesting feature of these models is that they account for dependence in

the residuals of repeated measurements (Bates et al., 2014). In this case, we expect to

have a random effect per cell within each time interval of UV irradiation (UV |Sperm).

To detect what are the main factors that have an effect on the trajectory parameters

we tested different models by log-likelihood ratio. These different models were a

combination of the possible main effects (Treatment ∈ {None,CS}; Species ∈
{L.pictus, S.purpuratus} and UV ∈ {Before,During,AfterI, AfterII}) and
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the interactions between them, assuming the random effect of cell within each UV

time period (UV |Sperm). Choosing one model over the other by log-likelihood ratio

means the data supports that model more than it supports the competing model. In

the case of a chemotactic response, we expect that both the main factors Treatment

(relative to the presence or absence of caged Speract) and UV (relative to the time

interval of Speract uncaging and its subsequent diffusion: During, AfterI and

AfterII) to be significant, as well as their interaction (Treatment : UV ). In fact,

this interaction is essential for a chemotactic model as it suggests the combination of

the presence of caged Speract and of the time of UV irradiation have an effect, which

could be due to Speract being uncaged and diffused. The null hypothesis would be

that there is no effect of any of the factors or their interactions.

We can see that the only statistically significant effect on the average speed,

curvature and torsion of the trajectories is the factor Species (fig. 4.1A, B and C).

This agrees with the results of the previous chapter that these parameters are different

for sperm of S. purpuratus and L. pictus. More importantly, it indicates that there is

no statistically significant effect of the combination of caged Speract, CS, with any

of the intervals During and After UV irradiation on the averaged trajectory speed,

curvature or torsion. In other words, no chemotactic responses were detectable under

the conditions of the experiment. As a curiosity, there is a statistical effect of the

interaction between species and of some conditions for the velocity to gradient center

vg (fig. 4.1D). However, a closer examination at the data indicates that the effect is

observed in L. pictus sperm in the condition During UV irradiation, when no caged

Speract is present, meaning this difference cannot be accounted for by a chemotactic

response, and most likely represents a type I error.

4.4 Discussion

To assess if the motility of spermatozoa swimming freely is affected by the presence

of Speract, we used piecewise helix fitting to obtain the average trajectory speed,

curvature, torsion and velocity component relative to the center of the gradient.

Using linear mixed models we found that none of these sperm trajectory parameters

were significantly affected by the presence of the chemoattractant in any of the

species studied. These results do not confirm the previous report on L. pictus sperm

chemotaxis under the same conditions (Pimentel, 2013). The previous conclusion
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Figure 4.1: Linear mixed models of chemotaxis for either average path speed (A),
curvature (B), torsion (C) and speed to center (D) for different Treatments – with
(CS) and without (None) caged Speract – at different times after UV irradiation
(UV ): 0-2s (Before), 2-4 s (During), 4-6 s (AfterI) and 6-8 s (AfterII). The
data is represented as box-and-whiskers subplots with the mean value (red dot). On
top of each plot is the model chosen by log-likelihood ratio.
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might have been mislead by type one errors arising from the violation of the

assumption of independence of data points and the confounding effects generated

by cells entering and leaving the volume. We cannot discard the unlikely hypothesis

that the independence of data points between the time intervals (factor UV ) could

have also affected our results. This could be addressed by assuming an additional

random effect only dependent on cell (1|Sperm, according to the notation of the

R statistical software) but the available sample size was too small to fit models

based on this assumption. The fact that individual cells rarely swam in the imaged

volume during the eight seconds of the experiment also impaired the possibility of

this assumption (i.e. unbalanced data).

