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à ma famille
à Camila

Lawrence Krauss: -You often compare linguistics and some social sciences
to physics. The virtue of physics is that it is simple. It is easy. Irrelevant
details are easily removed, whereas as we talked about, you often bemoan
that in linguistics and cognitive sciences, the ability to really make detailed
progress is very difficult because all of the factors, and yet linguistics is
therefore much less advanced than physics, and you said to me that that
was an attraction, and I was surprised to hear about that.

Noam Chomsky: -It’s an attraction, but I think what you describe is also
true of early physics, so if you go back to the seventeen century, Galileo had
quite a hard time in convincing the funders, the aristocrats, that it made
sense to study something that doesn’t exist in nature, like a ball rolling
down a friction-less plane. When they thought, if you study motion, why
don’t you study the growth of flowers ? -something that is real -or the way
the leaves blow in the wind and so on and so forth. It took a long time for
physics to get to the point where it became comprehended that if you want
to understand the diversity and complexity of the phenomena of the world,
you are going have to study highly idealised abstract models, even things
which don’t exist in the natural world, like friction-less plans, and then it’s
not like you throw away everything else, you hope that somehow you will
get back to it, and that is the situation in the study of language in the 1950s
[...].

Noam Chomsky and Laurence Krauss: An Origins Project Dialogue.
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Abstract:

The brain is active all the time: it displays substantial spontaneous ac-
tivity in awake and sleeping animals which doesn’t receive sensory inputs.
There are many open questions regarding this spontaneous activity: How is
it generated? What is its function? What is its impact on sensory process-
ing?

In this thesis we contribute to this problem by analysing data during the
active -or desynchronized- brain state from urethane anesthetised rats. We
find temporal structure at the population level in the form of unidimensional
coherent fluctuations: alternatively, one half of the population decreases its
firing rate while the other half increases it, keeping the population rate con-
stant. We call this phenomenon competition, and we extensively characterise
it.

Following, we ask the question: mechanistically, how might this com-
petitive activity be generated? We attribute the intrinsic character of this
competitive activity to the recurrent nature of the connectivity in the cor-
tex. We revisit a known model of competition and we propose a new one
which reproduces many observable dynamical quantities. In particular, our
model uses a computational mechanism called non-normal amplification,
from which we find signatures in the data.

In summary, in addition of revealing the competitive nature of the desyn-
chronised state in the cortex, this study proposes a set of methodological as
well as theoretical tools to analyse and model the relationship between con-
nectivity and dynamics in neural circuits.
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Resumo:

O cérebro está ativo o tempo todo e exibe forte atividade espontânea
tanto em animais acordados como em adormecidos em ausência de estímu-
los sensoriais. Há muitas questões abertas sobre esta atividade espontânea:
Como é gerada? Qual é a sua função? Qual é o seu impacto no processa-
mento sensorial?

A contribuição desta tese para essa problemática se encontra na análise
de dados durante o estado ativo provenientes de ratos anestesiados com
uretano. Encontramos uma estrutura temporal ao nível da população que
toma a forma de flutuaçães temporais: alternativamente uma metade da
população diminui a sua taxa de disparo enquanto a outra metade o au-
menta, mantendo a taxa de disparo da população constante. Chamamos
este fenômeno de competição, e o caracterizamos extensivamente

A etapa seguinte consistiu em pesquisar os mecanismos, que poderiam
gerar esta atividade competitiva. Atribuímos o caráter intrínseco desta ac-
tividade competitiva á natureza recorrente da conectividade no córtex. Re-
visitamos um modelo conhecido da competição e propomos um novo modelo
que reproduz várias quantidades dinâmicas observáveis. Em particular, o
nosso modelo utiliza um mecanismo computacional chamado de amplificação
não-normal, do qual encontramos assinaturas nos dados.

Em resumo, além de revelar a natureza competitiva do estado dessin-
cronizado no córtex, este estudo propõe um conjunto de metodologias e de
ferramentas teóricas para analisar e modelar a relação entre conectividade e
dinâmica em circuitos neurais.
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Chapter 1

Introduction: spontaneous
activity in the brain

HIGHLIGHTS

• In this first chapter we do a literature review concerning
the spontaneous activity in the brain: its origin, its possible
roles, its influence on perception and on behaviour.

• We present the distinction between asynchronous and syn-
chronous population states, which are specific types of spon-
taneous activity observed in the cortex.

• We motivate why studying spontaneous activity might help
us understand something about the cortical connectivity.
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1 Introduction: spontaneous activity in the brain

1.7 Theoretical considerations about the mechanis-
tic origin of the spontaneous activity . . . . . . . 24

1.8 Aim of the thesis . . . . . . . . . . . . . . . . . . . 35

1.1 The local cortical circuit

1.1.1 Cellular composition and connectivity rules
The cortex is an external thin layer of some millimetres that enfolds the
mammal’s brains. It is connected to sub-cortical structures such as the tha-
lamus and the basal ganglia. Cortical neurons are of two major classes:
principal cells and inter-neurons. Principal cells are excitatory, they
express glutamate and they constitute around 80% of cortical neurons in
rodents. The restant 20% of cortical cells are the inter-neurons: they ex-
press GABA, which tends to have an inhibitory effect on the post-synaptic
membrane potential. There are neuron subclasses with particular geno-
typical and physiological differences. Concerning the principal cells, there
are: intratelencephalic neurons, pyramidal tract neurons and corticothala-
mic neurons [60], [143]. Concerning the interneurons, there are somatostatin-
expressing interneurons, parvalbumin-expressing interneurons and 5HT3A-
receptor-expressing interneurons [60].

Neurons tend to be connected depending on the types of pre and post-
synaptic neurons. There tends to be a over-representation of bidirectional
connections between principal cells. These cells form interdigitated subnet-
works in which similarly stimulus-tuned neurons tend to be preferentially
connected [104]. However, this pattern of connectivity is not strict: not all
neurons that respond to similar features are connected, and conversely not
all connected neurons have similar stimulus preferences [59]. In the fourth
chapter, we will see an example of spatial selectivity in the projections: the
axons from the thalamus tend to target preferentially couples of cells that
are connected between themselves. The preferential connectivity might well
promote amplification of the cortical responses - in the sense of a multiplica-
tive modulation of the tuning curve, as Olsen and colleagues have observed
in L6 [110]. For somatostatin and parvalbumin-expressing interneurons, the
connection probability with a neighboring principal cell is close to 100%,
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1 Introduction: spontaneous activity in the brain

which means that the connection is non specific, and that they fire to a
broad class of stimuli .

1.1.2 Basic laminar structure
The connections across cortical areas (sensory, motor, associative) seem to
be very stereotypical and follow a basic pattern called a canonical micro-
circuit.

L1

L2/3

L4

L5

L6

Long range 
cortical 
targets

Higher order 
cortex and 
thalamus

bilateral
striatum

Higher order 
cortex and
thalamus

Higher order 
thalamus, 
ipsilateral
striatum, 
brain stem, 
spinal chord

Primary 
thalamus 

L5 ITN

L5 SPN

Figure 1.1: Canonical cortical microcircuit. In this sketch we only show the prin-
cipal cells, and we ignore the fact that inside each layer, pyramidal cells tend to
connect with cells of the same subclass. This figure was adapted from [59].

There are quantitative differences of this circuit across areas and species
[60], but nonetheless, this motif suggests the existence of a basic compu-
tational module that is the substrate of the learning and/or the execution
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1 Introduction: spontaneous activity in the brain

of a full spectrum of high-order functions like fine sensory discrimination,
speech, decision making or motor skills. Many people think that the canon-
ical microcircuit must play a basic computational role, like the transistor
in digital electronics. The transistor is the building block of logical gates
(and, or, nand, ...). These logical gates are a very powerful tool, because
every Boolean function -correspondence between digital inputs and ouputs-
is implementable as a composition of logical gates. In a subsequent chapter
we will show an example of a model of a recurrent network that intends to
model the fifth layer of the cortex. In this model, when we vary parametri-
cally the strength of the connections, we can show theoretically that there is
a qualitative difference in way the network operates. Functionally, the first
three supragranular layers L1,L2,L3, are the main origin and termination
of intra-cortical connections within areas of the same hemisphere or to the
opposite hemisphere, through the corpus callosum. The fourth layer (L4)
is the main circuit input from the thalamus. In the chapter four, we will
expand the discussion about the main thalamocortical projections into the
cortex, that synapses mainly onto layer 4 but also in layer 2/3. From layer
4, the information then flows in a feed-forward way to L2/3 and from L2/3
to L5.

Determining the connectivity rules within and across layers is a major
challenge that might reveal the computations that are taking place in this
circuit. For example Kampa and colleagues [76], recorded simultaneously
triplets of neurons, placing one patching electrode in L2/3 and the two
others in L5. In a second experiment, they also placed two electrodes in
L2/3 and one in L5. By injecting current in one of the three electrodes, it
is possible to observe whether they elicit excitatory post-synaptic potentials
in the two other electrodes and then obtain a statistical view of the way
neurons tend to connect (figure 1.2 left panel). They conclude that pairs of
neurons in layer five tend to receive more shared input from cells in L2/3,
when they are connected. This suggest that there are sub-networks in layer
five that tend to receive specific shared inputs from L2/3 (see figure 1.2),
which in turn receive specific inputs from L4, as shown by Callaway’s group
in 2005 [164].

In figure 1.1, we marked with an asterisk the main connections that
we will consider in this thesis. We will first analyse data from primary so-
matosensory and auditory cortex in L5. Layer 5 is a major output projection
of the cortex. As we see there are two cell subclasses in layer 5 (intratelen-
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Stimulate:
L5

L2/3
L5 pair connected L5 pair not connected

C

Figure 1.2: Feed forward output of the cortical column. Left panel: experiment
to map the connectivity between L2/3 and L5. Right panel: schema the spatial
connectivity of the feed forward network going from L4 though L2/3 to L5. Adapted
from [76].

cephalic neurons and sub-cerebral projection neurons), which connect asym-
metrically, the projections going mainly from intratelencephalic neurons to
sub-cerebral projection neurons. However, intratelencephalic neurons tend
to have a larger connection probability between themselves with respect to
sub-cerebral projection neurons [81]. Also, intratelencephalic neurons tend
to show moderate firing rate, whereas sub-cerebral projection neurons have
a periodic spatial organisation and can spike in bursts. Finally sub-cerebral
projection neurons project to the striatum, the brain stem, and to the spinal
chord.

As we mentioned earlier, the whole picture of how the canonical microcir-
cuit works is more complex, because we need to add the inter-neurons, which
are inhibitory. For example, it has been reported that pyramidal neurons in
L6 have a net inhibitory effect on the other cortical layers [110].

1.2 Spontaneous activity in the brain

We refer to spontaneous activity as the brain activity in the absence of
an apparent sensory input or motor output. It is also termed resting-state
activity, by opposition to evoked activity.
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The first reports of spontaneous activity in the brain go back to 1891
when Adolf Beck placed electrodes on the surface of the brain of rabbits
and dogs, and observed fluctuating activity. In turn, in 1924, Hans Berger
placed electrodes on the scalp of human subjects, and recorded the first
human electroencephalogram -EEG-. Using the EEG, Berger reported the
existence of alpha waves (7.812 -13.28 Hz) when the subject closed his eyes,
and their replacement by faster beta waves (12.5 - 30 Hz), when the subject
opened the eyes. Also, he reported alterations in the EEG during epileptic
seizures. The EEG was important for the discovery that during sleep, the
surface of the brain went through different dynamical regimes, also called
cortical states.

With the arrival of multi-unit extracellular recordings in the 2000’s, the
neural correlates of the cortical states at the population level started to be
explored in animal models.

In addition to the cortex, spontaneous activity has been observed in the
retina, in the cochlea, in the spinal cord, in the cerebellum, in the thalamus,
in the basal ganglia and in the hyppocampus [16],[61]. Aside from the in-
troductory remarks in this chapter, in subsequent chapters we will focus on
spontaneous activity in the cortex.

1.2.1 Active and inactive states
Active and inactive states are dynamical properties of a cortical networks,
which are known to be recurrently connected. The state qualifies the macro-
scopic behaviour of the network, which results from the way neurons fire in
relation to each other.

Inactive state designates a regime in which there is strong synchroni-
sation of all the neurons: during the up phases, all neurons fire together,
and during the down phases, all neurons are silent, and this is is also vis-
ible at the level of the multi-unit activity (MUA), or population firing
rate. This alternation between up and down phases is strictly speaking not
an oscillation, in the sense that the transitions between up and down states
are not periodic in time, they seem random, but we will use anyway this
terminology in a sloppy way. The slow oscillation has a power spectrum
that is concentrated in a frequency band from 0.5 to 4 Hz. Also, because
of this sharp transitions between activity and silence, pairs of cells tend to
covary together around their respective mean, so that on average, the mean
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pairwise correlation - the average of the correlations between all pairs of
recorded neurons- is positive (see figure 1.3). Other synonyms of inactive
state that are also present in the literature and that we will commonly use
are synchronised, inactivated or deactivated.

At the single cell level, the membrane potential makes slow-frequency,
large-amplitude changes, that correlate with the up and down phases [30],
[131], [142]. The slow oscillation propagates around the different cellular
layers of the cortex [131], and across cortical columns and brain areas [61] .

The active state (also called activated or desynchronised state),
presents on the contrary a more tonic firing rate of the cells, and a constant
MUA (see figure 1.3). The histogram of pairwise correlations is centered
around zero, with a small but positive mean, so that half of the pairs of cells
are positively correlated and half are negatively correlated. At the single
cell level, the membrane potential is depolarised close to the firing threshold
[166].

In the computational literature that aims at modelling these two brain
states there are two technical terms: synchronous, and asynchronous,
which have a precise definition, but whose characterisation might be more
or less close to the real cortical states.

Both synchronised and desynchronised states states can we identified
using the local field potential LFP, which is the extracellular membrane
potential generated by the transmembrane currents: in active state the LFP
displays little power in the lower frequencies (delta) and high power in the
higher frequencies, whereas in inactive state, it follows the alternation be-
tween up and down phase, but in an inverted way with respect to the MUA,
because the reference is placed extracellularly. Finally, what we call active
and inactive state are in reality extremes of a continuum of desynchroni-
sation: in certain situations the cortex might be more or less locked to the
extremums, and in other situations to have a time varying desynchronisation
level.

There is a tight correspondence between the activity in the cortex and
the activity in the hippocampus (even if the dynamics in the hippocampus
are different). The equivalent of the synchronous state in cortex is called
large irregular activity in the hippocampus (LIA), and the equivalent of the
desynchronised activity is called hippocampal theta.
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Figure 1.3: Inactive state and active state. The population rasters present 5s of
data recorded from layer V in primary auditory cortex. Every dot represents an
action potential.

1.3 Brain states and behaviour

1.3.1 Behavioural correlates of spontaneous activity
During sleep, the distinction between cortical states is clear because the
difference in the level of desynchronisation between rapid eye movement
-REM- and of synchronisation during slow wave sleep -SWS- is very pro-
nounced. In SWS the eyes execute rolling movements, whereas in REM sleep
the eyes move in random directions.

Both in active as in inactive state, changes in the pupil size correlate
very well both with the slow "oscillation" of the synchronous activity also
with important changes in the desynchronisation level [98].

In awake state, the cortex wanders between inactive and active state
[98]. However, there is still not a complete taxonomy of fine behavioural
correlates of both states in awake state.

The effort of relating behaviour with the brain rhythms started in the
seventies with the pioneering work of C.H Vanderwolf, that noted the corre-
lation of the hippocampal LFP with the ongoing behaviour of the rat [150]:
"Trains of rhythmical 6-12 c/sec [hipoccampal theta] waves in the hippocam-
pus and medial thalamus precede and accompany gross voluntary types of
movement such as walking, rearing, jumping, etc. Behavioural immobility
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(in the alert state) and automatic movement patterns such as blinking,
scratching, washing the face, licking or biting the fur, chewing food or lap-
ping water are associated with irregular hippocampal activity [LIA]". We
now know that theta waves in the hippocampus correlate with desynchroni-
sation in the cortex and LIA correlates with synchronisation.

Futhermore, Poulet and Petersen [119] showed that during these periods
of quiet wakefulness, when the cortex was more synchronised, the membrane
potential of nearby cells was also highly correlated.

Zagha and colleagues [166] observed recently in 2015 that the mice’s deep
layers of motor cortex could stay activated for long periods, even in the case
of absence of stimuli or of observable movements. This happened while
the animals were achieving good performance in a behavioural paradigm
that consisted in withholding from licking and licking after a whisker touch.
Interestingly, towards the end of the behavioural session, when the mice
were tired and did more mistakes, motor cortex was more desynchronised,
in particular before miss trials in comparison to hit trials.

Finer, non subjective quantification of behaviour might help understand-
ing the subtleties of the correlation between brain states and awake be-
haviour, which will require techniques like video segmentation and machine
learning to find regularities between the levels of synchronisation and the
behaviour in freely moving conditions. A more controlled approach consists
in using head-fixed mice on top of styrofoam balls and closed loop virtual
reality environments [62], [107].

1.3.2 Cortical states and attention
Attention refers to the process by which "organisms select a subset of avail-
able information upon which to focus for enhanced processing" [156]. Some
examples of attention are: orienting the head towards a strong unexpected
sound, focusing on a conversation and do not perceive that someone steals
your wallet, or searching for a contact lens on the floor. The first exam-
ple is an example of bottom-up attention whereas the other two are
examples of top-down attention, also called selective attention. The
difference between top-down and bottom-up attention depends then on the
way of filtering out the information: whether it is provoked by the saliency
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of the stimulus characteristics (bottom-up), or whether an instructive signal
sharpens our senses to detect and process a particular kind of stimulus at the
expense of others. Here we will concentrate in top-down attention effects.

A classic behavioural paradigm to study attention in monkeys was pro-
posed by Moran and Desimone in 1985 [103]. A monkey fixates the gaze in
a fixation point center, and using its visual periphery it has to solve the task
to obtain water. Certain cells in the visual system possess what is called a
receptive field: they spike when a particular type of stimulus is present in
a given region of the visual space. In this experiment, Moran and Desimone
recorded cells which spiked when horizontal and vertical red bars -but not
green bars-, where presented on their receptive field. In their experiment,
both a red bar and a green bar were presented in the receptive field of the
recorded cell. By blocks, to solve the trial, the monkey has to pay attention
to only one of the two bars, the red or the green bars. To win a drop, the
animal has to quickly press a bar when it sees the same orientation in the
sample and in the test, otherwise there is no reward. This kind of task is
called a match-to-sample task, and by design, the subject needs to pay
attention twice in order to be solved. If the response of the recorded cell
was purely sensory -and not modulated by attention -, the cell should spike
in a similar manner in all conditions. However, what Moran and Desimone
found, is that in V4 (fourth cortical visual area) and in IT -inferior temporal
cortex, but not in V1, there are cells which show modulation of attention:
when the effective stimulus (the red bars) was attended either during the
sample or during the test, the recorded cell had a strong response, but when
the monkey attended the irrelevant stimulus (green bars), the cell was al-
most silent, in spite of the presence of the relevant stimulus in the receptive
field.

Using a similar behavioural paradigm as Moran [103], Fries and col-
leagues showed that attention reduced low frequency synchronisation of V4
neurons that represented the effective stimulus, and importantly, that the
observed desynchronisation was local in space. They also showed that at-
tention comes with an increase in gamma frequency (35-90 Hz). Finally,
Mitchell and colleagues [99], as well as Cohen and Maunsell [26] showed in
2009 that attention reduces variability, noise correlations and low-frequency
fluctuations.

Both attention and cortex desynchronisation have many characteristics
in common: reduced power in low frequencies of the LFP, reduced trial to
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trial variability, and reduced noise correlations [61]. Also, the neuromod-
ulatory systems involved in synchronisation, that we will mention in the
next section, are also involved in attention. However because the neuro-
modulatory systems broadcast signals in a more global way at the level of
the cortex, attention involves supplementary mechanisms in order to gain
spatial selectivity. Deco and Thiele [34] have proposed, using biophysical
simulations, that cholinergic feedback projections from higher cortical areas
might mediate local attentional modulation of cortical circuits.

1.4 Neuromodulation

1.4.1 Sleep-wake cycle
The chemical basis of cortical and hippocampal spontaneous activity are
studied since the 70’s (see [151]), and in particular the neuromodulators
that are responsible for the alternations between sleep and awake and for
the variations in brain state in awake and in sleep (REM vs non-REM). The
neuromodulators that induce these variations are the noradrenergic system
-situated in the locus coeruleus- the glutamatergic system -located in the
thalamus- [61], [98] and the cholinergic system, located in the basal forebrain.

In the following figure 1.4, we see that during the sleep-wake cycle (cir-
cular arrows), J. Allan Hobson [66] shows the covariation of three physiolog-
ical variables (activation, modulation and input-output gating). We can see
that sleep correlates with low levels of norepinephrine, whereas the levels of
acetylcholine might be both high during awake and sleep periods.

Xu and colleagues [163] perturbed optogenetically different cell types in
the basal forebrain and were able to elicit wakefulness activating succes-
sively cholinergic, glutamatergic and parvalbumin-positive (PV+) GABAer-
gic neurons. Reciprocally, they induced non-REM sleep, when activating
somatostatin-positive (SOM+) GABAergic neurons.

1.4.2 Effects of acetylcholine and norepinephrine on
the synchronisation level of cortical populations

Goard and Dan [51] showed in 2009, that brief stimulations of the nucleus
basalis -a cholinergic nucleus in the basal forebrain- induced strong decor-
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Figure 1.4: The AIM model of brain-mind state control [66]. A refers to acti-
vation, M to modulation and I to input-output gating, the process that controls
the access to the sensory information from the external world and which prevents
sending motor commands to the muscles.

relation between neurons in the visual cortex of rats. The acetylcholine
released by the basal forebrain acts on the interneurons disinhibiting the
pyramidal cells in layer 5. Precisely, the fifth layer of the cortex is the place
in which the up and down phases are generated to then spread out to the
other layers, as shown in slices by Sanchez-Vivez and McCormick [131].

Castro-Alamancos and Gulati [22] showed that the action of the cholin-
ergic system and of the noradrenergic system led to different types of desyn-
chronised states: in the case of cholinergic stimulation, the activated state
maintained a constant population firing rate with respect to the inacti-
vated state, whereas the norepinephrinergic cortical stimulation decreased
the overall firing rate.

More recently, in 2013, Polack et al. [118] performed whole cell record-
ings in head-fixed mice on a spherical treadmill. By separating the mem-
brane potentials of single cells according to whether the mice where running
or resting, they computed the distributions of the membrane potentials in
both conditions. They found that both during immobility and locomotion,
the distribution of membrane potentials was unimodal. However, during lo-
comotion the distribution had a larger mean membrane potential, and was
sharper, meaning that the variance was smaller. Thereby, they proceed to
apply local perfusions of agonists and antagonists of both drugs, and con-
cluded that during the resting periods, the cholinergic input was responsible
for maintaining unimodal the shape of the distribution of membrane poten-
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tials. In turn, norepinephrine was responsible for the depolarisation of the
mean membrane potential during locomotion.

In summary, these results show a complex and unfinished picture of what
brain states are, and of how they are regulated by the neuromodulatory sys-
tems. The picture of an unidimensional continuum between synchronised
and desynchronised cortical states may be much less clear and higher di-
mensional that we usually think.

1.4.3 Use of anesthesia to study brain states
The use of spherical treadmills and head fixed rodents is very recent. For
practical reasons, instead of recording neural activity directly from behaving
animals, the traditional approach has been of recording from anaesthetised
animals.

The first kind of anaesthetics that where used to study the brain in the
60’s and in the 70’s where barbiturates like the thiopental sodium. However,
this drug has a strongly depressing effect and doesn’t induces population
dynamics that resemble the ones observed during sleep or awake. In vitro,
barbiturates hyperpolarises the membrane potentials, only allowing some
rare synaptic events of small amplitude [35]. In vivo, the barbiturates tend
to suppress the effects of the recurrent connectivity on the dynamics, letting
only the stimulus driven feed-forward component of the currents elicit ac-
tivity. This fact was not really understood at the time, but didn’t prevent
a whole generation of neuroscientists like Hubel and Wiesel to successfully
study sensory processing. When it became evident that ongoing activity was
an interesting topic and that it could have an impact on sensory processing,
researchers started trying other anaesthetics that don’t preclude it.

Clement et al. [25] showed that it is possible to elicit periods of both high
and low synchronisation using urethane anesthesia. In this study they show
that state alternation is a cholinergic phenotype and it is independent on
norepinephrine. The rate of these brain state alternations did not correlate
with variations in the concentration level of urethane. The activity recorded
during sleep and after the drugs injection was found to be very similar,
both at the level of the physiological correlates (muscular tone, respiration
rate, cardiac frequency) as well as in the LFP (Power, time intervals be-
tween states). This means that urethane anesthetised animals seems a good
preparation to study sleep and brain states.
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Pachitariu and colleagues [111] also use alternative anaesthetics: they
use ketamine/xylazine to lock the cortex in synchronous state and use fen-
tanyl/medetomidine/midazolam to obtain desynchronised states.

1.5 Cortical states and evoked activity

1.5.1 Sensory responses in different cortical states
The study of spontaneous activity is inextricably linked with the study of
sensory processing in the brain, because the neural representations result
from an interaction of the feed-forward activity coming from the thalamus,
with the ongoing activity that is widespread around the cortex. This interac-
tion can be quite complex: Curto et al. [31] predict the population responses
to clicks on a trial by trial basis, fitting data to a model which is non-linear
in the synchronised states and approximately linear in the desynchronized
states.

We will examine here the evidence that different cortical states elicit
different neural responses in different sensory modalities, the way this im-
pacts the fidelity of sensory representations and some of the mechanisms
that provoke these differences in the responses across states.

Few years after the first discoveries of Hubel and Wiesel [72],[73], Wurtz
replicated their experiments using awake trained monkeys [162]. He con-
cluded that the basic organization of the receptive fields in striate cortex was
similar to the organisation of the receptive fields in paralysed, anesthetized
cats and monkeys measured by Hubel and Wiesel. Surprisingly, Wörgöt-
ter et al. [161] found in 1998 that the receptive fields of complex cells are
wider in the visual space during synchronized states and smaller during non-
synchronized states. Wörgötter reports that, for a 2.5 fold power increase in
the range 1-4 Hz, the receptive field grows by 27 %, becoming less selective.

Recent findings [12], [107] point at increases in neural responsiveness as
the cortex desynchronises during locomotion. In these studies, drifting grat-
ings are presented to head fixed mice while the mice lay on a treadmill, and
cells are recorded in the primary visual area (V1). These studies consistently
report additive and multiplicative gains of the tuning curves in V1 during
desynchronised state. The anatomical projection from motor cortex to au-
ditory cortex that might be involved in these locomotion-associated changes
of auditory cortical response was described by Schneider et al. [133].

Amplification in cortical networks 14



1 Introduction: spontaneous activity in the brain

Marguet and Harris [96] presented amplitude modulated noise stimuli
to urethane anesthetised rats, and asked to which extent they could pre-
dict single neural activities based on the LFP or on the stimulus. During
desynchronised activity, the neural activity could be predicted from both
the stimulus and the LFP. For the synchronised activity, they found that
the activity of individual neurons was strongly predictable from the LFP
and poorly predictable from the AM noise envelope. Therefore, in presence
of such AM noisy stimuli, the cortical activity is largely decoupled from the
stimulus. This doesn’t mean that during synchronised activity, the cortex
can not be entrained by external stimuli: for more punctuate stimuli like
clicks or tones, the cortex responds reliably transitioning from a down phase
to an up phase [89], [31].

In auditory cortex of gerbils, Pachitaru and colleagues [111] probed the
population response with other stimuli. Using pure tones, frequency modu-
lated tones and speech, they concluded that the responsiveness, the selectiv-
ity, the reliability and the temporal precision of the population was higher
during desynchronised state than during the synchronised state. Another
relevant aspect of this study is that it examines how the representation ca-
pacity of auditory cortex is modified as a function of the states, i.e. to which
extent different sounds evoke different population responses. The authors
found that when presenting different speech sounds, the similarity between
the responses was higher during the synchronised states than during the
desynchronised state.

A PSTH or the peri-stimulus time histogram is the average response of
a cell following the presentation of a stimulus. When plotting the PSTH
of auditory cells at their best response frequency, Pachitaru and colleagues,
find that if the brain could average out the slow oscillation in a single trial,
it would find on average similar responses -not perfectly although- in both
active and inactive states. However these responses are more variable in
inactive states [12], [99].

Given the evidence from the literature, it seems that the information
quality about the details of a stimulus conveyed by the neural populations
is smaller in the inactive state with respect to the active state. Is the syn-
chronised state during awake a watchful state of lower energy consumption,
whose first role is not to encode properly all the details of a stimulus, but to
facilitate the detection of stimulus onsets, so that the cortex desynchronises
in case of danger for example?
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Fanselow and Nicolelis do conclude in this direction in a study in so-
matosensory cortex [40]: "in the absence of whisker movements (quiet im-
mobility), somatosensory neurons seem to be highly responsive to punctuate
tactile stimuli but not to sequences of stimuli. In contrast, during the whisk-
ing state, when active exploratory whisker movements are used by the rat
to gather tactile information, the temporal fidelity of sensory responses to
rapidly presented stimuli is enhanced".

This difference in population response depending on the frequency of the
stimuli is explained by Castro Alamancos [23] by the finding that the rapid
sensory adaptation depends on the cortical state. Rapid adaptation is the
decrease in the response of a neuron to a high frequency stimulus. We call it
rapid, because it acts on a time scale of 100 ms. Castro Alamancos finds that
during the desynchronised state, there is little adaptation whereas during
synchronised state there is strong adaptation. The mechanisms advanced for
the cortical adaptation are the depression of the thalamo-cortical synapses
and an increase in inhibition.

As advanced by Castro Alamancos [23], the system might adapt its brain
state and its response to stimuli to meet information processing demands
dictated by behavioural contingencies. Luczak [89] recalls that the appar-
ently noisy slow oscillation that might seem to degrade perception might in
fact be the result of hidden variables that aren’t under experimental con-
trol : "Only a small fraction of the input to a cortical column arises from
primary sensory thalamus, and responses in sensory cortex can be affected
by cognitive factors such as reward and attention, other sensory modalities,
and ongoing oscillations".

1.5.2 How could the brain distinguish spontaneous ac-
tivity from evoked activity ?

As we saw in previous sections, it seems that the brain state impacts the
sensory representations in a way that seems to be adapted both to the en-
vironment and to what the animal is doing. It is possible that this mode of
operation be a way of reconciling rest and alertness, allocating the attention
according to the behavioural needs [61].

During desynchronised state, the stimulus evoked dynamics dominate
the activity [96], and the representation capacity of the cortex is higher than
during synchronised activity [111]. During synchronised state, the extended
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stimuli are filtered out, and the slow oscillation dominates the dynamics,
over the evoked activity [96]. However, punctual stimuli provoke down to up
phase transitions and behavioural responses[30], [157]. One of the questions
that arises- if we suppose that the sensory processing pipeline is serial -
is: how can the upstream cortical circuits distinguish between an up-phase
transition elicited by a sensory stimulus, from an internally generated one ?
And more generally, in both states, how is the brain able distinguish between
the evoked and the spontaneous activity [157], knowing that the range of
firing during the spontaneous activity is of the same magnitude as the range
of evoked activity? We consider several hypothesis.

1.5.2.1 Noise subtraction hypothesis

One first hypothesis is that the brain subtracts out some kind of efferent copy,
so we can’t hear our own noise, as that it happens with tickling (we can’t
tickle ourselves). This hypothesis would fit well with some signal like the
synchronous state, that spreads around all the cortex: it suffices that some
downstream area process the difference between the feed-forward input from
a lower area and from some neighbour cortical area that is not concerned
with audition, but who is affected by the synchronous activity.

1.5.2.2 Different time scales over the cortical hierarchy filter out
the non-perceptually related activity patterns

One important feature of the brain is that the information processing units,
the neurons, receive currents, and emit spikes on a time scale of the order of
milliseconds, whereas the time scales at which the behaviours happens is at
least of the order of tenths of a second. One possibility to reconciliate this
apparent over-sampling of the world with the time scale on which the body
acts on the world, is that somehow in order to form percepts, the incoming
information is accumulated at different stages of the perceptual pyramid,
and each intermediary unit of perception is only active when many of the
units that project to it are active. In that way, as we go up the processing
hierarchy, the time scale of the units increases also.

If we consider that the spontaneous activity as a sequence of incoherent
neural patterns, we can think that only the stimuli, simply due to their tem-
poral persistence in the environment, are going to repeatedly elicit sequences
of identical patterns which are going to elicit higher order representations.
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The randomly generated sequences of neural patterns, because of their tem-
poral incoherence, are not going to pass through the different processing
stages.

Murray et al. [106] show experimentally the existence of a hierarchical
ordering in the time scale of in the intrinsic fluctuations in spiking activity
of spike trains recorded in monkeys engaged in cognitive tasks. The authors
simply measured the width of the spike trains autocorrelation in different
brain areas: in more sensory areas they found shorter time scales, whereas
in pre-frontal areas, they found longer time-scales.

In their interpretation of this observation, the role of the time scales
on the cortical hierarchy is similar to the one advanced here, even if they
doesn’t comment on the spontaneous activity: "shorter time-scales in sen-
sory areas enable them to rapidly detect or faithfully track dynamic stimuli.
By contrast, pre-frontal areas can utilize longer time-scales to integrate in-
formation and improve the signal-to-noise ratio in short-term memory or
decision-making computations".

1.5.2.3 Signal and noise have different directions in neural space

Another possibility, is that the spontaneous and the evoked activities live in
orthogonal subspaces. In their seminal paper, Kaufman and colleagues [78]
proposed a simple but very elegant mechanism by which determined areas
could isolate themselves from surrounding areas to do some local processing,
despite the fact that they are physically connected to these areas and also
communicate with them. During a reaching task, a monkey has to see a light
on a screen and withhold from reaching it before a go cue appears. When
the go cue is on, the monkey must touch the place where the light was, in
order to receive a reward. Parallel recordings show that the premotor cortex
is very active during the hold period. The question is: why this pre-motor
activity doesn’t trigger movement despite the fact that it projects to the
motor cortex, whose activity correlates with the muscle activity ? They
propose that as long as the activity in the pre-motor cortex lives in a null
space, motor cortex doesn’t see the difference. Lets take for example two
neurons in pre-motor cortex which project to a neuron in motor cortex. The
activity of this neuron innervates a muscle, with a strength proportional to
its firing. As long as the sum of the activities of the pre-synaptic neurons is
constant: p1+p2 = (p1+κ)+(p2−κ) = C, the post-synaptic currents in motor
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cortex are constant also. When the activity of both neurons increase, the
direction that causes more effect on the post-synaptic current is the direction
orthogonal to the null space, called the output potent space: (p1 +κ)+(p2 +
κ) = C + 2κ. Then, we can have local processing - preparatory activity-
happening in pre-motor that motor cortex doesn’t see, and communication
between the areas after the go cue.

Similarly it could be that the spontaneous activity lives on a subspace on
a low area of the cortical hierarchy, but when a stimulus arrives, the circuit
responds in such a way that the elicited activity has a certain direction that
excites the next processing stage of the perceptual chain. Then, different
processing areas might be isolated, and the spontaneous activity might serve
as substrate for computations.

1.6 Possible roles of spontaneous activity
Even though there were early reports in the 1970’s pointing at correlations
between behaviour and the ongoing activity [79],[150] this activity was con-
sidered until the 90’s like a noise [145], a fundamental limitation or a by-
product of the system, which constrained the discrimination of sensory re-
sponses [157]. Some authors have argued against this noise hypothesis due
to the important metabolic cost of spiking [5], suggesting that spontaneous
activity might actually play a functional role in the brain. In what follows,
we will review some of the advanced hypothesis.

1.6.1 Developmental role
Increasing evidence points at the fact that spontaneous activity might play
a fundamental role in the development of neurons and in their connections.

In the mainstream theory of brain development, genetic programs orga-
nize the main projections, for example from the retina to the brain. Later,
the visual experience leads to a refinement of the connections. However,
more and more observations reveal that in fact genetic programs and neural
activity interact at all phases of development and determine the composition
and the organisation of neural circuits [16]. In early phases, when neurons
are still not connected, spontaneous activity affects neuronal differentiation,
establishment of neurotransmitter phenotype, and neuronal migration [140].
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Later, spontaneous activity seem to have the role of providing an instruc-
tive signal for the establishement of the functional connections, for example
in motor neuron path finding [58], or in the formation of sensory maps
[77]. However as Blankenship and Feller point out [16], disambiguating the
causality between the activity and development is not easy: "Insights into
how spontaneous correlated activity influences the development of neural
circuits will require manipulations that alter the pattern of activity rather
than block it entirely".

1.6.2 Memory consolidation
Following severe seizures that had no treatment at the time, the patient
H.M. went though a bilateral medial temporal lobe resection. Following
the surgical operation, Scolville and Milner [135], performed several neuro-
psychological tests on H.M. and concluded that the hyppocampus had a
decisive role in the formation of new memories and in the retrieval of recent
memories, but not in the retrieval of oldest memories, which remained intact.
Influenced by these pioneering results, and by David Marr’s [97] theory about
memory, the actual theory about the role of the hyppocampus is named the
"two stage theory of memory". This hypothesis postulates that the memories
are initially created and stored in the hippocampus. During sleep, these
memories would be reactivated and transferred to the medial pre-frontal
cortex mPFC, where they would be stored more permanently in a process
called consolidation, that involves reorganization and strengthening of the
cortical memory trace. In parallel, as the mPFC becomes more involved in
recalling the memories, the hippocampus disengages progressively.

Experimental studies have brought evidence of an interaction between
the hippocampus and the cortex that involves different types of waves. The
first studies showed correlational evidence of a coupling between the tran-
sitions to the up phase of synchronous activity -that happen in cortex- and
sharp wave bursts in the hippocampus [10],[138]. Bennett and colleagues [12]
advanced the hypothesis that the condensed joint spiking in the up phases of
the synchronous state might have a role magnifying post-synaptic responses
and facilitating spike-timing dependent plasticity -STDP.

Very recently, the role of the coupling between hippocampus and cortex
in memory consolidation was demonstrated causally [95]. Rats were first
placed on an arena in which there were two objects. When sharp wave ripples
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were detected in the hippocampus, the mPFC was stimulated electrically
in closed loop. Finally, the rats were put back in the arena containing
the objects, having previously displaced one of the two objects. To have a
behavioural readout of the memory, they quantified the time that the rats
spent close to the displaced object, which was interpreted as a readout of
memory or novelty.

Indeed, it was the case that rats spent more time close to the displaced
object when the stimulation protocol was precisely time locked, and not
when the stimulation was applied with a random delay after the detection.

1.6.3 Bayesian inference
One very innovative hypothesis about what perception is and how it occurs,
is that perception can be understood as a Bayesian inference process, i.e.
a process that aims at deducing which objects we are experiencing in the
external world, given noisy evidence and prior information about the context.
As pointed out by Kok and de Lange [44], the motivation for developing such
kind of models is that "perception is not solely determined by the input to
our eyes, but it is strongly influenced by our expectations".

Lets imagine for example that x is a scalar variable that quantifies an
unidimensional stimulus, for example a sound pressure wave of the voice of
a person. x might come from two persons called 1 and 2, whose respective
voices y1 or y2 may have different distribution of frequencies. Given that
the environment is noisy, the perception that will try to infer is the joint
distribution of the possible causes of x, p(Y1, Y2|x), through Bayes rule, and
ultimately y1 or y2, so that we know who is talking.

p(Y1, Y2|X) = p(X|Y1, Y2)p(Y1, Y2)
Z

p(Y1, Y2) is the prior distribution of inputs, it describes the learnt reg-
ularities about the sensory environment, in this example the joint power
spectrum of the two persons. p(X|Y1, Y2) is called the likelihood, it assumes
that we have a model of the environment that allow us to evaluate how likely
would the observation x be, if we knew the values of the two features y1 and
y2. Z = p(X) is a constant with respect to Y1 and Y2. Finally p(Y1, Y2|X) is
the posterior distribution, from which we deduce p(Y1 = y1, Y2 = y2|X = x).
Under this framework, perception results from the match between the prior
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(from the regions where the prior p(Y1, Y2) is not nil), and the model of
the world that we have, given the sensory evidence. If the prior is flat for
example, the posterior will reflect simply our model of the world.