Overall these results suggest that sperm of L. pictus and S. purpuratus do

not exhibit chemotaxis in under the conditions of the experiment. As L. pictus

sperm were previously shown to be chemotactic in confining studies (Guerrero et al.,

2010), we suggest the exploration of different chemoattractant gradients (i.e. using

different caged Speract concentrations or UV irradiation times and conditions). Jikeli

et al., (2015) showed 3D chemotaxis for A. punctulata spermatozoa by uncaging the

chemoattractant throughout the experiment. This should also be tested with the

two species used in this study. Also note that the approach taken here only allowed

to test the significance of a behavior similar to the ‘off-response’ chemotactic mode

suggested for free-swimming sperm of A. punctulata. In the present study, the UV

irradiation was performed using the objective, while it was moving up and down driven

by the piezoelectric device. Under these conditions, the uncaging forms a hour-glass

shaped gradient in three dimensions (Pimentel, 2013). It is an intriguing possibility

that such artificial hour-glass gradient may not be decodable by the sensorimotor

system of the spermatozoa that has been evolved to locate an approximate radial

gradient around the egg.

In this work, we tested whether the motility parameters of sperm differed

between different conditions in the experiment, including those presumably containing

meaningful concentrations of Speract. There are different statistical frameworks that

test the aggregation or clustering of cells which have been previously developed (i.e.

positional information). For example, Ripley’s K-function measures the expected

number of neighbors within a certain radius of a cell and compares to the null

hypothesis that this number is given by a Poisson process (i.e. the points are uniformly

distributed) (Ripley, 1977). The estimate of K can summarize the aspects like inter-
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point dependence and clustering. This kink of summary statistics are potentially good

candidates to assess chemotaxis as cells tend to accumulate in the gradient center,

thus increasing the expected occurrence of cells for smaller radius near the gradient

center. Notwithstanding, those methods do not report the distance to gradient center

where cells are aggregating and the distances from where cells are moving from,

nor allow to quantify the chemoattractant power under different concentrations or

gradients. A statistical framework which considers these aspects is important.

Chemotaxis models such as Keller and Segel, (1970) or Jikeli et al., (2015) could

be used to address these issues. The first is an ordinary differential equation (ODE)

system that models bacterial populational chemotaxis assuming biased random walk.

By fitting such model to whole data set (including time), we could estimate the

chemotactic parameters and compare them between treatments, using the simplified

parameterization for non-chemotaxis as null model. The models would then be

compared by log-likelihood ratio. However, this approach requires initial parameter

estimation that should not be easy to get for a given condition. Also the assumption

of random walk of the Keller-Segel model might be too stringent for cells that swim

in circles on in helices in non-chemotactic conditions.

The other method is also a system of ODEs based on Resistive Force Theory

(Gray and Hancock, 1955) and a simple chemotactic system. Again, we first need to

estimate some parameters to fed to the algorithm, e.g. the gradient being generated in

order to apply this framework. These methods can be impractical in many situations

as they may also require individual cell tracking and even need increased sample size.

Note both approaches are feasible and here we only mention the expected difficulties,

should one wish to implement either approach.

4.5 Conclusion

In this chapter, we applied linear mixed models to assess the chemotactic behavior

free-swimming sperm of L. pictus and S. purpuratus. We did not find evidence

that the motility parameters were affected in the presence of the chemoattractant.

Should we have found such an evidence, it would be interesting to add a signaling

module to the sperm model presented in the previous chapters. This model would

encompass from Speract binding to the receptor, membranar channels hyper- and

depolarization up to changes in internal calcium (II) concentration ([Ca2+]i) and in
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flagellar conformation. Recently, 3D chemotaxis was verified in A. punctulata and

its data can be used in conjunction with the expanded morphodynamical models to

provide further knowledge on spermatozoan motility.
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Bates, D., Mächler, M., Bolker, B., and Walker, S. (2014).“Fitting linear mixed-effects models

using lme4”. Journal of Statistical Software 67.(1).

Corkidi, G., Taboada, B., Wood, C. D., Guerrero, A., and Darszon, A. (2008).“Tracking sperm

in three-dimensions.” Biochemical and Biophysical Research Communications 373.(1),

pp. 125–129.