Lets imagine that the receptive field of one toy neuron is a frequency
band of low pitch with a mean of 100 Hz, and a variance of 20 Hz. In time,
the firing rate of this toy neuron fires at a mean of 100 Hz, and has a variance
of 20 Hz: the instantaneous firing rate represents the probability of taking
a certain value, as if this neuron was sampling from the distribution of fre-
quency corresponding to the receptive field. Under this "sampling-based"
hypothesis, if in the brain neural populations somehow use this represen-
tation, this framework [42] proposes an interpretation of what spontaneous
activity might be: in the absence of sensory stimulation x, the posterior dis-
tribution is similar to the prior distribution, and the spontaneous activity
reflects this prior. One of the predictions of this framework is that spon-
taneous activity is similar to the evoked activity, which has been observed
many times [80], [43], [89] (we will comment more on this point). Another
possible consequence is that on the motor side this spontaneous activity
could have a role in preparing actions, so that animals are ready to respond
faster. Overall, this bayesian sampling theory shows normatively how to
combine the priors, the top-down expectations about the world with the
sensory evidence about it, and precisely the spontaneous activity plays the
role of reflecting those priors about the world.

A more mathematically involved theory called predictive coding [44],
also based on Bayesian inference, conjectures that each region of the cortical
hierarchy makes hypothesis about its incoming inputs. In this theory, each
region generates a hypothesis about the incoming input, and feeds the error
(the difference between the model and the input), to the upstream region,
and feed-backs the more consistent hypothesis, to the downstream region.
After several iterations, the predicted error is small in all regions and an
hypothesis about the source that generated the sensory stimulus is retained.
A whole literature testing some of the ideas of predictive coding exists. Let’s
only cite Sadaghiani and colleagues [130] which performed a detection task
with humans on a magnetic resonance imager. The authors observed that
consistently, in the trials in which the subjects reported having heard a
dim sound, the spontaneous activity in auditory cortex that preceded the
presentation of the sound was significantly higher in hit trials with respect
to miss trials.
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1.6.4 Sampling information from the environment in
a way that conciliates resting and alertness. En-
coding of this information in packets that prop-
agate around the brain

According to Harris and Thiele [61]: "the brain continuously adapts its pro-
cessing machinery to behavioural demands. To achieve this, it rapidly mod-
ulates the operating mode of cortical circuits, controlling the way that in-
formation is transformed and routed".

In 1975, Kemp and Kaada [79], using EEG, remarqued a correlation
between hippocampal theta rhythm (4-10 Hz) and attention: "The present
observations of a striking relation between theta activity, scanning eye move-
ments and intent staring behaviour indicate an involvement of theta activity
in information sampling aspects of attentive behaviour". In 2009, Luczak
[89] studying the temporal structure of cortical activity made observations
that would lead to a similar hypothesis as Kemp and Kaada. They discov-
ered that the sequential order of firing of cells -some cells fire earlier than
others- during spontaneous activity in the inactive state is somewhat similar
to the sequence during evoked activity. Depending on the stimulus, consis-
tent small variations in the firing order are observed, but the coarse order
of which neurons fire first and which neurons fire later is preserved.

In perspective of these findings, Luczak [90] proposed that the active
state and the inactive state are simply related by the frequency of these
packets - that trigger up states-. In the active state the frequency of these
packets is high so that there are no down phases.

Given that -as we will also see later- the cortex becomes activated during
attentive phases, Luczak, McNaughton and Harris [92] have advanced the
hypothesis that the up and down-states correspond to discrete samplings
of the thalamic input by the cortex, so that the drowsiness during awake
correspond to moments in which the brain samples the environment, but
with a lower frequency.

The interpretation proposed about these sequences of activity, or "pack-
ets", is that they are basic information units that are exchanged across the
brain, like packets of bits that travel across the Internet. The Internet pack-
ets follow a protocol, a code of how to encode and to read these packets.
The first bits are called the header, and convey the address they are going
to, and the following bits convey the information. In the same way, Luczak
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and colleagues postulate that the earliest cells in responding would convey,
in their firing pattern, some information about the modality for example
and then the later cells would encode the details of the stimuli. Because
the up and down phases propagate all around the cortical mantle, but the
stimulus-evoked up phases originate in different cortical areas, this mecha-
nism might be a way of exchanging information across sensory modalities
and across hierarchical areas of the cortex, in order to integrate effectively
bottom up and top down signals .

1.7 Theoretical considerations about the mech-
anistic origin of the spontaneous activity

It is not currently known what is the origin of the spontaneous activity, how-
ever, due to the seminal work of Gerstein and Mandelbrot [49] and then of
van Vreeswijk and Sompolinsky [149], there is a whole theoretical framework
of the desynchronised state.

The majority of models of spontaneous activity are based on the premise
that a neuron generates activity because it keeps receiving activity from its
neighbours, and that as these neurons in turn generate activity, they project
to other neurons which in turn generate activity and so on. Briefly said
that the activity is self-consistent. We will examine next some examples
of models of spontaneous activity both at the single level as at the network
level.

1.7.1 Spontaneous firing at single cell level
We will start precisely by an example in which the self consistent hypothesis
is not necessary, because in this theory cells generate spontaneously action
potentials even in the absence of stimulation. It is known that voltage-gated
ion channels open and close in a stochastic way, and that depending on
the geometrical configuration of the cells, the spontaneous rate of action
potentials can vary. For single compartment models of neurons, the neu-
ron membrane potential is modelled as if it was homogeneously distributed
on a sphere. When we consider large membrane areas, the effects of the
stochastic openings and closings of the membrane potential are averaged
out, and the somatic membrane potential is well described by the determin-
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istic Hodgkin-Huxley equation [67]. According to biophysical simulations,
for unmyelinated axons, the spontaneous action potential rate increases as
the diameter of the axon thins. Also for both short and long axons the spon-
taneous action potential rate is high, whereas it is lowest for intermediate
length axons [108].

In the sixties, Rodieck, Kiang and Gerstein [125] had the idea of studying
the statistical properties of the spike trains associated with spontaneous
activity of single neurons recorded from the cochlear nucleus of anesthetized
cats. They observed different bursting patterns, from regularly spiking cells
to bursting cells. When plotting the histograms of inter-spike intervals, they
find unimodal and asymmetric distributions and also unimodal, symmetric
and bell-shaped distributions, that when replotted on a logarithmic axis on
the ordinates, resulted respectively in a rapid increase followed by a linear
decay or by another bell shaped distribution. These observations suggest
that the first kind of distribution might be generated from a Poisson process,
whereas the second might be generated by a Gaussian time jitter process.
Both Gaussian and Poisson processes have the interesting property that the
successive interspike intervals are independent.

During a Poisson process, the probability of observing an event during
the interval [t, t+ dt[ is λ.dt, where λ is the rate of events occurrence. This
means that the events are independent between themselves in time. It is
analogous to a situation in which, at each time point, we threw a biased coin
and we reported an event when it felt on heads. Precisely, a Poisson process
has a coefficient of variation Cv = σ

µ
that is equal to 1. During a Gaussian

time jitter interval process, the inter-spike interval has a defined mean and
is normally distributed, so that the spike trains show some periodicity.

Gerstein and Mandelbrot [49] had then the idea of modelling the be-
haviour of previously observed cells as a random walk model with drift.
In this model epsp’s and ipsp’s -excitatory (resp. inhibitory) post-synaptipc
potentials- arriving randomly at similar rates break the history dependence
between spikes, because the random arrival of positive and negative post
synaptic potentials provokes a forgetting effect on the membrane potential
with regard to its initial condition. This model did reproduced the Poisso-
nian inter-spike interval histograms of two cells s well as the ISI of the cell
that had a more Gaussian distribution [125].

Analysing data from monkey visual cortex (V1 and MT ), Softky and
Koch [139], also measured that the coefficient of variation in cortical cells

Amplification in cortical networks 25



1 Introduction: spontaneous activity in the brain

with high firing was close to one Cv ≈ 1. Misunderstanding the most im-
portant prediction that Gerstein and Mandelbrot had formulated 30 years
before, which was to use both excitatory and inhibitory random input cur-
rents, Softy and Koch fed different kinds of integrate-and-fire models with
only excitatory post-synaptic potentials -epsp’s of identical amplitude gen-
erated at random times from a Poisson distribution, and computed analyt-
ically or simulated the inter-spike interval distributions. Softky and Koch
choose to use randomly generated inputs because when neurons are injected
with a constant current, neurons spike in a regular fashion [94], therefore
the spiking irregularity in-vivo must be caused by fluctuations in synaptic
inputs.

Considering the central limit theorem, they understood that in the sim-
ulations, when adding an elevated number of randomly generated epsp’s, it
was expected to observe a highly stereotyped inter-spike interval, and then
a very low Cv, completely at the opposite of what they observed experimen-
tally. They concluded from this, that the integrate-and-fire models -which
suppose that the fundamental operation that neurons do is integration- is
an abstraction that is too simple and then added active dendrites to the bio-
physical models, which allowed them to re-obtain a coefficient of variation
around 1.

We now think that the prediction of Gerstein and Mandelbrot regarding
the role of the interplay between the excitation and the inhibition in the
generation of random spike sequences during spontaneous spontaneous ac-
tivity, is crucial. Also, the integrate and fire model is thought to be a very
good model of spike generation [18].

Finally, lets mention some models that explain the existence of bi-stability
in single cells firing, i.e., the possibility of one cell to fire, for a same input,
with two different firing rates, depending on the history of the inputs [54].

1.7.2 Spontaneous activity as a neural network prop-
erty

The previous models of spontaneous activity were based on single cell prop-
erties. In the 60’s, when Gerstein and Mandelbrot [49] formulated their drift
diffusion model, they were already aware that some physiological variables
("temperature, anesthesia, bio-chemical manipulation, sleep or wakefulness,
"states" of alertness") could have an impact on the spontaneous discharges.
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However, as we said in the introduction, the brain state is a macroscopic
quantity, that depends on the way cells fire with respect to each other. We
will go over the models of synchronous states keeping in mind, as we said
above, that these models receive external noisy activity from the outside.

For didactical purposes, we will present first the models related to the
asynchronous state, which contrary to the synchronous state, took a long
time to understand, and that led to the concept of balanced state by van
Vreeswijk and Sompolinsky [149], and which was extended by Renart and
colleagues [123], to account for the near zero mean pairwise correlations in
the asynchronous state.

Amit and Brunel [4] introduced the idea that persistent activity (i.e.
activity following the presentation of a stimulus, during a memory task),
would happen at the network level as small deviations around a fixed point
or attractor. In the context of the memory, we understand that these at-
tractors represented the memories, in the form of patterns of activity. A
neural network is a complex system described by coupled differential equa-
tions, and the persistent activity would result from the small perturbations
around the attractors. This is indeed the way we think about the active
state, like small perturbations around a fixed point. Amit and Brunel found
that a network composed only of excitatory neurons randomly connected
and receiving stochastic inputs from the outside is not stable, but when fast
inhibition is added, the network becomes stable, and shows a physiologically
plausible spontaneous rate.

1.7.2.1 The balanced state

The observation of Softy and Koch [139] that the irregular firing of cortical
neurons required an explanation triggered a lot of attention, which resulted
in a series of theoretical studies proposing different alternatives. Forty years
after Gerstein and Mandelbrot [49]- Shadlen and Newsome proposed that
if the excitatory and inhibitory presynaptic inputs were balanced and ef-
fectively cancelled each other on average, the resulting fluctuations would
trigger spikes that looked temporally irregular [136], [137]. Related ideas
were explored by Bell et al, Tsodyks and Sejnowsky [148] and Troyer and
Miller [146]. However, none of this studies provided a generic explanation
of how pre-synaptic excitation and inhibition could become balanced in a
robust way which was tolerant to differences in synaptic strength or other
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parameters of the network connectivity. In their description of the balanced
state, van Vreeswijk and Sompolinsky [149] provided such an explanation,
which has become a cornerstone in our understanding of cortical dynamics
and of tonic spontaneous activity.

The network is composed by two groups of excitatory and inhibitory
neurons and one group of external neurons generating only excitatory input.
Apart from that, the neurons are connected with a certain probability and
random weights. The network is said to be randomly connected.

This model postulates that the origin of the spiking irregularity comes
from a high level of pre-synaptic excitation and inhibition which are both
large compared to the neuronal threshold and which cancel each other out,
resulting in a sub-threshold membrane potential, whose random temporal
fluctuations are of the same order as the mean. Because of this cancelling,
which happens dynamically (i.e independent of the details of the network),
a small increase in excitation is compensated by a rapid increase of the firing
of inhibitory cells, keeping constant the overall firing rate.

We will briefly replicate the balance condition without providing all the
context that leads to it. When connected, the connection strength between
two neurons is equal to JZW√

N
, where ZW designates that this connection

goes from the pre-synaptic W to the post-synaptic Z, and Z,W = E, I,X
(excitatory, inhibitory, external). N is the size of the network. The scaling
of all the connections in the network is of order O( 1√

N
): this means that

they converge to zero as 1√
N
. f is the fraction of excitatory cells among

the population. We call µ the mean post synaptic current and < r > the
mean rate. The mean post synaptic current for the excitatory and for the
inhibitory neurons can be expressed as:

 µE = ∑f.N
j=1

JEE√
N
. < rE > +∑N

j=f.N+1
JEI√
N
. < rI > +∑N

j=1
JEx√
N
. < rX >

µI = ∑f.N
j=1

JIE√
N
. < rE > +∑N

j=f.N+1
JII√
N
. < rI > +∑N

j=1
JIx√
N
. < rX >

Developing :

{
µE =

√
N(JEEf. < re > +(1− f).JEI . < ri > +JEx. < rx >) =

√
N.C

µI =
√
N(JIEf. < re > + (1− f).JII . < ri > +JIx. < rx >) =

√
N.D

The main insight is that, in the large N limit, to be in the balanced state
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C,D have to be O( 1√
N

). Setting C and D equal to zero and solving the
equation, we obtain:

(
< re >
< ri >

)
= −

(
fJEE (1− f)JEI
fJIE (1− f)JII

)−1

.

(
< JEx >
< JIx >

)
. < rx >

As we want the firing rates to be positive we have both conditions :
numerator and denominator must be of the same sign. This leads to two
possible conditions :

JEX
JIX

> |JEI |
|JII |

> JEE
JIE

or JEX
JIX

< |JEI |
|JII |

< JEE
JIE

. As long as the mean
connectivity values obey these conditions, the excitatory and the inhibitory
rates will reflect the input and will cancel each other, in such a way that the
expressions C and D above will be order O( 1√

N
), and the network will be in

the balanced state.
In addition of showing approximate Poissonian statistics of the inter-

spike interval at single cell level, the balanced state makes an important
additional prediction of the distribution of rates in cortical circuits. The
strong neuron-to-neuron variability in mean synaptic input, plus the expan-
sive non-linearity of single cell f-I curve leads to a wide distribution of firing
rates which shows a characteristic skewed shape with a long tail. Another
strong prediction of this model -although hard to prove experimentally- is
the chaotic character of the cortical networks in the balanced state. This
means that small variations in the state of the network -like flipping the
state of one neuron from off to on- induce with time, exponentially large
differences of the state of the network, i.e, the network pattern of activity
will be completely different after a finite amount of time.

1.7.2.2 Strongly connected densely coupled networks generate an
asynchronous state

The fourth and the second-third cortical layers receives direct feed-forward
input from the thalamus. Inside each layer, neurons are recurrently con-
nected, and layers are connected between themselves: for example layer IV
projects in a feed forward way to layer 2/3. As we will see in the chapter
"Cortical neurons integrate common input from sensory thalamus", pairs of
cells in the fourth layer have a very high probability of connection up to 50
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%, and thalamic axons coming from the thalamus tend to target preferen-
tially pairs of cells that are connected. The cortex anatomy seems to enforce
positive correlations between pairs of inputs.

On another side, given that the neural responses are noisy from trial to
trial, a good way of to get rid of this noisiness, would be to use redundancy,
i.e. encoding in parallel the response to a given stimulus in different cells
of a population, and then averaging all those responses in a downstream
structure [136]. Depending of how this encoding is done, this might be or
not a good way of shedding the single cell trial to trial variability.

If, when one stimulus is presented repeatedly, cells respond from trial to
trial in a different way, but correlated among them, this is precisely a bad
thing because on a single trial the noise will not be averaged out on a down-
stream cell. The variance of the population rate give us an estimation of the
error that a downstream structure would make estimating this population
rate, by pooling neural responses from an entire population. Lets call V the
variance of the population rate of N neurons: V = var(∑N

i=1
ni(t)
N

). Lets
assume for simplicity that all the neurons in the population have the same
variance v. Lets finally call r̄ the mean covariance/correlation between all
pairs in the population. If we develop the definition of the population rate
variance, we obtain [168]:

V

v
= 1
N

+ r̄

If the activity of neurons is not independent, r̄ is finite and independent
of N: the network is said to be in a synchronous state. If neurons are in-
dependent, r̄ = 0, the bigger the population size, the smaller the error in
decoding a stimulus might be. It might also be that r̄ scales as 1

N
, and then

even if there are finite correlations the error might be done arbitrarily small.
In both previous cases, the network is said to be in an asynchronous state
[50], [123].

Renart and colleagues [123], showed theoretically that it was possible to
build a balanced recurrent network that received large amounts of shared
inputs, and that still attained a near zero mean pairwise correlation, that
scaled like 1

N
. When excitatory inputs are either shared or correlated, they

generate positive correlations, and the same applies to inhibitory inputs.
But if excitatory and inhibitory presynaptic inputs are positively correlated,
they generate negative correlations of this nature which cancel precisely all
sources of positive correlations induced by the connectivity and the dynam-
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ics. The balance condition [149], ensures that inhibition tracks excitation,
and therefore that the inhibitory and the excitatory input currents tend to
be positively correlated [123], decorrelating the network and maintaining it
in asynchronous state. The theoretical argument to prove this tracking at
the level of the currents, follows a similar logic than the balance condition for
the firing rates, presented previously. The difference between the network
of Vreeswijk and Sompolinsky and the network of Renart and colleagues, is
that at the level of the connectivity, the first one is called sparse (the con-
nection probability between two cells scales as 1

N
), whereas in the Renart

et al. network, the connectivity is said to be dense, i.e. independent of the
network size.

Tetzlaff and colleagues, show that one can also obtain a mean correlation
that is of the order O( 1

N
) in inhibitory-only networks [144].

1.7.2.3 Influence of the negative feedback on different dynamical
regimes

The asynchronous state is such that the inhibition can track the excitation,
so any small deviation in the firing is compensated almost immediately by
the inhibitory feedback, in such a way that the global firing remains constant.
Asynchronous state has a fast negative feedback.

The key ingredient in generating up and down phases during synchronous
state seems to be the adaptation [23], also known as spike-frequency
adaptation. Injecting a square pulse of current leads first in some cells to
an initial burst of action potentials followed by a period of silence, in which
the membrane potential is hyperpolarised, and then again to a new burst
of spikes. Many possible biophysical mechanisms can lead to adaptation,
but all of them implement a form of slow negative feedback of cell ex-
citability. A simple analogy of slow feedback is an electric shower head in
which when we open it too much, the water comes cold and then we rapidly
close the knob; after some seconds the water comes too hot, and then we
open back the knob: the delay in the feedback leads to an instability. There
are many computational models of synchronised activity which use adap-
tation and which are able to reproduce many of the features of the data
[27],[84],[85],[32],[101]. Some biophysical mechanisms that lead to adapta-
tion are: inactivation of the sodium channels -which are responsible for the
depolarizing currents-, activation of shunting currents (K+ channels, modu-
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lated by acetylcholine) and hyperpolarizing potentials due to an increase in
intracellular Ca++ concentration after a burst of activity [55].

1.7.3 Possible sources of correlations
When measuring the spiking of a pair of neurons, we should be aware that
there are many biophysical factors that can contribute to their correlation.
The arrangements of possible recurrent -or indirect- connectivities that can
lead to same co-fluctuation strength are infinite. Lets cite the two most
commonly discussed:

- Ko et al. [82] measured in-vivo activity, and identified the neurons that
were strongly correlated, and then killed the mice and probed the direct
connections between these neurons with patch-clamp, which resulted to be
very strong. Very strong coupling between units might lead to positive
correlations.

- Axons from an excitatory or an inhibitory neuron that project to a
pair of cells, also known as common input, has repeatedly been considered
a source of positive correlations [7], [137].

Conversely, Renart et al [123] showed that if the presynaptic inputs to a
couple of cells are excitatory and inhibitory and positively correlated, then
this causes decorrelation in the firing of both cells.

Another possible source of correlations is that the respective synaptic
inputs to each of the measured cells are themselves correlated [159]. We
can mention some other concrete elements of cellular and circuit structure
that do affect the correlations: the neuronal thresholds distributions of the
pre-synaptic inputs, the non-linearities that transfer input currents to spike
outputs, the variability in the amount of vesicle release, the noise on the
membrane potential. In the chapter 4, I did a detailed study of the effects of
many of these biophysical parameters in the correlation between the mem-
brane potential of two neurons, and analysed an experimental situation in
which we can deduce the proportion of shared axons, independently of the
other parameters.

As pointed by Doiron et al [37], "different mechanisms could explain the
correlations observed under a single state. However, only some of these
mechanisms will be consistent with observations from multiple states". By
state, Doiron means the context under which neural activity is recorded,
not necessarily cortical state. In [37], Doiron et al. develop a mathematical
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framework that accounts and distinguishes for different biophysical factors
that impact the correlations, even if the list is not exhaustive.

1.7.4 Amplification in cortical circuits: spontaneous
activity reflects idiosyncratic features of the net-
work connectivity

Several groups have reported, a similarity between the patterns of activity
observed during the spontaneous and during the evoked activity [89],[147],[13],
[43]. One hypothesis that might explain these diverse observations is that,
due to learning, the connectivity in the cortical circuits may have adjusted
to better process the statistics of the environment [13], and to selectively
amplify certain stimulus with respect to others [105], [46]. Berkes and col-
leagues [13] report an increasing match between evoked and spontaneous
activity during development.

The patterns of activity that occur during spontaneous activity may be
a side effect of the constrains that the connectivity impose on the expressed
activity patterns [46]. To make this point clear, imagine the hypothetical
situation in which a cortical circuit receives uncorrelated activity from its
neighbour circuits (figure 1.5). Given the connectivity this circuit has, only
certain activity patterns will be expressed. In the figure 1.5, two populations
of excitatory cells interact through an inhibitory population, constraining
the two populations of excitatory cells to have uncorrelated activity.

Given this particular connectivity, lets imagine ~v =
(

1 −1
)t

a vector
giving the firing rate of each of the two excitatory groups with respect to
their mean rate. A useful operational definition of the amplification of the
pattern ~v is that the population activity ~p(t) is dominated by a multiplicative
temporal modulation α(t) of the pattern ~v :

~p(t) ≈ α(t).~v

In the previous example we only choose one amplified pattern ~v, but in the
general case there could have been more amplified patterns ~w, ~x ...

The definition of amplification we just gave embrace also the common
knowledge usage of the word amplification in which a unidimensional signal
s(t) is multiplied by a scalar K, α(t) = s(t).K , but it expands it to the
context of a multivariate system in which some joint patterns of activity
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Figure 1.5: Amplification in cortical circuits. To model spontaneous activity, we
suppose that a local cortical circuits receives uncorrelated noise from the neigh-
bouring circuits. Then, the most amplified patterns during spontaneous activity
will result from the interaction of the noise with the recurrent connectivity. In-
directly, looking at the spontaneous activity tells us something about the circuit
connectivity.

~v, ~w... are multiplicatively modulated over time. In the figure 1.5, we see
how the activity along the direction

(
1 1

)t
is filtered out, but also how the

magnitude of the fluctuations along the direction
(

1 −1
)t

is enhanced.
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1.8 Aim of the thesis
In this dissertation we examine the temporal structure of spontaneous activ-
ity during states of cortical activation. Whereas a long series of studies have
reported temporal structure during spontaneous activity, the large major-
ity of the examples refer to activity during synchronised/inactive states. We
have found that, whereas previous work had emphasized the lack of temporal
structure during cortical activation, spontaneous activity during the active
state shows a large degree of temporal coordination. We show that indeed
there is a lack of temporal coordination on average, but that going beyond
the coordination of individual pairs reveals a signature of competitive am-
plification of spontaneous activity fluctuations. We characterize extensively
these competitive dynamics.

In the third chapter we study what could be the mechanistic basis for
this type of amplification. We consider the necessity of structured connec-
tivity and propose a circuit connectivity motif that reproduces many of the
observed dynamical properties of competitive activity, using linear dynam-
ical systems theory. Furthermore, we will show that the data during active
state shows signatures of a particular kind of amplification called non-normal
amplification.

In the fourth chapter we will discuss results from a study of functional
anatomy which reveals patterns of common input across thalamo-cortical
inputs to different layers. In particular, we will show that in the projection
from the thalamus to the visual cortex, there is a spatial selectivity of those
shared inputs. The long range projections that target layer IV of the cortex,
target preferentially cells that are connected between themselves. We will
go over the results of the study and then focus on modelling the impact of
the proportion of shared inputs on the correlation between pairs of cells.

In the fifth chapter, we will compare statistical methods that try to
determine the number of principal components in a multivariate data set,
which is equivalent, in the context of amplification, to determining how many
amplified patterns of activity p dominate the population dynamics :

~p(t) ≈
p∑
i=1

αi(t).~vi

In the last chapter we will summarize, discuss the results, and expand
the scientific challenges.
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Chapter 2

Temporal competitive
structure during the
desynchronised state

HIGHLIGHTS

• We find that during the desynchronised state, the activity
is close to one dimensional, bringing to light two popula-
tions of neurons with graded anti-correlated activity. These
dynamics are called competitive.

• We characterise the competition at the level of the single cells
and also at the temporal and spatial level of the competitive
dynamics.

Contents
2.1 Introduction: temporal structure during spon-

taneous activity . . . . . . . . . . . . . . . . . . . 38
2.2 Results: competitive activity revealed during

the desynchronised state . . . . . . . . . . . . . . 40
2.2.1 Known features of the desynchronised state . . . 40
2.2.2 Raw phenomenon: competitive dynamics . . . . 42
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2.2.3 How stable are the PC directions across the record-
ing ? . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.4 Do all neurons participate in the competition ? . 48
2.2.5 Role of global fluctuations in competitive activity 50
2.2.6 Single cell characteristics . . . . . . . . . . . . . 56
2.2.7 Temporal characterisation of the competition . . 60
2.2.8 Spatial characterisation of the competition . . . 64

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . 70
2.3.1 Summary . . . . . . . . . . . . . . . . . . . . . . 70
2.3.2 Temporal invariance of the competition . . . . . 70
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2.3.4 Functional significance of competitive dynamics

during spontaneous activity . . . . . . . . . . . . 72
2.3.5 Low dimensional dynamics in cortex . . . . . . . 78

2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . 79
2.4.1 Recordings and experimental procedures . . . . . 79
2.4.2 Preprocessing the spike times into spike counts . 80
2.4.3 Coherence methods for determining the relative

position of the shanks . . . . . . . . . . . . . . . 81
2.4.4 Methods on Spectral Analysis . . . . . . . . . . . 84
2.4.5 Non-parametric statistical tests . . . . . . . . . . 85
2.4.6 Necessity and sufficiency of a given subspace of

activity . . . . . . . . . . . . . . . . . . . . . . . 88

2.1 Introduction: temporal structure during
spontaneous activity

As we saw in the introductory chapter, spontaneous activity might be im-
plicated with several fundamental processes like development, memory con-
solidation, sensory processing and behavioural modulation. It is therefore
necessary to understand it better to have clues about its function. One
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of the possible ways to study spontaneous activity is to look for temporal
structure, i.e. for patterned organisation of the population activity in time.

For instance, Plenz and colleagues have worked on measuring a phe-
nomenon called neuronal avalanches in superficial cortical layers during
spontaneous activity. Guided by branching process theory, they measured
the number of activated neurons between two silences, and observed that
the ratio of descendants to ancestors is equal to one, which according to
this theory, puts the cortex in a state called critical that confers special
properties to the neuronal networks like optimal information transmission,
capacity storage and computational power [117].

Since the 90’s, Abeles and colleagues [120], have been studying precise
firing sequences known as synfire chains in the deep layers of the cortex.
The occurrence frequency of these events has been shown to correlate with
the level of synchronisation. These sequences of activities have also been
observed at the level of the membrane potentials in slices of mouse V1 and
in cat V1 [74]. Their interpretation of this phenomenon is that this temporal
structure is ideal for information transmission without loss, given that the
cortex is composed of weak, stochastic, and depressing synapses. Moreover,
it seems that these chains concatenate themselves in different orders to form
cortical songs, which appear in a compressed format, as if the circuits
were replaying previously learnt sequences [74]. A latter study [102] claims
however that these temporal sequences are generated by chance, as a result
of the constraints imposed by the dynamics of subthreshold spontaneous
activity.

Both during inactive state as well as in the active state, Luczak and
colleagues [89], [14], find sequences of firing that are similar to the evoked
activity that follows the presentation of a stimulus. Bermudez Contreras
et al. [14] show that during induced desynchronised state, the similarity
between the spontaneous and the evoked activity patterns increases signifi-
cantly after the stimulation with respect to before the simulation.

Using slices, Cossart et al. showed that the order in which neurons fire
during the transitions from the down to the up phase of the inactive state
follows a sequential structure [28]. Luczak et al [91] replicated this result in
awake and anesthetised rats, and showed that the temporal precision of the
spiking order decays as the up phase progresses.

Okun and colleagues [109] understood in 2015 that when the popula-
tion rate variability is higher, -i.e when the activity is more synchronised-
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neurons fire in a consistent manner with respect to the population rate
P (t) = ∑N

i=1 ni(t). This relationship happens at the level of the covari-
ance. The covariance measures on average how much two random vari-
ables tend to vary together around their respective mean: cov(P (t), nj(t)) =
E
(
(P (t)−µP ).(nj(t)−µnj)

)
. At the level of the populations there is a con-

tinuous gradation in the way neurons are correlated with the population rate
P , some are very correlated while some others are less correlated (and have
a bigger or smaller population coupling). Okun et al show that if one
knows the population coupling (a scalar) from each single neuron, one can
provide a good approximation of the covariance matrix of the whole popu-
lation. This implies that the temporal structure of spontaneous activity in
this conditions is low (almost one) dimensional. Also, the population rate is
a good predictor of the sensory responsiveness, which is further explained by
the finding that cells with strong population coupling receive more synaptic
inputs from their neighbours.

2.2 Results: competitive activity revealed dur-
ing the desynchronised state

2.2.1 Known features of the desynchronised state
We will first recall the main features of the desynchronised state using a
representative experiment that we will use consistently in this chapter. As
we see in figure 2.1, the desynchronised state is characterised by the following
features: a fairly constant mean population rate (A), neurons fire tonically
over time (B), the histogram of mean firing rates is uni-modal and skewed
with a heavy tail (D). On average, the correlation between the neurons
is close to zero (C) , but slightly positive [123]. Finding near zero pairwise
correlations in the cortex, generated much controversy in the 2000’s, because
there was on one side increasing anatomical evidence showing that nearby
cortical neurons receive a substantial amount of common input, and at the
same time there was a strong belief that common input lead necessarily to
positive correlations between neurons [39]. The near zero average of pairwise
correlations means that on average, there are as many pairs of cells that are
positively correlated as pairs that pairs that are negatively correlated. This
fact is consistent either with the scenario that neurons spike more or less
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Figure 2.1: Desynchronised state in layer V of the cortex (S1). A: population
rate. B: raster plot. Cells are sorted by firing rate. C: histogram of pairwise
correlations. D: Histogram of firing rates. Experiment 065a. Details: A and C,
Gaussian kernel (σ1 = 0.1s). D-H: tc = 0.1s,Njitt = 10 (see methods 2.4.2).

independently with finite correlations, which has been the current opinion,
or as we will see, that each half of the population is positively correlated
with itself and negatively correlated with the other half.
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2.2.2 Raw phenomenon: competitive dynamics
In figure 2.2, we plotted the same 10 seconds presented in figure 2.1 but
ordering the neurons differently. As we said in the previous paragraph, until
now the second order analysis of spiking activity during the desynchronised
state was limited to their distribution, ignoring the spatial correlations. We
go beyond this approach by considering the correlation matrix and applying
principal component analysis -PCA- to it.

When PCA is applied to the correlation matrix (figure 2.2 F), we see that
there is a direction of the activity in the neural space that stands out with
respect to the other ones. Reordering the correlation matrix and the raster
plot (figure 2.2 C,I) with the same order as the sorted PC1 components,
or loadings (figure 2.2 B), reveals structure in the population activity. On
each diagonal of the correlation matrix neurons are positively correlated with
their neighbours and negatively correlated with the neurons of the opposite
side.

Because the dynamics of the population is dominated by anti-correlation,
we will refer to this type of structure as "competitive", with excess activity
in neurons with large positive PC1 loadings being associated with excess in-
hibition of neurons with large PC1 loadigs -and vice-versa. As the variance
associated to this competitive dimension is clearly standing out from the
rest (figure 2.2 G), we say that the dynamics display competitive ampli-
fication.

In figure 2.2 D we see the instantaneous firing rate of the group of cells
having a positive loading and the instantaneous firing rate of the group of
cells having a negative loading: we see that the firings are anti-correlated.
However, is the competition taking place between two separable groups?
When we look at the histogram of the PC1 loadings , it appears unimodal
(figure 2.2 E). Thus, rather than two groups, it seems like a continuum in
such a way that neurons at either end of the continuum are strongly corre-
lated and weakly correlated with neurons in the middle of the continuum.

Because the correlation matrix is symmetric, it can always be written as
a sum of the external products of its eigenvectors (PC’s):

C =
N∑
i=1

λiPCiPC
t
i

λ is the projected variance associated to each PC. In figure 2.2 J, we plot-
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ted the rank one approximation of the correlation matrix: C ≈ λ1PC1PC
t
1.

We can see that it is quite close from the original ordered correlation
matrix, and therefore that the product between the loadings of two cells
seems to determine the correlations to a very good extent. We then un-
derstand why the correlation matrix has such a structure, the PC1 being a
graded vector approximately symmetric around zero (figure 2.2 B), the outer
product of this vector with itself determines a matrix whose first and third
quadrants are positive and whose second and fourth quadrants are negative.
In the figure 2.3, we plotted all the eigenspectra, all the correlation matrices
and all the PC1, for all the experiments. Each experiment corresponds to a
different rat.
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Figure 2.2: A: population rate. B: PC1 components. C: raster plot, same exper-
iment and same time as in figure 2.1, sorted using the order given by the PC1
coefficients. D: z-scored population rate of each of the two populations. E: his-
togram of PC1 loadings. F: correlation matrix. G: eigenspectrum. H: histogram
of correlations. I: sorted correlation matrix using the order of the PC1 loadings.
J: first mode of the correlation matrix. K: correlations versus mode 1 coefficients.
Experiment 065a. Details: A: Gaussian kernel σ = 0.1s, D: Mexican hat kernel
(σ1 = 0.1s, σ2 = 4σ1). B,E,F,G,H,I,J: tc = 0.1s,Njitt = 10 (see methods 2.4.2).
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2.2.3 How stable are the PC directions across the record-
ing ?

In order to make sure that the structure shown in the previous section is not
a statistical fluctuation, we can split the recordings in halves and assess how
does the direction of the principal components stay stable along the record-
ing, by computing the alignment of the nth principal component computed
on the first half of the recording with the nth principal component computed
on the second half of the recording. The alignment is then a scalar quantity
between 0 and 1 that quantifies the persistence of a direction of activity
along the recording: PCn, n ∈ [1, N ]

|(PC(1)
n )′.PC(2)

n |

For each experiment, we have then only one overlap that we plot in figure
2.5, for the first ten principal components.
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Figure 2.4: A: Overlap of the nth principal component computed in the first half
and the nth PC computed in the second half of the recording, for each experiment.
Parameters: tc = 0.1s and Njitt = 10.

This method allows us to see that at the level of the recording there was
not some kind of drift between the begin and the end that would change
the direction of the PC1. However, this method is very strict, in the sense
that for example PC3 in the first half of the recording might become PC4
in the second half. In order to test for that, we are then going to evaluate
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the overlap of a PC in the first half with all the PCs of the second half, and
retain the PC which has a maximal overlap.
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Figure 2.5: A: Overlap of the nth principal component computed in the first half
with PC computed in the second half of the recording which has a maximal overlap.
Each dot represents one experiment. Parameters: tc = 0.1s and Njitt = 10.

We conclude from these results that the direction of the first principal
component is very stable along the recordings.
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2.2.4 Do all neurons participate in the competition ?
When thinking about how neural networks work, we expect that there is
some underling simplicity that allows its understanding. It could be that in
a network, all neurons have a similar temporal pattern of firing (like in the
synchronous state), or that each neuron says something at the right time,
for example the letters of a word. In the competitive desynchronised state,
we can think that neurons contribute to this latent variable by spiking at
the right time.

The loadings are these coefficients that we attribute to each cell, and that
we use to obtain the latent variable. We then proceeded to assess, using a
non-parametric test (see methods 2.4.5.3), whether the firing rate of each
cell was significantly correlated with the score of the population (computed
omitting the firing of this particular cell).

As we can see in figure 2.6 A, the majority of the loadings of the first PC
contribute to the score in a way that is statistically significant (in black) with
respect to a situation in which the firing of the cell would have no temporal
structure. This doesn’t happens for PC’s of higher order 2.6 B. We show
this in the case of one experiment (c065a), but the results are similar for the
other experiments.

We also plotted the correlation of the correlation matrix R2 (figure 2.7
B). Element R2

(i,j) measures the correlations between the set of correlations
of neuron i with all other neurons in the recording and set of correlations of
neurons j with all other neurons. When the magnitude of R2

(i,j) is large, this
means that the subset of neurons with which neuron i is strongly correlated
is similar to the subset of neurons with which neuron j is strongly correlated
(i.e. neurons i and j have "the same friends"), although they might differ
in sign. If the magnitude of R2

(i,j) is close to zero, this means that knowing
the cells with which neuron i is correlated does not allow us to predict the
neurons with which neuron j is correlated. As we can see in the figure,
even if correlations are weak for both pairs, these weak correlations are not
statistical fluctuations, because the pattern of (weak) correlations of most
neurons is fairly predictable from the pattern of correlation of other cells.