Gray, J. and Hancock, G. (1955). “The propulsion of sea-urchin spermatozoa”. Journal of

Experimental Biology 32.(4), pp. 802–814.

Guerrero, A., Carneiro, J., Pimentel, J. A., Wood, C. D., Corkidi, G., and Darszon, A. (2011).

“Strategies for locating the female gamete: the importance of measuring sperm trajectories

in three spatial dimensions”. Molecular Human Reproduction 17.(8), pp. 511–523.

Guerrero, A., Nishigaki, T., Carneiro, J., Yoshiro Tatsu, Wood, C. D., and Darszon, A. (2010).

“Tuning sperm chemotaxis by calcium burst timing.” Developmental Biology 344.(1),

pp. 52–65.

Henderson, C. R. J. (1982). “Analysis of covariance in the mixed model: higher-level,

nonhomogeneous, and random regressions”. Biometrics 38.(3), pp. 623–640.

Jikeli, J. F., Alvarez, L., Friedrich, B. M., Wilson, L. G., Pascal, R., Colin, R., Pichlo, M.,

Rennhack, A., Brenker, C., and Kaupp, U. B. (2015). “Sperm navigation along helical

paths in 3D chemoattractant landscapes.” Nature Communications 6, pp. 1–10.

Keller, E. F. and Segel, L. A. (1970). “Initiation of slime mold aggregation viewed as an

instability”. Journal of Theoretical Biology 26.(3), pp. 399–415.

Lillie, F. R. (1912). “The production of sperm iso-agglutinins by ova”. Science 36.(929),

pp. 527–530.

Pimentel, J. A. (2013). “Sistema de rastreo tridimensional de micro-part́ıculas: aplicación en

el rastreo de espermatozoides al nado libre”. PhD thesis. Universidad Nacional Autónoma
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Chapter 5

General Discussion

In this thesis, we set out to develop automatic imaging analysis methods enriched

with priors based on biological models to cope with the large imaging data sets.

For this we used a mechanistic model of a spermatozoon in order to describe these

cells in the synthetic and experimental imaging data of sea urchin sperm. We fitted

the model parameters by maximizing their likelihood and showed we were able to

obtain estimates indistinguishable from the true parameters used to generate the

synthetic imaging data. Using the same procedure on experimental data led to model

parameters that generated cellular positions and flagellar conformations as good as

those generated by human-assisted software. Furthermore, the morphological and

physical constrains imposed by the model allowed us to track the invisible flagellum

using only the information of the head, showing we can estimate features absent from

the imaging data using models with the sufficient detail. Taking this altogether, we

validated our hypothesis that we can use a morphodynamical model of a cell and

fit it directly to the imaging data by maximum likelihood estimation (MLE). The

optimization process, i.e. to find the likelihood maximum, is the major bottleneck

in our approach and probably the greatest challenge to its deployment for routine

data analysis. Reducing the time the model-based image analysis method takes to

produce results to values close to the time it takes to acquire the data is a desirable yet

reachable objective. The optimization process involved in parameter estimation can

be improved in several ways. These can include the usage of more efficient algorithms

for function maximization and the usage of graphic processing units (GPUs) to

accelerate both Resistive Force Theory (RFT) calculus and comparison of model

and biological imaging data. In chapter 3, we fitted the mechanistic model of
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the spermatozoon to the reconstituted trajectories of L. pictus and S. purpuratus

sperm. The parameters sets inferred in this way were distinct for different species

and different swimming modes. It is tempting to argue, although not demonstrated

in this thesis, that similar parameter sets would have been inferred if the model

was fitted directly to the imaging data with appropriate image rendering procedures

(e.g. using the three dimensions (3D) diffraction patterns instead of the point-spread

function). Confirming this argument will require further studies.

An important aspect that was not addressed in this thesis was to track several

cells present in the same imaging data. How to assess the correct number of cells

in a time efficient way is the most challenging issue. Similarly to the piecewise

helix fitting procedure developed in Chapter 3, we can have many model instances

generated from different initial conditions (e.g. multiple cells in different spatial

coordinates at the same time or the same cell at different initial time-points) and

then select the minimum set of instances combinations that explains the data most

parsimoniously using Dynamic Programming and Bayesian information criteria (BIC).

Direct and indirect interaction between spermatozoa has been reported previously

(Yang et al., 2008) and RFT does not account for long-range hydrodynamic forces.

Thus, a physical module that take these interactions into account might be necessary

to describe spermatozoa swimming in areas of higher density. In fact, failing of

a model based on RFT to fit crowded image data sets might be indicative of the

presence of long-range forces and the need to extend the models. In this way, such

simpler models can be used as a null-hypothesis that must be rejected to support

more complex scenarios.

If one would like to alter the framework presented here for different cells types,

we predict the major challenge to be adaptation of the morphological module (e.g.

rigid body cells with flagella or cilia). On another hand, cells with plastic membranar

shapes (e.g. cells that move by filopodia) may require a different physical motility

framework. It is also possible that the approach is used for data produced with other

microscopy techniques, e.g., bright-field or even electron microscopy, if the procedure

to render the virtual image predicted by the model is modified accordingly. As these

rendering steps are part of the likelihood function that has to be maximized, their

quick computation is essential, as noted above. Overall, the method presented and

validated in this thesis is general and is potentially adaptable to any system.
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The second objective of this thesis was to develop methods to analyze sperm

motility and chemotaxis in the 3D volume, specifically using the challenging Corkidi

et al., (2008). One issue of this microscopy system was the high variance observed

in the depth (Z) position of both frames and cells after processing the raw data. We

showed on Chapter 3 that one of the sources of variance was an occasional phase-shift

of the inferred depth Z(t) function, and improved the accuracy of the frames’ depths

by using a method based on the correlogram of the frames within a piezoelectric

period. Consequently, this allowed us to obtain better estimates of the cell’s 3D

coordinates. We further improved the accuracy and precision of measurements of

the cells’ centroids by using a 3D template of the averaged spermatozoan diffraction

patterns at many focal planes that are offset from the plane of the head. We had

hypothesize we could use the tracking and cell characterization method developed

in Chapter 2 to study spermatozoan free-swimming motility and chemotaxis. In

theory, we could have adapted the model image rendering procedure to produce the

expected diffraction pattern at the focal plane at given time. If one would like to

expand this method in such way, we propose modeling these patterns using Fourier

or wavelets decomposition. By including a chemotactic module (i.e. a module that

would control the deformation of the flagellum as a function of the chemoattractant

concentration) to the mechanistic module the method should be able to detect and

track spermatozoa in chemotactic conditions. Furthermore, it should be able to

address whether certain conditions are chemotactic or not. Thus, we were able to

develop imaging analysis methods that can assess motility and potentially chemotaxis

in both two dimensions (2D) and 3D data.

We tracked spermatozoa from different species and characterized their trajectory

using piecewise helix fitting. We revealed L. pictus spermatozoan trajectories have

similar curvature, confined when compared to free swimming, while S. purpuratus

sperm trajectories do not. The osculating circle of the trajectory of S purpuratus

sperm confined to the plane is much larger than what would be expected from the

free path. We proposed this effect to result from a change in the off-plane component

of the flagellar beating in these sperm as compared to that of other species analyzed,

which was supported by fitting the mechanistic spermatozoan model to the data.

Overall, we successfully achieved the second objective.
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5.1 Modeling of spermatozoa

We used models of the spermatozoan morphodynamics to estimate different

parameters from either 2D and 3D imaging data. These included the position,

orientation, flagellar shape, cellular drags coefficients and trajectory characteristics of

a spermatozoon at a given time-point. Both methods implemented involve a mixture

of model- and data-driven approaches as presented in the introduction under the light

of our interpretation of Rosen’s Modeling Relation (Rosen, 1991). It is worth making

explicit here the elements of the Modeling Relation in the context of the modeling

efforts of the previous chapters.