The conclusion of these two complementary analyses is that the majority
of cells contribute significantly to the competition.
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2.2.5 Role of global fluctuations in competitive activ-
ity

2.2.5.1 Assessing the contribution of the mean activity to the
population variance
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Figure 2.8: Necessity of the population rate fluctuations to explain competitive
state. A: Count matrix of experiment c065a (red) and count matrix of surrogate
data (green), to which we removed the instantaneous population rate. Right: cor-
responding correlation matrices. B: population rate of data (red) and of surrogate
data. C: PCA of both data sets. Parameters: tc = 0.1 s, Njitt = 10.
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During the synchronous state, neurons go up and down together. The fluc-
tuations at the level of the population rate explain a large fraction of the
variance [109]. During the desynchronised state, the population rate re-
mains roughly constant over time (figure 2.2 A). To assess how much these
fluctuations contributed to the total variance of the population, we decided
to remove these fluctuations and see if these fluctuations were necessary
to explain the competitive dynamics. As D is our data matrix of dimen-
sion <T>.<N> , the projection of D onto ~u, a unitary vector of dimensions
<N>.<1> , is a time series of dimension <T>.<1>: D.~u. Then, projecting
back this time series to the neural basis, results in a matrix of dimension
<T>.<N> and of rank one: D.~u.~ut. We can then create a surrogate data
set in which the fluctuations along the uniform direction are removed:

Ds = D −D.~u.~ut

We depicted in red the original data set and the surrogate data set (green)
in figure 2.8 A. In figure 2.8 B we show how indeed in the surrogate data set,
the population rate -in green- is nil over time. When we apply PCA to the
surrogate data set, we see that both its eigenspectrum and the correlation
matrices of the original and of the surrogate data sets are very similar (figure
2.8 A and C). We then conclude that the fluctuations of the population
rate are not necessary to explain the competitive dynamics. If to a first
order in desynchronised state all neurons moved together, the activity in
neural space would be in the direction of the uniform vector ~u. However,
in desynchronised state the PC1 has a shape that is symmetric around zero
(figure 2.2 B and 2.3). This means that during desynchronised state the
direction of the activity in neural space happens along a direction (given by
the PC1), that is close to orthogonal to the uniform vector ~u:

PCt
1.~u =

∑
i

PC1|i ≈ 0

2.2.5.2 Necessity and sufficiency of a given subspaces to explain
the correlation structure

Lets briefly mention why PCA is a natural candidate to observe the most
salient patterns of correlated activity in the data. Consider two variables
n1 and n2. We can plot all the observations of n1 and n2 in the neural
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space of axis n1 and n2: {(n1(t = 0);n2(t = 0)), (n1(t = 1);n2(t = 1)), ...}.
If we project orthogonally these observations onto a certain direction ~m =
cos(θ)e1 + sin(θ)e2, we obtain a time series {pm(t = 0), pm(t = 1), pm(t =
2), ...}. We can compute the variance of this time series and obtain the pro-
jected variance. The first principal component gives precisely the direction
that maximizes the projected variance. The second principal component
(PC2) is the second direction that maximizes the variance in a direction
orthogonal to PC1. For example if n1 and n2 form a ellipse on the neural
space, the PC1 will point on the direction of the major axis.

We designed a method in order to assess how much fluctuations within a
given subspace contribute to the full correlation structure of a data set (see
methods 2.4.6). Subspace is a more general concept than direction, and
means the portion of space generated by linear combinations of a set of di-
rections {~v1, ..., ~vp}. The general idea of this methodology is the following: a
subspace is considered to be necessary to explain the correlation structure
when a surrogate database in which one has removed correlations exclusively
along this subspace generates a correlation matrix which is dissimilar from
the correlation matrix in the real data. In the example of figure 2.8, we
did this in a rather coarse way by subtracting the projections along this di-
mension, instead of breaking the correlations along this particular subspace,
and this is reflected in the fact that the surrogate data has a rank equal
to N-1 (see figure 2.8 C green). In a complementary manner, a subspace
is sufficient to explain the correlation structure of the data, if a surrogate
dataset in which one has removed correlations exclusively in the orthogonal
complement of this subspace, generates a correlation matrix that is similar
to the correlation matrix of the real data.

We then tested the necessity and the sufficiency of two different sub-
spaces: PC1 and MA. Each component of the mean activity vector (MA)
has the mean firing rate of the cell r, we normalize it so its norm is equal to
one: MA = 1

||MA||

(
r1, r2, ...rN

)t
.

In figure 2.9 A, we observe similar results for both states. When we
destroy the correlations along the first PC, the fraction of explained variance
is small. Thus because removing correlations exclusively along the first
principal direction has a large and similar effect across both states, whereas
removing correlations across all other directions has a relatively small effect
also across both states, we conclude that the dimensionality of the data in
both states is similarly low, at least as far as predicting the structure of the
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correlation matrix is concerned (figure 2.9 C).
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Figure 2.9: Necessity and sufficiency of PC1 and mean activity. A and B: ne-
cessity of the PC1 and the mean activity vector MA. C and D: sufficiency of the
PC1 and of the mean actitity vector MA. Parameters: tc = 0.1s, Njitt = 10,
Npermutations = 10. The y axis in the plots refers to the fraction of variance in
the correlation matrix, not fraction of variance in the recording.

In turn, when we examine the amount of variance explained by the mean
activity vector, we note that when we break the correlations along the direc-
tion of the mean activity vector MA, we explain a very small proportion of
variance in the synchronised state (figure 2.9 B), whereas we can still explain
almost all the variance in the desynchronised state. We then conclude that
the mean activity is necessary to explain the activity in the synchronised
state, but not in the desynchronised state. When we break the correlations
along the orthogonal complement of MA, we manage to explain a good frac-
tion of the variance in the synchronised state, but we fail completely for
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the desynchronised state (figure 2.9 D) . We conclude then that the MA
vector is necessary and sufficient to explain the correlation structure in the
synchronised state, but that it is not necessary nor sufficient to explain the
correlations in the desynchronised state.

2.2.5.3 Comparison of directions between PC1 and population
coupling vectors

In 2015, Okun et al. [109] argued that the population coupling vector was
an interesting direction in neural space to observe the activity in the most
"variable" -synchronised- states. The population coupling of a cell i with the
population rate is:

PopCi = 1
||fi||

∫
fi(t)

∑
j 6=i

(fj(t)− µj).dt

||fi|| is the firing rate of cell i, and fi(t) is the continuous signal that
results from convolving a spike train with a Gaussian kernel f . µj is the
mean activity of cell j. The population coupling can also be defined as a
spike triggered population rate, and we can then define a lag, as in figure
2.10. The definition above refers to the zero lag case.

Using the original code of the population coding obligingly shared by M.
Okun, we computed the population coupling (normalized by the constant

1√
N
) for the usual experiment c065A, in both active and in inactive state (see

figure 2.10 A and B). As we can see in B, in the active state, the population
coupling is less important than in the inactive state.

We decided to compute a modified version of the population coupling, in
which, instead of looking at the spike triggered population rate, we look at
the spike triggered competitive latent variable:

PopCPC1
i = 1

||fi||

∫
fi(t)

∑
j 6=i

(fj(t)− µj).lj.dt

lj designates the jth loading of the first principal component (of norm 1).
As we can see in figure 2.10 C, in the inactive state, this quantity is very
similar to the population coupling, whereas in the case of the active state,
this direction explains more variance (figure 2.10 D).

Even if in figure B, we see that the population coupling is small, it still
captures a little bit of variance. Given that the activity is approximately

Amplification in cortical networks 54



2 Temporal competitive structure during the desynchronised state

F

C

−500 0 500
−0.01

0

0.01

0.02

Po
pC

Inactive

−500 0 500
−0.01

0

0.01

0.02

Po
pC

PC
1

lag (ms)

−400 −200 0 200 400
−0.01

0

0.01

0.02

Active

−400 −200 0 200 400
−0.01

0

0.01

0.02

lag (ms)

20 25 30 35
0.85

0.9

0.95

1

co
rr

(P
op

C
,P

C 1)

<(u,PC1)> (deg)
40 60 80 100
0

0.5

1

<(u,PC1)> (deg)

A

EE

B

DD

Figure 2.10: Relation between population coupling and PC1. A: Pop. coupling in
inactive state. B: population coupling in active state. C (D): population coupling,
weighted by PC1 loadings, in inact (resp. act). Each color designates a different
neuron. E,(F): correlation between PC1 and population coupling as function of the
angle between PC1 and uniform, in inactive and active state. Each dot represents
an experiment. Parameters: tc : 0.1s, Njitt : 10.

Amplification in cortical networks 55



2 Temporal competitive structure during the desynchronised state

one-dimensional, this would be expected unless the uniform direction and
the first principal component direction were perfectly orthogonal. In figure
2.10 F, we plot the similarity between the PC1 loading and the popula-
tion coupling, as a function of the angle between the PC1 and the uniform.
Consistent with this interpretation, in recordings where the PC1 is close to
orthogonal to the uniform direction, PC1 loadings and population couplings
are largely uncorrelated. During recordings in the synchronized state (figure
2.10 E), the first principal component is closely aligned with the uniform di-
rection, and thus PC1 loadings and the population coupling are very strongly
correlated. We conclude from this and our previous analyses, that whereas
there is a substantial amount of temporal structure in spontaneous activity
during desynchronized states, the nature of this structure is not particularly
related to fluctuations in global population firing rate.

2.2.6 Single cell characteristics

2.2.6.1 Link between the PC1 loadings and the firing rates

We saw before that nearly all cells contributed to the competitive activity.
The projected activity of the population over the PC1, the score, is an
fluctuating time series. The loadings, or components of the PC1, are scalar
quantities affected to each neuron that quantify the degree to which cells
contribute to this latent variable. We can therefore ask if there is some
relationship between the loading and the firing rate of a cell.

In the desynchronised state, we have a complex relationship between the
firing rate and the loadings of the PC1 component, that resembles an "U-
shaped" relationship (see figure 2.11 A). Said otherwise, the firing increases
as a the absolute value of the loading (see figure 2.11 B). To assess whether
this relationship is statistically significant, we apply one non-parametric test
to see the statistical significance between the absolute value of the load-
ings and the firing rate (see methods 2.4.5.1). When collapsing all the
data from all the experiments, we obtain that this relationship is signifi-
cant (p − value < 10−4, 10000 surrogates). When we test the statistical
significance on an experiment by experiment basis, we find that the rela-
tionship is significant in 6 out of 10 experiments (α = 5%). The p-values
are: (0.041, 0, 0, 0.1, 0.0047, 0.0077, 0.77, 0.46, 0.013, 0.45).

Here we would need patch-clamp experiments to observe the membrane
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Figure 2.11: A: Firing rate versus PC1 loadings. B: Firing rate versus absolute
value of the loadings. Each color represents an experiment. Parameters: (tc =
0.1s,Njitt = 10, Nshuffles = 10000).

potential of the cells whose loading is small in absolute value, to disentangle
between two possible scenarios:

a) it could be that the membrane potential of these neurons is correlated
with the latent variable, but that the baseline potential is far away from the
threshold, which would explain why the cell fires less. Even when the cell
would spike, its correlation with the cells that spike more will be small.

b) Alternatively, it could be that the membrane potential is also far away
from the threshold, but that it is not correlated with the latent variable, so
that the firing rate is low and the spikes are weakly correlated with the latent
variable.

The firing rate is the first characteristic one would look at when trying
to relate a cell property to the loadings of the PC1. The loadings give the
contribution of this cell to the latent competitive variable. A second order
characteristic that we would study and see if they correlate with the loadings
are differences in the spiking pattern of neurons cells.

2.2.6.2 Link between the PC1 loadings and the mean power of
the spike trains

In figure 2.12 A, we can see that when we order the cells using the loadings
of the first principal component (figure 2.12 B), we can see a difference in the
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firing at the level of the raw data. On one extreme, cells seem more bursty,
whereas on the other extreme cells seem to have a baseline firing rate on
top of which cells increase or decrease their firing rate. Taking two example
cells for the extremums of the competitive axis (in magenta and cyan), we
compute the autocorrelogram of both in figure 2.12 C and D.

We then apply the Fourier transform (see methods 2.4.4) to all the spike
trains in the recording to compute the power as a function of the frequency
(figure 2.12 G). The power of each spike train is also the Fourier transform
of the autocorrelogram. In figure 2.12 E and F we see the Fourier transform
of our two example cells, we see that there seems to be a difference in
power in the low frequencies. We then asked whether there was a consistent
relationship between the mean power, in a frequency band of [0-4] Hz and
the loadings of the first principal component. This relationship seems to be
present (figure 2.12 H). To assess whether if it is statistically significant, we
did a non-parametric test fitting a linear model to the data (in red in figure
2.12 right), and comparing it with the slopes of surrogate data in which
we randomly permuted the ordinates (see methods 2.4.5.1). Overall, the
cells that are bursty have high power at low frequency, whereas the more
regular spiking cells have a smaller mean power in the range 0-4 Hz. Across
experiments, the relation is also significant in 6 out of 8 experiments. The
p-values are: (0, 0.0032, 10−4, 0.4827, 0.0281, 0.0358, 0, 0.0815).

Previous work also points towards related features: Okun et al. [109]
also found a correlation between population coupling and burstiness of the
cells. Vinck et al. also observed a linear trend between firing rate and firing
rate irregularity [154]. The relationship between the loading and the mean
power is important, because it allows us to compare neurons across the one-
dimensional competitive continuum across experiments. Since the direction
of PC1 is arbitrary and therefore the sign of the loadings also, and also
because the PC1 loadings are approximately symmetric around zero, it’s
not clear how to look for consistency across experiments. The fact that the
autocorrelation of neurons at both ends seems to be systematically different
allow us to disambiguate the sign of the PC1 loadings across experiments.

Although the loadings are approximately symmetric around zero, they
are not perfectly symmetric (see figure 2.3). Given that to first order, the
correlations are given by the product of their loadings, we can label as E1
the population that has bigger loadings, and adopt the sign for the PC1, in
such a way that the bigger loadings (in absolute value) are positive.
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This would give us an alternative way of comparing the PC1 loadings
across recordings.

2.2.7 Temporal characterisation of the competition
The competition can be seen in the data to the naked eye, and surprisingly
this competition seems to happen at many time scales. In figure 2.13 we
plotted in the middle a population raster with ten seconds of an experiment.
In the top and in the bottom, we plotted a binned and z-scored matrix,
(tc = 0.1 s and tc = 1). We plotted the scores on top and at the bottom
of the count matrices. The scores are the projection of the network activity
onto the first principal component, for every time point. As we see, both
scores describe a alternation of the network at different time scales.

Remarkably, the PC is remarkably still at both times scales (figure 2.13
right). At left, we see how, keeping the order of the loadings of the PC1 com-
puted at the larger time scale, in the PC1 computed at low time scale, doesn’t
alters too much the direction at which the PC points in the lower time scale.
We also plot, in figure 2.14 the correlations at different time scales, and we
can see the competition and also the fact that the PC direction is very still.
In order to quantify this observation, we computed the PC basis at differ-
ent time scales, using different time counts of tc = 0.005, 0.025, 0.05, 0.1,
0.25, 0.5, 1s and a jitter window of five time counts. Therefore, in figure
2.15 we computed the overlap between a given PC at different time scales
|(PCtac

i )′.PCtbc
i |. The PC are vectors whose sign is undefined, that’s why we

consider only the absolute value of the scalar product.
In order to show that the correlations at big time scales are not due to

correlations at smaller time scales, we did a control in which we maintain
the correlation at a big time scale at which we compute the correlation, but
we break the correlations at smaller time scales by redistributing randomly
the spikes inside the (fixed) jitter windows of 1s. In the figure 2.16 we see
that after applying the shuffling procedure to the present experiment 065a,
the PC1 overlap is gone for time counts under 0.25 seconds. The time scale
of the correlation is not given by the bin, but rather by the jitter window
length tc.Njitt.

To see if this result was consistent, in the figure 2.17, we averaged the
overlaps of both the data and the control (figure 2.17 A, and B) across
experiments. We present only the overlap for the first PC.
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Figure 2.14: Correlation matrices at different time scales, using a different time
bin for each matrix (A, B, E,F). We also plot the corresponding PC1 (C,D,G,H).
The order of both the matrices and of the PC1 at different time scales is the
order of the PC1 at the higher time scale tc = 1s, in A. Experiment "c065a".
Parameters: tc = 1, 0.1, 0.05, 0.01s, Njitt = 10.

Amplification in cortical networks 62



2 Temporal competitive structure during the desynchronised state

PC 1 PC 2 PC 3

PC 4

0.005
0.025

0.05
0.1

0.25
0.5

1

PC 5 PC 6

0

0.2

0.4

0.6

0.8

1

0.
00

5
0.

02
5

0.
05 0.
1

0.
25 0.
5 1

Figure 2.15: Alignment of the different PCs at different time scales for the exper-
iment "c065a".
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Figure 2.16: Alignment of the different PC at different time scales, for the ex-
periment "c065a", after having destroyed the correlations at smaller times scales.
Parameters tc = 0.005, 0.025, 0.05, 0.1, 0.25, 0.5, 1s. Njitt = 10.
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Figure 2.17: Summary statistic. Mean alignment across experiments of the dif-
ferent PC at different time scales. A: original data. B: after having destroyed the
correlations at smaller times scales.

To conclude, we can then see that the correlation indeed happens at
many time scales, and that this effect is consistent across experiments.

2.2.8 Spatial characterisation of the competition

2.2.8.1 Competition is local at the level of single shanks

The sorting of the correlation matrix reveals that cells can be organized
along a continuum with functionally distinct properties at either end. In
this paragraph, we will deal with the spatial aspect of the competition, in
order to figure out whether there are two segregated clusters of neurons that
compete, or if neurons from different groups are spatially intermingled.

We assessed how the PC1 loading of neurons depended on the shank (out
of eight) of the silicon probe from which they were recorded. Two scenarios
are possible (see figure 2.18): either we see in the data two clusters of cells
with respectively positive (and negative) loadings, or we see competition in
a same shank. What we see when we do the experiment, is that at the scale
of the inter-shank distance, the competition is local (see figure 2.18 right).

To quantify the observation of figure 2.19, we elaborated a statistical test
to distinguish between the scenarios C and D of figure 2.18, i.e. whether we
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Figure 2.18: A and B: schematics of correlation matrices with alternative scenar-
ios of competition. The loadings are attributed to their respective shanks (C in the
case of A and D of B). Depending on the sign of the loadings in each shank, we
will see spatially segregated competition (A) or local competition (B).

would see two spatially segregated groups of positive and negative loadings,
in every shank.

We reasoned that if neurons with positive (negative) PC1 loadings are
recorded in different shanks (figure 2.20 A), then if we group all shanks
into two groups (those with median positive (MP) loadings, and those with
median negative loadings (MN) (figure 2.20 B), the loadings in these two
groups should have the same sign and opposite signs across groups. Thus
the products of within-group loadings would be positive but those of across
group loadings would be negative, and thus have non-overlapping distribu-
tions. If on the other hand, each shank contains both positive and negative
loadings, the group of MN shanks will also contain sign-mixed loadings and
the distribution of products of within group and across group loading will
be highly overlapping (figure 2.20 C). We quantified the degree of overlap
between these two distributions using the Area Under the Curve (AUC) of
the corresponding Receiver operating characteristic ((ROC) curve for these
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Figure 2.19: Competition is local at the level of single shanks. We affected the
cells to the shank they were recorded from and then sorted the correlations locally
following the order of the PC1 loading of each cell (A). In B, we simply affected
the loadings of the PC1 to their corresponding shank.

two distributions. As we can see in figure 2.20 D-E, the AUC is very close
to 0.5 for all experiments where we could conduct this analysis (sufficient
neurons recorded in each shank).

In synthesis, we showed that the competition is not spatially segregated,
but rather local: at the scale of single shanks, the loadings have as much
positive as negative loadings, inducing both positive and negative correla-
tions.
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Figure 2.20: Quantifying the spatial heterogeneity in the sign of the neurons load-
ings. A: loadings assigned to the shanks the neurons were recorded from. Black
bar: median. B: shanks loadings are attributed to two different groups: whether
they median is negative (MN) or positive (MP). C: histograms of the product of
the loadings between groups (red), on within groups. D: receiver operating char-
acteristic curve, giving the true positive rate as function of the false positive rate.
The bigger the overlap between the two distributions, the closer the area under
the curve AUC is to 0.5. E: AUC for each experiment. Parameters: experiment
c065a. tc = 1, 0.1, 0.05, 0.01s, Njitt = 10.
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2.2.8.2 Evolution of the spread of the correlation with the dis-
tance

Renart et al [123] showed in their supplementary information that during the
desynchronised state the mean pairwise correlation of neurons stays constant
with the inter-shank distance between these cells. We redid and confirmed
those analysis (not shown).

Another point that we can test is whether competition is locally higher at
a certain point in space and then decreases with the distance between shanks.
This would be reflected in the spread of the loadings distribution. For each
experiment, we assign the loadings to the shanks they were recorded from,
and we compute, for each shank, the standard deviation of the loadings.
Then, for each recording we find the location that has maximal standard
deviation, and align this location across experiments. In figure 2.21 A, we
can see with the naked eye that for almost all experiments (colors), the stan-
dard deviation of the loadings decrease monotonically with respect to their
maximum. In order to test this ordered decrease with respect to the max-
imum, we devised a statistical test that would help us distinguish between
the fits of a parabola done to the data and the fits of a parabola to sur-
rogate data in which the spatial structure (excepting the maximum) would
have been randomized.

With this non-parametric test (see methods 2.4.5.2), we can then see if
the parabolic fit of the normalized and aggregated data is inside the envelope
of the fits on the surrogate data (figure 2.21, B), and even compute the p-
value, (figure 2.21, C). We see that the decrease is statistically significant in
almost all the locations.
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Figure 2.21: Evolution of the the standard deviation of the loadings with the dis-
tance. A: raw data: each color represents an experiment, each dot represent the
standard deviation of the loadings in a shank. We aligned the data with respect
to the shank which had maximal standard deviation, and flipped if necessary the
orientation in order to have better statistical power. B: reassigning randomly the
standard deviations (omitting the maximum), we create 10000 surrogates. For
each surrogate we fit a parabola, and we compare the parabola fit on the data with
the distribution of parabolas fitted on the surrogate data. C: p-value of the data
as a function of the distance to the maximum.
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2.3 Discussion

2.3.1 Summary
In this chapter, we report the finding of competitive activity during the
desynchronised state of spontaneous activity. We find that the population
activity is near one dimensional and that we can split the population of
neurons in halves in which we observe coherent activity. The two popula-
tions alternate their firing in such a way that the overall firing rate remains
constant.

We showed that the amplified direction is very still across the recording
and that almost all the neurons contribute significantly to the competition.

Neurons in each of the two groups have different firing patterns, one
being more bursty and the other being more regular. The firing patterns
of each group show a different signature in the frequency domain: one has
more power in the frequency band 0-4 Hz. Also, we found that the PC1
loadings correlate with the mean power in the band 0-4 Hz.

We characterised temporally the competition, and found that surpris-
ingly, it happens at many time scales. When characterizing the spatial
aspect of the competition, we found that this competition happens locally
at the spatial scale of a recording shank. Also, we saw that the competition
is stronger locally and then decrease the spread of the loadings with the
distance.

2.3.2 Temporal invariance of the competition
The temporal invariance (see 2.2.7) of the competition is truly a puzzling
effect that its hard to know how it might be generated. These extraordi-
nary complex scale-free effects appear in nature everywhere, and are the
product of very simple rules that aggregate or affect elements, and also
recursively affect the aggregated ensemble of these elements. One aspect
that we showed in the previous chapter is that competition seems to be
stronger in certain points and then decrease with the distance (see 2.2.8.2),
so in more distant places, the loadings are weaker, (and therefore the local
positive feedback is smaller, see next chapter) , and then the competition
locally could be faster and have lower power. We can therefore hypoth-
esise that the temporal invariant aspect of the competition might result
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from a linear superposition of spatially-propagating competitive effects of
different time scales. At the network level the latent variable (the score)
seems like a Weierstrass function, which is precisely a fundamental fre-
quency on top of which are added harmonics of lower frequency and power
(f(t) = ∑+∞

n=0 a
ncos(bnπt), 0 < a < 1).

2.3.3 Physiology, connectivity and competition
We do not know for a fact if the two competing groups correspond to two
different cell types. We hope that further studies get to identify if these
two groups could be identified to the so called cortico-striatal and cortico-
spinal piramidal neurons [81]. Kiritani and colleagues show a assymetric
connectivity between the two groups but in a way that differs from the model:
cortico-striatal to cortico-striatal show strong connections and corti-cospinal
to cortico-spinal show strong projections but less than cortico-striatal to
cortico-striatal. Also, they find assymetry in the connectivity between these
two groups of cells: cortico-striatal project strongly to cortico-spinal, but the
connection between cortico-spinal and cortico-striatal is very weak. This
is not in the line with the model, because in the model the population
that connects strongly to itself also receives stronger projections than the
projections it sends to the other competing group.

Another very important factor that might play a role in the competition,
as shown by Kampa and colleagues [76], is that in layer 5 there are sub-
networks of preferentially connected neurons, in which each sub-network
tends to receive more shared input from cells in layer 2/3. This might have
a functional relevance at the level of the whole column, because in turn,
pairs of cells in layer 2/3 tend to receive more shared inputs from layer 4
[164].

Also, Rock and Apicella [124], find in A1 two separate pathways from
inter-hemispheric projections into layer five: in the first pathway, excitatory
neurons project preferentially to fast spiking inter-neurons, which in turn
project mainly to cortico-cortical neurons. In the second pathways inter-
hemispheric projections project directly to cortico-collicular neurons of layer
5. These facts point at the fact that the simpler hypothesis of anti-correlated
input into L5 is also possible. Nevertheless, it is also compatible of the
asymmetric inhibition predicted by the TCA model.

When we examine the temporal properties of the firing we see that in-
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deed at the extremes of the competitive axis, the firing properties are very
different: on one side, neurons are more bursty, and on the other side of
the competitive axis, neurons are more regular. We showed that the mean
power in a frequency band between 0 and 4 Hz, correlates in a significant
way with the loadings of the PC. This is a good physiological landmark that
might serve for further investigation. In barrel cortex, Agmon and Connors
[1] identified -back in 1992- four kinds of different cells: fast spiking, intrin-
sic bursting, regular spiking "1" and "2". In layer 5, the most represented
are the regular spiking "1" and "2" and the intrinsic bursting ones. Con-
sistent with the literature, Rock and Apicella [124] identified recently, in
layer five of auditory cortex, two kinds of cells with different morphologies
and electro-physiological properties: cortico-collicular, which have extensive
dendritic arborisation, bursty firing and high resting membrane potential.
The other kind of cell they found, the cortico-cortical neurons, had more reg-
ular spiking, higher input resistance that the cortico-collicular, and a larger
action action potential half-width than cortico-collicular. However, with re-
gard to the identity and the synaptic organisation of the inhibitory neurons
mediating lateral inhibition, not much is known [166].

All these facts point to the fact that the connectivity in layer five is highly
complex, and that we still need more studies about the connectivity. If it
turned out that the cells with positive loadings correspond to a defined cell
type, we still would like to know how to explain the gradation in the loadings
from a physiological point of view, quantifying for instance the connectivity
strengths, as in [109].

2.3.4 Functional significance of competitive dynamics
during spontaneous activity

2.3.4.1 Change of directions of spontaneous activity during state
changes

Okun et al [109] showed that the population coupling is the relevant direction
to look at when observing data from the most synchronised states. However,
in the most desynchronised states, the population coupling doesn’t explain a
large fraction of variance. There are two situations consistent with this find-
ing: one that there is nothing to explain because during the desynchronised
state the activity is temporally unstructured. The other one is that there is
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something to explain, but the population coupling is not the right method
to reveal it. Our results are coherent with this second scenario, and show
that there is a similarly low dimensional pattern that drives variability in
the desynchronised state, and that modulates the activity of all the neurons
in a similar manner.

2.3.4.2 Directions of spontaneous and evoked activity

Luczak et al [89] advance the theory that spontaneous and evoked activity
are confined in the same subspace of the neural space, as shown in the sketch
of figure 2.22.

Figure 2.22: Directions of spontaneous and evoked activity in neural space.
Adapted from Luczak [89].

In a more recent study, Luczak et al [90], presented repeatedly pure
tones for one second, and observed that the probability of eliciting an up
state increased significantly after the stimulus presentation. Across trials,
the effect of stochastic up and down events averages out, so the population
rate over trials seems constant and lets appear a transient increase in the
population rate (see figure 2.23). This shows that on average, during evoked
activity, the direction of the population activity is the same as the direction
during synchronous state of spontaneous activity.

Okun et al [109] and Luczak et al [90], provide two different features to
characterise how individual neurons are coupled with the population rate
both in spontaneous activity and in presence of a stimulus: how reliably
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Figure 2.23: On top: mean population response to a one second pure tone averaged
across trials. Bottom: example of fluctuations of the population rate in three single
trials. Adapted from [90].

they are coupled to it (quantified by the population coupling, which is the
ordinate of the cross-correlogram of one neuron with the population rate at
zero lag), and with what delay they are coupled with the population rate
(µcc is the center of mass of the cross-correlogram of one neuron with the
population rate, and is homogeneous with time).

2.3.4.3 Luczak’s gating hypothesis of communication between brain
areas

The increase of the population rate when a stimulus is presented (figure
2.23), is interpreted by Luczak as a possible mechanism with which the
onset of sensory inputs is gated, and which signals to upstream areas of the
cortex that a signal arrived.

As we said in the introductory chapter, if this sensory gating hypothesis
is true, we need to find an explanation for how upstream areas distinguish
which up phases carry a stimulus. A simple hypothesis in the framework
of the packet based communication theory of the cortex [92], is that the
information -and its absence- is coded in the fine structure of the spikes
sequence, which is coherent with the findings of Luczak’s lab [14], [89], in
particular that the sequence of spiking in the "packets" is modified with
learning and that is dependent on plasticity mechanisms.
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We will now examine a preliminary experiment during desynchronised
activity, that shows that the uniform direction might not be the only one
relevant for the evoked activity.

2.3.4.4 Evoked and spontaneous activity during the desynchro-
nised state

In a single preliminary experiment realized during desynchronised activity,
click evoked responses were recorded (figure 2.24). As in the Luczak et al.
paper [90], the mean activity (in black) has a transient increase (very visible
at the level of the PSTH across experiments). However, soon after the rise
of the mean (or uniform) activity, the direction of the activity rotates and
aligns with the competitive direction. To see this, we have to split the pop-
ulation in two halves corresponding to the two competitive populations, and
average the responses of each of the groups (figure 2.24 A). This population
effect happens on a single trial basis (left column), when we average the two
populations, and it is consistent across trials (right column). In the next
section we propose an hypothesis of how to interpret this observation in the
context of the stimulus gating during the desynchronised state.

Amplification in cortical networks 75



2 Temporal competitive structure during the desynchronised state

0

1

2

3

4

5

6

fir
in

g 
ra

te
 (H

z)

Single trial

−0.5 0 0.5 1
0

20

40

60

80

time(s)

fir
in

g 
ra

te
 (H

z)

1

2

3

4

5
PSTH across trials

E1
E2

mean

−0.5 0 0.5 1
0

5

10

15

20

25

30

time(s)

A B

C D

Figure 2.24: Biphasic population response to a click. A,C : single trial, B,D:
average populations response to a click. A,B: we average separately the neurons
with positive and negative PC1 loading, and compute the mean. C,D: single cell
responses of all population neurons. Each color represent a different neuron. Each
spike train is convolved with a Gaussian kernel of standard deviation 30 ms.

2.3.4.5 The null space hypothesis of evoked activity during the
desynchronised state

In the introductory chapter, we went over the different ways by which other
brain areas could distinguish between what is signal and what is noise. One
of the advanced hypothesis had to do with the direction of the activity. Kauf-
man et al. [78] advanced the hypothesis that as long as a linear combination
of the activity was constant in an ensemble of pre-synaptic regions, the post-
synaptic neurons wouldn’t notice the variation in the sum of its inputs. As
during the desynchronised state the population rate is maintained constant
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dynamically (by being in a competitive state), when a stimulus comes, it
elicits a change in the direction of the activity, aligning transiently with the
uniform mode (which is orthogonal to the competitive mode). The uniform
activity is damped fast, but the activity of both populations stays higher
than average, and is damped until it attains the levels of the spontaneous
activity (see figure 2.25).

E1

E2

Figure 2.25: This phase diagram represents the transient dynamics during evoked
activity as seen during one preliminary experiment. The axes represent the popula-
tion firing rate of the two competitive populations E1 and E2. The dots represent
equally spaced time points, and highlight that the portion of the transient over
which the mean activity increases and decreases (black) happens much faster than
the portion of the transient over which the activity is competitive. The initial di-
rection of the activity following a stimulation is orthogonal to the ongoing activity,
and realigns with the spontaneous activity in a late phase.

We then reuse the hypothesis of Luczak et al [90], that the initial tran-
sient activity along the uniform direction is useful to propagate activity along
cortical areas. However, as we see in figure 2.24 and in figure 2.25, the activ-
ity along the uniform direction is quenched fast. When we see how does the
population activity of E1 and E2 evolve, we see from this preliminary exper-
iment, that E1 and E2 they stay up for much longer time (figure A and B).
Therefore, soon after the first global perturbation, the circuits switch into
a competitive mode. This could be useful for isolating functionally cortical
areas of the hierarchy, because if these two populations project to a same
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upstream region, this region will not notice the change in the activity in the
downstream region.

One of the possible draws of this hypothesis, pointed by Paul Bush, is
that if the two competing populations are the two distinct classes of neurons
that have been identified in layer five, then these neurons should also project
to the same brain region. Some studies point at the fact that the different
classes of neurons in layer V are intermingled, have asymmetric connectivity
and project to different brain areas. These neurons are called cortico-spinal
and cortico-striatal [81]. Although this point seems important, we still don’t
know much about the competitive populations.

2.3.5 Low dimensional dynamics in cortex
One of the questions that arises is, why would cortical dynamics be low
dimensional ?

One trivial, but possible answer would be that there is a simple under-
lying process, like a directional flow, or a steady process. Take for example
the water molecules in a river, they move with respect to each other in very
complicated ways, but overall, they move coherently with the flow. In the
case of spontaneous activity during active state, it could be that what we
observe is some kind of resting mode, in which the network propagates the
activity for homoeostatic reasons, but at the same time this activity doesn’t
harm the sudden information processing needs. This is compatible with the
previous view of the null space hypothesis.

However, the null space hypothesis do not preclude that the spontaneous
activity over the null space has a functional role. Regarding sensory process-
ing, it could be that the spontaneous activity moves along the null space in
order to generate some attentional or expectation effect that could improve
discrimination and reaction time [42], [44], [130]. In what concerns motor
activity, the null space hypothesis was coined by Kaufman et al [78], in order
to explain preparatory activity in premotor cortex.

In fact, in the majority of computational frameworks in which recur-
rent networks perform computations (attractors [68], predictive coding [17],
reservoir computing [21], [141], linear dynamical systems [46], [52]) the con-
nectivity matrices have low rank and generate low dimensional dynamics
also (see next chapter). Hennequin [65] shows however how the high di-
mensionality, even in a stable linear dynamical system, can be used as an
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interesting substrate to generate very rich dynamics.
In our case, the hypothesis of Ganguli et al [46] seems a parsimonious

in-between a purely passive process and a functional process, because it
leaves the door open for both: the circuit wires itself in such a way that
it put constraints on the dynamics. Certain dynamical quantities -like the
population firing rate- are held constant, in spite of the large heterogeneity
of biophysical the system. The observed spontaneous activity results from
the way the connectivity interacts with the external inputs. We comment
more on this point in section 3.8.3.

2.4 Methods

2.4.1 Recordings and experimental procedures
The database of spontaneous activity was collected by Liad Hollender and
Péter Barthó in Rudgers University, U.S.A. The details of the surgeries and
of the recordings presented here are retrieved from [123].

The data set is composed of two experiments of primary auditory cortex
and eight experiments in primary somato-sensory cortex of Sprague-Dawley
rats between 400 and 900 g. The recordings were performed with silicon
probes (model Buzsaki 64-A64 , NeuroNexus, Ann Arbor MI) of 8 shanks;
each shank was composed by 8 recording sites or "channels". The shanks
were separated by 200µm, (maximal separation between shanks: 1.4 mm).
Contiguous recording sites had 20 µm of separation. The probe was inserted
perpendicularly to the surface until attaining deep layers. Using histological
reconstruction of the electrode tracks, electrode depth, and firing patterns,
the precise recording location was estimated to be layer V. Rats were anaes-
thetized using urethane with a concentration of 1.5g/kg of body weight and
ketamine (25-40 mg/kg). Urethane anaesthesia elicits periods of synchro-
nized activity and desynchronized activity [25]. Depending on the synchro-
nisation level, the recordings were segmented and aggregated into separate
data sets of synchronised and desynchronised state.

The extracellular membrane potentials were high-pass filtered (1 Hz) and
amplified (1,000 x) by using a 64-channel amplifier (Sensorium, Charlotte,
VT), and digitized at 25 kHz (DataMax System, RC Electronics, Santa
Barbara, CA) or 20 kHz (United Electronic Industries, Inc., Canton, MA).
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2.4.2 Preprocessing the spike times into spike counts

We will go in over the method which with we bin the spike trains into spike
counts. We use this method in most of our analysis, because it allows to
put an upper-bound on the time scale of the measured correlations, but also
because it offers a practical way of parsing and shuffling the data.

When dealing with electro-physiological data, can’t do much with raw
spike times, so we usually transform the signal composed of punctual times
into a continuous signal, using a kernel, a function with a certain shape,
that tends to zero in ±∞. Depending on the needs, one can use a Gaussian
kernel (see figure 2.24), to better visualize the data, a exponential kernel to
observe precise events), a Mexican hat to center locally the data (see Renart
et al [123], S.I.) or a square hat, which will be our choice.

More precisely, we bin the spike times, with a given fixed time window
tc (which means that the square kernel is not centered on the spike time),
counting how many spikes there are in the window (see figure 2.26). Every
Njitt bins (usually we take Njitt = 5 or 10), we make a second type of
window, called a jitter window. Inside each jitter window, we compute the
mean number of spike counts and we subtract it to all the bins inside the
jitter window. Finally, if we want to assess correlation instead of covariance,
we standardize the binned neuron by computing the standard deviation of
this neuron and dividing the binned and centred counts of each cell by its
standard deviation.

The rationale for such manipulation is based on the quantification of the
covariances and correlations: as reminder, the covariance is the average value
of the product of the deviations of two variables with their respective means:
cov(x1, x2) = E[(x1−µ1)(x2−µ2)]. If the jitter window has the same length
as the whole recording, then the mean µ will be computed using the whole
recording also. It might happen that one cell is dying along the recording and
another fires more to compensate, so that, at the time scale of the whole
recording, the covariance between both cells is negative. Even though, it
could well be that in spite of the non-stationarity of both firing rates along
the recording, both cells are positively correlated on a smaller time scale,
and the only way to reveal this is to take a much smaller jitter window than
in the previous example. In that way, in spite of the firing rate drifts, we
can measure the joint co-fluctuation of both cells. The jitter window puts
an upper bound on the time scale at which covariances are measured, and

Amplification in cortical networks 80



2 Temporal competitive structure during the desynchronised state

0

2

4

-2
0

0

2

4 Twin Njitt = 1 sec

neuron 1
neuron 2

Twin = 200 ms

Figure 2.26: Binning method that controls for non-stationarities, and that puts
an upper bound on the time scale of the correlations. Starting from the raw spike
times, for each spike train, we first count the spikes on windows of length tc s,
we remove the mean every NJitter.tc s, and finally we normalize by the standard
deviation.

isolates the correlations happening in one jitter window from another.
Thereby, we can create many partitions of the data. For example, if we

number the jitter windows: 1,2,3,4,...,K, one can make series of W random
permutations Pi of these jitter windows: P1: (7, 40, 13, ... 23),..., PW : (61,
3, 90, ... 11). We can, for each permutation, split the data in halves and
learn a model in the first half and test it on the second half, a process which
we extensively use in this work.

Another advantage of such choice of preprocessing is that if offers a nat-
ural way of shuffling the data in a way that the variance of individual cells is
preserved, but in which the correlations are destroyed: to obtain one shuffled
version of the data, it suffices to randomly permute the spike counts inside
the jitter windows. The measured correlations with such model constitute
a null model that we can use to compare the data, and to estimate which
principal components are significant (see chapter 4). This method is inspired
from the jitter methods introduced by Amarasingham and Geman [3].

2.4.3 Coherence methods for determining the relative
position of the shanks

For some of the recordings, we did not have the relative spatial location
of the eight shanks. In order to recover this information, we analysed the
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coherence of the raw extracellular signal. Then, using a simple algorithm,
we found an order of the shanks in which the relative coherence of each pair
of shanks decreases with the distance, which is what is to be expected.

The coherence between two real signals x(t) and y(t) at a given frequency
f , is defined as:

Cxy(f) = |Gxy(f)|2
Gxx(f)Gyy(f)

x(t) and y(t) might be for example the extracellular membrane potential
of two cells (see figure 2.27 A). The coherence is a quantity between zero and
one that defines the extent to which y results from x from a convolution:
if y and x are such that y(t) = (h ? x)(t), h being a transfer function, the
coherence between x and y is going to be equal to one.

x̂(f) =
∫+∞
−∞ x(t).e−2πift.dt is the Fourier transform of x(t).