In Chapter 2 we built a mathematical model based on principles that were

previously shown to predict the displacement of sperm cells given the intrinsic

conformation and velocity of the flagellum (Gray and Hancock, 1955; Friedrich

et al., 2010). Fitting this model to imaging data we were able to estimate the

shape and mechanical parameters that describe the cell. At this stage, the Rosen’s

Modeling Relation is still incomplete (fig. 1.1) as we only took data (mapping 2) and

parameterized our model with it (mapping 3). The cycle was closed by predicting the

flagellar position of a cell by our model parameterized with imaging data where only

the head was marked with fluorescence (mapping 4).

In Chapter 3 we used a motility model of sea urchin spermatozoa based on discrete

helices fitting. This model was parameterized using either 2D+t or 2D+Z(t) data

(mapping 2) and used (mapping 3) to predict the mean values for the average paths

velocity, curvature and torsion of these species when their cells were confined or in

free-swimming. These values were then compared to other methods of measuring

the same data (table 3.2), which agreed with our results for confined 2D+t data

(L. pictus and S. purpuratus, (Guerrero et al., 2010)) and for both confined and

free-swimming 2D+Z(t) data (S. purpuratus, (Corkidi et al., 2008)). Although it

allowed us to validate our method to characterize sperm motility, the model does

not corroborate to independent data. Using our detailed morphodynamical model

developed in Chapter 2 to search for the conditions in which we can obtain the

empirical trajectory parameters, we predicted that S. purpuratus spermatozoa have

higher asymmetry of the flagellar off-plane component than those of L. pictus and A.

punctulata when free-swimming. Measuring the flagellar torsion of these species is

thus essential to close the Modeling Relation (mapping 4). Note that the non-linearity

of the Cosserat frame used to model the form and deformation of the flagellum does
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not necessarily increase the average trajectory torsion as the flagellar one increases.

Also note that, similarly, the trajectory’s curvature changes non-linearly as a function

of flagellar torsion. Thus, the conclusions taken here could only be obtained using

a morphodynamical model. Another prediction of the model is that S. purpuratus

has higher drag coefficients relative to other species resulting from higher interaction

with boundary and/or the hydrodynamical forces generated near the interface. As

this effect could be generated by higher proximity to to the boundary we can test

this prediction by measuring the confinement distance from the boundary. This

experiment can be easily performed with the 2D+Z(t) microscopy setup using a

smaller piezoelectric Z amplitude (20-50 µm) and frequency (both to reduce the Z

estimation error) and ensuring that water-glass interface is within the lower limit of

that interval.

It has been reported (Nosrati et al., 2015) that bull sperm show at least two

different modes of confinement. Some sperm swim closest to the boundary with

planar flagellar beating, while others swim more distally and their flagellar bend waves

show higher off-plane components. It would be interesting to see if these different

modes of confinement are also observed in sea urchin sperm and if it is correlated

with the ability to display chemotactic responses. In Chapter 3, it was argued that S.

purpuratus sperm would swim closer to the boundary enduring higher viscosity then

the sperm of other species. If the swimmers closer to the boundary tend to be less

chemotactic this would offer an potential explanation for why S. purpuratus sperm

do not appear to be chemotactic Guerrero et al., (2010).