Gxx(f) = |x̂(f)|2 and Gxy(f) = R̂xy(t)
Rxy(t) =

∫+∞
−∞ x(τ)y(τ+t).e

−2πift.dτ is the cross-correlation of x(t) and y(t).
Once we compute the coherence between two signals in a whole frequency

band, we simply take the average coherence on this frequency band and
compare its value with the value of other pairs.

The first step is to apply this analysis simultaneously to all the pairs
of recording sites at high frequency (600 -1000 Hz) and to see which shank
belongs each recording site (figure 2.27 D). We use such high frequency
simply because the electric noise seems to be strong inside one shank and
not coherent between shanks. We can see how the channels belonging to
each shank cluster very well.

We then keep the indexes of the channels -excluding the dead channels-
and average the lfp of all the channels belonging to each shank. Afterwards,
for all possible pairs of shanks out of eight, we compute the coherence in a
low frequency band between 6 and 20 Hz (figure 2.27 B,E).

We can see that the coherence doesn’t decrease with the distance smoothly
as it should. We then made a simple brute force algorithm in order to reorder
the shanks.

Algorithm:
- A is an 8 by 8 real matrix. The coefficients between the index (i,j)

indicate the coherence between the shanks of initial indexes i and j. The
objective of the algorithm is to find a new index order of the shanks.
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Figure 2.27: Reordering the shanks for experiment "Set 1". A: extracellular po-
tential recorded at different channels. D: coherence at high frequency for all the
channels. B: we average the signals of the channels within each shank and com-
pute the coherence between the shanks. E : 3D view of the coherence matrix in B.
C: reordered coherence matrix. F: 3D view of the reordered coherence matrix in
C.

- D is an 8 by 8 overlap matrix with arbitrary coefficients, that has the
shape we want A to have (The probe Buzsaki 64 has a linear arrangement
of the shanks):

D =



0 10 4 3 1 0.5 0.2 0.01
10 0 10 4 3 1 0.5 0.2
4 10 0 10 4 3 1 0.5
3 4 10 0 10 4 3 1
1 3 4 10 0 10 4 3

0.5 1 3 4 10 0 10 4
0.2 0.5 1 3 4 10 0 10
0.01 0.2 0.5 1 3 4 10 0


- Generate and number all the permutations of the set {1, 2, ...8} : ex 1st

: p1 = (1, 2, 3, 4, 5, 6, 7, 8), 2nd: p2 = (2, 1, 3, 4, 5, 6, 7, 8), ...
- for i = 1 : Total number of permutations:
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Costi =
8∑
j=1

8∑
k=1

(A(pi, pi)⊗D)(j,k)

⊗ is the point-wise matrix multiplication.
- Best order:

pM : CostM ≥ Costi,∀i.

After the algorithm was applied, we can see how does the coherence
decreases smoothly with the distance (figure 2.27 right top and bottom).

After applying this algorithm to all the experiments, we see that the
order is pretty consistent among experiments that were done by the same
person. In the following table 2.1 we see put the name of the experiment
and the order found.

Experiment name: Area: Order:
setI Act 6650-7450 NoStim A1 (3, 4, 7, 8, 1, 2, 5, 6)
setII Act 2200-2800 NoStim A1 (3, 4, 7, 8, 1, 2, 5, 6)
c065a ActAll 0-320 S1 (8, 7, 6, 5, 4, 3, 1, 2)
c065b ActAll 0-540 S1 (8, 7, 6, 5, 4, 3, 1, 2)
c043 Act 500-1200 S1 (8, 7, 6, 5, 4, 3, 1, 2)
c048 ActAll 0-695 S1 (8, 7, 6, 5, 4, 3, 1, 2)
c057a ActAll 0-1090 S1 (6, 5, 7, 8, 2, 1, 3, 4)
c037 ActAll 0-575 S1 (4 ,3, 2, 1, 5, 6, 8, 7)

Table 2.1: Summary table of experiments and shank order given by the algorithm

The only inconsistency between experiments resides in the last two ex-
periments c057a and c037, in which the order found by the algorithm is not
the same as the order found for the other experiments of somato-sensory
cortex. Given that the algorithm finds perfectly consistent results for 6 out
of 8 experiments, we proceeded to analyse the data with the corresponding
orders.

2.4.4 Methods on Spectral Analysis
We performed spectral analysis using the Chronux Matlab Package (chronux.org).
In particular, we used the function mtspectrumpt.m, which uses a multita-
per approach to calculate efficiently the power spectrum of a point process.
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Briefly, multitaper techniques [113], [100] are designed to reduce the bias
and inconsistency problems in the ’raw’ estimate of the power spectrum
(the square of the Fourier transform). Tapering (i.e., multiplying the data
point-by-point by a suitable window) reduces the bias, and the use of sev-
eral orthogonal tapers reduces the variance. The set of tapers given by the
Slepian functions are optimal in that they are orthogonal and maximize the
energy in a given time-frequency interval.

In order to calculate the power spectrum of a spike train from a given
recording, we first rounded the time of each spike to 0.25 ms, and split the
whole spike train into 5 s windows, in order to control for non-stationarities.
The spectrum will be calculated for each window and the results will be
averaged. We used all windows in which the neuron fired more than 2
action potentials. For each 5 s window, by manual inspection we found
that a value for the time-bandwidth parameter TW = 5 provided sufficient
spectral smoothing without strong distortions. We used the recommended
2TW − 1 = 9 tapers to calculate the spectrum in each window.

The spectrum from each window was normalized by the mean power
spectrum for all frequencies above a high frequency cut-off of 1000 Hz, which
is equivalent to a normalization by the firing rate within than window (since
the high frequency limit of the spectrum of a point process is the firing
rate), and the final power spectrum for this neuron was equal to the average
spectrum across all windows.

2.4.5 Non-parametric statistical tests
In this thesis, we make extensive use of non-parametrical statistical methods,
in particular of permutation tests also known as exact tests. The strength
of these tests is that they don’t make assumptions about the underlying
distributions. The first two following simple cases will give a clear overview
of both the general framework of hypothesis testing, and of permutation
tests.

2.4.5.1 Testing the significance of a linear fit

To test the statistical significance of an apparent linear relationship between
two sets of observations {x}i=1,...,N and {y}i=1,...,N , we have to start by fitting
a linear model by mean squares and obtain an ordinate and a slope.
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In a second moment we create a certain number Ns of surrogate versions
of the data. In each surrogate version, we apply a random permutation to
the ordinates {y}, so that the correspondence between the {x} and the {y}
is broken.

For each surrogate, we fit a linear model, and store the slope. The distri-
bution of the slopes is our null model: if there is no statistical relationship
between the {x} and the {y}, then the slope of the data will be situated
inside the distribution. However, if the slope measured in the data has very
low probability of having being generated by the null distribution, then we
reject the null hypothesis. The p-value quantifies the proportion of samples
from the null model that have a value that is as extreme as the measured
value. We can compare the p-value to α, the significance level and decide
whether it is statistically significant.

We use this test several times, in particular to evaluate the significance
of the relationship between the firing rate and the absolute value of the load-
ings, and also to test the statistical significance of the relationship between
the mean power between 0-4 Hz of the spike trains and the loadings.

2.4.5.2 Statistical significance of the decrease of the standard de-
viation of the loadings with the distance

As referred in the main text, in order to test if the spread of the correlations
decrease with the distance with respect to a local maximum, we first apply
the following steps: for each experiment, we assign the loadings to the shanks
they were recorded from using the method explained in a previous methods
section (2.4.3). Then, for each shank, we compute the standard deviation of
the loadings. Then, for each recording we find the location that has maximal
standard deviation, and we normalize it, by dividing the standard deviation
in each experiment by the maximal value of the standard deviation in this
recording. Finally, we align the maximum across experiments.

If we then average naively across experiments, the mean standard devi-
ation is going to decrease predictably with respect to the maximum, more
or less independently of the spatial repartition of the loadings.

We then propose here a non- parametric statistical test to see whether the
decrease in the data of the standard deviation of the loadings with respect
to the maximum, is statistically significant compared with a null model in
which the standard deviations of the loadings are distributed randomly in
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space.
We create a series of surrogates: in each surrogate data set, the nor-

malized loadings of all the experiments are put together and -omitting the
maxima-, reassigned randomly to a different position.

We apply a parabolic least squares fit to the original data, and also to
each surrogate version. In that way, we have a series of parabolas, that give
the null model distribution of the absence of spatial decay with the distance.
If the parabola fitted to the data is below the envelopes of the parabolas of
the surrogates (or only above a small proportion of them), then we can assert
that the decrease is statistically significant with respect to the null model,
at this location. We can quantify this significance, for each location, using
the p-value. The p-value at one location is the proportion of surrogate data,
that take more extreme values than the parabolic fit of the data.

2.4.5.3 Reliability of the loadings

Projecting the network activity into the first principal component, gives the
score, which is a time series of the same length as the spike counts. In order
to evaluate the contribution of each cell to the score of the competitive activ-
ity, we compute the significance of the correlation between two time series:
the spike count of one neuron and the score of the population computed
excluding this neuron.

To know if this correlation is statistically significant, we compare it to the
distribution of correlations of the score with many surrogate versions Ns of
the cells activity {tsi}s=1,...,Ns , in which we randomly permute the time counts
inside the jitter window ñi(t). Finally, we compute the p-value associated
with each loading i, which is the number of surrogate statistics such that
they are higher more extreme than the data statistic ti. In summary:

∀i = 1...N
ti = corr(ni(t), Di.PC

i
1(t))

∀s = 1 : Ns

tsi = corr(ñi(t), Di.PC
i
1(t))

pi = card({tsi | |tsi | > ti})
Ns
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2.4.6 Necessity and sufficiency of a given subspace of
activity

2.4.6.1 Definitions and main computations

As a reminder, lets recall that when we have a multivariate data set D1
of dimension <T>.<N>, of N variables, with T observations, in which all
the variables are z-scored. We can project D1 into a vector ~v of dimen-
sion <N>.<1>, and obtain a time series of dimension <T>.<1>. We can
project back this time series onto the canonical basis and obtain a matrix of
dimension <T>.<N> and of rank one: D.~v1.~v

t
1. Therefore, we can decom-

pose the data D1 into the projection over a subspace ~v1 and the projection
along its orthogonal complement {~vi}i=2,...,N :

D1 = D1.~v1.~v
t
1 +

N∑
i=2

D1.~vi.~v
t
i

We can then create a surrogate data set D1, in which we destroy only
the correlations over the desired subspace ~v1, to assess the necessity. We
note D̃1 the shuffled version of a data set D1. Because we use spike counts,
by randomly permuting these spike counts inside the jitter windows, we
preserve the variance of each neuron, but we destroy the covariance between
the neurons.

D∗1 = D̃1.~v1.~v
t
1 +

N∑
i=2

D1.~vi.~v
t
i

Then we could compare the variance of the original data set D1 with D∗1,
but even better, we can compare the fraction of explained variance of D∗1
with another dataset D2 that was not used to generate D∗1.

To do so, we compute the correlation matrices of D1, D2 and D∗1, CDx =
1
T
.Dt

x.Dx, and compare the explained fraction of variance among them.
The non-diagonal part of the correlation matrix, y(i,j) = CD2

(i,j), j > i is
taken as the predicted variable and we take the points of the triangular
superior matrix of correlation of D1 or D∗1 as predictors, x(i,j) = CD1

(i,j), j > i

or x(i,j) = C
D∗1
(i,j), j > i. We choose a linear relationship between the predictors

and the observed variables:

h(i,j) = αx(i,j) + β
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by least squares, we obtain α and β such that ∑i,j(y(i,j) − h(i,j))2 is
minimal. Then, we obtain the fraction of explained variance R2:

R2 = 1− (∑N(N−1)/2
k=1 ck − hk)2

(∑N(N−1)/2
k=1 ck − c̄)2

For instance, in order to compute the fraction of explained variance by a
particular subspace ~v1 of a test set relative to the fraction of variance that
the training set explains about the test set, we compute for each permutation
the quantity:

R2(D∗1, D2)
R2(D1, D2)

And then we take the mean value.

2.4.6.2 Algorithm

D : dataset, of dimensions < T > . < N >

D ← preprocess(D) (binning, centering with fixed jitter windows, z − score)
Split D in two : D1 (training), D2 (test set)
Choose B = [~v1, ..., ~vP ], an orthogonal subspace to test
Deduce B⊥ = I −BB′, the orthogonal complement of B
∀n ∈ [1, Nsurrogates]

D�1 = D1.B.B
′ + D̃1.B

⊥(B⊥)′, C�1 = 1
T
.(D�1)t.D�1

D∗1 = D̃1.B.B
′ +D1.B

⊥(B⊥)′, C∗1 = 1
T
.(D∗1)t.D∗1

R2(D∗1, D2)
R2(D1, D2)

R2(D�1, D2)
R2(D1, D2)

Index of necessity : mean(R
2(D∗1, D2)

R2(D1, D2))n ∈ [0, 1]

Index of sufficiency : mean(R
2(D�1, D2)

R2(D1, D2))n ∈ [0, 1]
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If by destroying the correlations over the chosen subspace {~v1, ..., ~vP} the
fraction of explained variance or "Index of necessity" is small, it means that
the chosen subspace is necessary to explain for the correlation structure of
the data.

If by preserving the correlations over the chosen subspace {~v1, ..., ~vP} the
fraction of explained variance or "Index of sufficiency" is big, it means that
the chosen subspace is sufficient to explain for the correlation structure of
the data. This method is summarized graphically in the figure 2.28.
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Figure 2.28: Method to assess necessity and sufficiency of a given subspace in
order to explain the variance in a data set.
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Chapter 3

Modelling of competitive
activity

HIGHLIGHTS

• In this chapter, we explore patterns of connectivity and
mechanisms that might generate competitive amplification.

• We first study the balanced randomly connected excitatory
and inhibitory network, and show that in this network there
is not a pattern of activity that is more amplified with respect
to the others.

• We propose two simple models (NCA and TCA) generating
competitive amplification through different mechanisms.

• One of the two models - TCA- makes robust predictions that
match the experimental observations.

• We extend the low dimensional TCA model to a high dimen-
sional version, and make additional predictions that are in
agreement with the data.

• We also study other candidate circuits that generate compe-
tition.
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3.1 Introduction: dynamics in neural circuits

3.1.1 Motivation
Having observed the competitive dynamics in deep layers of auditory and
somato-sensory cortex, we would like to have a mechanistic understanding
of this phenomenon. In particular, we would like to know which kind of
connectivity matrix might generate these dynamics, but even more, how
can we understand functionally how different connectivities lead to different
dynamics. We will study different models that lead to different dynamical
observables that we will contrast with the data. Another important ques-
tion that we will answer is, under which conditions on a high dimensional
connectivity matrix, can low-dimensional activity be generated.

In this introductory section, we will start by explicating the modelling
choices, the most important of which is the computational framework of
amplification.

3.1.2 Modelling choices
The brain is capable of doing very complex operations like learning the
structure of the world and act on it. All these different operations -sensory
processing, memory, language, decision making and motor activities- are
implemented though the joint actions of ensembles of neurons.
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The process of modelling and understanding a neural network involves
making assumptions and combine mathematical objects to obtain answers:
which input is the network receiving from the outside, what are the oper-
ations that single neurons perform and finally, how are these neurons con-
nected. Models including many biophysical details usually have a high num-
ber of parameters, which makes them very flexible. However, these kind of
complex models might be also harder to understand. The challenge of mod-
elling these circuits is to postulate which elements are fundamental to focus
on the few biophysical elements that we think are capital for the phenomenon
we want to reproduce. Simpler models are then easier to falsity, because they
state clearly which are the key factors that cause a phenomenon.

As said by Hansel and Sompolinsky, "simplified abstract models offer very
valuable theoretical tools to gain insight into the working of these systems.
Not only is the reduced parameter space of these simplified models signifi-
cantly easier to search, but many are amenable to analytical investigations.
Analytical solutions are extremely useful in that they often explicitly reveal
the important relationships between a dynamic property of the network and
some of its parameters" [83].

3.1.2.1 Rate models and spontaneous activity

All around this chapter, we will use the formalism of rate models, in which
the neuron-like units output directly firing rates, rather than action poten-
tials. More precisely, what we will usually call the rate xi(t) represent in
fact the deviation in firing with respect to the mean firing rate of that cell:

xi(t) = x̃i(t)− x̄i
x̃i(t) represents the true instantaneous firing rate of cell i, and x̄i its

average over time. This quantity has a simple operational interpretation
when we consider evoked activity: we present a stimulus several times, and
each time we record a spike train ρ(t) = ∑

i δ(t − ti). Across trials, we can
bin, average and smooth the number of spikes by unit of time, and obtain a
firing probability density < ρ(t) >. The true instantaneous firing rate is:

x̃i(t) = 1
dt

∫ t+dt

t
< ρ(τ) > .dτ

When we are dealing with spontaneous activity, the notion of firing prob-
ability density is less clearly defined, because we don’t have a notion of trial,
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so experimentally we can’t have access to it. When we analyse the data, we
make an assumption about the time scale at which the neurons sum their
inputs, by putting a kernel of a certain width on top of each spike (see meth-
ods 2.4.2). We then make the assumption that the smoothed version of the
spike train is the firing probability density and the firing rate. Biophysically,
slow membrane dynamics could be causing some temporal smoothing on the
spikes, but whether the relevant quantity for neurons are the precise spike
times or rather the firing rates, is a major question that is still debated.

By using rate models instead of deterministic models of spiking networks,
we are being conservative in the level of detail we are modelling, because
we are making claims about a coarser quantity, and not about the precise
spike times. Even if we had a very precise spiking model of the network, we
could not make those predictions because we don’t have experimental access
to the input currents [33]. Also, we use these rate models for practical
reasons, because they are easier to simulate than spiking networks, and offer
more analytical power because they use continuous variables. Rate models
have been used with great success for modelling neural systems. However,
it is known that these models are not perfect, notably that they fail in
capturing spiking effects at small time scales and in cases in which neurons
show important synchronous firing [33].

3.1.2.2 Modelling spontaneous activity using stochastic linear dy-
namical systems

As Murphy and Miller [105] and Hennequin et al. [64], we use the math-
ematical framework of linear dynamical systems to try to reproduce the
competitive dynamics observed during desynchronised states. We consider
a recurrent network of N neurons whose dynamics are governed by the joint
differential equation (in matrix notation):

Ẋ = −X + JX +Bξ

X is a N by 1 vector of firing rates. The derivative of the firing rate
Ẋ results from the superposed effects of three factors: first, the decay of
the system (−X) towards the steady state Ẋ = X = ~0. Second, the post-
synaptic currents resulting from the activity X on the recurrent connectiv-
ity J . Third, the noisy post-synaptic currents from outside the network:
B is a connectivity matrix that might correlate the inputs into cells. Un-
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less otherwise stated, we will consider B to be an identity matrix, so that
neurons receive uncorrelated inputs with unitary variance. ξ is a vector of
uncorrelated Gaussian processes of zero mean an unit variance: each process
represents a large sum of stochastic variables, like currents from contiguous
circuits.

This simple differential equation summarizes well the modelling choices
and the assumptions about spontaneous activity, already mentioned in figure
1.5: the dominant patterns of observed activity result from the interaction
of the recurrent connectivity J with uncorrelated external inputs ξ. Even
more precisely, we will explain how this computational framework, predicts
a profound link between some features of the connectivity and the direction
in neural space of the most observed activity patterns.

This differential equation with a stochastic term is called an Ornstein-
Uhlenbeck process. The aim of this model is not to reproduce particular
firing sequences, that can be seen in the data, but rather to describe statisti-
cally the mean response of the system. For example in an autapse if we plug
a constant input I many times, like in figure 3.1, and we inject external noise
ξ, the responses across trials will be very different. However, if we compute
the average response across trials, we will see that the autapse on average
increases its firing rate and converges to a steady state, like the voltage of
a capacitor in a RC circuit. Finally, biggest advantage of using the formal-
ism of stochastic process, is that it is simple and it allows us to understand
analytically the magnitude and the temporal structure of covariances in a
recurrent network.

Following Murphy and Miller [105], the main assumption that we will
make in this chapter is that during the active state, local circuits receive un-
structured noisy inputs from the outside and then the recurrent connectivity
shapes the dynamics, selectively amplifying certain patterns of activity.

3.1.3 Amplification in computational neuroscience
Before explaining in detail the mechanisms by which certain activity pat-
terns are enhanced with respect to others through what is call amplification,
lets briefly mention that many problems in computational neuroscience can
be studied with similar mathematical tools and ideas, so they could be cast
as examples of "amplification". Amplification has brought an answer to
how persistent activity in the brain is generated by neurons with relatively
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short time constants [6], [20], [52]. Also, amplification has been used in the
context of understanding how to select a stimulus, and modulate it multi-
plicatively [57] and also in the context of perceptual decision-making tasks,
using winner-take-all networks [155], [160], [129], [128]. Amplification has
also been useful in the context of feature selectivity to explain orientation
tuning or contrast invariance [11], [83]. Finally, amplification has been fruit-
ful to model why spontaneous and evoked to oriented stimuli activity of
visual cortex seem so similar [80], [147],[105].

3.1.4 Different mechanisms generating amplification
in neural networks

In this paragraph, we will recall briefly two mechanisms that have been
described in the literature to amplify particular directions of activity.

3.1.4.1 Normal amplification

We will start by the simple scalar case of a single autapse - a neuron con-
nected to itself- to which we plug a step of current I.

ẋ = −x+ Jx+ I + ξ

By removing the stochastic noise ξ, we solve the equation and obtain the
average firing rate, taking x(t=0) = 0 as initial condition.

x(t) = I

1− J (1− e− t
τ )

The more the autapse J is close to 1, the bigger the steady state value of
the firing rate, but also the more time the system takes to reach the steady
state: the time constant is τ = 1

1−J (see figure 3.1).
Lets now consider the high dimensional case of a recurrently connected

network which connectivity is normal, e.g symmetric. As the connectivity
matrix J is diagonalizable for normal matrices, it can be expressed as a
product of a rotation matrix V and of a diagonal matrix D whose diagonal
elements are the eigenvalues λ of J: J = V DV −1. Rotating the system with
the rotation matrix V, the new axis -which are the columns of V- are the
eigenvectors of J. In this new basis, each variable behaves like the autapse
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Figure 3.1: Example of normal amplification, for two values of J, small in red
and strong in blue. The dashed line is the scaled version of the red one, to show
the difference in convergence time to the asymptote. In green the input current.
Inspired from [105].

we studied previously, and the eigenvalues {λi}i=1,...,N are the strength of
each of these autapses. We can rotate the system into this new basis:

(E) : Ẋ = −X + JX + I + ξ

(E) ⇐⇒ Ẋ = −X + V DV −1X + I + ξ

⇐⇒ V −1.Ẋ = −V −1.X +DV −1X + V −1.I + V −1.ξ

⇐⇒ Ẏ = −Y +D.Y + Ĩ + ξ̃, Y = V −1.X, Ĩ = V −1.I, ξ̃ = V −1.ξ

⇐⇒ ẏi = −yi + λi.yi + Ĩi + ξ̃i, i = 1, ..., N

As we consider that the effective external noise is uncorrelated B = I,
in the new basis, the noise ξ̃ is also uncorrelated across cells.

One interesting dynamical interpretation of the high dimensional system,
is that if -in absence of noise - we initialize the system with X(t=0) along the
eigenvector ~v, the derivative of the direction Ẋ, has the same direction as
~v, and then the system will remain in the same direction over time ~̇v =
(J − I)~v = (λv − 1)~v, until it is totally damped X(t) ≈ α(t).~v, with α(t) → 0
when t→ +∞.
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The noise plugs at each time point new directions that can be amplified,
but the majority of directions are quickly quenched, exempt the ones that
have longer time constants. The negative feedback measures how quick
the system is pushed back towards the equilibrium in a particular direction:
it is quantified as the real part of the eigenvalue minus the decay of the
system (<(λi)− 1). The system is stable if the real part of the maximum of
these eigenvalues is smaller than the unitary decay of the system.

The negative feedback of an eigenvector determine the associated time
constant: τi = 1

1−<(λi) . When an eigenvalue is equal to the decay λi = 1, the
system behaves like a perfect integrator and then all the noise that arrives is
accumulated, which makes the firing rate increase until the system explodes.
When one or more of the eigenvalues of the system are close to the instability,
inputs in the direction of these eigenvalues will be integrated by the network,
and variance along these dimensions will grow. We refer to this phenomenon
as "normal amplification", because it is the only way in which the recurrent
dynamics of a normal network can amplify its input.

The definition of the amplification during spontaneous activity that we
proposed in the introduction: X(t) ≈ α(t)~v is consistent with these con-
siderations, and postulates a strong link between the observed patterns of
activity and an idiosyncratic characteristic of the underlying connectivity
-the eigenvectors of J-.

Normal amplification is the traditional way by which amplification has
been thought to be generated in cortical circuits [38]. It is important to em-
phasize that there is an inherent trade-off between the magnitude and the
time speed of fluctuations amplified by this mechanism. With this mecha-
nism, we can only produce large fluctuations that are very slow. In addition,
because amplification requires that one or more eigenvalues are at the edge
of the stable region, there is also a trade-off between normal amplification
and dynamical-stability.

3.1.4.2 Non-normal amplification

Non-normal amplification was introduced initially by Ganguli et al. [45],
and then by Murphy and Miller [105] and by Goldman [52] in 2009, as an
alternative way of generating amplification. The non-normal amplification
was a known mechanism in the domain of fluid mechanics, but it had not
been applied to computational neuroscience before.
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Considering a linear dynamical system of size N, we can show, that for a
very broad class of real connectivity matrices J called non-normal matrices
(for which JJ t 6= J tJ), J can be decomposed as: J = P.T.P t, where P is a
unitary matrix and T is a upper-triangular complex matrix, whose diagonal
elements are the eigenvalues of J . This means that a system with a recurrent
connectivity matrix (which is non-normal) can be rotated into a system
which has a feed-forward connectivity, on top of loopiness, summarized along
the diagonal (eigenvalues). Feed-forward connectivity and upper-triangular
matrices mean the same thing.

Ẋ = −X + JX + I + ξ ⇐⇒ Ẏ = −Y + TY + Ĩ + ξ̃, Y = P t.X

For example, lets place ourselves directly in the rotated space: consider a

two dimensional system, a feed-forward connectivity matrix T =
(
λ1 g
0 λ2

)
.

Given the initial conditions:
(
x1(t = 0)
x2(t = 0)

)
, the differential system is:

Ẋ =
(
ẋ1(t)
ẋ2(t)

)
= −

(
x1(t)
x2(t)

)
+
(
λ1 g
0 λ2

)
.

(
x1(t)
x2(t)

)

Solving the system we obtain (for λ2 6= λ1):(
x1(t)
x2(t)

)
=
(
x2(0) g

λ2−λ1
.(e(λ2−1)t − e(λ1−1)t) + x1(0)e(λ1−1)t

x2(0).e(λ2−1)t

)

We see in figure 3.2 that in such a feed-forward network, we can have a
transient amplification of x1(t), because the second neuron injects current
in the first neuron. The bigger g, the bigger the transient is going to be.
It is then clear that to see such kind of non-contractive dynamics, we need
at least two units (we can call them neurons or populations of neurons).
One autapse, can not generate such transient amplification. In systems with
connectivity matrices in which J.J t = J t.J , called normal matrices, we
can not observe such non-contractive dynamics [64]. With those matrices,
we can only observe the kind of amplification described in the last paragraph.

The key element in understanding how to rotate from the canonical
basis -the neural basis-, into the Schur basis, resides in the change of ba-
sis matrix P: P t.J.P = T . This matrix is built by orthogonalizing the
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Figure 3.2: Example of contractive −x2(t)− and non-contractive dynamics
−x1(t)−. We choose (x1(0) = 1, x2(0) = 1, λ1 = −1, λ2 = −4, g = 10, I =
0, ξ = 0). Inspired from [105].

eigenvectors {vi}i=1,...,N of J through the Gram-Schmidt orthogonalisation
procedure:

u1 ← v1

u2 ← v2 − u1(v′2.u1)
u3 ← v3 − u1(v′3.u1)− u2(v′3.u2)
...

The new basis {ui}i=1,...,N is orthonormal and it is called the Schur
basis. This basis is not unique because it depends on the order in which
choose the vectors in the Gram-Schmidt procedure. The columns of P are
formed by the vectors that compose this Schur basis.

A property of normal matrices, is that its eigenvectors are orthogonal
(v′j.vi = 0, ∀i, j), so the eigenbasis is equal to the Schur basis, and the
non-diagonal elements of T are nil, so that T = D.

The Schur representation of the connectivity (J), or equivalently of the
dynamical system (J − I) admits a schematic representation that we will
use thoroughly in this work. In figure 3.3, we choose a four dimensional
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system. Each unit may receive inputs from units that have a number equal
(recurrent connection) or bigger than the number of the unit in the chain.
We might use the notation tij, to denote the strength of the link from unit
j to unit i. j ≥ i because the matrix T is upper-triangular.

1 2 3 4

Figure 3.3: Schematic representation of a Schur decomposition. The links between
units represent the non-diagonal elements of the upper-triangular matrix. The re-
current links represent the negative feedback. The width of the links represents the
strength of the connection. The number i of the amplified patterns ui, also called
modes, is the same as the one obtained during the Gram-Schmidt decomposition.

The most important aspect about the Schur decomposition, is that with
this simple rotation, we are doing a change of axis, from the canonical basis
to the Schur basis. The new axis point in the directions given by the Schur
basis {ui}i=1,...,N . Moreover, these directions (also known as patterns or
modes), because they are linear combinations of the neurons, can have a
functional interpretation, as shown by Murphy and Miller [105]: for example
as we will see further on, when the variance along the uniform direction

~u = 1√
N

 1
...
1

 is very strong with respect to the variance of the other

modes, all neurons go up and down together.
The Schur representation of the connectivity gives a very insightful way

of qualitatively understanding the dynamics, because we have an explicit
representation of the amplified patterns, and the way they are linked to
each others. Because this is an orthogonal change of basis, it preserves the
total activity variance. In complement of the Schur representation, we must
do other computations to assess quantitatively how much a specific set of
parameters amplify certain modes rather than others. For example, we can
simulate the network, compute the covariance matrix and also do PCA on
the covariance matrix.
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3.2 Study of the E-I randomly connected net-
work

As mentioned in the introduction, the randomly connected network, is the
standard model of desynchronised activity. Van Vreeswijk and Sompolinsky
[149] showed that due to the balanced state, the randomly connected network
reproduces the histogram of firing rates. Renart et al. [123], showed that
in spite of the fact that the external population of neurons inject correlated
input into the two other populations, the balanced network (strong and
densely connected) settles down into a steady state in which neurons have a
near zero, slightly positive, mean pairwise correlation, like observed during
the desynchronised state.

3.2.1 Network architecture and simulation
The randomly connected network is composed by one external population of
neurons that project in a feed-forward manner to two recurrently connected
groups of excitatory and inhibitory neurons figure 3.4 A.

Using Brian, a spiking network simulator [53], we simulated the balanced
recurrent network, using the same parameters than in the original Renart
2010 paper [123] (see methods 3.9.1). In figure 3.4 B we see the raster plot
of 5s of activity.

In figure 3.4, we replied the model predictions, plotting the histogram
of pairwise correlations (C), and the histogram of firing rates (D), which is
unimodal and skewed, like in [149], [123]. The correlations where computed
binning the spike trains into time windows of tc = 0.1 s and taking a jitter
window of ten time windows.
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Figure 3.4: Randomly connected balanced network as described in [123]. A: Net-
work architecture: one external excitatory population plugs feed-forward shared
input into the network. B: raster plot of 100 randomly picked neurons for five
seconds. C: histogram of pairwise correlations. D: histogram of firing rates. Pa-
rameters: tc = 0.1 and Njitt = 10s.

3.2.2 The eigenspectrum of the correlation matrix doesn’t
reveal competitive activity

Randomly sampling 100 neurons, out of the 5000 simulated, we computed
their correlation matrix, and its associated eigenspectrum. We compared
the eigenspectrum of the data with 1000 eigenspectra of surrogate versions
of the data, in which the correlations were destroyed, by permuting the spike
counts inside each jitter window, maintaining the variance, and destroying
the covariance.

Amplification in cortical networks 107



3 Modelling of competitive activity

Correlation matrix

0.04

0.02

0

0.02

0.04

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

#PC

%
 e

xp
la

in
ed

 v
ar

ia
n
ce

0 2 4

A B

Figure 3.5: Randomly connected networks doesn’t display competitive activity. A:
correlation matrix, in which the diagonal was removed. B: eigenspectrum (in
blue), and associated eigenspectra of the data shuffles (red). For visibility reasons,
we linked the eigenvalues of each surrogate by a red line. Number of surrogates:
1000. Parameters: tc = 0.1 and Njitt = 10.

As we see in figure 3.5 B, the eigenspectrum falls into the envelope formed
by the distribution of surrogate eigenspectra (see chapter 5). The envelope
of surrogate eigenspectra was obtained by computing many times the eigen-
spectrum of surrogate data. This result is coherent with a recent paper
[158], which precisely simulates the balanced network on a spiking network,
does factor analysis (a technique closely related to PCA, see section 5.1) and
finds a flat eigenspectrum.

The main point of this analysis is that in the balanced network, activity is
not temporally structured -at least in a way that can be detected using PCA-,
whereas in the recordings we saw that it is has temporal structure. The fact
that the mean pairwise correlations is close to zero - with approximately
50 % of the pairs positively and 50 % of the pairs negatively correlated-,
is not enough to imply competitive dynamics. In the randomly connected
balanced network, the tails of the correlation histogram are small whereas
in the data, they appear to be large and approximately cancel. Finally, in
the balanced network, there is not a pattern of activity that is significantly
more amplified than others, as we see in the data (see figure 2.3).

We conclude from this analysis that the E-I network with random con-
nectivity is not enough to generate competition, and then we need to add
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more structure to the connectivity matrix, in order to achieve competition.

3.3 Circuits generating competitive activity
With the aim of adding structure to the connectivity matrix we could follow
two strategies:

The first would be to use a systems identification approach, using the
data to infer both the connectivity matrix J − I - the "drift" in physical
jargon- and the noise matrix B - the "diffusion". Racca and Porporato [121]
propose one methodology for this identification in the scalar case.

The second possibility -which is the one we followed- is to identify circuits
that might generate competitive activity. Our approach will be, for the
first part of this chapter, to focus on low dimensional models, as simple as
possible, in an effort to identify possible mechanisms generating the kind of
competitive dynamics we see in the data. Later on we will use this knowledge
to build high-dimensional networks in order to address the question of how
the low-dimensional correlation structure that we observe may come about.

We will start by introducing the two dimensional linear excitatory and
inhibitory network, treated by Murphy and Miller [105]. This network will
allows us to present the parametrisation of the network, and more impor-
tantly, it will be a starting point of subsequent 3D models. Each of the
models we will present will be a bit more complex than the previous ones,
maintaining some features of the simpler models.

3.3.1 The two dimensional linear excitatory and in-
hibitory network

3.3.1.1 Presentation of the network

In the appendix section 3.10.1, we present the linear network with two pop-
ulations of neurons in a similar way as Murphy and Miller [105] did in their
paper. We model the temporal evolution of the variables xE and xI , which
could represent the mean firing rate of a population of excitatory and in-
hibitory neurons. For the moment, we will consider take these models as a
face value, in the sense that we are not thinking of them as low dimensional
representations of high dimensional networks. In that sense, these models
doesn’t contain the network size N.
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We can parametrise this network as follows:

J =
(
JE −∆− JE
JI −∆− JI

)

I

Anatomical Representation

E

Functional Representation

U D

A B

Figure 3.6: Anatomical (A) and functional representation (B) of a network repre-
senting two populations of excitatory and inhibitory neurons, as shown by Murphy
and Miller [105].

All the parameters (JE, JI ,∆) are positive. This matrix follows Dale’s
law, discovered by Henry Dale: neurons release a unique type of neurotrans-
mitter, which means to a first approximation that the effect of one cell on
its neighbours is only excitatory or only inhibitory, independently of the
identity of the post-synaptic cells. In practice for our connectivity matrices,
it means that columns have a constant sign. Matrices that follow Dale’s law
are always non-normal.

Murphy and Miller propose a very generic functional interpretation of
this network: as every biologically inspired network follows Dale’s rule, and
because a inhibition dominated connectivity matrix that follows Dale’s rule
is strongly non-normal, the link t between the difference mode and the uni-
form mode is always present and strong. Indeed, for a inhibition dominated
network, this link depends on the sum of the total amount (the absolute
value) of the excitation and of the inhibition (see figure 3.6).

Dynamically, the Schur decomposition highlights that a difference in the
level of excitation and inhibition -the amplification of the difference pattern-
triggers the amplification of the uniform pattern of activity (see appendix
3.10.1).
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3.3.1.2 Low dimensional (2D) EI networks tend to be positively
correlated

Given that we are using linear dynamical systems, we can deduce easily the
covariance matrix through the Lyapunov equation (J − I)C + C(J − I)t =
−BBt (see methods 3.9.2).

As we can see in figure 3.7 B, for this example, the inhibitory population
and the excitatory are positively correlated. In the appendix 3.10.1, we
demonstrate mathematically that this result is very general for inhibition
dominated networks.
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Figure 3.7: A: Connectivity matrix. B: Covariance matrix. C: Connectivity ma-
trix in the Schur basis. D: Covariance matrix in the Schur basis. Parameters:
JE = 37, JI = 39, ∆ = −20 (see appendix 3.10.1).

Overall, non-normal amplification seems to be a generic mechanism ca-
pable of generating amplification. However, the problem of this E-I network
is that it doesn’t generate competitive amplification: we just showed that
in the low dimensional rate model of E-I balanced networks, the excitatory
and the inhibitory population tend to be positively correlated.
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3.3.2 Normal competitive amplification (NCA)
3.3.2.1 The symmetric competitive network in the canonical basis

Given that we found low dimensional dynamics in the data, we looked after
simple low dimensional connectivity models. After the network with two
populations of excitatory and inhibitory neurons, the next model in order
of complexity, is a model with two populations of excitatory cells and one
population of inhibitory cells, all recurrently connected. The state vector of

firing rates is: X =

xE1(t)
xE2(t)
xI(t)

. Adopting a parametrisation similar to the

one we use in the appendix 3.10.1, the connectivity matrix is:

J =


JE+ε

2
JE−ε

2 −∆− JE
JE−ε

2
JE+ε

2 −∆− JE
JI
2

JI
2 −∆− JI


In this architecture, we split the excitatory population in the previous 2D

model into two subpopulations, and we introduce an asymmetry ε between
the magnitude of the excitatory connections within a subpopulation and
across subpopulations, in such a way that within connectivity is always a
bit bigger. Note that the excitatory-excitatory part of the connectivity is
symmetric, or said otherwise, E1 and E2 are fully exchangeable.

This network conserves many features with respect to the two dimen-
sional E-I network: the total amount of excitatory post-synaptic currents
received by the inhibitory population (JI), the total amount of inhibition
received by each excitatory population (−∆ − JE), and finally the total
amount of excitation and inhibition received by each of the three popula-
tions ( −∆ ).

J has three eigenvectors and eigenvalues:

v1 = 1√
2

 1
−1
0

 λ1 = ε v2 = 1√
3

 1
1
1

 λ2 = −∆
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v3 = 1√
2k2+1

 k
k
1

 k = JE+∆
JI

λ3 = JE − JI

v2 and v3 are expanded versions of the two eigenvectors of the E-I net-
work. We can the diagonalize J using the change of basis matrix:

V =
(
v1, v2, v3

)

D = V −1.J.V =

 ε 0 0
0 −∆ 0
0 0 JE − JI


Because ε is an eigenvalue of the connectivity matrix, by putting it close

to 1−, we generate normal amplification. Several studies [160],[155], [129],
[128] [166], have shown that this normal amplification is competitive: as we
increase the parameter ε, the two populations tend to accumulate more vari-
ance, because they are self connected in a stronger way. Also, as ε increases,
these two populations directly excite themselves less and less (JE−ε2 ), and
start interacting mainly through mutual inhibition. Then, when one exci-
tatory population is more active than its average, it tends to suppress the
other population. As these populations are fed with noise, and there is no
winner take all mechanisms in this network, we see alternated anti-correlated
activity between E1 and E2. Also, the uniform eigenvector v2 can be sup-
pressed by setting the total amount of excitation plus inhibition (∆) large
enough, so that the competitive direction v1 can be the dominant direction
by a large margin.