Although we do not expect to be the case for the marine invertebrates

participating of broadcast spawning events, it is also worth to mention the existence

of cooperation studies in internally fertilizing species (i.e. sperm conjugation). It

was shown that hydrodynamic interaction promotes synchronization and attraction

between sperm, also increasing the groups’ velocity thus giving competitive advantage

relative to lone spermatozoa (Yang et al., 2008; Elgeti et al., 2015). In the case of

sea urchin, it is important to note that interaction between spermatozoa are likely

to occur within dense populations, specially when performing chemotactic assays. In

this particular setting, those effects should be accounted in the physical module of the

morphodynamical model to take in addition these additional complications neglected

in the RFT.
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5.2 Advances in Imaging analysis

We introduced the different imaging analysis schemes used in research as well as

commercial products, which range from simple segmentation methods to model-based

methods, in which the models are mostly data-driven and based on training data. The

imaging analysis methods developed in Chapter 2 and Chapter 3 are also model-based

but of a different kind. The first method is purely based on a priori knowledge as

it generates the expected data based on a morphodynamical model of the sperm

cell, which was developed independently of the experimental images. Note that

the spermatozoon is completely defined and described using a set of mathematical

functions that capture the known biology and physics of the system. This difference

in strategy is extremely important as using prior mechanistic knowledge allows to

circumvent the need to obtain and process (likely manually) a training set; instead,

we can simply define the mathematical description of the biological object in terms

(variables, parameters, relationships) that are mechanistically interpretable. The

second approach was more traditional in the sense that we first transformed the

imaging data to other type of data (i.e. 3D Cartesian coordinates) to which a

motility model was fitted. Note, however, that similarly to facial and hand recognition

algorithms where 2D or 3D discrete templates are used (Turk and Pentland, 1991),

in our work this transformation was performed using the a priori knowledge of the

cell aspect according to the distance of the in-focus cell plane to the objective.

Contrary to the first approach, the diffraction patterned templates used to detect

the cells were constructed using imaging data of objects similar to the target ones.

On theoretical grounds, this diffraction patterns could be computed independently

of the images taking into account the geometry and physical properties of head of

the sperm. Notwithstanding the meaning behind the physicists’ saying Assuming the

cow is spherical..., caution should be used to ensure that the prior descriptors are a

good approximation of the target object, i.e. the model of the biological object is in

fact a good model!

Recently, deep-learning algorithms have been used that implement complex thick

neural networks to detect objects in images or even to describe the scene represented

by an image after being trained with a set of template images. These have a enormous

potential to be used to analyze images in an reproducible and unbiased way. However,

these methods represent a black box between input and output data, meaning that

the criteria they use to analyze the image after being trained is often not known to
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the user and have no biological interpretation per se and that might hinder critical

analysis of the results (i.e. the mapping 3 of the Rosen’s Modeling Relation is not

known). Also, these supervised algorithms cannot do better than what they are

trained for, thus they are not robust to different scenarios that are qualitatively

different. Notwithstanding, we could potentially use these methods to measure the

features of interest in the image and then feed these to a more mechanistic model

in which details and inferential structure are known to us and have a biological

interpretation.

The perspective of using such artificial intelligence-based methods to create

software application that can develop and select the appropriate model for some

data is utterly appealing. One can envisage a future where the researcher provides

the image analysis software with (or directs it to) the a priori knowledge of interest,

e.g. cell types and the imaging technique used to acquire the data. The algorithms

implemented in the software would then select the best model to fit and describe the

imaging data. The selection criteria must be based on statistical and mathematical

developments and involve a robust pipeline. This would greatly increase the speed

and volume of imaging data analysis. All chosen parameters (of the model, statistical

analysis, etc.) should be properly documented in the analysis report, so it can

be reproduced anytime. This will prevent less cautious researchers from using the

inadequate method for well established analysis pipelines. Of course, the key feature

that is determinant for scientific progress is the ability to add to the analysis new a

priori knowledge such as a new signalling pathway, a physics model, or better shape

descriptions. There is a major drawback though. Comparable to some researchers

which use a DNA extraction kit without fully understanding the protocol behind

the extraction of those molecules, users may resort to these high-end image analysis

software without the sufficient knowledge to make critical analysis of the quality of

its output . The advantage of higher analysis speed and volume might then become

a curse because the experts who can assess the quality may not be sufficient to keep

up with it and a wave of misleading reports may spread undetected in the scientific

community.