3.3.2.2 The symmetric competitive network in the Schur basis

Having a better intuition of what is non-normal amplification, we are going
to revisit the NCA circuit in the Schur basis. The Gram-Schmidt proce-
dure depends on the order that we choose the eigenvectors, but because
v1 and v2 are already orthogonal, we choose these two first, and then we
orthonormalize v3, and obtain the Schur basis {u1, u2, u3}:

u1 = 1√
2

 1
−1
0

 , u2 = 1√
3

 1
1
1

 , u3 = 1√
6

 1
1
−2


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These vectors are respectively the competitive, the uniform and the
difference. In order to rotate the connectivity matrix into the Schur basis,
we use the unitary matrix P :

P = [u1, u2, u3] = [ 1√
2

 1
−1
0

 , 1√
3

 1
1
1

 , 1√
6

 1
1
−2

]

And then the matrix of normal competition J can be expressed in the
Schur basis as:

T = P−1JP = P t.J.P =

 ε 0 0
0 −∆ (2∆+2JE+JI√

2 )
0 0 JE − JI


This simple transformation is very informative, because it explains the

competition in a very parsimonious way. Note that, even though the connec-
tivity matrix is strongly non-normal (as has to be the case if the connectivity
respects Dale’s law), the competitive mode does not receive any feed-forward
links. Thus, all the amplification of competitive fluctuations in this model
is purely normal. Because of this, we will refer to models of this type as
producing normal competitive amplification (NCA). We note that this
decomposition was made independently by Schaub and colleagues [132].

As Murphy and Miller predicted, in this network the non-normal ampli-
fication between the difference and the uniform mode is strong (2∆+2JE+JI√

2 ).
However, this non-normal amplification doesn’t concerns the competitive
mode.

3.3.3 Transient competitive amplification (TCA)
We are interested in investigating the nature of the correlation structure
when the fluctuations in the competitive mode are generated as a result
of a feed-forward link from one of the other activity modes in the network
as opposed to positive feed-back from itself, like in the NCA network. To
that end, we studied the connectivity of networks where, in the functional
(Schur) representation, we add a feed-forward link from the uniform either
the difference to the competitive mode.
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As we know how to build a connectivity matrix from the Schur basis to
the canonical basis, we can then observe the effect of adding a feed forward
link into from the uniform to the competitive mode.

Using the change of basis formula, we can proceed backwards J = P.T.P t,
and deduce how is the connectivity matrix in the canonical basis, if we know
the matrix in the Schur basis. In order to keep the numbers of parameters
low, we only add one feed-forward link, and we choose it to be the link from
the uniform to the competitive.

T =

 λC M 0
0 λU V
0 0 λD

 P =


1√
2

1√
3

1√
6

− 1√
2

1√
3

1√
6

0 1√
3 −

2√
6

 J = P.T.P ′

J = 1
2


λD+

√
2.V+

√
6.M+2.λU+3.λC
3

λD+
√

2.V+
√

6.M+2.λU−3.λC
3

−2.λD−2.
√

2.V+
√

6.M+2.λU
3

λD+
√

2.V−
√

6.M+2.λU−3.λC
3

λD+
√

2.V−
√

6.M+2.λU+3.λC
3

−2.λD−2.
√

2.V−
√

6.M+2.λU
3

−2.λD+
√

2.V+2.λU
3

−2.λD+
√

2.V+2.λU
3

4.λD−2.
√

2.V+2.λU
3


As we did in the appendix 3.10.1, we can re-parametrize the matrix in

the canonical basis :

J =


JE+ε+ψ

2
JE−ε+ψ

2 −∆− JE + ψ
2

JE−ε−ψ
2

JE+ε−ψ
2 −∆− JE − ψ

2
JI
2

JI
2 −∆− JI


JE = λD+

√
2.V+2.λU
3 , JI = −2λD+

√
2.V+2.λU
3 , JE − JI = λD

ε = λC , ψ = M
√

6
3 , ∆ = −λU

We see that we obtain a matrix, whose particularity with respect to the
normal competitive one is that it has an asymmetry in the connectivity of
the two excitatory populations.

Observing the connectivity matrix of both models in the anatomical basis
may lead to assume that there is just a quantitative difference in the way
these circuits operate, whereas in the functional representation it clearly
appears that both circuits behave in a qualitatively different manner. The
competitive pattern is amplified in two different ways: in NCA, the negative
feedback is small |λc − 1| << 1, whereas in TCA, the negative feedback
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Figure 3.8: Anatomical and functional representation of normal competitive am-
plification (A,C) and transient competitive amplification (B,D).

of the competitive mode is bigger, but this mode also receives feed-forward
input from the uniform mode.

Given the way we built this matrix, this model allows to have an al-
ternative way of generating competitive amplification: purely through nor-
mal amplification or through non-normal amplification. Using non-normal
amplification, we can trade pure normal amplification against non-normal
amplification. It might appear like NCA is a particular case of TCA, and
it is indeed the case. However, because it uses a new mechanism of gen-
erating amplification, that as we will see generates different experimental
predictions, we consider them as two different models.
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3.4 Model predictions and comparison with
the data

In general, the problem of deducing the dynamics from the connectivity is
a hard problem - which is not solved in spiking neurons for example. In the
case of linear dynamical systems, this problem is more tractable, and we have
two tools at our disposal: first the Schur decomposition, which as we said
allows to have a good qualitative idea about the system dynamics. Second,
given a linear system determined by the equation: Ẋ = (J − I)X +Bξ, we
can obtain the correlation matrix C, solving the Lyapunov equation:

(J − I)C + C(J − I)t = −BBt

For very large systems, the analytical expression of the correlations given
by the Lyapunov equation is intractable, because there are too many terms.
However, in low dimension, we can use both the Schur decomposition and the
analytical solutions to understand better our networks. For instance, in the
NCA (figure 3.8 C), because the competitive mode is isolated we can deduce
directly that the covariance between the competitive and the uniform mode
is nil. Also, when we have a link (of positive strength) between two modes,
we can directly state that they are positively correlated like the difference
and the uniform.

In the subsequent paragraphs, we will use these two tools to infer prop-
erties of the correlations for the NCA and for the TCA.

3.4.1 NCA and TCA generate negative correlations
among E1 and E2

Using the change of basis formula from the Schur basis to the canonical basis
(see appendix 3.10.3), we are first going to prove that the competitive mode
has a decorrelating effect on the correlation between E1 and E2. We remind
that we call u the uniform mode (1, 1, 1), c the competitive mode (1,−1, 0)
and d the difference mode (1, 1,−2).

The covariance between E1 and E2 is given by the term:

C(E1,E2) = cuu
3 −

ccc
2 + cdd

6 +
√

2cud
3

Amplification in cortical networks 117



3 Modelling of competitive activity

Considering the Schur architecture, it is clear that cUD is a strictly pos-
itive quantity. By definition, the autocovariances, or variances, cii are also
positive. We can then conclude that the variance of the competitive mode
has a decorrelating effect on the covariance between E1 and E2.

3.4.2 Asymmetry in the connectivity generate differ-
ence in the variances of E1 and of E2

We can also reuse the same arguments as before, and consider the variances
of E1 and E2:

var(E1) = CE1E1 = ccc
2 + cuu

3 + cdd
6 +

√
6ccu
3 +

√
3ccd
3 +

√
2cud
3

var(E2) = CE2E2 = ccc
2 + cuu

3 + cdd
6 −

√
6ccu
3 −

√
3ccd
3 +

√
2cud
3

In the NCA model, the Schur basis, the competitive mode is isolated from
the uniform and from the difference mode, which makes that their covariance
ccu and ccd be nil and therefore it is expected from these equations that both
populations have the same variance, as we could guess from the symmetry
of the connectivity.

In TCA, the asymmetry in the connectivity induces a link between the
competitive mode and the uniform that correlates positively the competitive,
the uniform and the difference mode: ccu > 0 and ccd > 0. The variance of
E1 in the TCA model is equal to the variance in NCA to which we add a
positive constant (

√
6ccu
3 +

√
3ccd
3 ), whereas the variance of E2 is equal to the

variance of NCA minus that constant.

3.4.3 Asymmetry in the connectivity generate differ-
ence in covariances between the two populations
and the inhibitory neurons

The covariance between E1 and I is:

C(E1,I) = cuu
3 −

cdd
3 +

√
6ccu
6 −

√
3ccd
3 −

√
2cud
6
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and the covariance between E2 and I is:

C(E2,I) = cuu
3 −

cdd
3 −

√
6ccu
6 +

√
3ccd
3 −

√
2cud
6

Once again, the feed-forward link in the Schur basis correlates the com-
petitive with the uniform and the competitive with the difference mode, and
this creates an asymmetry in the way both populations correlate positively
with I. However, the effects cancel out at least partially in each covariance:√

6ccu
6 −

√
3ccd
3 and −

√
6ccu
6 +

√
3ccd
3 . Even if we add systematically a constant

to the covariation of cov(E1, I) with respect to the covariation of the NCA
case, and we subtract this constant to the covariation of cov(E2, I), it might
be that this difference in covariance is less salient than the other two (see
figure 3.9 C, D).

3.4.4 NCA crosscorrelogram is symmetric while TCA
has a lag in the crosscorrelogram

The crosscorrelogram of NCA between E1 and E2 is symmetric around 0:
the delayed correlation between them is negative at zero lag and tends to
zero as the lag increases, and this in a similar manner for both populations:
< xE1(t).xE2(t+ τ) >=< xE2(t).xE1(t+ τ) > (figure 3.9 G).

In the case of TCA (see figure 3.9 H), there is a lag in the cross-correlogram
between E1 and E2, in such a way that an excess of firing of E1 -the most
self-connected population- precedes an excess of silence of E2 (see figure 3.9
G,H).

The non-normal mechanism which is at the origin of non-contractive dy-
namics in the mean trajectories is also responsible for this non-monotonical
crosscorrelogram (see methods 3.9.3).

Predictably, due to the fact that NCA proceeds by integrating the noise,
the time scale of the competition is much slower in NCA than in TCA.

3.4.5 Angle between the PC1 and the uniform
The PC1 in the case of NCA is orthogonal to the uniform, whereas we see
that in the case of the TCA it is less orthogonal (see figure 3.9 E,F).

In the NCA, all the parametrisations of the connectivity matrix lead
to a Schur decomposition with the three orthogonal modes: competitive,
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uniform and difference. However, not all the parametrisations of the NCA
connectivity matrix lead to competition (see paragraph normal competitive
amplification). NCA’s, Schur decomposition has one isolated competitive
mode and a feed-forward difference to uniform mode. To generate compe-
tition, the variance associated with the competitive mode must overcome
by far the amplification generated by the uniform mode. We achieve this
by making the negative feed-back of the competitive mode very small. As
ε→ 1−, the PC1 aligns perfectly with the competitive mode.

In the TCA case however, the negative feedback of the competitive mode
is bigger, so the part of the variance of the competitive mode that is due to
the negative feed-back is smaller. A bigger part of the variance is inherited
from the uniform mode and then even if the activity is dominated by the
competitive mode, it has a much bigger projection onto the uniform mode.
Therefore, for TCA, for a similar level of amplification, the PC1 is less
orthogonal to the uniform mode in comparison with the PC1 of the NCA.

The choice of parameters was only based on the two following constraints:
a) finding a set of parameters for the NCA and for the TCA which produces
a similar amount of variance. b) make sure that the connectivity matrix is
Dale.

3.4.6 Comparison with data
In the figure 3.10, we plotted the mean cross-correlograms for every experi-
ment (see methods 3.9.4). For every experiment, we label as E1 (resp. E2)
the group which has more variance. The cross-correlogram between E1 and
E2 is plotted as it is.

As we see, in nearly every experiment there is a systematic lag in the
ccg of E1 and E2: excess of firing of E1 precedes an excess of silence of
E2. This analysis suggest that this prediction is a signature of non-normal
amplification.
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Figure 3.9: Predictions from NCA and TCA: A, B: Connectivity matrices. C, D:
covariance matrix.E: % of variance. F, G: angle of the first PC with the uniform.
H, I: ccgs. Parameters NCA: (λc = 0.98, λu = −3, λd = 0.6,M = 0, V = 9, , τ =
1). Parameters TCA: (λc = 0.69, λu = −3, λd = 0.6,M = 1, V = 9, τ = 1).
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Figure 3.10: (A):Average cross-correlograms computed for every experiment. Each
experiment constitutes a triplet ccg(E1, E1), ccg(E2, E2), ccg(E1, E2). On the
lower panel (B), we average all the ccgs accross experiments.
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3.5 Generating competitive low dimensional
dynamics in a high dimensional network

3.5.1 Limitations of the low dimensional motif
The question we are going to answer in this section is how can a neural
network, which in principle could have huge degrees of freedom in the con-
nectivity, generate low dimensional dynamics.

In the second chapter we discovered that the apparent unstructured ac-
tivity during the active state is competitive. One of the most salient features
of the competitive activity is that it is low dimensional. We modelled the
firing rates and the covariances using a three dimensional linear dynamical
system, and reproduced some of the observables, notably the difference in
the variance across the populations, the direction of the PC1 with respect
to the uniform and also the lag in the crosscorrelogram between E1 and E2.

Nevertheless, the proposed model has limitations: what we call the pop-
ulation rate in our 3D model is the mean firing rate of the cells in a popula-
tion. Still, in the data we have abundant heterogeneity and the distinction
between the two excitatory populations is not discrete. Although approx-
imately half of the neurons has positive loadings and the other half has
negative loadings, the neurons with small loadings in absolute value are
almost uncorrelated between them, whereas pairs of neurons with high load-
ings in absolute value have a strong correlation. In the data, many of the
observables are spread: the correlation matrix, the histogram of pairwise
correlation, the eigen-spectrum, the PC loadings, and so on. One of the ad-
vantages to go to high dimensions is that, for strongly connected networks
with strong quenching of the uniform activity, the mean correlations go as
1/N , where N is the size of the network [123], [64].

In what follows, we will explain how can a high dimensional circuit gener-
ate competitive low dimensional dynamics and how to introduce a gradation
in the competitive activity.
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3.5.2 Generating an expanded high dimensional low-
rank matrix

One possibility to generate low dimensional dynamics is that the connectivity
matrix has low rank, i.e. few degrees of freedom. For instance, consider a
matrix equal to ~v.~vt: the outer product of two vectors has rank one and has
only one eigenvector: ~v.

Expanding the low dimensional TCA model (3.11 A) in high dimension
is going to result in a square matrix of size N and of rank equal to 3 (figure
3.11 B).

The appropriate way of stretching the connectivity matrix from low di-
mension to high dimension, is going from the Schur basis in low dimension
to the canonical basis in high dimension, with high dimensional change of
basis vectors. In three dimensions, the Schur vectors are:

u1 = 1√
2

 1
−1
0

 u2 = 1√
3

 1
1
1

 u3 = 1√
6

 1
1
−2


And in N dimensions, the Schur vectors are:

u1 = 1√
f.N



1
...
1
−1
...
−1
0
...
0


u2 = 1√

N



1
1
...

...

...
1
1


u3 = 1√

f + (1− f)L2



1
...
1
1
...
1
−L
...
−L


L = f

1−f . The proportion of excitatory neurons is f . The difference
vector is modified such that ∑i u3|i = 0.

The stretched connectivity matrix in high dimension is:

M =
√
N.[u1, u2, u3].T.[u1, u2, u3]t

T being still the 3 by 3 Schur decomposition of the low dimensional
model. The dimensions of M are then <N.3>.<3.3><3.N> = <N.N>.
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Supposing that the elements in T are O(1), in order to be in the balanced
state [123], we choose a scaling of

√
N.T : the connections in the canonical

basis scale as O( 1√
N

) and the eigenvalues as O(
√
N).

It is patent that building the connectivity matrix this way leads to a
high dimensional system which has the same defects as the low dimensional
system, because groups remain homogeneous so that there is not going to
be gradation in the covariances of neurons (see figure 3.11 B).

The solution of this issue is to introduce a graded vector that follows a
linear progression (e.g: 1, 0.9, 0.8, ...,0.1, 0) from a one towards zero for the
first group of excitatory neurons and then from zero to -1 for the second
group of excitatory neurons. To allow many having different progressions
towards zero, we elevate this linear progression to a certain power κ. We
then re-normalize the vector.

u1 = 1
||u1||



1κ
0.9κ
...
0
0
...
−0.9κ
−1κ

0
...
0



This solution leads to a low rank matrix with graded connections between
the neurons. As shown by the spectral decomposition (see appendix 3.10.4),
the contribution to the connectivity of the competitive vector is given by
the sum of the two matrices: λc.u1u

′
1 + t12u1.u

′
2.

In figure 3.11 we can see an example of three connectivity matrices: the
low dimensional model of three populations (A), and two matrices of 2383
neurons without graded competitive vector (B) and with graded competitive
vector (C). In (D), we added noise in the connectivity, in a principled way
that we will explain in a subsequent paragraph.
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A B C D

Figure 3.11: Example of three connectivity matrices: A: low dimensional matrix,
B: high dimensional non graded matrix and C: high dimensional graded matrix.
D: high dimensional graded matrix with noise on the connectivity. The inhibitory
connections are depicted in blue and the excitatory connections in red and orange.
The color maps are not the same colorbars in order to try to optimise the dis-
crimination of the details. The high dimensional matrices are Dale. Parameters:
(λc = 0.69, λu = −3, λd = 0.6,M = 1, V = 19, f = 0.8, κ = 1.05, R = 0.79, κ =
1.05, N = 2383, p = 0.2).

3.5.2.1 Correspondence between the covariance of the low dimen-
sional model and of the high dimensional network (with-
out noise on the connectivity)

In the appendix 3.10.3, we show that the covariance also follows a change
of base rule. When we expand our low dimensional system into a higher
dimensional system, this change of basis also holds. The N by N covariance
matrix C -in the canonical basis- is the expansion into high dimension of the
3 by 3 covariance matrix -in the Schur basis Cs.

C = 1√
N

[u1, u2, u3].Cs.[u1, u2, u3]t

3.5.3 Adding noise to the connectivity
The matrix M is a high dimensional version of the TCA model. However, by
construction, the connectivity matrix is low-rank, and the eigenvectors only
explore a small 3 dimensional subspace in an N dimensional space. In this
section we see to add noise to the connectivity matrix in a principled way
that preserves the original 3 eigenvalues and eigenvectors, but that adds
N-3 others. This allows to have a full rank connectivity matrix which in
principle could amplify the activity in different directions. The noise also
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adds heterogeneity in the connectivity between the neurons (figure 3.11 D).
We propose a high dimensional model that includes two terms: a low rank

deterministic matrix M (which is a stretched version of the low dimensional
model), plus a noise matrix F.

Using a result from Rajan and Abbott [122], we established a condition
that ensures that we can superpose the Schur decomposition of the sum
matrix J = M +F as the sum of the Schur decompositions of M and F (see
appendix 3.10.7). This decomposition gives a dynamical interpretation of
the noisy connectivity patterns, and allows to understand how the random
connectivity patterns interact with the deterministic patterns.

As we see in figure 3.12, the connectivity matrix can be rotated to the
Schur basis. As Hennequin [64], we understand that the noise in the connec-
tivity also adds directions of amplification in the Schur basis, and that given
how we rotated our connectivity basis from the canonical basis to the Schur
basis, the variance from the noisy modes flows to the deterministic modes in
a feed-forward manner and at the same time, it is quenched in every node.

The condition that we impose on the noisy matrix is valid for any kind
of noise we want to use to create heterogeneity in the connections. As long
as the noisy connections are drawn independently from a distribution, the
eigenspectrum of the noisy connectivity matrix will be situated in a circle
centered in zero on the complex plane, this is called Girko’s circle law (see
[122],[2]).

In the appendix 3.10.7, we study two types of noise in the connectiv-
ity: Gaussian noise and Bernoulli noise. Gaussian noise consists simply in
sampling the elements of the matrix F from a Gaussian distribution of zero
mean and standard deviation R√

N
: Fi,j ∼ N(0, R√

N
), where N is the size of

the network and R is the radius of the circle of eigenvalues in the complex
plane.

The advantage of using Gaussian noise is that the spectral radius R
can be fixed independently of the network size and therefore, we can build
networks of the size we want. If the spectral radius is above 1 -the decay rate
in the differential equation Ẋ = −X + JX +Bξ-, then the system becomes
unstable and explodes, which only means in practice that our modelling
assumptions are not correct anymore.

The problem of the Gaussian noise is that: first, it can lead to a break of
Dale’s rules -to which we compel ourselves to work in-. Second is that it leads
to have a fully connected recurrent network, which is not that biologically
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plausible, because we know that in cortex neurons have a probability of
being connected that is below 50%.

We then turned to use Bernoulli noise. Up to some technical subtleties,
we build the noise matrix by sampling connections from a copy of the deter-
ministic matrix: for each connection, we sample a random number between
0 and 1. If the random number is smaller than a certain finite probability
p = 0.2, we set a connection, and this connection is of the same order of
magnitude as the connection on the deterministic matrix. If the random
number is higher than the probability of connection, there is no connection
established. The problem of using Bernoulli noise is that the mean p and
the variance p(1− p) of the "coin" are linked. Therefore, the spectral radius
increases with the network size. In the appendix 3.10.7, we explain how to
re-normalize the connectivity matrix in such a way that the spectral radius
is equal to a certain value R < 1. The consequence of this normalization is
however that we can not choose the network size of our network. Once we
fix the probability of connection, the initial strength of the connections and
the probability of connections, we obtain a finite network size.

The results that we are going to examine at present, are done with
Bernoulli noise.
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Figure 3.12: Top panel: decomposition of the total connectivity matrix, as sum
of the deterministic part and the stochastic part. In the middle panel we see a
cartoon of the eigenspectrum in the complex domain (ordinate real part, abscissa
imaginary part) of the deterministic matrix (with 3 out of N non nil values), of
the stochastic (with N-3 non nil values) and finally of the eigenspectrum of the
summed matrix. At the bottom we see the Schur decomposition of each of the
matrices.
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3.6 Predictions of the high dimensional model

3.6.1 Correspondance between the HD and the LD
version of the model

In the following figure 3.13, we see the averaged cross-correlograms for the
high dimensional model and for the low dimensional model.
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Figure 3.13: Comparing low dimensional model with high dimensional model. In
dashed we see the cross-correlograms of the low dimensional model. Parameters
used: (λc = 0.69, λu = −3, λd = 0.6,M = 1, V = 19, f = 0.8, κ = 1.05, R =
0.79, κ = 1.05, N = 2383, p = 0.2)

We remark that these cross-correlograms are very similar, but they don’t
overlap. The noisy modes contribute to the variance of the deterministic
modes, so that the amplitudes of the ccgs are bigger. When we decrease the
target spectral radius R towards zero, the plots overlap.

3.6.2 Comparison between data and model
In the following plots we will compare many observables in the high dimen-
sional model and in the data.

Amplification in cortical networks 130



3 Modelling of competitive activity

Correlation matrix

0.4

0.2

0

0.2

0.4

0.5 0 0.5

hist Cov

0 1000 2000
0

10

% variance

# PC

Correlation matrix

0.5

0

0.5

0.5 0 0.5

hist Cov

0 50
0

10

% variance

# PC

A

C

E F

D

B

Figure 3.14: Comparison between model and data. Model: (A,C,E). Data:
(B,D,F). A, B: Correlation matrices. C, D: histogram of pairwise correlations.
E, F: eigenspectrum. Parameters: (λc = 0.69, λu = −3, λd = 0.6,M = 1, V =
19, f = 0.8, κ = 1.05, R = 0.79, κ = 1.05, N = 2383, p = 0.2). The spikes trains
are convolved with a mexican hat of parameters σ1 = 0.1s, σ2 = 0.4s.
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Figure 3.15: Comparison between model and data. Model: (A,C,E). Data:
(B,D,F). A, B: sorted PC1 loadings. C, D: angle of the first PC with the uni-
form. E, F: raster plots. Parameters: (λc = 0.69, λu = −3, λd = 0.6,M = 1, V =
19, f = 0.8, κ = 1.05, R = 0.79, κ = 1.05, N = 2383, p = 0.2). The spikes trains
are convolved with a mexican hat of parameters σ1 = 0.1s, σ2 = 0.4s.

As we see in figure 3.14 and 3.15, there is good agreement between the
model and the data.
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3.7 Other models of competition
Along this study we have been concerned with figuring-out alternative circuit
motifs that generate competition, as a way of understanding if our model
is trivial or not. Even if we have tried many possibilities, we haven’t come
with alternative ways of generating competitive amplification, as we observe
it in the data. In what follows, we will present two different circuit motifs
that might generate competition, but that we discarded for reasons that we
will precise.

3.7.1 Alternative low dimensional motif to TCA
The first TCA circuit that we studied and that we considered and ideal
candidate for describing the data was not the circuit we presented in this
chapter, but rather the model that we will describe here. In this circuit,
instead of having a serial feed-forward chain from D to U and from U to C,
we had a link from from D to U and also a link from D to C:

T =

 λU 0 L
0 λC K
0 0 λD


We call this model UCD, because of the order of the modes. This low

dimensional model is able to generate competitive amplification and makes
very similar predictions as our actual TCA model.

However, when we started studying the high dimensional version of the
network, we realized that the UCD model had certain characteristics that
made it a worst candidate to describe competition.

The main difference between the TCA motif and the UCD, is that in
the TCA model, the variance flows though all the modes to end in the
competitive mode: first from the difference mode to the uniform mode and
then to the competitive mode (figure 3.8). Then, in order to amplify the
competitive mode, the link from the uniform to the competitive mode in
the TCA model needs to be much smaller that the link from the difference
to the competitive mode in the UCD model. The fact of needing a big link
from the difference to the competitive makes that in the UCD model we also
need a bigger link from the difference to the uniform in order to keep the
matrix Dale (see appendix 3.10.4.1). Also the eigenvalue corresponding to
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the uniform mode needs to be bigger in absolute value in the UCD in order
to be in the dynamical regime we want. Overall, many parameters in the
UCD circuit end up being bigger than in the TCA motif -up to five times
for some of them-. This has two two consequences:

- The first one is a practical consequence, linked with the choice of the
Bernoulli noise in the connectivity. If the coefficients in the Schur basis are
too big, when we build the corresponding high dimensional network, we will
have a very big spectral radius, so after re-normalisation and resizing of the
network, we will end up with a network size that might be too big to solve
numerically in a reasonable time. For instance, in what respects solving
numerically the Lyapunov equation, there is a big difference in terms of
memory resources and computation time if we are dealing with a network
of 2000 neurons instead of a network of 10000 neurons, because the time
of computation is quadratic in terms of the number of elements. If we had
chosen a less realistic noise on the connectivity, like Gaussian noise, we would
be free to choose the size of the network, but we would still have the same
problem when simulating very big networks.

- The second consequence is worst, but nonetheless it is not an insur-
mountable obstacle. When we build a high dimensional model, introducing
a graded competitive vector allows to reproduce a more realistic covariance
matrix. One of the practical consequences of introducing a graded Schur
eigenvector, is that the faster the progression from 1 to 0 (in the unnormal-
ized competitive vector), the bigger maximal value of this progression will
be in the normalized version of the vector. For example, lets suppose that
the direction of the competitive vector is given by

~uc =
(

1κ 0.98κ ...0 0 ... −0.98κ −1κ 0 ...0
)t

The bigger κ is, the bigger the first component of the competitive vector
will be, once we normalize it ~uc ← ~uc

||~uc|| This might break the Dale condition
-to which we compel ourselves to work in (see spectral decomposition in
the appendix 3.10.4.1). In practice, small deviations from Dale’s rule have
no consequence on the dynamics, but big breaks in Dale’s rule do often
generates a switch in the dynamics.

The only way to overcome the fact that the connectivity matrix is not
Dale in high dimensions is simply to increase the D → U link. This link
is the one that guarantees the Dale property of the connectivity matrix.
However, increasing the strength of the link D to U might makes us run
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in the previously evoked problem. Finally, another disadvantage of having
a too strong difference to uniform link, both in the UCD and in the TCA
models, is that in the simulations we observe a discontinuity in the derivative
at zero lag for the cross-correlogram of E1and E2, which is not apparent in
the experimental data.

3.7.2 Translation-invariant connectivity matrices might
generate competitive activity, but with different
characteristics

Because the Schur basis is orthogonal, any network where the uniform vector
is part of the Schur basis is bound to have other dimensions whose dynamics,
if amplified by the connectivity, would qualify as "competitive amplification".
This is bound to almost always be the case in high dimensions. Of course,
an exhaustive search of all the possible alternative models is impractical, but
there are a certain "canonical" models which it might be interesting to inves-
tigate, in an effort to understand the extent to which they provide adequate
explanations of the experimental data. In particular, we would like to know
not only if they can produce competitive amplification (which as just noted
is almost trivially bound to be true), but whether, as we observe in the data,
competitive amplification is close to one-dimensional and dominant (fluctua-
tions along a single competitive pattern appear to be significantly amplified).
One such canonical model is a network with translational invariance, such
as typically used to explain orientation or direction selectivity in the visual
cortex [11]. In fact in their paper introducing non-normal amplification,
Murphy and Miller [105] considered non-normality in such a network. They
considered connectivity matrices such that:

W =
(
WEE WEI

W IE W II

)

The N by N submatrices WEE and W IE are real and positive, whereas
WEI andW II are real and negative, because of Dale’s rule. Each sub-matrix
WXY is a translation invariant matrix. A translation invariant matrix is a
matrix such that WXY

(i,j) = wXY (|j − i|), wXY being an N-periodic function
(see figure 3.16 A).

Murphy and Miller explain that for the family of matrices W , there is
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a way of rotating W into a basis -called the Fourier basis- in which it is 2
by 2 block diagonal and in which it is straightforward to compute the Schur
decomposition (see figure 3.16 B). Proceeding to do this, they realize that
every connectivity matrix W of dimension 2N by 2N can be seen in the Schur
basis as a collection of N feed-forward chains of length one (see figure 3.16
C,D,E). As we recall in the appendix 3.10.9, independently of the profiles,
all translation invariant matrices of dimension N have the same eigenvectors
{e1, e2, ..., eN}. The 2N modes that compose the Schur decomposition, with
N feed forward chains, are obtained concatenating the eigenvectors:

{
(
e1
e1

)
,

(
e1
−e1

)
,

(
e2
e2

)
,

(
e2
−e2

)
, ...,

(
eN
eN

)
,

(
eN
−eN

)
}

The eigenvectors are linked with the spatial Fourier decomposition of W:
e1 is the zero-frequency (or DC component), whereas e2 is the first Fourier
mode and its components are given by a cosine e2|j = cos(2πj

N
). The first

feed-forward chain represents then the famous balanced amplification -from
the difference to uniform pattern highlighted in the Murphy and Miller [105].
The other modes are called minus to plus modes. This decomposition is very
interesting because it makes a direct link between the connectivity profile
and the dynamical interpretation of the network. One trivial example is
the case of W is when each submatrix is constant, so the spatial Fourier
decomposition of the connectivity profile has only one DC component: the
Schur decomposition is then reduced to only one feed-forward chain that
goes from the difference to the uniform. Therefore, Murphy and Miller
conjecture that if each submatrix has both strong excitation and inhibition
characteristic of the balanced regime, and a biologically realistic fall of the
connectivity strength with the distance, therefore these networks should have
large balanced amplification (i.e. large variance in the uniform mode).

This argument is not asserted, the authors are not claiming that in all
cases the variance of the uniform mode will be exactly higher than the
variance of the others, but that the variance of the uniform will be very
high. The purpose of our study (see appendix 3.10.9) was to study if we
can find a connectivity matrix in the family of W such that the second feed
forward chain has more variance than the first one. This would translate
into competition.

We understood that one fundamental property of the translation invari-
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ant connectivity matrices, is that given to their phase invariance, a cosine at
a given frequency (example e2|j = cos(2πj

N
)) is an eigenvector of this matrix

but that a sine (e3|j = sin(2πj
N

)) is also eigenvector of this matrix. Apart
from the DC mode, for every frequency the eigenvectors come by pairs of
cosines and sines, and have a same associated eigenvalue.{

eigenvectors : {e1, e2, e3, e4..., eN}
eigenvalues : {λ0, λ1, λ1, λ2, λ2, ..., λN

2
}

This fact implies that the actual feedforward links and negative feedbacks
of pairs of successive feedforward chains are equal (see figure 3.16 E and
appendix 3.10.9). Therefore, if there is a parameter regime in which the
variance of +1 is higher than the variance of U, the variance of +2 will also
be higher that the variance of U. This means that if there is amplification,
the dimension of the competitive subspace will be a multiple of two, and
that is not what we observe in the data. In the appendix 3.10.9, we do all
the mathematical demonstration of these claims and we show a particular
example in which we can have this kind of competitive amplification.

Thus, if a translationally invariant connectivity was at the heart of the
variability that we observe during cortical desynchronisation, we would ex-
pect noise to excite all phases of, at least, one particular Fourier mode,
giving rise to a subspace of dimension two, and therefore, to two compo-
nents with amplified variance in the PCA decomposition. The fact that we
only observe one amplified dimension suggest to us than an approximately
translation invariant connectivity is unlikely to underlie our observations.
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Figure 3.16: A: translation invariant connectivity matrix. B: connectivity matrix
in the Fourier basis (zoom of the first six modes). C: connectivity matrix in the
Schur basis. D: Representation of the connectivity matrix in the Schur basis. E:
connectivity in the Schur basis, noticing that although the modes are different,
+1 and +2, their associated eigenvalues are the same and therefore the negative
feedbacks and the feedforward links of pairs of feedforward chains, are equal.

3.8 Summary and discussion

3.8.1 Summary

In this chapter we developed the assumption that the connectivity constrains
the spontaneous activity. If the dynamics can be simulated like a linear
dynamical system, and if the dynamics are dominated by one pattern of
activity, then the most amplified pattern of activity is quite aligned with
the Schur vector of the connectivity matrix that has more variance.
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We studied which kind of circuit patterns could generate competitive
activity. We first went over the randomly connected network, and shown
that it doesn’t generate competitive amplification, so that we should add
more structure to the connectivity matrices.

We first examined normal competitive amplification, which is a known
mechanism that uses normal amplification, and then we introduced a variant
of this basic circuit motif called transient competitive amplification. TCA
uses a different type of computational mechanism (called non-normal ampli-
fication) to amplify patterns of activity.

Among NCA and TCA, TCA is the model that is more consistent with
the data, and make strong predictions linking the variance of the two pop-
ulations with the way they are correlated in time.

3.8.2 Relation with previous work
Zagha et al [166] published in 2005 a similar study as ours in which they
analyse data and do modelling, using three population model symmetrically
connected. As we, they have recordings from layer 5 of rodent’s cortex. How-
ever they record in motor cortex of awake behaving mice, while we record in
auditory and somato-sensory cortex of urethane anesthetised rats. In their
recordings, they discover negatively correlated activity between two popula-
tions of neurons. In their case, the population activity is very tightly linked
to behaviour: one of the two populations is systematically enhanced -and the
other systematically suppressed- after a whisker is touched, in anticipation of
a correct lick of the mouse. Unlike in our recordings, the competitive activity
is not alternating, but more categorical, "winner-take all" like, considering
that in their case the same population always wins.

To model this process, they use a symmetric two excitatory popula-
tion network that compete through mutual inhibition, but in the non-linear
regime, as in Wang’s papers [155], [160]. In order to create the asymmetry
in the activity, they injected a constant external current to the suppressed
population (equal to 20) and a brief strong current to the enhanced popu-
lation of varying amplitude (equal at most to 210). If the pulse was strong
enough, then the enhanced population stays active, but otherwise, falls back
to baseline.

We then could ask ourselves whether we could generate asymmetry in
the competition in the way Zagha et al [166] did, by increasing the variance
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of the external noise in an NCA model to one of the populations. Even
in parameter regimes that are not realistic, i.e for a noise injected to the
first population having a standard deviation 100000 higher than the noise
injected to the second population, the variance of the first population to the
second remains of the order of 10/6, because the population E1 transfers
variance to E2. The PC1 becomes less aligned with the uniform, like in
the data. On what respects the cross-correlogram between E1 and E2, it
is almost perfectly symmetric, and the small tiny positive lag that shows
doesn’t increases with the variance of the external noise. Therefore, the
TCA model of asymmetric connectivity is more parsimonious, than an NCA
with huge asymmetry in the external input.

An interesting approach, that we have in common with Zagha et al [166],
is to try to deduce the circuit given the observed data. They propose a sim-
ple approach with is based on Granger causality, in order to disentangle
connectivity scenarios, from the simple anti-correlated external inputs to
a model like ours, with external uncorrelated inputs with mutual inhibi-
tion. With their data, they show that the Granger causality auto-regression
analysis improves the prediction in time of one of the two populations, by
taking into account in the regression the activity of the other population.
We followed the same approach, an using the same toolbox they cite in the
paper, taking the firing rate of one of the populations and seeing whether
it predicts significantly better the other population. In our hands the result
was not significant, which may indicate that they are not "Granger causally"
related or alternatively that the method fails at picking that correlation. It
would be however interesting to see the result of more elaborated methods
like embedding.

Also, our study has similarities with a study from Litwin Kumar and
Doiron [88]. The aim of their study is to observe the effect of subgroup
clustering on the dynamics of the network: they observe that even for mod-
est clustering, slow switching dynamics appeared: only one of the several
clusters of the network is active at the time. As they use spiking networks,
the mechanism underlying this process is not totally transparent, but seems
to be similar to the NCA network: as the clustering index increases, when
one cluster becomes active, it inhibits all the others clusters through the
interaction with the inhibitory group. Schaub et al [132] used a rate model
to explain the switching dynamics by Litwin Kumar and Doiron [88], and
showed indeed that the normal amplification is involved in the slow dynam-
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ics. However, they didn’t considered the case in which there in non-normal
amplification that could also explain the amplification.

3.8.3 Functional relevance of the asymmetry

One of the key aspects of the TCA model is the asymmetry in the connec-
tivity, which leads to an asymmetry in the dynamics. In the paper by Zagha
et al. [166], because of the asymmetric input, in the end they also have an
asymmetric circuit. Their hypothesis, is that the enhanced population feeds
an integrator followed by a threshold, which triggers the licking behaviour.
This hypothesis is in agreement with physiology, because in layer 5 precisely,
the intra-encephalic neurons project to sub-cerebral projection neurons, and
the reciprocal connection is very dim (see figure 1.1). The sub-cerebral pro-
jection neurons project to the brain stem and the spinal cord.

One hypothesis is then is that the asymmetry in the connectivity is the
landmark of a functional difference, for example that the neurons from the
E1 population are the output of the circuit. The other components of the
circuit might be there to compete and feed this population. In our case,
the competitive dynamics in spontaneous activity are not the same as the
more discrete dynamics of Zagha et al., they are more analogical. One of the
functions of this circuit might then be to integrate the sensory stimulus that
arrives in a short window of time, and integrate it in the form of an oscilla-
tory signal, whose instant amplitude depends precisely of the instantaneous
intensity of the stimulus, like an amplitude modulated (AM) signal.

Another hypothesis about the role of the asymmetry, more in line with
the null space hypothesis of evoked activity, presented in 2.3.4.5, is that
the asymmetry in the connectivity favours that the amplitude of the firing
in E1 be higher that the amplitude of the firing in E2. This might help
orienting and confining the trajectories in the neural space to precisely the
portion of space in which the firing rate of E1 is higher than the firing of
E2 (E1 ≥ E2) (see figure 2.25). Given that the orthogonal complement of a
supbspace of dimension 1 is N-1, constraining the trajectories in such a high
dimensional subspace would be helpful for decoding the different trajectories
as a function of the different inputs.
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3.8.4 On the specificity of model predictions
As we saw in the previous section, the model seems to reproduce both the
qualitative aspects and to a good extent the quantitative aspects of the
competitive amplification.

One of the untested predictions of the model concerns the role of the
inhibitory neurons, mentioned in section 3.4.3. The TCA model, as we saw
in the previous chapter, states that there is a small difference in the way
each excitatory group is correlated with the inhibitory cells. However, as we
saw in the computations and as we see in the simulations, the effect might
be small, and depend on specific network parameters.

Peter Barthó, who recorded the data from primary somato-sensory cor-
tex, applied an algorithm based on the spike shape that he had previously
developed [8] in order to distinguish between excitatory and inhibitory neu-
rons. In our data, the problem is that the number of identified putative
inhibitory neurons is small (less than 15%, so around 9 neurons for a record-
ing of 60 neurons), so we don’t really test this prediction, but we are eager
to do it with bigger simultaneous recordings.

Taken individually, some of the predictions made by NCA -the alternative
model to TCA- might seem not so strong. Why would the first PC be
exactly orthogonal to the uniform vector? Or, why would the variance of E1
be exactly similar to the variance of E2 ? Also, one might think that there
are many possible ways of generating a lag in the cross-correlogram between
E1 and E2.

The advantage of the proposed model is that it is very parsimonious,
so it states that all of these predictions are linked together and that they
depend on one single parameter. For example, we showed in the previous
chapter that we can label individual neurons based on their spiking power
frequency, so that we blindly assign them as belonging to E1 or to E2. Having
put a label on each population, we can observe whether this group has a
higher variance than E2, and whether the cross-correlogram ccg(E1, E2)(τ)
is systematically asymmetric with a positive lag.

3.8.5 Model fitting
The main achievement of the model is to provide an unified framework that
explains a series of diverse measurements. In spite of this, one natural
question we might ask is, can we fit this model to each experiment and obtain

Amplification in cortical networks 142



3 Modelling of competitive activity

a characterisation of the proportion of normal and non-normal amplification
observed in each experiment ?

One suitable attribute of a model is that it doesn’t require fine tun-
ing for displaying the modelled phenomenon , so that the rough qualitative
characteristics that the model replicates happen on a wide range of param-
eters. Yet, another suitable feature of a model is that the parameters have
orthogonal effects on the outputs. Although both statements are not ex-
clusive, they are rarely met in models with many parameters, so that one
observation could be explained by many combinations of parameters.

In our model, a simple example of such redundancy is in the figure 3.13.
In this figure, we observe that the noise on the connectivity adds variance
to the deterministic modes, so that the crosscorrelograms are bigger. It is
perfectly plausible that we can replicate those crosscorrelograms by using a
model without noise in the connectivity and increasing the level of external
noise, or by increasing the Schur coefficients in the same proportion, in order
to increase the variance and the time scale of the modes.

Even if there is some redundancy, we could try to find all the solutions to
compare them. Putting aside the five Schur coefficients over which we would
do the search, there are some "hidden" parameters that have an influence on
the result: the target spectral radius, the shape of the competitive vector,
the probability of connection p. From the experimental size, we can use the
first principal component to orient the shape of the competitive pattern as
well as anatomical studies to refine the choice of the proportion of connected
neurons.

Nevertheless, there are maybe some conceptual bottlenecks that should
be solved before comparing quantitatively in-vivo parallel recordings with a
network model or in particular with TCA.

On one side, from a completely theoretical perspective, we should have
a clear view of whether we can completely reconstruct a high dimensional
linear system when we sample randomly certain dimensions from it, like
during recordings. It would be good to know if only based on measures,
sampled from artificial spiking networks, it is possible to have an idea about
the dimensionality of the dynamical system that generated the data. Recent
work by Williamson et al [158] seems to go on this direction.

Also, we know from last chapter that the competition decreases with
the distance. On one hand this fact points in the right direction, because
it shows that the competition is local, and this means that we can model
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it with a relatively small network. However, it also suggest that we should
incorporate constraints on the connectivity like a decrease with the distance
(see [126]), or boundary conditions. From a modelling perspective, we can
suppose that we are sampling from an extended dynamical system which has
local properties like competition, and this could lead to refine conceptually
what we call external uncorrelated input ~ξ, which might simply be activity
from more distant neurons.

3.8.6 More experiments to refine the predictions ?
In order to test properly the model with regard to the role of inhibitory cells
in the competition, and maybe distinguishing TCA from UCD (see section
3.7.1), it would be interesting of doing more experiments identifying directly
inhibitory cells by infecting them with channel-rhodopsin and activating
them specifically with light.

When doing more experiments to study the spatial aspect of the compe-
tition, it should be possible to use calcium imaging to have a better sense
of the entire circuit and of the spatial arrangement of the cells, even if neg-
ative correlations are harder to detect with this technique. The way we
constructed the connectivity matrix shows that to obtain low dimensional
dynamics it is not necessary to have a low dimensional connectivity: it suf-
fices that the connectivity is partially structured and partially random, and
that they interact in a particular way. One interesting experiment would be
to do as Ko et al [82], to first observe the competition in-vivo and then probe
in-vitro how strong the neurons are connected between themselves. When
sorting the neurons by loading -and not by distance, because we saw in the
previous paragraph that the competition happens locally-, we think that we
would see an underlying slowly varying spatial continuity of the connection
strengths (figure 3.11 D).

3.8.7 Other possible experiments to expand our un-
derstanding about the role of competition

As we already said in the introduction, correlating in-vivo recordings with
sensory stimulation in awake animals would be a laborious but important
step for understanding of the role of the desynchronised state in sensory
processing, and the way attention modulates it. Now that we understand

Amplification in cortical networks 144



3 Modelling of competitive activity

that the asynchronous state is competitive, we can observe what happens
with both groups of neurons during sensory stimulation.

Also, it would be interesting to see if we can achieve competition in
slices of layer 5, in a similar experiment as the one done by Sanchez-Vivez
and McCormick [131], in which they observed locally generated synchronous
activity. This would allow to add different neurotransmitters on the prepa-
ration and observe the effects on the competition.
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3.9 Methods

3.9.1 Balanced randomly connected network simula-
tion

We simulated 10 minutes of activity of the balanced network using Brian,
a simulator for spiking neural networks [53]. All the differential equations
concerning the membrane potentials, the synaptic currents, and the conduc-
tances are explained in detail in the supplementary information of [123].

We reproduce here the parameters used for the simulation of figures 3.4
and 3.5, as in ( [123]): NE = 4000 : number of excitatory neurons. NI =
1000: number of inhibitory neurons. Nx = 1000: number of external Poisson
neurons. µext = 2.5 Hz: firing rate of external Poisson neurons. p = 0.2:
connection probability for the feed-forward and the recurrent connections.
Cm = 0.25 nF : membrane capacitance. gL = 16.6 nS: leak conductance.
τr = 1 ms: rise time of the unitary conductance change. τd = 5 ms: decay
time of the unitary conductance change. θ = −50 mV : spike threshold.
VL = −70 mV : resting membrane potential. VR = −60 mV : reset value.
τEref = 2 ms: refractory period excitatory. τ Iref = 1 ms: refractory period
inhibitory cells. Mean synaptic conductances: gEE = 2.4 nS, gEI = 4.8 nS,
gIE = gII = 40 nS, gIX = gIEX = 5.4 nS. Standard deviation of synaptic
conductances: σgXY = 0.5.gXY . In order to compute the eigenspectrum, we
applied the same procedure that we used for real data (see methods of the
previous chapter). tc = 0.1s and Njitt = 10.

3.9.2 The Lyapunov equation
We introduce the Lyapunov equation, which we will use extensively in
the rest of this study. Given a system described by an Ornstein-Uhlenbeck
process : Ẋ = (J − I)X + Bξ, the Lyapunov equation [47] assures that,
given the system drift J− I, and its diffusion term B, the covariance matrix
C is obtained solving the equation:

(J − I)C + C(J − I)t = −BBt

This equation can not be solved analytically except for very low dimen-
sional cases. It is solved using a recursive routine that first rotates the
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connectivity matrix to a Schur basis (to obtain a upper-triangular connec-
tivity matrix), and then solves recursively the variances/covariances starting
from below. Once all the correlations are solved, the routine rotates back
to the canonical basis. The complexity of this algorithm is of the order of
N2, where N is the dimension of the system. In Matlab, the routine is called
"lyap".

3.9.3 Mean trajectory and cross-correlograms for lin-
ear dynamical systems

For an Ornstein-Uhlenbeck processes we can compute the mean trajectory
and the cross-correlogram [47]. The cross-correlogram measures the degree
with which two random variables fire on average around their mean, with a
certain temporal lag between the variables.

The mean trajectory, given a series of initialisations is:

< X(t) >= e(J−I)t < X(t=0) >

Similarly, the cross-correlogram is:

< X(t)X
t
(t+τ) >=

 e
(J−I)τC, τ > 0
C.e−(J−I)tτ , τ < 0

(3.1)

Considering the propagator matrix e(J−I)τ , we note that the same mech-
anism that may generate transient amplification on the mean trajectories
for non-normal matrices (see figure 3.2), may also generate transient ampli-
fication on the cross-correlograms. By definition, the autocorrelograms are
symmetric, but the cross-correlograms doesn’t have to be.

3.9.4 Cross-correlograms of spike trains
Let’s define the spike train of cell i as :

ρi(t) =
ni∑
m=1

δ(t− tm)

.
The mean firing rate can be written as : ri = 1

T

∫ T
0 .dτ.ρ(τ)
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The crosscorrelogram of the spike trains of the cells p and q can be
defined as [33]:

Qρpρq(τ) = 1
T

∫ T

0
dt.(ρp(t)−rp)(ρq(t+τ)−rq) = 1

T

∫ T

0
dt.ρp(t).ρq(t+τ)−rp.rq

When
τ → T ,

1
T

∫ T

0
dt.ρp(t).ρq(t+ τ)− rp.rq → 0

.
The discretized version of the crosscorrelogram is :

Q∗(m) = 1
∆t

∫ (m+ 1
2 )∆t

(m− 1
2 )∆t

Qρpρq(τ).dτ

= 1
T

1
∆t

∫ (m+ 1
2 )∆t

(m− 1
2 )∆t

∫ T

0
dt.dτ.(ρp(t).ρq(t+ τ))− rp.rq, m ∈ N

We use the following normalized version of the crosscorrelogram:

Q∗scale(m) =
1
T

1
∆t
∫ (m+ 1

2 )∆t
(m− 1

2 )∆t
∫ T
0 dt.dτ.(ρp(t).ρq(t+ τ))
rp.rq

Therefore, Q∗scale(m)→ 1 when m→ +∞.
For each experiment in figure 3.10, we used a time window of tc = 0.1 s.

For each pair of cells, we computed two cross-correlograms: one on the
raw data, and another on a surrogate version of the data, in which we
randomly reassigned the spikes inside fixed jitter windows of length 10 time
windows. We then subtracted the two cross-correlograms. Finally, once
we had computed all the ccg, we average them accross pairs -omitting the
autocorrelograms.

This procedure is related to the way we pre-process the data, and guar-
antees that we put an upper bound on the time scale at which the cross-
correlations are happening (see methods 2.4.2 in chapter 2).

Instead of averaging the ccgs, we could have also computed a weighted
sum loading each ccg by the product of loadings of each cell. In practice,
with this other method, the results are qualitatively similar to the ones
presented in figure 3.10.
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3.10 Appendix

3.10.1 Two dimensional linear excitatory and inhibitory
network

In this paragraph, we deduce the Schur representation from the anatomi-
cal representation, and we also do the converse -from the Schur domain to
the canonical basis. Though this exercise we introduce the vocabulary, the
notation and justify subsequent results.

In the canonical basis, a network composed of an excitatory population

and an inhibitory one X =
(
xE(t)
xI(t)

)
, obeys the differential equation Ẋ =

−X + JX + ξ and has the following connectivity matrix:

J =
(
JE −∆− JE
JI −∆− JI

)
We can see that this matrix has only three degrees of freedom JE, JI

and ∆, instead of four. This is a modelling choice, further justified by
Hennequin (see Appendix of [64]). In this configuration, the matrix follows
the constraint that the uniform vector

v1 = 1√
2

(
1
1

)

is an eigenvector, whose associated eigenvalue is λ1 = −∆ << 0. This
means that a uniform perturbation of the activity will be suppressed fast.
Also, we are in the so called inhibition-dominated regime: both the
total amount of excitation and of inhibition are big (order 1) and the total
amount of inhibition exceeds the amount of excitation. The total amount
of excitation and inhibition received by each population is constant: JE +
(−∆− JE) = JI + (−∆− JI) = −∆.

The second eigenvector and its associated eigenvalue are:

v2 = 1√
1 + k2

(
k
1

)
, k = ∆ + JE

JI
, λ2 = JE − JI

We then choose as first Schur vector u1 = v1 and compute the second
Schur vector through Gram-Schmidt:
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u2 = 1√
2

(
1
−1

)

This vector is called the difference vector. We will designate it by the
letter D. Applying the change of basis formula, we deduce that in the Schur
basis, the functional representation T of the connectivity is:

T =
(
λU t
0 λD

)
, λU = λ1 = −∆, λD = λ2 = JE − JI , t = JE + JI + ∆

The basis rotation X = PY transforms the differential equation Ẋ =
−X + JX + ξ into Ẏ = −Y + TY + Pξ. Given that the external noise
received by each population is uncorrelated < ξE.ξI >= 0, Pξ is equivalent
to ξ because P is unitary and B = I.

We can do the same exercise the other way around: starting from the
Schur basis and deducing the connectivity matrix.

J = P.

(
λU t
0 λD

)
P t, P = 1√

2

(
1 1
1 −1

)

J = 1
2

(
λU + λD + t λU − λD − t
λU − λD + t λU + λD − t

)

JE = λU+λD+t

2
JI = λU−λD+t

2
∆ = −λU

3.10.2 Study of the correlation in the 2D linear net-
work

Given that we just built the connectivity matrix in two different ways (see
previous paragraph), we now have the tools to demonstrate that the two
excitatory and inhibitory populations tend to be positively correlated.
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We could try to solve directly the Lyapunov equation in the neural space,
and show that the term C1,2 = CEI tends to be positive. However, the equa-
tions are very cumbersome. Instead of that, we will make the demonstration
in two steps:

a) Given the connectivity matrix in the Schur space, show that the uni-
form mode has more variance than the difference mode.

b) Given the variances and covariances in the Schur space, show how does
the covariance CEI depends on the covariances of the uniform and difference
modes.

Step a: Lyapunov equation in the Schur space.

Lets note Cs the covariance matrix and T the connectivity matrix in the
Schur space. The Lyapunov equation is:

(E) : (T−I)Cs+Cs.(T−I)t = −I, T =
(
λU t
0 λD

)
, Cs =

(
cU cud
cud cD

)

Developing the Lyapunov equation gives:

(E) ⇐⇒


2cU(λU − 1) + 2cudt = −1
cud(λU + λD − 2) + t.cD = 0
2cD(λD − 1) = −1

(E) ⇐⇒


cU = −1

2(λU−1) + cD
t2

(λU−1)(λU+λD−2)
cud = − t.cD

λU+λD−2
cD = −1

2(λD−1)

We then concentrate on the first equation (cU = −1
2(λU−1)+cD

t2

(λU−1)(λU+λD−2)),
to show that cU > cD, we just need to show that t2

(λU−1)(λU+λD−2) > 1. This
term can be rewritten as:

t2

(λU − 1)(λU + λD − 2) = t2

(t+ (1− JE)− JI)(t+ 2(1− JE))

Then, it suffices that JE > 1, to get cU > cD, because the numerator
is bigger than the denominator ( t >> 1 and t − ε1 < t and t − ε2 < t).
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This condition is then true in the usual range of the parameters, specially
in the case in the inhibition dominated regime, in which the excitation and
the inhibition are thought to be big.

Step b: Change of basis.

If we write the Lyapunov equation in both the Schur basis and in the
canonical basis, we can deduce that there is a change of basis formula for
the covariance:

C = P.Cs.P
t, P =

( 1√
2

1√
2

1√
2 −

1√
2

)
, Cs =

(
cU cud
cud cD

)

We deduce easily the covariance in the canonical basis:

C = 1
2

(
cU + cD + 2cud cU − cD

cU − cD cU + cD − 2cud

)
The covariance between the excitation and the inhibition is then the

difference between the variances of the uniform mode and the variance of
the difference mode. As we just shown, this difference is positive.

3.10.3 Rotating the covariance matrix from the Schur
to the canonical basis

Starting from the differential equation of the system, we can apply an axis
rotation from the canonical to the Schur basis making the change of variable
PY = X.

Ẋ = −X + JX + ξ and Ẏ = −Y + TY + P t.ξ
If we pose the Lyapunov equation in the Schur basis, we obtain the

covariance matrix Cs between the different Schur modes:

(T − I)Cs + Cs(T − I)t = −I

Comparing the Lyapunov equation in both basis, and recalling that J =
PTP ′, we obtain the change of basis formula for the covariances in the
canonical basis:

P.Cs.P
t = C
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

cE1E1 = ccc
2 + cuu

3 + cdd
6 +

√
6ccu
3 +

√
3ccd
3 +

√
2cud
3

cE1E2 = cuu
3 −

ccc
2 + cdd

6 +
√

2cud
3

cE1I = cuu
3 −

cdd
3 +

√
6ccu
6 −

√
3ccd
3 −

√
2cud
6

cE2E2 = ccc
2 + cuu

3 + cdd
6 −

√
6ccu
3 −

√
3ccd
3 +

√
2cud
3

cE2I = cuu
3 −

cdd
3 −

√
6ccu
6 +

√
3ccd
3 −

√
2cud
6

cII = cuu
3 + 2cdd

3 −
2
√

2cud
3

3.10.4 Spectral decomposition

The aim of this appendix is demonstrate a simple restatement of the change
of basis formula J = PTP t as a sum of external products known as the
spectral decomposition. This formula is useful for understanding how
the parameters of the Schur matrix T and the Schur vectors shape the con-
nectivity matrix in the canonical basis.

J is a connectivity matrix. J admits a Schur decomposition J = PTP ′,
that allows to pass from a recurrently connected network, to an upper-
triangular feed-forward network. P is an unitary matrix whose columns
are the vectors from the Schur basis, that is obtained orthogonalizing the
eigenvectors of J.

I = PP t = P t.P

P =
(
~u1 ~u2 ... ... ~uN

)
First, lets use the equality : J = P.T.P t to see how the Schur vectors ~ui

are expressed in terms of elements of the the Schur matrix:

T =


t11 t12 t13 ... t1N
0 t22 t23 ... t2N
0 0 t33 ... ...
0 0 ... ... tNN

, with tii = λi.

J.~ui = P.T.P t.~ui = P.T.



0
...
0
1
0
...
0


= P.



t1i
t2i
...
tii
0
...
0


=

i∑
j=1

tji~uj
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J = J.P.P t = J.
(
~u1 ~u2 ... ... ~uN

)
.


~ut1
~ut2
~ut3
...
~utN

 = J.
∑N
i=1 ~ui~u

t
i =

∑N
i=1(J.~ui).~uti = ∑N

i=1(λi.~ui +∑i−1
j=1 Tji~uj).~uti

Then:

J =
N∑
i=1

λi.~ui.~u
t
i +

N∑
i=1

i−1∑
j=1

Tji~uj.~u
t
i

3.10.4.1 Corollary of the spectral decomposition: the difference
to uniform block assures Dale’s law

Murphy and Miller [105] showed that biologically inspired networks that fol-
low Dale’s law have a strong feed-forward link in the Schur domain, from the
difference to the uniform mode. Conversely, when we build our connectivity
matrix starting from the Schur basis, the spectral decomposition shows us
that precisely the link between the difference to the uniform mode is the one
that has to be big enough so that the connectivity matrix remains Dale.

The spectral decomposition shows how the connectivity matrix results
from the superposition of matrices composed by external products of Schur
vectors. For example, in the case of the network composed of excitatory and
inhibitory neurons:

J = P.

(
λU t
0 λD

)
P t = λu.

1
2

(
1 1
1 1

)
+λd.12

(
1 −1
−1 1

)
+t1

2

(
1 −1
1 −1

)
When we build the connectivity matrix starting from the connectivity

matrix in the Schur space, the link t, that multiplies the matrix 1
2

(
1 −1
1 −1

)
=

~U. ~Dt has to be big enough so that Dale is preserved.

3.10.5 Computing the eigenvectors of a connectivity
matrix

When we build the connectivity matrix starting from the Schur basis, one
might want to know the eigenvectors. The recipe to do so is to re-multiply
the connectivity basis by the Schur vectors:

Amplification in cortical networks 154



3 Modelling of competitive activity

J.uk = (
N∑
i=1

λi.~ui.~u
t
i +

N∑
i=1

i−1∑
j=1

Tji~uj.~u
t
i).uk, k = 1, ..., N

and then solve the system first identifying when possible the eigenvectors
with the Schur vectors J.uk = λk.uk =⇒ uk = vk and otherwise posing
that the eigenvectors should be a linear combination of the Schur vector,
and have unitary norm.

We can do it for the connectivity matrix of TCA: T =

 λC M 0
0 λU V
0 0 λD

.

J.u1 = λc.u1
J.u2 = λu.u2 +M.u1
J.u3 = λd.u3 + V.u2

We can see that the first eigenvector and eigenvalue is v1 = u1 and
λ1 = λc

Lets compute the next eigenvector, knowing that it will be a linear com-
bination of u1 and u2, and by definition, will have norm equal to one.

J.(
√

1− β2.u2 + β.u1) = λu.(
√

1− β2u2 + M
√

1− β2 + βλc
λu

.u1)

β = M
√

1− β2 + βλc
λu

=⇒ β = M√
(λu − λc)2 +M2

We then conclude that the second eigenvector is v2 =
√

1− β2.u2 +
β.u1, β = M√

(λu−λc)2+M2
and the second eigenvalue is: λ2 = λu.

The third eigenvector and eigenvalue is, similarly, a linear combination
of v2 and u3:

v3 =
√

1− α2v2 + α.u3, α = V√
V 2 + (λd − λu)2

, λ3 = λd
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3.10.6 Schur decomposition of a 2*2 matrix

In this paragraph, we will present the Schur decomposition of a 2*2 Dale
matrix, adopting a convention in which all the coefficients are positive:(
wEE −wEI
wIE −wII

)

Lets consider two un-normalized eigenvectors of the kind:
(

1
x±

)
(
wEE −wEI
wIE −wII

)(
1
x±

)
=
(
wEE − x±wEI
wIE − x±wII

)
= (wEE−x±wEI)

(
1

wIE−x±wII
wEE−x±wEI

)

We can then solve the equation :

wIE − x±wII
wEE − x±wEI

= x± ⇐⇒ ∆ = (wII + wEE)2 − 4wEIwIE > 0

and x± = wII + wEE ±
√

∆
2wEI

Then the eigenvalues are: λ± = wEE −x±wEI . The normalized eigenvectors
can then be written:

e+ = 1√
1+|x+|2

(
1
x+

)
and e− = 1√

1+|x−|2

(
1
x−

)
. These eigenvec-

tors are not orthogonal, so lets establish a Schur basis {e+, z}, Where z =
e−−(e−.e+)e+√

1−|e−.e+|2
= 1√

1+|x+|2

(
x+
−1

)

We can then rewrite e− = z.
√

1− |e−.e+|2 + (e−.e+).e+. Multiplying the
matrix by z:
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(
wEE −wEI
wIE −wII

)
z =

(
wEE −wEI
wIE −wII

)
(e− − (e−.e+)e+√

1− |e−.e+|2
) = λ−e− − λ+(e−.e+)e+√

1− |e−.e+|2

= λ−√
1− |e−.e+|2

(z.
√

1− |e−.e+|2 + (e−.e+).e+)− λ+(e−.e+)e+√
1− |e−.e+|2

= λ−z + (λ− − λ+)(e−.e+)√
1− |e−.e+|2

e+

= λ−z + t.e+

In the Schur basis, this 2*2 matrix can be expressed as:
(
λ+ t
0 λ−

)
Particular solution
The previous solution is very much simplified if we impose the constraint

that the sum of the rows is constant: wEE −wEI = wIE −wII . This implies
that x± = wEE+wEE±|wEI−wIE |

2wEI . Given that the absolute value function gives
the same results in the two cases wEI > wIE or wEI < wIE, and that this
equation has two solutions 1 and wIE

wEI
, we can always choose x+ to be equal

to 1.
We can then compute easily the eigenvectors of the Fourier decomposition

and the feed-forward link. 
λ+ = wEE − wEI
λ− = wEE − wIE
t = wEI + wIE

3.10.7 Adding the deterministic and the stochastic high
dimensional connectivity matrices

In general when we pose the question of how does the eigenspectrum of the
sum of two matrices A and B looks with respect to the eigenspectra of A
and B, there is not a simple answer.

In the particular case in which A and B have the same eigenvectors, the
eigenspectrum of the sum matrix A+B is the sum of the eigenspectra of A
and B:
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A+B = PA.DA.P
−1
A + PB.DB.P

−1
B = PA.DA.P

−1
A + PA.DB.P

−1
A

= PA.(DA +DB).P−1
A = P.(DA +DB).P−1

We now consider M to be the deterministic (low rank) part of a connec-
tivity matrix and F to be the stochastic part.

Lemma (Generalisation of Rajan and Abbott [122]):

DefineM ∈ <N∗N a real square matrix of rank k. Define also F ∈ <N∗N .
If we impose k conditions on the matrix F: F.v1,...,k = 0, then M and F have
the same eigenvectors, and M+F inherit k eigenvalues from M and N − k
eigenvalues from F.

Proof:
If l is a left eigenvector of F:

∀k, l.(F.vk) = l.~0 = 0 = λll.vk

If λl 6= 0 then l.vk = 0

M has k eigenvectors v1,...,k. The image of M is equal to the vector
space generated by linear combinations of the eigenvectors Im(M) =<
v1, v2, ..., vk >.

∀v : l.(M.v) = l.(
k∑
i=1

αivi) = (
k∑
i=1

αil.vi) = 0 ⇐⇒ l.M = 0

Then
l(M + F ) = l.F = λl.l

Corollaries:

Corollary 1:

Having imposed the above mentioned condition on F, the Schur decompo-
sition of F+M is the sum of the Schur decomposition of F and the Schur
decomposition of M (see figure 3.12):
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TF+M = TF + TM

Corollary 2: 

F.v1 = 0
F.v2 = 0
...

F.vk = 0

⇐⇒



F.u1 = 0
F.u2 = 0
...

F.uk = 0
Proof: Gram-Schmidt decomposition.
As the Schur vectors u are orthogonal between them, we can impose

serially the condition F.ui = 0, i = 1, ..., 3, by doing :

F (r, :)← F (r, :)− (F (r, :).ui).ui
.

A more direct way to do it is to do:

F ← F.(I −
k∑
i=1

ui.u
′
i)

Corollary 3:

Nil elements of the deterministic and of the stochastic part of the connec-
tivity matrices, in the Schur basis.

- Deterministic matrix:

∀(i, j) /∈ 1, 3 (TM)ij = 0

Proof: TM ∈ <N.N is obtained by zero-padding T of dimension < 3.3 >,
the low dimensional Schur representation of the TCA model.

- Stochastic matrix:

∀(i, j) ∈ {1, 2, 3}, (TF )ij = 0.
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Proof: ∀i, j : i > j, i, j ∈ {1, 2, 3} :

(TF )ij = (P ′.F.P )ij
= P ′.F.uj

= P ′.0 = 0

3.10.7.1 Different types of noise that constitute the stochastic
matrix

We can have many types of noise to with which to fill the matrix F . Here
we will cover two types of noise:

a) Fully connected network with Gaussian noise

The stochastic component of the connectivity between each every pair of
units is sampled independently from a Gaussian distribution of zero mean
and standard deviation equal to R√

N
. Fi,j ∼ N(0, R√

N
). Girko’s circle law

states that the eigenspectrum of F will be uniformly distributed inside a
circle of radius R. After filling the matrix F, we impose the condition F ←
F.(I−∑3

i=1 ui). This operation doesn’t change much the eigenspectrum, but
nevertheless eliminates the outliers, the eigenvalues that are out of the circle
and which could destabilize the system [122].

In the Gaussian distribution, the mean and the variance are two indepen-
dent parameters, so we can control the spectral radius as we wish. However,
in the case of Bernoulli noise, the mean (proportion of connections) p and the
variance p(1−p) are linked, and this will imply some technical complications
that we detail in what follows.

b) Sparsely connected network with Bernoulli noise

Bernoulli noise is the standard kind of noise that is used when studying recur-
rent networks [123], [64]. For every pair of neurons if a randomly generated
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number is between zero and p, we establish a connection (the strength can
vary depending on the identity of the pre-synaptic and of the post-synaptic
neurons). If we sample the connections with this method, but keeping the
actual value of the deterministic matrix M(i, j) when sampling the connec-
tion between neurons i and j, we are not going to maintain the eigenvalues
and eigenvectors of M. This would happen for example, if we averaged across
many sampled random matrices, but in that case we would loose the all or
none character of the connections.

Using the preceding lemma, we are going to build a noisy connectivity
matrix, whose connection values are of the same order of magnitude of the
connectivity matrix, and that we will sum to the deterministic matrix.

The first point to consider is that if we put to zero, at random, 1 − p
fraction of the components of a matrix, then the average value of the post
synaptic currents will decrease. So, if we strengthen the connections by a
factor 1/p and then we randomly set to zero connections with probability
1-p, we will obtain a sparse matrix whose post-synaptic currents have the
same expected values as the fully connected one.

M∗ ←M/p

M∗ ←M∗ ⊗ (rand([N,N ]) < p)

⊗ is the point-wise matrix multiplication.
The stochastic matrix is:

F = α.
M

p
.⊗ (rand([N,N ]) < p).(I − u1.u

′
1 − u2.u

′
2 − u3.u

′
3)

α = R2
R1

is a parameter that we will determine in the next section.

3.10.7.2 Rescaling the spectral radius in sparsely connected ma-
trices

For the sake of this argument, we will call Q the part of the deterministic
matrix that is O(1): M = 1√

N
Q. The spectral radius R of a matrix Lij sam-

pled with a probability p is related to the mean variance of the connection
strength through:
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R2

N
= p(1− p) 1

N2

N∑
i=1

N∑
j=1

L2
ij

Taking L = M ⊗ (rand([N,N ]) < p)/p, we compute a the associated
spectral radius R1

R2
1 = p(1− p) 1

N2

N∑
i=1

N∑
j=1

Q2
ij ⊗ (rand([N,N ]) < p)/p

Having sampled at random a matrix with Bernoulli noise might result in
a matrix whose spectral radius is higher than one, which makes the system
unstable. If one wants to rescale the spectral radius from R1 to R2, one has
to multiply the connectivity (both F and M) by R2

R1
, so that the new spectral

radius (to the square) is:

R2 = p(1− p) 1
N2

N∑
i=1

N∑
j=1

(R2

R1
)2Q2

ij ⊗ (rand([N,N ]) < p)/p = R2
1.(
R2

R1
)2 = R2

2

We multiply also M because we want that the noise on the connections
be of the same order as the connections in the deterministic matrix.

3.10.7.3 Network size in sparsely connected matrices

One consequence of the formula of the spectral radius :

R2

N
= p(1− p)[ 1

N2

N∑
i=1

N∑
j=1

L2
ij]

is that if we expand the dimensionality N of the matrix L by "recopy-
ing" the elements as we increase the size, the mean value of the connection

1
N2
∑N
i=1

∑N
j=1 L

2
ij stays the same, and then the spectral radius also stays the

same.
However, as we increase the dimension, the value of the eigenvalues in-

creases -as O(
√
N). In the last paragraph we discussed the re-normalisation

of the connectivity, in order to have a target spectral radius R2 that is not
greater than the unity.

When we perform such re-normalisation, the eigenvalues decrease by a
factor R2

R1
.
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λ← R2

R1
λ

One can then increase the dimensionality to a new dimension N after
having normalized, in order to compensate for the decrease of the eigenval-
ues.

λ← R2

R1

√
Nλ

We then obtain the following equality:

N = (R1

R2
)2

N is the suitable network size of our network, so that the network has
the eigenvalues we want, and we want them to be the same ones as in low
dimensions, and also in such a way that the spectral radius is equal to the
spectral radius we want R2 < 1.

Another consequence from this equality is that the bigger the target
spectral radius R2, the smaller the matrix dimension has to be.

3.10.8 Summary of the implementation of the high di-
mensional model

The purpose of this part is to put together all the different steps needed to
implement the high dimensional version of the TCA model.

In order to implement the model, we first choose in low dimension a
suitable parameter regime. Then, we make a first draft high dimensional
system, of for example 100 neurons, with a deterministic and a stochastic
part. We can then to compute the spectral radius R1 of the noise matrix,
which is independent of the network size. After choosing a target ratio R2,
we determine the suitable network size of the network: N = (R1

R2
)2.

Finally, we make a network J of dimension N, with a deterministic and
a stochastic part J = (M + F ), having applied the condition F ← F (I −∑
ui.u

′
i). Finally, we multiply by the scaling R2

R1
: J ← R2

R1
J .
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3.10.8.1 Algorithm

The recurrent network follows the linear stochastic equation:

Ẋ = −X + JX + ξ

Definitions: J ∈ RNxN , ξ.dt|i=1,...,N ∼ N(0, 1) J is the
connectivity matrix.

a) Low dimensional model: Two excitatory populations and one
inhibitory population.

T =

 λC W 0
0 λU V
0 0 λD



u1 = 1√
2

 1
−1
0

 , u2 = 1√
3

 1
1
1

 , u3 = 1√
6

 1
1
−2


J = [u1, u2, u3].T.[u1, u2, u3]t

The vectors u1, u2, u3 are called respectively the competitive, the uniform
and the difference.

b) High dimensional model
The high dimensional version of the connectivity matrix shows a graded

connectivity. We don’t have anymore, like in the LD version of the model,
two homogeneous groups of excitatory cells. The gradation of the connec-
tivity is given by the competitive vector u1 in dimension N. In addition of
the graded connectivity, the HD version of the model is not simply a low
rank representation in high dimensions of a low dimensional model. In fact
our high dimension is full rank, and can be decomposed as a sum of a noisy
part F and of a deterministic part M:

J = α(M + F ) α is a real scalar

The noisy matrix F is composed by elements drawn from a Bernoulli
distribution, built in such a way that if we averaged over realisations of the
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noise, the mean value < F(i,j) > of the noisy component of the connectivity
from the cell j to i, would be 0. We will first show how to build the connec-
tivity matrix as if we knew the dimensionality N, and then we will see how
to determine it. The scalar factor α is related with the normalisation of the
spectral radius, as we will see subsequently.

b.1) Deterministic matrix M

u1 = 1
||u1||



1κ
0.9κ
...
0
0
...
−0.9κ
−1κ

0
...
0



u2 = 1√
N



1
1
...

...

...
1
1


u3 = 1√

f + (1− f)L2



1
...
1
1
...
1
−L
...
−L



L = f
1−f . The graded competitive high dimensional competitive vector

u1 is defined by: 1:creating a linear progression from 1 to 0 of f.N
2 elements.

2: elevating element by element this progression to some power κ. 3: filling
the vector u1 with the new progression and the inverted progression, and
zero padding the vector until attaining N. 4: Normalizing the vector.

The proportion of excitatory neurons is f . The difference vector u3 is
such that ∑i u3|i = 0.

The connectivity matrix is:

M =
√
N.[u1, u2, u3].T.[u1, u2, u3]t

With this scaling, M ∼ O( 1√
N

).

b.2) Noisy connectivity matrix F
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F = (M − 1
p
M ⊗ [rand([N,N ]) < p]).(I −

3∑
i=1

ui.u
′
i)

⊗ describes a point-wise matrix product. p is the connection probability
and [rand([N,N ]) < p] is a N by N matrix whose elements are one with
probability p and zero with probability 1− p. The matrix multiplication by
the factor (I −∑3

i=1 ui.u
′
i) is a condition that we impose so that the eigen-

spectrum of the sum matrix M+F is the superposition of the eigenspectrum
of M and F.

b.3) Determining the size N of the high dimensional system
The strategy to determine the size of the matrix consists in first creat-

ing a mock matrix M of an arbitrary dimension N = 100, with the same
parameters. The spectral radius of the noise matrix is computed as:

R =

√√√√√N.p(1− p) 1
N2

N∑
i=1

N∑
j=1

(1
p
M(i,j))2)

We can re-normalize the connectivity in such a way that the spectral
radius attains a target Rtarget.

The network size is determined as:

N = b( R

Rtarget

)2c

bxc is the floored round value of x. The scalar factor α of the definition of
J is simply:

α = 1√
N

We then rebuild the network according to this size N.

Numerical values:
λC = 0.69, λU = −3, λD = 0.6, W = 1, V = 19, f = 0.8, p = 0.2,

Rtarget = 0.79, κ = 1.05
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3.10.9 Translation-invariant connectivity matrices
3.10.9.1 Properties of translation invariant symmetric matrices

Circulant matrices are square NxN matrices for whichWij = w(j−i) , where
w is an N periodic function w(a + N) = w(a). For circulant symmetric
matrices w(a) = w(−a).

A very remarkable property of every circulant matrix of dimension N is
that its eigenvectors are always the same. We will show that the union of
two sets of vectors {p} and {q} constitute the basis of eigenvectors of any
circulant matrix. The jth component of the lth vector from {~p} (respectively
{~q}) is:

~pl|j = cos(2πjl
N

), l ∈ [0, ..., f loor(N2 )] ~ql|j = sin(2πjl
N

), l ∈ [1, ..., f loor(N − 1
2 )]

Before show this, lets just recall the definition of the discrete Fourier
transform of a N periodic function w :

w̃(l) =
N−1∑
r=0

e
−2πilr
N w(r) =

N−1∑
r=0

w(r)cos(2πlr
N

) + i.
N−1∑
r=0

w(r)sin(−2πlr
N

)

= Real(w̃(l)) + iImag(w̃(l))

Now, lets calculate for ~p(l) and ~q(l):

(W.p(l))|k =
∑
j

Wkjcos(
2πjl
N

)

=
∑
j

w(j−k)cos(
2πjl
N

)

=
∑
r

w(r)cos(
2π(r + k)l

N
)

=
∑
r

w(r)cos(
2πrl
N

)cos(2πkl
N

)−
∑
r

w(r)sin(2πrl
N

)sin(2πkl
N

)

= ~p(l)|k.Real(w̃(l)) + ~q(l)|k.Imag(w̃(l))
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(W.q(l))|k = −Imag(w̃(l)).p(l)|k +Real(w̃(l)).q(l)|k W.~pl = Real(w̃(l)).~pl + Imag(w̃(l)).~ql
W.~ql = −Imag(w̃(l)).~pl +Real(w̃(l)).~ql

For any circulant matrix, the complex eigenvectors are ~ξl = ~pl± i.~ql. The
eigenvalues of a circulant matrixW depend on the discrete Fourier transform
of the characteristic periodic function w.

λ(l) = Real(w̃(l))± i.Imag(w̃(l))

In the case of circulant symmetric matrices, these expressions are simpli-
fied. As every symmetric matrix has real eigenvalues and real eigenvectors,
if W is circulant symmetric, it is easy to show that Imag(w̃(l)) = 0 then{

W.~pl = Real(w̃(l)).~pl

W.~ql = Real(w̃(l)).~ql

Note however that ~q0 = ~0 and if N is even we also have ~qN/2 = ~0. So if N
is even, there are N

2 + 1 eigenvectors from the {p} basis ( l = 0, ..., N2 ) and
N
2 − 1 from the {q} basis ( l = 1, ..., N2 − 1 ). The first eigenvector is always
the uniform ~p0 = 1√

N
~1, with corresponding eigenvalue, w̃(0) = ∑

nw(n).
Still, if N is even , the last eigenvector ~pN2 = w̃(l)(1, (−1), 1, ..., (−1))′ and

the corresponding eigenvalue is ∑nw(n)(−1)n. All the other eigenvectors pl
and ql share the same eigenvalue: Real(w̃(l)).