How far are we from this integrated software? The emergence of international

standards for both image analysis methods and statistical procedures (International

Organization for Standardization, Geneva, Switzerland) plus the scientific articles

reporting different methods or data sources provide great source of material, methods,
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tests and standards of imaging data analysis pipelines. However, these are not usually

integrated together, only the more common (and usually outdated) procedures are.

For a particular data source, a plugin. Also, many international standards and

algorithms are not open-sourced or need a paid licence to be used, the reason why

their integration should be commercially nonviable. Thus, a project of this magnitude

can only be possible by public funding. Taking into account how its use will promote

good practices in data analysis, we expect it to boost both scientific output speed

and quality. Overall, we already have the components (algorithms), a motive and the

urgency to do it. I think we can achieve it in the following decade.

5.3 Bringing it together

The power of mechanistic models. Using a mechanistic model that describes

structures that are missing in data allowed us to expand the information given by that

same data. In Chapter 2 we were able to increase the spatial and temporal resolutions

of sea urchin spermatozoa labelled with fluorescent dyes by fitting a morphodynamical

model with arbitrary temporal and spacial resolutions. More notably, we were able

to infer the flagellar positions and conformations by fitting to imaging data where

only the head was labelled and visible. In other words, the information in the

time-lapse images of the head was sufficient to allow the inferential structure of

the model to decode the missing information on the flagellum. This result can

be instrumental to measure internal calcium (II) concentration ([Ca2+]i) along the

flagellum. Consider the following example. In order to study how [Ca2+]i is coupled

to curvature generation on the flagellum, Guerrero et al., (2013) used a light splitter

in conjunction with whole cell and calcium markers (i.e. one of the assays used in

Chapter 2) to image spermatozoa under different drugs (e.g. control and niflumic

acid). This strategy allowed to track the flagellum in the series of images and then

overlay it with the signal of the Ca2+ reporter to quantify intensity of the influx

of this cation. Since the sperm heads are constitutively labeled by the calcium

indicator (Guerrero et al., 2010; Guerrero et al., 2013) it would be possible to the

morphodynamical model (or any of the suggested extensions) to infer the flagellar

positions and conformations directly from this data.

Approximately one of every six couples in subfertile, making human fertility a

subject of growing medical and economic importance (Gaffney et al., 2011). Male
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factors account for around half of the cases and sperm motility is a major player

(Barratt et al., 2009). A significant fraction of the infertile cases have unknown

cause. It is an intriguing possibility that these can be explained by aberrations at

higher-level control of sperm motility and orientation by environmental cues, such

as chemotaxis, which cannot be diagnosed by current Computer Assisted Sperm

Analysis (CASA) systems that measure low level properties such as progressive rate

and beating frequencies. In fact, one of the most remarkable aspects of mammalian

fertilization process is the journey of the sperm to the egg. Sperm cells must swim a

path thousands of times their own body length through a complex interior geometry,

often filled with highly viscous and potentially hostile immune cells. Initially over

hundreds of millions, the overwhelming majority do not even reach the Fallopian

tubes, let alone the site of fertilization (Gaffney et al., 2011). Any aberration in

the spatial-temporal coordination of flagellar beating dynamics with spatial cues will

prevent the sperm to find its way and therefore decrease the fertility rate. The

extension of the methods developed in this thesis to model the human sperm is

rather straightforward. Several adaptations can be foreseen. The shape module

should account for the different rigidity, length and width of the flagellar midpiece.

As these cells swim within an intricate landscape, the physical module should model

the boundary explicitly as should the effect of viscosity and fluid interaction with

the flagellar shape. Finally, a module describing the signalling transduction of the

chemoattractant signals down to changes in [Ca2+]i should also be added if one wishes

to account for chemotaxis. By applying such humanized model as a priori knowledge

and performing the appropriate assays, one could eventually measure features that

have been omitted in sperm motility and chemotaxis analysis. Eventually, these would

provide some insights on some of the unknown causes of fertility and allow for future

treatments to be developed.