{
eigenvectors : {p0, p1, q1, p2, q2..., pN/2} = {e1, e2, e3, e4..., eN}
eigenvalues : {λ0, λ1, λ1, λ2, λ2, ..., λN

2
} = {λ̃1, λ̃2, λ̃3, ..., λ̃N}

3.10.9.2 Translation invariant connectivity matrices lead to inde-
pendent two by two matrices for each spatial frequency

We just saw that all translation invariant matrices have the same basis of
eigenvectors, independently of the spatial frequential content of each matrix.
These eigenvectors are orthogonal, because each translation invariant matrix
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is symmetric. Following Murphy and Miller’s argument, lets consider the
Fourier basis :

B = {eE1 , eI1, ..., eEN , eIN} eE1 =
(
e1
0

)
eI1 =

(
0
e1

)

{ei}i=1..N is the eigenvector basis of a N dimensional circulant matrix.
The basis B is orthonormal, but is not the eigenbasis of J. We call PB the
associated (normalized) rotation matrix. J can be expressed in the basis B
as:

F = P ′B.J.PB =



λ̃EE1 λ̃EI1 0 0 ... ... 0 0
λ̃IE1 λ̃II1 0 0 ... ... 0 0

0 0 λ̃EE2 λ̃EI2 ... ... 0 0
0 0 λ̃IE2 λ̃II2 ... ... 0 0
0 0 0 0 ... ... 0 0
0 0 0 0 ... ... 0 0
0 0 0 0 ... ... λ̃EEN λ̃EEN
0 0 0 0 ... ... λ̃EEN λ̃EEN


We will make the choice in all this section that the profile wXY is the

same for all four quadrants of J- up to a multiplicative constant: wEI(l) =
−α1.wEE(l), wIE(l) = α2.wEE(l) and wII(l) = −α3.wEE(l), α1,2,3 > 0. The
frequential content is then also the same at all frequencies, up to those
proportionality constants. An additional constraint that we will impose is
that the uniform vector is an eigenvector of J , the connectivity matrix. The
consequence of this is that for each 2x2 sub-matrix of F , the uniform vector
of dimension two will also be an eigenvector, so that: α3 = α2 + α1 − 1.
This will simplify considerably the equations (see Schur decomposition of a
2 by 2 matrix) and will allow us to have an analytical grip on the variance
of the modes as a function of the frequency. Given these choices in the
Fourier base, we have sub-matrices which have the uniform as eigenvector,
and which are proportional the ones to the others.

κ(n).
(
λ̃EE1 λ̃EI1
λ̃IE1 λ̃II1

)
=
(
λ̃EEn λ̃EIn
λ̃IEn λ̃IIn

)
, λ̃EEn + λ̃EIn = λ̃IEn + λ̃IIn

Murphy and Miller advance that if the connectivity strength w(n) de-
creases smoothly enough with the distance, then the Fourier coefficients
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λ̃EEn = κ(n)λ̃EE1 are likely to be positive (κ(n) ≥ 1,∀n), and then for each
sub-block the first column of is positive and the second column is negative
so that the sub-matrices of F are Dale. This is not always the case. As a
counter example, take the function f(x) = (1 + x2)e−x2 . This function is
even and decreases smoothly with the distance, and it is strictly positive.
Its Fourier transform is F (ω) = (6−ω2)e−ω2/4

4
√

2 , so it is negative in ]
√

6,+∞[.
Notwithstanding, we tried many profiles, like the cosine -which has only one
harmonic- or the Gaussian -whose Fourier transform is positive-, and some
others to see which ones respect the Dale’s condition. Generally, it is hard
to find slowly decreasing profiles such that all the Fourier coeffients are pos-
itive. Coversely if we set to zero the negative coefficients of those profiles
in the Fourier basis and look at the connectivity in the canonical basis, the
matrix are not usually strictly Dale, but only approximately.

3.10.9.3 From the Fourier basis B to the Schur basis S

In the appendix "Schur decomposition of a 2 by 2 matrix", we can see that

a given matrix
(
λ̃EE λ̃EI
λ̃IE λ̃II

)
has two eigenvectors that can be written :(

1
x+

)
and

(
1
x−

)
. We previously set the constraint that for each 2x2

submatrix, the uniform vector is an eigenvector of these sub-matrices: (λ̃EE+
λ̃EI = λ̃IE + λ̃II).

Given this constraint, we have simply:

x+ = 1 and x− = λ̃IE

|λ̃EI |

With regard to the basis B, these eigenvectors EigB can be written:

EigB = {{



1
x1

+
0
0
...
0
0


,



1
x1
−
0
0
...
0
0


}}, {



0
0
1
x2

+
0
0
...


,



0
0
1
x2
−
0
0
...


}, ...}
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These eigenvectors are not orthogonal. When we orthogonalise them in
the basis B, we are going to obtain the new Schur basis S , with its associated
rotation matrix PS:

SB = {{



1
1
0
0
...
0
0


,



1
−1
0
0
...
0
0


}}, {



0
0
1
1
0
0
...


,



0
0
1
−1
0
0
...


}, ...}

Each pair of eigenvectors can be indexed with the number of the block
in the Fourier basis


λn+ = λ̃EEn + λ̃EIn
λn− = λ̃EEn − λ̃IEn
tn = λ̃IEn − λ̃EIn

In the Schur basis, the connectivity matrix is then:

T = P ′S.F.PS = P ′S.P
′
B.J.PB.PS =



λ̃1
+ t1 0 0 ... ... 0 0
0 λ̃1

− 0 0 ... ... 0 0
0 0 λ̃2

+ t2 ... ... 0 0
0 0 0 λ̃2

− ... ... 0 0
0 0 0 0 ... ... 0 0
0 0 0 0 ... ... 0 0
0 0 0 0 ... ... λ̃N+ tN

0 0 0 0 ... ... 0 λ̃N−


However, given as we saw in the first part that eigenvectors of translation

invariant matrices come in pairs of cosines and sines, with the same eigen-
value (excepting the first eigenvector), we have λ̃XY2 = λ̃XY3 and λ̃XY4 = λ̃XY5
and so on. Then, we also have that the numerical values (the eigenvalues
and the feed-forward link) of the second Schur decomposition are equal to
the values of the third one, the fourth to the fifth and so on.

In the canonical basis, the Schur vectors can be written as:
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Sc = {{(eE1 + eI1), (eE1 − eI1)}, {{(eE2 + eI1), (eE2 − eI2)}, ...}

Sc = {{



1
...
1
1
...
1


,



1
...
1
−1
...
−1


}, {

(
e2
e2

)
,

(
e2
−e2

)
}, ...}

We then see why the first feed forward pair corresponds to the difference
to uniform, and the other pairs have Schur vectors called minus and plus.

3.10.9.4 Variance of the Schur modes as a function of the fre-
quency

Starting from the canonical basis and going directly to the Schur basis,
differential equation characterizing the system might be written:

Ẋ = −X + JX + ξ

Ẏ = −Y + TY + ξ T = P ′S.P
′
B.J.PB.PS

When we compute the Lyapunov equation to obtain the covariance ma-
trix of the Schur decomposition, we can make it directly at the level of
the blocks, because T is block diagonal. Given a connectivity matrix Tn =(
λn+ tn

0 λn−

)
, solving the Lyapunov equation:

(Tn − I2)Cn + Cn(Tn − I2)′ = −σ2.I2

gives the variances v and covariances c matrix between the modes:
vn+ = −σ2

2(λn+−1)(1 + (tn)2

(λn−−1)(λn−+λn+−2))
vn− = −σ2

2(λn−−1)

cn+− = tn.σ2

2(λn−−1)(λn−+λn+−2)
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Given the imposed constraints, λn± = κ(n)λ1
± and tn = κ(n)t1.

We then have the formula:
vn+ = −σ2

2(κ(n)λ1
+−1)(1 + (κ(n)t1)2

(κ(n)λ1
−−1)(κ(n)λ1

−+κ(n)λ1
+−2))

vn− = −σ2

2(κ(n)λ1
−−1)

cn+− = κ(n)t1.σ2

2(κ(n)λ1
−−1)(κ(n)λ1

−+κ(n)λ1
+−2)

Replacing the values of λ1
± and t1:

vn+ = −σ2

2(κ(n)(λ̃EE1 − |λ̃EI1 |)− 1)
(1+

(κ(n)(λ̃IE1 + |λ̃EI1 |))2

(κ(n)(λ̃EE1 − λ̃IE1 )− 1)(κ(n)(2λ̃EE1 − λ̃IE1 − |λ̃EI1 |)− 2)
) (1)

Therefore, we can examine how does the variance of the plus mode evolves
with the frequency. As n→ N , κ(n)→ 0, because the power of a smoothly
decreasing profile has low power in the high frequencies. The high frequency
components of the system (which are uncoupled from the other frequencies),
behave like a subsystem that is uncoupled, having no recurrent connections:
Ẏ = −Y + ξ. Consequently, the variance of the last modes is given approx-
imately by the variance of the noise: vn+ = σ2

2 .
We can imagine two situations:
- The first spatial frequencies that compose the recurrent connectivity

strongly quench the dynamics, so that the variance associated with the first
modes is even smaller that the variance of the noise. When we examine
the variance of the plus mode as a function of the frequency, we expect the
variance to increase.

- The first frequencies in the connectivity have an amplifying effect so
that the variance associated to the plus mode is higher than the noise vari-
ance. Coarsely, we expect the variance of the noise to decrease as a function
of the frequency. The question is whether we can find a parameter regime
in which there is a transient increase in the variance, to then decay towards
σ2

2 .
The sum mode is composed by two summands:
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σ2

−2(λ1
+κ(m)− 1)) and

σ2

−2((λ1
+κ(m)− 1))

(t1.κ(m))2

((λ1
−)κ(m)− 1)((λ1

+ + λ1
−)κ(m)− 2))

The first term decreases (or increases) monotonically with the frequency.
The second term can increase in two situations: first, if the denominator

grows faster than the denominator and second if the denominator decreases
faster than the numerator. The first alternative is not plausible, because
κ(n) decreases as a function of the frequency- . For the second alternative,
it is not excluded that it might happen because on the denominator we
have a damping term to the cube κ(n)3 whereas in the numerator we have
a damping term to the square κ(n)2.

What could be the mechanism behind such kind of amplification ? Lets
imagine that we have a first harmonic whose sub-block matrix is proportional
to the offset. In the Schur domain, taking into account the decay, the sub-
block equations are linked through:

κ(2).
(
λ̃1

+ t1

0 λ̃1
−

)
− I2 =

(
λ̃2

+ t2

0 λ̃2
−

)
− I2

Recalling that the eigenvalues are negative, multiplying a negative quan-
tity by a positive number smaller than one results in a bigger quantity.

0 > κ(2)λ̃1
+ > λ̃1

+

If the amount of negative feed-back is a bit smaller in the first harmonic
(of index 2) with respect to the amount of negative feed-back of the dc
(index 1): λ̃1

+ − 1 > κ(2)λ̃1
+ − 1, then by normal amplification it could

be that the first harmonic displays more variance that the DC. However,
it doesn’t needs to happen always, because as the damping κ(n) decreases
the feed-forward coupling t1κ(n) decreases and the patterns plus and minus
become uncoupled.

3.10.9.5 Examples of competitive activity with translation invari-
ant matrices

In order to illustrate that indeed it is possible to have competition, with a
Gaussian profile. As we can see in figure 3.17 E, we see a transient increase
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in the variance of the modes c+, that then decreases to 1, half of the noise
variance σ2

2 .
The matrix parametrisation is the following:

(
JEE JEI
JIE JII

)
=
(

JEE −γ1JEE
γ2JEE −(γ1 + γ2 − 1)JEE

)
, JEE|(i,j) = Ke

−d2
(i,j)
w2

d(i,j) =
{
j − i if i− j < N

2 ;
N − j + i else.

In figure 3.17 E, we plotted the formula (1) and also the measured vari-
ance.
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Figure 3.17: Example of a connectivity matrix with a gaussian profile that gen-
erates more variance on the first plus mode than in the uniform. A: connectivity
matrix, B: connectivity matrix in the Fourier basis (minus the identity), C: con-
nectivity matrix in the Schur basis (minus the identity), D: covariance in the
Schur basis, E: variance of the plus mode as a function of the frequency γ1 = 1.5,
γ2 = 2.5, K = 20, 2N = 140, w = bN5 c; σ

2 = 2
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Chapter 4

Cortical neurons integrate
common inputs from sensory
thalamus

HIGHLIGHTS

• This chapter introduces a technique developed by N. Mor-
genstern and L. Petreanu, showing how through opto-genetic
stimulation and electro-physiological recordings, it is possi-
ble to deduce an anatomical characteristic: the spatial selec-
tivity of thalamo-cortical projections in the cortical layers.

• We built a model of the experiment, relating the propor-
tion of shared axons with the way that EPSCs from pairs of
neurons covariate.

• This study shows that pairs of connected neurons in L4 tend
to receive more shared input from dLGN, than pairs of non
connected neurons. The same happens for pairs of connected
cells, where one of the cells is in L4 and the other in L2/3.
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4.1 Introduction: the visual pathway, from
the retina to the primary cortex

4.1.1 The Hubel and Wiesel model
The retina is a thin layer of tissue situated in the back of the eye. It is covered
by two kinds of photo-receptors called rods, in the fovea, and cones in the
periphery. After passing thought bipolar cells, horizontal cells, amacrine
cells, the visual information attains the ganglion cells (see the figure 4.1 B).
We now know, thanks to the seminal work of Hubel and Wiesel [72], [73],
that the retina detects local contrast of the images, and the brain’s work
is to use this information to segment and identify the objects in presence.
This strong insight came from the fact that Hubel and Wiesel observed
that individual cells in primary visual cortex of cats responded to bars with
specific orientations [72]. Subsequently, they proposed a model, a possible
implementation of how this orientation specificity could arise, that we will
revisit in here.

The visual environment is projected though the lens into the retina, on
which an image is formed. In the retina the light is transduced into an
electrical signal by the rods, which are sensitive to a specific wavelength
range. The rods project onto the bipolar cells. The retina is divided into
functional regions called center and surround regions, which correspond to
particular regions of the visual space. In center regions of the retina, the
bipolar cells project directly to the ganglion cells, exciting them. If on the
contrary, the bipolar cells are on a surround region, they project to horizontal
cells, which in turn, inhibit the ganglion cells. Overall, if a punctual visual
stimulus is physically on a center, it activates the ganglion cells, but if it is
on the periphery, it inhibits this ganglion cell. Such a ganglion cell is called
an on-off ganglion cells, because of its receptive field, and it is represented
by a black disc, in which there is a white disk in the middle. Also, there is
a dual version of the on-off neurons, called off-on ganglion cells, in which
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when the stimulus is on the surround, it excites the ganglion cell and inhibits
it when it is on the center.

The axons of the ganglion cells go though the optic chiasm projecting
to the opposite hemisphere and attain the thalamus, and more precisely the
visual thalamus, called the lateral geniculate nucleus (LGN), see figure 4.1
A. The LGN is thought to act as a relay between the retina and the primary
visual cortex V1, which means that its cells conveys the same information
as the ganglion cells, so we will call also these cells on-off or off-on cells.

As we said before, cells in V1 have the property of being orientation
selective, which means that they fire when a bar of a particular orientation
is presented in a particular region of the retinal space. Hubel and Wiesel
postulated that the mechanism by which neurons in V1 acquire the property
of being orientation selective, is similar to the one that generate on-off cells,
i.e. that there is a particular spatial selectivity of the pool of neurons that
converge to one cell. More precisely, in the case of V1 cells, the idea is that
a cell in V1 only receives inputs from a structure in LGN composed of three
columns of on-off and off-on LGN cells (see figure 4.1 C). The first and the
third columns are composed only of adjacent off-on cells, and the middle
column is composed of on-off cells. The orientation of this structure of on-
off, off-on cells in the visual space will determine the orientation selectivity
of cells in V1, which we depicted with an oriented coloured bar.

Considering the schematic of the canonical cortical microcircuit in the
introductory chapter (figure 1.1), we see that the thalamus projects to al-
most all the cortical layers, except to L1. All over the depth of the cortical
column neurons show similar orientation selectivity. The orientation selec-
tivity varies smoothly across the surface of certain species like in cat visual
cortex, but in a totally discontinuous way in rodents - even if the fact of not
being adjacent doesn’t prevents them to be connected.
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Figure 4.1: A: schematic of the early visual pathway. B: retina stratification.
C: Hubel and Wiesel model of orientation selectivity. D: interdigitated cortical
subnetworks of neurons with similar stimulus preference.
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4.1.2 Amplification of the thalamo-cortical projection

Lien and Scanziani [87] used in 2013 whole cell voltage patch to determine
how does the tuning of the membrane currents to oriented gratings changed
when they silenced layer 4 of mouse V1 with optogenetics.

Briefly, lets recall in what optogenetics consists. Inserting a gene from
a microalgae in the genome of adeno-associated virus AAV virus, makes the
host cell synthesize light-sensitive ion channels. These special ion-channels
are called channel-rhodopsins: they open in presence of light, allowing ionic
currents to enter into the cell, depolarizing the membrane, and eventually
making the neuron spike.

In this experiment, the authors used genetically modified mouse express-
ing channel-rhodopsin in the parvalbumin-expressing (PV) GABAergic in-
terneurons. The effect of GABA is inhibitory: driving interneurons to spike,
inhibits the surrounding excitatory cells. This manipulation isolates the con-
tribution from the thalamus into the cortex, and by default, the contribution
of the recurrent connectivity to the tuning of a single cell in L4 (see figure
4.2). Lien and Scanziani discovered that the sub-threshold currents had the
same tuning to gratings when the cortex was silenced, as well as when it
was not. When light was on, the amplitude of the currents was reduced by
about one third.

The conclusion of this experiment, is that the recurrent connectivity
is just multiplying and maintaining the thalamic input, which corresponds
to the definition of amplification (see scalar case of normal amplification
in chapter 3.). The cortical amplification of thalamic input had been al-
ready predicted by Douglas et al [38] back in 1995, when they showed that
the relative number of synapses reaching a cell cortical cell, was small in
comparison with the number of recurrent synapses coming from the cortex:
"[In V1] connections arising from the LGN make up less than 10% of the
excitatory synapses formed with the spiny stellate cells". They concluded
that the signal coming from the thalamus should be amplified somehow,
and proposed a computational mechanism to achieve this, namely normal
amplification. Normal amplification, as we extensively explained it in the
third chapter, appears as we decrease the negative feedback that a single
cell or a population of cells exerts onto itself. As Murphy and Miller showed
[105], normal amplification is not the only computational mechanism possi-
ble: non-normal amplification is very general and might also play a role in
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the amplification of joint patterns of correlated activity.

A B

Figure 4.2: Experiment consisting in exciting optically the inhibitory parvalbumin
PV+ interneurons in order to silence the excitatory cells, and disentangling the
relative contribution from the thalamus and from the cortex to the stimulus-tuning
of one cell in L4. A: experimental setup. B: results, subthreshold membrane
potential in presence and in absence of optogenetic stimulation, for two different
visual stimuli. Figure adapted from [87].

4.1.3 Amplification and connectivity
As it is apparent in previous chapters, when we think of a recurrently con-
nected network, as L4 or L2/3, we should not consider that because two
excitatory cells are connected, they are going to be positively correlated,
because all the other interactions in the circuit also have an impact on their
correlation. For example, one cell connected to another can also be strongly
connected to an inhibitory cell, which in turn inhibits the second cell. As a
rule of thumb, we can nevertheless consider that if the strength of the con-
nection between two cells is very high, and the average strength of synapses
is low, these cells are probably going to be correlated. Cossell and colleagues
[29] recently showed, using in vivo imaging experiments and then whole-cell
recordings in vitro, that cells in layer 2/3 with similar receptive fields tended
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to be strongly connected in sub-networks, and that the most correlated cells
tended to be bidirectionally connected. Intuitively it is patent that bidirec-
tional strong connections between a couple of cells creates positive feed-back
between them, so that when these neurons are perturbed, they are active
more time than cells in isolation. We can see examples of this this main-
tained activity in figure 4.2 B.

We shouldn’t consider neither that because two cells are unconnected,
they are not going to be correlated, because they can receive common input.
Nevertheless, being connected and receiving common input, is going to make
them be more positively correlated. Yoshimura et al [164], have shown that
pairs of cells that are connected in layer 2/3 tend to receive axons projecting
to both cells coming from L4. We say that these pairs of cells receive shared
inputs.

4.1.4 Aim of this chapter
On one side, the Hubel and Wiesel model makes a prediction of the spatial
selectivity of convergence of thalamic projections into L4 cortical neurons.
On another side, there is evidence of amplification of the thalamo-cortical
signal via recurrent connections, in which cells with similar receptive field
are strongly connected. Consequently, this work tests the prediction that
pairs of cells that are connected in a single cortical layer tend to receive
more shared input from the dorsal lateral geniculate nucleus dLGN. Given
that the projections from dLGN target many layers, we will also consider
whether single axons tend to innervate connected pairs of cells in different
layers.

This study was done in collaboration with Nicolás Morgenstern and
Leopoldo Petreanu, which conceived the study. The experiments and the
data analysis were done by N. Morgenstern. My contribution onto this
study is limited to the modelling part. Some of the results presented here
were published as a research article [104].

We will first explain the experiments done by N. Morgenstern. Then, we
will show two alternative ways in which we modelled this experiment. After
that, we will discuss which way was retained for the publication to observe
the data, and finally we will see the data and comment the results.
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4.2 Experiments

4.2.1 Preliminary experiments: determining the dis-
tribution and strength of dLGN axonal projec-
tions across cortical layers of V1

4.2.1.1 Density of thalamocortical projections to different corti-
cal layers

In order to observe the projections from the thalamus to the cortex, one
can inject a virus called "AAV-2/1-CAG-Channelrhodopsin-2-Venus", which
inserts a gene in the host cells. This gene express a protein called GFP,
green fluorescent protein which lies in the cytoplasm. When exposed to blue
light, this protein called Venus emits back a green light at around 550 nm,
allowing to see the somata, the dendrites and the axons.

In all the described experiments, mice of about 15 days old were infected
with a virus in the dLGN. Four to twelve days after the infection, mice were
euthanized, and acute coronal slices of the primary visual cortex were cut
using a vibratome.

The slice were illuminated with a laser. Using a confocal microscope, we
can take a picture of the fluorescence of the projecting axons. When the
fluorescence is quantified, it appears that, as reported in the literature [59],
the densest projections are seen in layer 4, followed by layer 2/3 and some
sparser projections to L5 and L6.

4.2.1.2 Strength of thalamo-cortical projections to different cor-
tical layers

The previous virus also leads to the expression of channel-rhodopsin ion
channels in the cell axonal membranes and over the axon terminals. In order
to measure the connectivity strength between the dLGN projecting axons
and cells from different cortical layers, tetrototoxin (TTX) was applied in
order to avoid the recruitment of voltage gated sodium Na+ channels and
to evoke only mono-synaptic responses.

Previous work by Petreanu [115] showed that these axons can be stimu-
lated by light driving, even in the case in which the axons were cut from their
soma. When light was applied, axon terminals released the synaptic vesi-
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cles. Using whole cell recordings on a post-synaptic cell, the total amount of
EPSC’s were recorded and summed by for each neuron (for example over the
dendritic trees of L2/3), which allowed to quantify the connections strengths
and to compare them with respect with the connection strengths of an L4 cell
recorded in the same slice. This method is called sub-cellular ChR2-assisted
circuit mapping, sCRACM [115].

This experiment showed that dLGN inputs innervate mainly L4 and also
lower L2/3 cells, with an average strength -in the first 100 µm- slightly
smaller than L4 (85%). The thalamic inputs into L5 where only 16% as
strong as those contacting L4.

Consequently, on the next experiment, the thalamo-cortical projections
that where studied where the ones targeting L4 and L2/3. In the next
paragraph we will describe the main experiment. This technique, developed
by N. Morgenstern and L. Petreanu, is innovative it is applicable to measure
whether long-range axons targets preferentially connected pairs of cells.

4.2.2 Probing connectivity between two neurons, mea-
suring the covariations induced by long range
projections

The first step of the procedure is to patch simultaneously, using two elec-
trodes, a pair of cells (see figure 4.3 B). Once patched, it is possible to inject
a step of current in one of the two cells to make it spike and observe if
this elicits eEPSCs (excitatory postsynaptic currents) in the other neuron
(figure 4.3 C, see also figure 1.2). If it is the case, we consider that these
neurons are connected unidirectionally. We then repeat the same procedure
inverting the role of each electrode to probe the existence of the reciprocal
connection.

After having determined whether the two cells are connected or not, the
amplifier has to be put in voltage-clamp mode. Then, a blue laser (473 nm)
is used to photostimulate the dLGN axons on the slice, using light pulses
of 2 ms and with a power that is not too high so that it elicits unreliable
activation of the long range thalamo-cortical axons. In the figure 4.3 D we
can see an 8 by 8 grid of stimulating points.

When the light pulse is emitted, multiple axons are stimulated. If among
these spiking axons there is at least one that contacts both cells then, across
stimulations, the eEPSCs will have a positive correlation, otherwise they
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will co-fluctuate independently and their correlation will be close to zero. If
we observe that the pair of recorded cells are positively correlated, given a
stimulation point, it means that at this location, there is at least one axon
coming from the thalamus that contacts both cells.

The fact that the recorded neurons are connected or not doesn’t matters
for recording eEPSCs in the pairs, because the power of the laser is low
enough so that only few dLGN axons spike and the membrane potentials
of the recorded pairs will stay always below the spiking threshold, avoiding
poly-synaptic responses.

A B
D

C

Figure 4.3: Method to relate local and long range connectivity. A: virus injection
in the dLGN. B: slicing of the brain, patching a couple of cells. C: recording the
eEPSCs. D: stimulating the projecting axons on a 8 by 8 grid. In each point of
the grid, several repetitions are applied. This figure was adapted from Petreanu
2009 [116].

Before proceeding with the experimental results, we will present the mod-
elling that we made around the main experiment, in which we present how
does the membrane potential of the two cells correlate when we vary the
power, and also what happens when we stimulate at fixed power. The aim
of this modelling is to understand how does the mean correlation depends
on the fraction of shared inputs, and how does other biophysical variables
impact this mean correlation.
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4.3 Modelling the covariance of the mem-
brane potential of a couple of patched
cells as a function of the proportion of
shared inputs

4.3.1 Modelling the correlation as a function of the
stimulation power

To model the experiment, we will start by simplifying the experimental sit-
uation, and we will reintroduce some complexity latter: we will do so by
considering certain variables first as constants and then as random vari-
ables. Lets consider for a moment that instead of stimulating in 64 different
locations (like in figure 4.3 D), we only stimulate in one location, and that
in this location there are enough axons from LGN projecting to the pair of
recorded cells. Furthermore, lets make the assumption that in the stimu-
lated location, the number of axons that project to only one of the neurons
are equal, said otherwise, that the connectivity pattern is symmetric (see
figure 4.4). We call N the total number of LGN axons, and r the fraction of
shared input, i.e., the fraction of axons that contact both patched cells. We
define three ensembles of axons (E1, E2, E3) that contact respectively only
the first cell, both cells, and only the second cell. If in a location there are N
axons, and a proportion r of shared axons, there are N.r axons in the central
branch E2 and N.(1−r)

2 in E1 and E3. Implicitly the axons are numbered from
1 to N , so for example i ∈ E2 means i ∈ [1 + N(1−r)

2 , N(1−r)
2 +N.r].

We define three random variables x1, x2, x3 as the summed number of
activated axons (x = ∑

ei) in each ensemble of axons. For each axon define
a Bernoulli variable ei ∈ {0, 1}, i = 1, 2, ..., N that defines a spiking event
(spike with probability pi). We model the spiking of an axon as a probabilis-
tic event, because we stimulate in a regime in which failures and successes
occur.

Let’s call σ1, σ2 the membrane potential in the two cells (expressed in
number of excitatory post-synaptic potentials). Because each event ei, i =
1, ..., N happens independently of each other, the variables x1, x2 and x3 are
uncorrelated. In addition, there is uncorrelated electrical noise - independent
of the laser power - affecting the measure of σ1 and σ2.
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Figure 4.4: Schematic of the model: three ensembles of axons contact symmetri-
cally two recorded cells. r designates the proportion of shared axons. P symbolises
the power of the laser.

We define this noise as a random variable ξ of zero mean and variance γ
« 1. σ1 = x1 + x2 + ξ1

σ2 = x2 + x3 + ξ2

The events in the central branch contribute to the joint activity of the two
neurons (see appendix for a proof) :

cov(σ1, σ2) = var(x2)

The expected value of each event ei is modulated by the power of stimu-
lation ℘ : pi = g(℘− θi), as observed experimentally [115] (Figure 4.5 A). g
is a sigmoid, a Gaussian cumulative distribution function of zero mean and
standard deviation σs. θi is a threshold that is particular to each axon, who
obeys a certain unknown distribution pdfθ(℘) (figure 4.5 E).

The variance of a spiking event is (see figure 4.5 B).

var(ei) = pi(1− pi) = g(℘− θi)(1− g(℘− θi)

The variance of x2 can be expressed as : var(x2) = ∑
i∈E2 var(ei) =∑

i∈E2 g(℘ − θi)(1 − g(℘ − θi)) (figure 4.5 D). The variance of the events in
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E1 and E3 doesn’t contribute to the covariance of σ1 and σ2 (figure 4.5 D
and F).
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Figure 4.5: A,C: Spike probability of one or many axons. B,D: spiking variability
of one or many axons as a function of the laser power. The color code denotes
membership to one of the three ensembles E1 in blue, E2 in red and E3 in green.
Each dot is one axon threshold. E: probability distribution of the thresholds. F:
covariance of σ1 and σ2.

The correlations can be expressed as:

corr(σ1, σ2) = var(x2)√
var(x1) + var(x2) + γ

√
var(x2) + var(x3) + γ
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The role of the noise in this model is to have a valid definition of corre-
lation even when the power is zero. Experimentally, this noise is electrical
noise; its variance is of the order of one fifth of the variance of the signals.
High values of var(x1), var(x3) and γ with respect to var(x2) decorrelate
the membrane potential of the two neurons.

4.3.2 Modelling the mean correlation
When we stimulate at one specific place, there are as much thresholds as
there are axons. These thresholds are sampled independently from a con-
tinuous distribution. Experimentally, we don’t know how this distribution
looks like. For illustrative purposes, we chose a Gaussian (4.5 E), but for
many of the points that we will make later, the exact shape of this distribu-
tion is not so important, it suffices that it is unimodal. In all the following
plots we choose two different proportion of shared axons : r = 15% (in red)
and r = 25% (in black).

In figure 4.6 A, we plot the probability distribution function of the thresh-
olds as a function of the laser power. In the abscissa we marked with crosses
"+", the thresholds for a particular location site, and we marked with circles
the thresholds that were attributed to the axons of the second ensemble of
axons E2, which projects to both cells. Idem for the black crosses and circles,
placed on top of the distribution.

In figure 4.6 B, we plot the correlation as a function of the power, using
previously established the formula of the correlation. As we see in the figure
4.5 D and F, only the shared axons (circles) contribute to the correlation or
to the covariance.

A very important remark for what will follow in a subsequent paragraph
is that at a given power, the correlation can only be big if there are shared ax-
ons which have thresholds that are close enough- in a power scale of the order
of the length of the variance profile (figure 4.5 D,F), so that they sum up vari-
ance : lets recall the formula cov(σ1, σ2)(℘) = var(x2)(℘) = ∑

i∈E2 var(ei)(℘).
In figure 4.6 C, we plotted the expected number of recruited axons ERA.

ERA(℘) = E(
N∑
i=1

ei(℘)) =
N∑
i=1

pi(℘) =
N∑
i=1

g(θi − ℘)
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Figure 4.6: Averaging correlations. A: pdf of thresholds, dots: axon sampling for
r1 = 0.15(red) and r2 = 0, 25 (black). B: Parameters used in this simulation:
N = 100, corr(σ1, σ2) as function of the laser power. Number of recruited axons
as a function of the power. C: corr(σ1, σ2) as function of number of recruited
axons. E: mean correlation as a function of the power. We average many curves
like B, each one corresponding to one instantiation of the thresholds. F: idem
as in E, but averaging curves like C. G: correlation as a function of the mean
number of recruited axons. We obtain this plot, combining the ordinates of E and
F. σs = 0, 15, pdfθ(℘) = N(14, 3.64), γ = 0, 0121.

Because we sampled the thresholds independently, the red and the black
curves are slightly different, but they both converge at high powers to the
same quantity: N.

We could have also plotted the expected number of measured axons,
EMA, which is a quantity that we can measure experimentally.
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EMA(℘) = E(
∑

i∈E1,2,3

ei(℘)) =
∑
i∈E1

pi(℘) +
∑
i∈E2

pi(℘) +
∑
i∈E3

pi(℘)

In this definition, the shared axons count double, so that at high powers
both curves converge to a different quantity that depends precisely on the
proportion of shared axons : N(1 + r1) and N(1 + r2). We could have used
this definition, but on average EMA = ERA(1 + r), so they are very similar
and the main points we are going to make in this section doesn’t depend on
which measure we use.

Finally, in 4.6 D, we plotted corr(σ1, σ2) = f(ERA), combining the ab-
scissa and the ordinate of B and C.

Now, adding a bit of complexity to the model, lets imagine that we
record from different locations, and that in each location, we have a similar
connectivity (number of axons, proportion of shared inputs), but with a new
sampling in each location from the same threshold distribution. We then
average all the obtained correlations and the expected number of recruited
axons, at each power (see figure 4.6, E,F,G).

We see that the mean correlation increase with the power and then de-
creases. This simple fact comes out naturally from the way the variance of
Bernoulli variables of probability p behave as p(1 − p): when p is 0 or 1,
the variability is nil, whereas it is maximal at p = 1/2. This simple fact
explains why it is not interesting of doing the experiment at very high or at
very low power: because neurons behave deterministically and then they do
not covariate.

4.3.3 Differences in mean correlation reflect differences
in the proportion of shared axons

We are now going to see what can we deduce about the shared connectivity
from the correlations. In the previous simulations (figure 4.6 E,G) it was
clear that the higher the proportion of shared axons, the bigger the corre-
lations. Indeed, the more axons that belong to E2 on a single stimulation
point can have close thresholds, and then contribute to the correlations: the
purpose of this part is to demonstrate this rigorously.

We call kernel K the bell shaped function that allows to compute the
variance of an event, and that we put on top of each particular threshold (see
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figure 4.5 B,D). This function takes as parameter σs, which determines how
steep is the sigmoidal transfer function of stimulation power versus spiking
probability, and then how thin is the Kernel (figure 4.5 A,B).

Kσs(y) = g(y)(1− g(y))

In the appendix, we show that the variance of x2 can be written as
var(x2)℘ ≈ N.r.(Kσs ⊗ pdfθ). ⊗ represent a convolution.

The convolution operation between the probability distribution function
and the kernel represents well our intuition that, on one side, the recorded
neurons covariate at stimulations in which thresholds tend to concentrate
because there is more probability mass, and on the other side that the overlap
depends on the kernel width.

The variance of x1 and x3 can be approximated, using the same argument:
var(x1) = var(x3) ≈ N(1−r

2 )(Kσs ⊗ pdf)(℘) As we have :

corr(σ1, σ2) = var(x2)√
var(x1) + var(x2) + γ

√
var(x2) + var(x3) + γ

We will use the notation [...]θ to designate averaging the covariance at
different stimulation locations. In each location we sample the thresholds
from the probability distribution.

Using the previous approximation, we replace it in the expressions of the
covariance and obtain:

[corr(σ1, σ2)(℘)]θ ≈
N.r.(Kσs ⊗ pdf)(℘)

N(r + 1−r
2 )(Kσs ⊗ pdf)(℘) + γ

This has two consequences :
- The first one is that for a given power, if we measure the mean correla-

tion in two populations a and b, that have the same biophysical parameters
(N, pdfθ, σs) , because the functionsKσs(℘) and pdfθ(℘) are strictly positive:

[corr(σ1, σ2)a(℘)]θ > [corr(σ1, σ2)b(℘)]θ =⇒ ra > rb

A difference in the mean correlation at a given power reflects a difference
in the proportion of shared axons that this neurons receive. This relationship
is also valid if instead of power we consider the mean number of recruited
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axons ERA and even the expected number of measured axons EMA, because
of the way the non-linearity expands the abscissa - towards the borders (0
or N)- , when we plot the mean correlations as a function of EMA, instead
of mean correlations as a function of the power.

- The second consequence of the approximation of the mean correlation
is that at the maximum of the correlation as a function of the power, where
var(x1) + var(x2) >> γ we have:

[corr(σ1, σ2)]θ ≈
2r

1 + r

The maximal correlation is directly related to the proportion of shared ax-
ons. This approximation is accurate for a wide range of parameters and is
independent of the biophysical parameters (the threshold probability distri-
bution, the total number of axons and the slope of the sigmoid). In figure
4.7, we see an example of taking the maximal mean correlation and deducing
the proportion of shared axons -in dashed lines. In B, we marked with a
green dot the true value.

One then can also ask, to which extent is the approximation of the co-
variance accurate ? Doing simulations we can vary the standard deviation
of the distribution pdfθ, and the kernel width σs and compute the relative
error with respect to the true value r: 100 |

c∗
2−c∗−r|

r
. We find (figure 4.7 C)

that in a broad range of parameters the approximation is good. The regime
of parameters in which the error is maximal is when the standard deviation
of the sigmoid is very low and the probability distribution of the thresholds
is very broad. This is exactly the case in which, as we work at constant
total number of axons, the variance kernels are both too spread apart and
too narrow to be added together.

Using this, we could determine the difference in proportion of shared
connections for two populations of neurons with similar biophysical charac-
teristics (such as connected neurons and non connected). Let c∗1 and c∗2 be
the maximal measured correlation of respectively the non connected axons
and of the connected axons, inverting the relationship maximal correlation
as a function of the proportion of shared inputs we deduce: r1 = c∗1

2−c∗1
,

r2 = c∗2
2−c∗2

, and then ∆r = c∗1
2−c∗1
− c∗2

2−c∗2
.
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Figure 4.7: Approximation relating the maximal mean correlation with the fraction
of shared axons. A: mean correlation as a function of the mean number of recruited
axons. Dotted line: ordinate of the maximum. B: relating the maximum mean
correlation with the proportion of shared axons. The true proportion of shared
inputs is 25%, which is marked with a green dot in the inset. C: computing the
error as a function of the standard deviation of the thresholds distribution and of
the standard deviation of the sigmoid (transfer function of spiking probability as
function of the power. The other parameters used for the simulation, are as in
4.6.
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4.3.4 Adding variability about the number of recorded
sites in one location

In each slice, and for each stimulation site, the number of axons project-
ing to each neuron (n1, n2, n3) and the axon thresholds {θ} are different.
Experimentally, applying this same protocol, for given powers one mea-
sures the correlations at every stimulation site and then average across sites:
[[corr(σ1, σ2)(℘)]θ](n1,n2,n3).

Using numerical simulations, one can show that if we vary randomly the
number of axons -and then the proportion of shared axons - in E1, E2, E3, but
keeping the total amount of axons N in each stimulation site constant , then
taking a discrete probability distribution for each axon belonging to each one
of the three axon ensembles (p1 = n1, p2 = n2, p3 = n3) = (1−r

2 , r, 1−r
2 ), leads

to the equality:

[[corr(σ1, σ2)]θ](n1,n2,n3) = [corr(σ1, σ2)](n1,n2,n3)=( 1−r
2 N,rN, 1−r

2 N)
θ

We then build two models with respectively one or two sources of vari-
ability ({θ} and ({θ}, (n1, n2, n3)). We can show that with respect to the
quantity that concerns us, the average correlations over these random vari-
ables ([...]θ and [[...]θ](n1,n2,n3)), both models are equivalent (see figure 4.8,
red and green plots).

For both models, we can also simulate the spiking of all the projecting
axons, for every stimulation site, and verify that they correspond well to the
quantity predicted by the averaging of the correlation formula see figure 4.8,
blue plots).
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Figure 4.8: Similarity of the correlation model [[...]θ](n1,n2,n3) (in red) and

[...](n1=N. 1−r
2 ,n2=N.r,n3=N. 1−r

2 )
θ (in green). The parameters used for the simulation,

are as in 4.6. We averaged 5000 different parameter instantiations for both mod-
els. In blue we plotted the mean correlation after simulating numerically like if
we were stimulating the axons many times (30), in different locations (600). For
each location, we sample from the discrete distribution (p1, p2, p3) = (1−r

2 , r, 1−r
2 ),

in order to distribute the axons, and the thresholds from the threshold distribution
pdfθ.