2D+Z(t) system for chemotaxis analysis. Sperm chemotaxis is an essential

process for the life cycle of many species. As per definition, chemotaxis depends on

how cells reorient themselves and spermatozoa do it by modulating the asymmetry

in the flagellar bending wave curvature (and perhaps torsion), which is correlated

with the derivative of whole cell [Ca2+]i (Wood et al., 2003; Alvarez et al., 2012).

In Chapter 1 we referred part of an extensive literature on how and why different

membranar channels (i.e. either at the plasma or at mitochondrial membranes)
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operate in order to modulate [Ca2+]i after chemotactic stimulus. It is clear from

these studies that it is crucial to understand calcium dynamics in spermatozoa in

order to understand their motility and, thus, chemotaxis. A microscopy system which

is able to image calcium marker-loaded cells in 3D becomes the obvious choice to

study chemotaxis and the 2D+Z(t) system (Corkidi et al., 2008) has potentially

such capabilities. The major challenge that must be overcome to use this system

to that purpose is to improve the fluorescence detection as the acquisition exposure

time must be very short, due to beating frequency of the flagella that requires a

rapid movement of the piezoelectric device. Using small amplitudes of the device

to capture a single individual will greatly decrease the difficulty. The computational

analysis methods developed here demand minor adjustment to be able to deal with

4D+t imaging data that is expected to be generated from such system in the coming

years. In particular, similar to the analysis of the planar motility in Chapter 2, tracking

of the cell in 3D using our mechanistic model would allow to measure the calcium

without extra information of the flagellar position. This would benefit, obviously, if

the model is calibrated and validated with measurement of the 3D flagellar beating

conformations before deploying it to the task of 4D+t image analysis.

Holographic microscopy systems based on coherent light (Su et al., 2012) are

not able to measure fluorescence, which is an incoherent light source. Incoherent

holography has been developed since the late 00’s and has been used to acquire

biological data (Rosen and Brooker, 2008). However, because of the scattering of

photons emitted from the fluorescence source point, the signal-to-noise ratio (SNR) of

the reconstructed image is low and therefore this technique requires immobile or fixed

material. There is active development of reconstruction algorithms that improve this

SNR but the best they achieve is a SNR∼2 for a total exposure time of 1.5 ms (Jang

et al., 2016). As fluorescent imaging of flagellar [Ca2+]i and intracellular pH signals

requires photomultipliers (Guerrero et al., 2010; González-Cota et al., 2015; Jansen

et al., 2015), the SNR is effectively lower, implying that these signals cannot be

resolved. This means holographic fluorescent microscopy will have to mature before

it can be applied to the 3D study of sperm motility and chemotaxis. Until these

limitations of incoherent holography are overcome, the Corkidi’s piezoelectric-driven

microscopy system or similar instrumentation seems to be safest bet on the near

future. This 3D microscopy system is also able to image spermatozoa at high spatial

resolution, inclusive to obtain the position of the flagellum (Silva-Villalobos et al.,
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2014). Being able to use calcium indicators with high spatial and temporal resolution

of the flagellum is an important step towards comprehension of chemotaxis. However,

we’ll loose spatial resolution if we take the approach of using the light splitter to obtain

the whole cell and the calcium markers in the same detector (i.e. two light channels

are scaled down so they can be recorded simultaneously by the same hardware piece).

We can use the alternative that we already mentioned of using a mechanistic model

to fit the 3D morphodynamical model to the head data and discard the need of the

whole cell marker, allowing us to use the full chip for the calcium indicator thus

increasing the resolution.

The present thesis, by overcoming the earlier shortcomings of the 2D+Z(t) data

analysis methods and by making the proof-of-principle that mechanistic models of

the spermatozoon can be deployed for more better image analysis, set the ground to

enable this new experimental avenue into sperm chemotaxis.
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