The following part is a complement to understand what happens quali-
tatively when we add a layer of variability in the post-synaptic EPSCs.

4.3.5 Examining the consequences of variability in the
post synaptic current amplitude

In our model, post synaptic current amplitude is constant, whereas in the
data it fluctuates, due to the variation of neurotransmitter quantity in each
vesicle. We are going to see that the relevant parameter that intervenes in
our model is the variance of the amplitude distribution. This quantity is
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easily measurable experimentally, and we are going to see that this variance
induces decorrelation of our two cells.

As before, a power elicits or not an event ei that traduces the spiking of
an axon, but now this event provokes a bigger of smaller amplitude of current
in the post synaptic neuron. When there is no event, the amplitude remains
at zero, but when there is an event, this amplitude is distributed according
to the random variable η ∼ N(1, ω), which represents the amplitude and
which interacts multiplicatively with the events ei. The chain of random
variables is now:

℘→ ei → ai = ei.ηi

Let’s characterize the random variable a, thanks to the independence prop-
erty between e and η.

E(a) = E(e.η) = E(e).E(η) = E(e) = 1
var(η) = ω2 = E(η2)− E2(η) ⇐⇒ E(η2) = ω2 + 1
E(e2) = p
E2(e) = p2

var(a) = var(e.η) = E(e2)E(η2)−E2(e)E2(η) = p(ω2+1)−p2 = p(1−p)+pω2

As in the previous model : x = ∑
i ei is the expected number of recruited

axons in a given bundle of axons. Now we are going to define A1 = ∑r
i=1 ai,

as the summed amplitude of the excitatory post-synaptic currents arriving
from the first bundle of axons. In this version of the model we are going to
consider a supplementary fact that we didn’t considered before, and is that
because the central branch of axons splits, there are two axon terminals, so
that they are two synaptic vesicles that are released. Before, we considered
simply that because the synapses between the LGN and V1 are very reliable
[167], every time an axon projecting from the thalamus spiked, an EPSC
was evoked, so that when there is a branching in the axonal terminals, there
was a constant number of vesicles released at the two sites. In the case in
which we consider there is variability in the quantities of neurotransmitter
contained in each synaptic vesicle, so that the epscs are more variable, and
we consider that in each axon terminal of E2 ( A 1©

2 and A 2©
2 ), a epsc of a

different amplitude can happen.

℘→ ei → a
1©
i = ei.η

1©
i ℘→ ei → a

2©
i = ei.η

2©
i
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Then the membrane potentials of the two recorded neurons become:σ1 = A1 + A
1©

2 + ξ1

σ2 = A
2©

2 + A3 + ξ2

As in the previous case:

var(σ1) = var(A1) + var(A 1©
2 ) + γ =

∑
i∈E1,2

var(ai) + γ

=
∑
i∈E1,2

pi(1− pi + ω2) + γ

We have now to recalculate the cov(σ1, σ2), because we have two variables
that covary, but that were only one variable in the previous version of the
model: A 1©

2 and A 2©
2 . These variables represent the amplitude of summed

unitary inputs that come from the second bundle of axons. They both have
in common that after a stimulation of the axons, the same axons in the
second bundle are on. As this central axon projects to the first and to the
second neuron, there are two synaptic releases, that we are going to consider
as independent here.

As in the previous model, it is easy to show that :

cov(σ1, σ2) = cov(A 1©
2 , A

2©
2 ) = var(x2)

After replacement in the usual formula of the correlation corr(σ1, σ2), we
obtain the formula:

[corr(σ1, σ2)]θ ≈
N.r.(Kσs ⊗ pdf)(℘)

N(r + 1−r
2 )(Kσs ⊗ pdf)(℘) + ω2∑

i∈E1,2 [pi]θ + γ

We can see that the variability in the EPSCs amplitudes ω2 has a decor-
relating effect on the mean correlation between the two variables.

Amplification in cortical networks 200



4 Cortical neurons integrate common inputs from sensory thalamus

4.4 Stimulating at only one power and count-
ing the fraction of correlated locations

Experiments are constrained by experimental approaches, and verifying the
previous model would take too much time, because we should sample the
correlations at many powers, and the cells have a life time duration that
only allows for around 30 stimulations.

We then choose to go for a simpler approach experimentally and in the
modelling, which is to stimulate at a constant power and observe the fraction
of correlated locations as a function of the mean number of recruited axons,
and look for differences in the amount of shared input between correlated
and non-correlated pairs of cells. The approach consists in comparing across
slides of connected and non-connected pairs of neurons, the ratio between the
number of stimulated locations eliciting correlated EPSCs over the number
of stimulated locations eliciting responses, when we stimulate at constant
power. If axons are homogeneously distributed on the slice, this measure is
a proxy for the amount of shared axons that pairs of neurons receive.

The strength of a single eEPSCs- that we call the unitary input- is de-
termined by stimulating at low power and observing the minimal amplitude
one can obtain across trials. This current trace is integrated in time to ob-
tain a measure of electric charge (in Coulombs C). Also, the mean number
of photo-stimulated axons can be approached by taking the mean eEPSC
across trials for both neurons, and dividing it by the unitary input. This
is just an approximation, because the shared axons count twice, as we dis-
cussed in the modelling part when we introduced the quantity EMA, the
expected number of measured axons.

4.4.1 Numerical simulation reproducing stimulation at
constant power over a grid of points

We performed a simulation in which, at each location, we assigned new
thresholds at a variable number of axons, and we stimulated many times at
constant power, to obtain correlation in each point, similarly to what was
done in the figure 4.8. However, instead of computing the mean number of
recruited axons at a given power across locations, we regrouped the mean
number of recruited axons by their number, and averaged their correspond-
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ing correlations. The simulation showed that the mean correlation increased
with the mean number of recruited axons. The bigger the fraction of shared
inputs, the bigger the plot of mean correlations as a function of the mean
number of recruited axons.

Similarly, we can plot the fraction of correlated locations as a function
of the mean number of recruited axons, which is the way the experimental
data is plotted (see figure 4.9 and figure 4.10).

To determine whether the correlations are statistically significant at one
location, we have to compare the correlation obtained with the distribution
of correlations that we obtain when we permute the temporal order of the
events for each cell independently, destroying the covariance. If the data is
in the top 5% of the correlation distribution, we consider that the observed
correlation has few chances (5%) of having being generated by chance.
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Figure 4.9: Simulation of the fraction of correlated locations as a function of the
mean number of recruited axons, for a shared fraction of inputs of 10% (yellow),
20%, 30% and 40% (red). Figure adapted from [104].

The modelling we did in the beginning of this chapter, shows analytically
that the recipe to compare at a single stimulation power is to average all
the correlations across locations for connected and for non-connected pairs
of cells. In this simulation, we do not do that: the axons that spike are the
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ones whose threshold is smaller or equal to the laser power. Across locations,
the majority of locations have a certain mean number of recruited axons (like
0 or 1), and from that on, the mean number of recruited axons for a given
stimulation decreases smoothly, as we see that it also happens in the data
(figure 4.10). However, because all axons sample the thresholds from the
same distribution, the higher the number of recruited axons, the higher the
number of axons belong to E2 and then the higher the mean correlations.

4.4.2 Experimental results
Figure 4.10 shows the fraction of correlated locations pulling together the
slides in which cells were connected and the slides in which cells were not
connected. The three plots show whether the pairs are in L4 or in layer 2/3
or if alternatively one of the patched cells is in L2/3 and the other in layer
4. As we see in the upper inset, for a low mean number of inputs, we have
more data points to establish a difference between the connected and the
unconnected pairs.

In figure 4.11 A,B,C, we proceed to sort the data according to whether
the fraction of correlated pairs were connected or not. As in figure 4.10, we
plotted the cells as a function of the mean number of inputs.

In figure 4.10, we can see, as supported by the simulation in figure 4.9,
that a difference in the fraction of shared inputs a elicits a quicker growth
in the number of correlated locations as a function of the mean number of
recruited inputs. We then see how for pairs of cells in layer four (figure 4.10
B), and in simultaneously recorded from L4 and L2/3 (figure 4.10 C), there
is a difference in the growth speed. We compute the statistical significance,
pulling together the data of one and two mean number of inputs, for which
there is more data (in grey). We show in the bottom row, that this dif-
ference is statistically significant for L4-L4 pairs and L4-L2/3 pairs (E,F).
In the case, of L2/3- L2/3 pairs the difference in growth is not statistically
significant (A,D).

Cossell and colleagues [29] showed recently that although cells in L2/3
received many inputs from other cells in L2/3, the ones that were important
for predicting the receptive field of the cells were the very strong ones, which
were very few. In this study, only weakly connected pairs in L2/3 were
measured, (see supplementary material [104]). If the thalamic projections
onto L2/3 follow the same logic as the thalamic projections onto L4, and also
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of the L4 to L2/3 projections, then the prediction for the thalamocortical
projection onto L2/3 is that only strongly connected pairs in L2/3 receive
more shared input from the thalamus.

Figure 4.10: Fraction of correlated locations as a function of the mean number of
inputs. In the top panel, we can see the measured number of correlated locations
over the total number of photo-stimulated locations for L4, L2/3 and L4-L2/3.
The pairs of cells that are connected and non connected are merged. Figure adapted
from [104].
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Figure 4.11: Measured number of correlated locations as function of the mean
number of inputs, for pairs in L2/3 (A), L4 (B), and L4-L2/3 (C). We concentrate
on the first mean number of inputs (0, 1, 2, 3), for which there are more recruited
cells, and separate the fraction of recruited axons depending on whether they are
connected (in red) or not (in black). In the bottom row (D,E,F), we consider only
the fraction of correlated locations corresponding to one or two mean inputs. E
and F are statistically significant, while D is not. Figure adapted from [104].
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4.5 Discussion

4.5.1 Summary
The main findings of the study can then be summarised as following:

- dLGN projections innervate strongly -and preferentially- layer 4 and
deep L2/3.

- Pairs of connected cells tend to have more incoming shared projecting
axons from the thalamus, than cells that are not connected in L4. Idem
when we consider pairs of cells such that one of the two is in layer 4, and
the other one is is L2/3.

- In pairs of cells recorded in L2/3, there is not such a tendency. Pairs
of cells that are connected in layer 2/3 doesn’t seem to receive more shared
input from the thalamus than pairs of non connected cells.

- This study confirmed that in visual cortex, like it has been shown in
other sensory cortices, the thalamo-cortical projection targets also L2/3 in
addition of L4. Based on the current findings, it appears also that the
thalamocortical axons excite simultaneously pairs of neurons on L2/3 and
L4 which themselves are connected.

4.5.2 Modelling correlations
From the first part of the modelling study, we obtained a good understanding
of the way that biophysical details impacted on the mean correlation across
pairs, trials and locations. With this model, one can do three things:

1- Sample the axons at different powers and for each power, determine the
mean correlation, and plot mean correlation versus power, or alternatively
mean correlation versus expected number of measured axons as in 4.6.

2- At the maximum of the previous plot measure the mean correlation
c∗ and deduce the fraction of shared input r = c∗

2−c∗ .
3- Repeat the last two steps for another population with similar biophysi-

cal characteristics, (if the previous measured population was connected cells,
do it for example with non-connected cells), and compare the plots to see if
the fraction of shared inputs are different.

Regarding the more experiment related simulations, we considering grids
in which in each stimulation site, we affected a different number of axons
and different thresholds. We simulated trials with many stimulations and
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computed the correlations for each recording site and determined whether
this correlations were statistically significant. As in the data, the model
shows that the fraction of correlated inputs increases as a function of the
number of imputs recruited at each location.

4.5.3 Connectivity and function
Since the pioneering works of Santiago Ramón y Cajal, scientists like David
Marr have tried to use the anatomy to constrain the range of possible com-
putations that a neural circuit might be performing.

Recently there has been a burst of enthusiasm for what is called the
connectome, which is the mapping of all the possible connections in the
nervous system of an animal. There are many techniques that could be used
to perform this connectome. Each of them has a different resolution in the
level of biophysical detail it can grasp.

Many of the must cutting-edge tools are available to trace the connec-
tions: genetically modified viruses, opto-genetics, calcium indicators, optics,
patch-clamp, dense electron microscopy reconstruction, and even sparse cod-
ing approaches to reconstruct connection strengths [71].

The techniques and the word "connectome" are new, but the idea of
tracing the connections is old. The cortex has concentrated the joint efforts
of electro-physiologists for decades to try to understand the rules that govern
the connectivity between layers and between cell types. The hope is that,
despite is enormous complexity, the stereotypy of the canonical microcircuit
(figure 1.1), will reveal fundamental insights about the computations it might
be performing.

However, deducing the dynamics from the connectivity is a very hard
problem. Eve Marder, with its forty years experience of studying central
pattern generators in the somato-gastric system states: "the connectivity
diagram, or connectome, is absolutely necessary and completely insufficient
to explain circuit dynamics". After probing the existence or the absence
of all the connections in the somato-gastric nervous system -of a few hun-
dred cells-, in order to be able to recover using simulations the dynamics of
the central pattern generators, Marder and collaborators had to add many
more biophysical details like the connectivity strengths and the ion channels
dynamics of different cell types.

In the modelling chapter, we tried to make the link between the connec-
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tivity and the dynamics of a neural circuit, and we could understand from
a modelling point of view, how quantitative changes in the strength of the
connectivity might lead to changes in the dynamics. We can also think,
given the modelling we have done, that the specificity of the connections of
certain group of cells with another group of cells is crucial to understand how
one circuit constrains its computations. Sampling the connections might not
be sufficient to grasp the circuit specificities. However, from an experimen-
tal point of view, already mapping all the connections -their existence, not
even the strengths- of a portion of tissue might be already a huge technical
challenge.

Some very promising techniques, like electron-microscopy coupled with
machine learning algorithms, are being extensively used in order to recon-
struct all the connections from all the neurons in a piece of tissue. For
example, the initiative called "EyeWire" aims at reconstruct the whole bod-
ies of retinal neurons and their connections, an is played online by thousands
of people. The advantage of this approach, with respect with patch-clamp,
is that it might lead to identify all the connections in a tissue, so that the
numbers will be more robust, because all the synapses will be counted in a
single stack of tissue rather than being sampled from different animals, as it
is done in patch-clamping.

However, the major drawback of the electron microscopy approach, is
that it doesn’t gives an estimate of the connectivity strength of synapses.
As we just saw, having only the information about whether one neurons
is connected with another might not be sufficient at all to say something
about the computation that a recurrent circuit might be performing. To
nuance this claim, lets recall that Douglas and colleagues [38] had a deep
insight about the cortical amplification from signals coming from the thala-
mus using only data of 3D reconstructed cell bodies and axons using electron
microscopy.

Another minor drawback of whole cell body reconstruction using electron
microscopy is that for now, in spite of the gigantic efforts and the industrial
scale at which the "EyeWire" project is being done, the pieces of tissues that
are being studied are small, which precisely might prevent from identifying
the long range axons, which are the ones we are interested in.
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4.5.4 Importance of long range projections to under-
stand cortical functions

Primary cortical areas receive all kinds of long range projections -which by
definition are not primary sensory inputs. Those long range projections may
be: motor related inputs, feedback from higher cortical areas or projecting
axons from other sensory modalities. Also, these long range projections
may be neuro-modulatory and the signals conveyed, be related to attention,
expectation or reward processes.

The existing techniques to map long range connections are genetic tools
like rabies virus, which jump to the pre-synaptic cells of the infected cells
and express channel-rhodopsin in them.

However, patch clamping is the only technique that allows to measure at
the same time the existence of connections between two neurons, the synap-
tic sub-threshold currents that cross their membrane and the connectivity
strength between two cells. It has led to numerous important insights about
the inputs a cell receives, as we saw in the case of Lien and Scanzianni [87].
The presented technique deals with the interaction of local and long range
connectivity, and could be applied to any other long range projection.

4.6 Appendix

4.6.1 Mathematical proofs

4.6.1.1 Covariance of the two neurons membrane potential as a
function of the variance of the axons total activity

We will prove the following equality: cov(σ1, σ2) = var(x2).

E(σ1σ2) = E((x1 + x2 + ξ1)(x2 + x3 + ξ2))
= E(x1x2 + x1x3 + x2

2 + x2x3 + ξ1(x2 + x3) + ξ2(x1 + x2) + ξ1ξ2)
= E(x1)E(x2) + E(x1)E(x3) + E(x3)E(x2) + E(x2

2) + 0
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E(σ1)E(σ2) = E(x1)E(x2) + E(x1)E(x3) + E(x3)E(x2) + E2(x2)

cov(σ1, σ2) = E(σ1σ2)− E(σ1)(σ2) = E(x2
2)− E2(x2) = var(x2)

4.6.1.2 Approximation of the variance

We will prove the following approximation: var(x2)℘ ≈ N.r.(Kσs ⊗ pdfθ).

var(x2)℘ =
∑
i∈E2

Kσs(℘− θi)

=
∑
i∈E2

∫ +∞

−∞
Kσs(℘− θ)δ(θ − θi).dθ

=
∫ +∞

−∞
Kσs(℘− θ).(

∑
i∈E2

δ(θ − θi)).dθ

≈
∫ +∞

−∞
Kσs(℘− θ).(N.r.pdf(θ)).dθ = N.r.(Kσs ⊗ pdf)(℘)

4.6.1.3 Covariance of the two neurons membrane potential when
there is variability in the post synaptic current amplitude

We will prove the following equality: cov(σ1, σ2) = cov(A 1©
2 , A

2©
2 ) = var(x2)
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cov(A 1©
2 , A

2©
2 ) = E(A 1©

2 A
2©

2 )− E(A 1©
2 )E(A 2©

2 )

= E((
r∑
i=1

ei.η
1©
i )(

r∑
i=1

ei.η
2©
i ))− E(

r∑
i=1

ei.η
1©
i )E(

r∑
i=1

ei.η
2©
i )

= E(
r∑
i=1

e2
i η

1©
i η

2©
i )− E2(

r∑
i=1

ei)

=
r∑
i=1

E(e2
i )E(η 1©

i η
2©
i )− E2(

r∑
i=1

ei)

=
r∑
i=1

E(e2
i )E(η 1©

i )E(η 2©
i )− E2(

r∑
i=1

ei)

=
r∑
i=1

E(e2
i )− E2(

r∑
i=1

ei) = var(x2)

4.6.2 Numerical simulation
Experimentally, at any given photostimulation location, the number of axons
on each ensemble (n1, n2, n3) and the axonal thresholds {θ} are different. For
the plot in figure 4.9, we simulated sampling axons from different locations
with fixed laser power. Axons were randomly assigned to the ensembles
E1 , E2 or E3, with probabilities (1−r

2 , r, 1−r
2 ) respectively. The number of

axons was fixed at 40. Each axon had a threshold θ sampled from a Gaussian
probability distribution with mean 20 (a.u. of power) and standard deviation
5. Laser power was fixed at 10 a.u. The variance of the noise, γ, was 0.2.
The sigmoid g was a cumulative Gaussian distribution centered at zero and
with a standard deviation of 2. The tested fractions of shared axons r
were 0.1, 0.2, 0.3 and 0.4. We obtained values of the correlation coefficient
corr(σ1, σ2) after 20 trials. By bootstrapping 10,000 times we estimated 99.5
% confidence intervals around the value of corr(σ1, σ2). We considered the
simulated locations correlated when the lower boundaries of the confidence
intervals were greater than zero. The number of evoked inputs per trial
I corresponds to the number of spiking axons, where shared axons count
double: I = ∑

i∈E1 ei +∑
i∈E3 ei + 2∑i∈E2 ei.
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Chapter 5

Determination of the number
of statistically significant
principal components

HIGHLIGHTS

• We start this chapter by presenting a brief overview of some
of the existing methods to determine the number of statisti-
cally significant principal components.

• We then introduces one new method using non-parametric
statistics.

• We compare how well does our method performs with respect
to the other ones.
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5.3 Proposed method . . . . . . . . . . . . . . . . . . 225
5.3.1 Motivations . . . . . . . . . . . . . . . . . . . . . 225
5.3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . 225
5.3.3 Shuffling the data: preserve the variance, destroy

the covariance . . . . . . . . . . . . . . . . . . . 226
5.3.4 Use of this shuffle to determine the statistical sig-

nificance of the principal components of the data 227
5.3.5 Signal and noise . . . . . . . . . . . . . . . . . . 229
5.3.6 Detailed procedure . . . . . . . . . . . . . . . . . 231
5.3.7 Explanation . . . . . . . . . . . . . . . . . . . . . 232

5.4 Comparing different methods . . . . . . . . . . . 236
5.4.1 Comparing methods with different data-bases . 236
5.4.2 Comparing methods with different artificially gen-

erated data sets . . . . . . . . . . . . . . . . . . . 238
5.5 Determining the different number of statisti-

cally significant components in different exper-
iments during desynchronised state . . . . . . . 241

5.6 Discussion and conclusions . . . . . . . . . . . . . 241
5.6.1 Results from the comparison with simulated data 241
5.6.2 Results from the analysis of spiking data from

desynchronised state . . . . . . . . . . . . . . . . 242
5.6.3 Advantage of the preprocessing to evaluate non-

stationarity of the data . . . . . . . . . . . . . . 242

5.1 Introduction
Principal component analysis (PCA) is the oldest and the most popular

method of multivariate analysis. This technique was discovered by Pearson
in 1901 [112], and rediscovered though a different method by Hotelling in
1933 [70]. The core idea behind PCA is to observe the data from another
perspective, trying to identify common patterns of variation in the observed
variables. More precisely, if the jointly observed variables are generated by
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a multivariate stochastic process, PCA is going to try decorrelate this pro-
cesses though a rigid rotation of the canonical basis into another orthonormal
basis (figure 5.1, A and B).

The dataset of jointly observed N variables is composed of an observation
matrix X of dimensions T times N, T is the number of observations. We
center the observations with respect with their mean, in order to see common
variations around the mean, and we usually normalize the variables by their
standard deviation. If we call C the covariance or the correlation matrix,
C = 1

T
X ′X. PCA consists simply in diagonalizing this matrix:

C = P.D.P ′

D is a matrix whose diagonal elements i are the projected variances of
the multivariate data λi onto the column unitary vectors PCi of the rotation
matrix P: these vectors PCi are called the principal components. We usually
sort the diagonal matrix from the highest to the lowest variance, so that when
we refer to the first principal component, we always refer to the direction
that explains more common variance in the data.

Said otherwise, PCA performs decorrelation through orthogonalization.
This decorrelation works when the data we are dealing with has an ellipsoidal
shape in high dimensions (ex. figure 5.1 A). We can see in figure 5.1 B, that
this method doesn’t always work: even if the first PC captures the direction
with the highest projected variance, and the second PC does it with the
constraint of being orthogonal to the first PC, we can see that the data in
those axis is not independent, but rather linked by a non-linear relationship.

If there is a gap in the amount of variance explained by a first subset of
principal components with respect to the rest of the components, i.e. if these
subset of variables seem to explain much more variance, as data miners we
can postulate that there are many independent sources of variability in the
data, and even call signal the processes that happen on those PCs (see red
in figure 5.1 C) and noise the processes that happen on the axis that have
less variance (in blue in the bottom figure).

This study is concerned precisely with how to determine in a principled
way the number of principal components which are statistically significant,
and then call them signal. As figure 5.1 C shows, PCA is a bijective linear
transformation from RN to RN , it is just a basis rotation. Per se, it doesn’t
tells us what is signal and what is noise.

However, the common usage of PCA -which is not the result of PCA- is
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to reduce the dimensionality of the data set, retaining only the first PC’s,
to simplify the interpretation, while retaining as much as possible of the
explained variance. For example if the data is unidimensional, we will find
that a linear combination of the variables, explains a good part of the vari-
ance. The experimenter might then look for interesting interpretations of
the covariation of the variables, postulating the existence of a hidden un-
derlying variable that correlates the observed variables: if for example the
only measured variables are weight and size, one hidden variable that might
explain much of the common variance is the age.

PCA 

latent
variables

observed
variables

FA 

observed
variables

latent
variables

e1

e2
PC1

PC2

signal

noise
signal

noise

PC1PC2

e1

e2

A

B

C D

Figure 5.1: Description of PCA and comparison with FA, as they are similar tools
for exploratory data analysis. A: Example of data for which PCA performs well.
B: example of data in which PCA fails to decorrelate the data in the new axis. C:
PCA seen as a linear combination of latent variables, some of which will be called
signal, and some of which will be called noise. D: FA seen as a linear combination
of latent variables. Each observed variable has independent noise.

What we call noise is then considered to be independent variance at-
tributable to individual variables or to subsets of elements. However, whereas
the definition of what is signal and how to observe it is more or less clear in
PCA, the interpretability of the noise is less clear, because the orthogonal
complement of a given "signal" subspace doesn’t points necessarily in the di-
rection of individual neurons, so the noise is still usually a linear combination
of the latent variables.

In factor analysis (FA) we have -as in PCA- a certain number of latent
variables that combine linearly to produce observed variables, but the dif-
ference is that in FA these observed variables can have independent sources
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of noise (figure 5.1 D). The advantage of PCA with respect to FA is that
is simpler to use and to interpret. For example, in PCA we can have ac-
cess to the scores. In FA, as opposed to PCA, the factors (equivalent of
the PC’s) are not unique, and this severely constraints the interpretation
one can draw from these factors [15]. Overall, these two methods are very
similar and complementary, and in both we have to make the choice of how
many latent variables we are going to retain.

Even if the problem that we will be dealing with in this study is mostly
technical, its repercussions are important due to the widespread of the use
of PCA all around quantitative disciplines. In neuroscience, with the intro-
duction of parallel recording techniques (like electrodes, imaging, eeg,...) as
well as the acceleration of computing power, we can start asking questions
about how do neurons perform computations at the circuit level, or in simul-
taneous in different brain areas. For example Shenoy, Sahani, and colleagues
have been looking at electro-physiological data with the idea of finding low
dimensional trajectories that can simplify the highly complex picture of hun-
dred of cells recorded simultaneously and correlating these trajectories with
behaviour. They have also developed more advanced methods to extract
latent variables that are more adapted for spiking data like GPFA [165] and
GLDS [93].

5.2 State of the art

There are dozens of methods that have been proposed to estimate the num-
ber of factors both for PCA and for factor analysis. In factor analysis the
problem is even more critical than in PCA, because it leads to a distorted
view of the data through the fuse or splitting of factors and to excessive load-
ings. In PCA these considerations doesn’t apply, because PCA is unique.
Once the number of factors is determined, we are faced in both methods
with the problem of interpreting those factors.

Many methods have been proposed to solve the problem of the number
of factors. Some where purely empirical rules like the scree test (Cattel,
1966) [24] Some others like Bartlett’s rule (1950) [9] are statistically based
methods, but which assume normality. A couple of these early statistical
methods had a more lasting impact and are still very used in statistical
software packages like SPSS -mostly Paralell analysis from Horn (1965) [69],
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and Minimum Average Partial from Velicer (1976) [152].
More recent methods for determining the number of principal compo-

nents, based on cross-validation, [19], [36] have made a significant impact
on the statistical field, even if they still haven’t reached a broader audience
of practitioners, who mostly uses software packages or simple recipes like
Kaiser’s rule [75] or the scree test [24].

We will present the most relevant methods found in the literature. We
will start with the oldest methods of Horn and Velicer called respectively
Parallel analysis and Minimum Average Partial test, and we will pursue with
the more recent state of the art methods based on cross-validation.

5.2.1 Parallel analysis
Horn [69] argues in that if the estimated correlation C matrix is determined
on N random variables, it is expected to have N non zero eigenvalues all
nearly equal to 1. However, because of the sample finite size, the eigen-
spectrum is not a flat line with all the values equal to 1, but a curve "with
slope indicating the extent to which sampling error and least-squares bias
have combined to increase the value of the correlations". In figure 5.2 we
simulated sampling from a multivariate uncorrelated Gaussian distribution
at two different sizes.

When we average the eigenspectrum over many realisations of the co-
variance matrix, at the point N/2, for symmetry reasons, the curve is ex-
pected to cross the abscissa 1. Horn cites Guttman (1954) [56], which estab-
lished an inequality to estimate the maximum rank r of a correlation matrix:
r ≤ cardinal({λ|λ ≥ 1}). This upper bound -also called Kaiser’s rule- is
simply the number of eigenvalues of the correlation matrix that are larger
than one. Horn decides to take the Guttman upper bound on the number
of factors into account, but after discounting for the size effect on the shape
of the eigenspectrum, because it was not taken into account in Guttman’s
demonstration: "This proof is based on an assumption that there is no error
due to sampling in the population of subjects, that sampling takes place
only in the universe of measures (tests)" [56].

The accurate way to compare the significance of the data is, according to
Horn, to compute the eigenspectrum over many shuffles and then to average
it, eigenvalue by eigenvalue. The PC for which the eigenspectrum of the
data is above the average shuffle curve, is significant (see figure 5.3).
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Figure 5.2: Effect of the sample size on the distribution of the eigenvalues. Both
sets of samples where generated from a multivariate Gaussian distribution of un-
correlated variables, of zero mean and of unitary variance.

Parallel analysis is an adaptation of the Kaiser’s rule that takes into ac-
count the finite size effect of the sampling. It introduces a very interesting
feature which is to create shuffles and to compare the eigenvalue of the data
with the distribution of shuffled data. However, independently of the quality
of Parallel Analysis to estimate accurately the number of significant com-
ponents, we must recall that this method is not doing hypothesis testing,
in the sense that the surrogate data is not being used to generate the null
hypothesis, which is the following: the data is statistically undistinguishable
from the shuffled data. In the shuffled data, the correlations between vari-
ables are destroyed by random permutations of the temporal occurrences,
but remain finite due to finite size effects.

If we considered precisely using shuffles as in Parallel Analysis into an
hypothesis testing framework, we would like to see for example if when we
shuffle the data, and create a distribution that is spherical on average, the
first eigenvalue of the data lies into the distribution of projected variances
of shuffled data onto the PC1 of the original data.

Some more recent versions of parallel analysis (see [63] for a review),
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Figure 5.3: Example of parallel analysis applied to real data. We performed 1000
shuffles, and computed every time the eigenspectrum of the covariance matrix
obtained, and then averaged those eigenspectrums. Inset: zoom of the eigenspectra
between the components 10 and 20. According to parallel analysis, this data set
has around 14 components that are statistically significant.

consider rather to perform Q shuffles on the data, and compute the intervals
encompassing [5%, 95%] of the distribution of each eigenvalue, and then
consider as significant the components that are above the upper significance
boundary.

This method goes in the right direction, but still runs into some prob-
lems. For instance, the shuffling preserves the marginal variances, but the
marginal variances are a function of both the signal and the noise. Thus,
variance from the signal is spread into all directions, and the dimensions
with lower variance appear as to have systematically less variance than the
eigensprectrum of the shuffled version.

We will show that this approach goes in the right direction, but that it
still runs into some problems, and we will propose a method that overcomes
them. Before doing so, we will first some other important methods to asses
the number of principal components. We will start by a method called
Velicer’s Minimum Average Partial test or simply MAP test.
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5.2.2 MAP test
In 1976, Velicer came out with a very clear and elegant way of determining
the number of components using the partial correlations [152].

We know that, given that a correlation matrix is symmetric and real,
its eigenvectors and eigenvalues are real, and moreover, its eigenvectors are
orthogonal. Diagonalizing the correlation matrix leads to the following ex-
pression (see appendix 3.10.4 for a demonstration):

C = P.D.P−1 = P.D.P t

By developing the last expression, we obtain the spectral decomposition
of C:

C =
N∑
i=1

λiPCi.PC
′
i

Now lets image that we have only two observed variables X and Y, which
are a linear combination of two latent variables Z and W. The partial corre-
lation quantifies how much does one latent variable Z contributes to the total
correlation between the two observed variables by removing the influence it
has on X and Y. The partial correlation between X and Y, controlling for Z
is :

ρXY.Z = ρXY − ρXZρY Z√
1− ρ2

XZ

√
1− ρ2

Y Z

Velicer reminds us that we can compute easily the matrix of partial
correlations after having removed k latent variables by renormalizing the
matrix so that it is a correlation matrix.

Ck = C −
k∑
i=1

λiPCi.PC
′
i

C∗k = G.Ck.G Gij = δij√
(Ck)ij

δii = 1, δi,j 6=i = 0

Looking when does the mean square partial correlations attains a mini-
mum tells us which are the ideal number k∗ of components.
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fm(k) = 1
N(N − 1)

∑
i

∑
j 6=i

(C∗k)2
ij

In his revised version of this test in 2000 [153], Velicer proposes a very
similar statistic, but elevating the partial correlations to the fourth power:

fm(k) = 1
N(N − 1)

∑
i

∑
j 6=i

(C∗k)4
ij

The explanation given by Velicer of such increase and decrease of such
features is the following: the formula for the partial correlation ρXY.Z of
two variables X and Y, controlling for a third variable Z, ρXY.Z decreases if
the numerator decreases faster than the denominator, but increases in the
opposite case. For example, if ρXZ is big and ρY Z is small, then it means that
the latent variable Z is only driving one variable, and not driving common
variance.

5.2.3 Cross-validation methods
Cross-validation is a very useful statistical tool to performmodel selection.
The main idea is to cut the data in two non-overlapping parts, one of them
called the training set and the other the test set. In the training set do a
series of model fits of increasing complexity that decrease the error between
the data and the model prediction error on the training set. However, in
order to see to which extent the statistical regularities captured by the model
on the training set are also present in the test set (how well these models
generalize), we compute the prediction error of each of these models in the
test set, and we keep the model that has the lower error.

A very simple case is when we have a cloud of points representing an
independent variable X and a dependent variable Y. Omitting a point at a
time, to have a training and a test set, we can fit a polynomial of various
orders, and the higher the order of the polynomial, the lower the prediction
error on the training set.

In this way, as the complexity of the polynomial increases we will see the
mean square error decrease towards a minimum and then re-increase. This
minimum gives the good trade-off between bias and variance that captures
as much variance as possible, but that doesn’t over-fit the data, so that it
generalises well to unseen data.
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Using PCA, it is less conceptually straight-forward how to apply this
method: it is clear that the model complexity we want to determine are the
number of principal components, and that PCA must be used somehow to
make a prediction of a point that is not in the training set.

We will then introduce a first clear and simple way of performing predic-
tion using PCA that is although not the best one, in order to then explain
how to do it properly.

5.2.3.1 Row-wise cross-validation

Row-wise cross-validation [19], consists in choosing as test set a point x(t=i,:) =
xi of dimensions < 1.N >, and performing PCA on the rest of the dataX(−i),
obtaining an N by N matrix called PC(−i), whose columns are the PC’s. We
call PC(−i)

k , the first k columns of PC(−i). We use the matricial notation of
the dimensions < a.b > to indicate that a matrix has a rows and b columns.

We can project the point from the test set, onto the first k compo-
nents, through the operation (xi)t.PC(−i)

k and obtain a projected vector of
dimensions < 1.k >. If we re-project back this vector onto the canoni-
cal basis, multiplying the last term by (PC(−i)

k )t, we obtain an estimate of
the point in the test set built using only the first k principal components:
(xi)t.PC(−i)

k .(PC(−i)
k )t.

We can then compute, for each order k of the model, the euclidean dis-
tance distance between the two vectors, the original point and the recon-
structed point, which uses only its projection onto the first k components,
for every training set. The predicted residual error sum of squares (PRESS)
of order k is:

PRESSk =
T∑
i=1
||(xi)t − (xi)t.PC(−i)

k .(PC(−i)
k )t||2

In spite of its simplicity, this approach is not correct because the estimate
of xi, (xi)t.PC(−i)

k .(PC(−i)
k )t, is not independent of xi. The more PC we

use for estimating (xi), the better the reconstruction will be, because we
are reconstructing a vector using the projections of that same vector on an
orthonormal basis. The predicted residual therefore decreases with the order
of the model.

All the other standard cross-validation methods are variants of this sim-
ple method, that try to generate estimates of the point that are independent
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of the point in question, for example leaving out instead of a point xi, one
particular dimension j of the point xij, and then predict this missing value
using PCA. Diana and Tommasi [36] as well as Bro et al [19] make extensive
reviews on these somewhat convoluted methods. Bro et al [19] concluded
that the method proposed by "Eigenvector" (proposed by a software com-
pany), outperformed the other evaluated methods in most circumstances.
We will then now present this method, that is also simple enough.

5.2.3.2 "Eigenvector" cross-validation

As in row-wise cross-validation, the "Eigenvector" method [19] uses as test
set one point xi, and iterates across all the dimensions j ∈ [1, N ] of this
vector, to computes the error -the difference between the actual value and
the estimate: (xij − x̂ij)2. The key ingredient of this approach is that the
estimate x̂ij is built using the point xi, in which the jth dimension is omitted,
noted xi−j. This point is a vector of dimension < N −1.1 >. We can project
this point onto the k k ∈ [1, N ] dimensional PC basis, (PC(−i)

k , noted also
P ), by omitting the jth component of all the PC’s computed in the train set,
that excludes the point X(−i). These truncated k principal components are
noted: PC(−i)

k |(−j) = P(−j). The vector of dimensions < 1.k >, composed by
the jth row of PC(−i)

k is noted p(j).
The predicted residual error is:

PRESSk =
T∑
i=1

N∑
j=1

(xij − [(xi(−j))tP(−j).
(
P t

(−j).P(−j)
)−1

.pt(j)])2

As we see, despite the complexity of the formula, that the predicted
element and its estimate are independent. This "Eigenvector method" can
also be written in a more compact form as:

PRESSk =
T∑
i=1

N∑
j=1

(xij − [P.[P(−j)]+.xi(−j)]|j)2

where [M ]+ designates the pseudo inverse of a matrix, and v|j designates
the jth component of the vector v.
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5.3 Proposed method

5.3.1 Motivations
When designing our method, we wanted it to have certain properties that
we detail hereinafter.

First, we wanted it to be assumption-free about the distribution of the
data, which for the majority of cases is unknown. Certain statistical frame-
works like cross-validation and hypothesis testing have this property. How-
ever, contrary to cross-validation methods, the hypothesis testing frame-
works (like non-parametric statistics), offer an estimate of the significance of
the data under a null hypothesis, and this is not the case for cross-validation
methods, whose goal is only to minimize the prediction error.

Another important motivation for designing this method, is that when
dealing with biological data, we need to be able to make statements about
specific time scales, because often this data contains a variety of time-scales,
not all of which have the same origin or are necessary of interest. A com-
monly observed trend is that in biological data, the power decreases like the
inverse of the frequency 1/f. Because of this, when one uses Pearson corre-
lation, they are typically dominated by the low frequencies, which can be
irrelevant processes: for instance in a typical neuro-physiological recording,
one see cells dying and appearing along the recording. We then designed
a pre-processing method that is robust to this problem. To this ends, we
adapted a method from Schwartz et al. [134].

Before proceeding with the method, we will first introduce separately
different steps that intervene in the algorithm.

5.3.2 Preprocessing
When we are dealing with variables that are sampled repeatedly from a
same object, in order to control for non-stationarities, we center the counts
in fixed jitter windows, as we described in the methods section of the second
chapter (see figure 2.26).

When we will deal with observations that represent different character-
istics of different individuals, we will simply use the mean across the whole
population. If there are known subgroups in the populations we can subtract
their mean subgroup by subgroup .

Amplification in cortical networks 225



5 Determination of the number of statistically significant principal components

5.3.3 Shuffling the data: preserve the variance, de-
stroy the covariance

The shuffling we are going to implement consists of permuting randomly
the time bins of a given variable inside the jitter window. For point-wise
processes, like spike trains, if we randomly reassigned the spikes on a local
window around the spike, and then we did some smoothing (like counting
or with some Gaussian kernel), the variance would clearly not be preserved.

If we rather permute the counts inside each jitter window (counting the
spikes presents in the time bins of length tc), see figure 2.26, this preserves
the variance V of each variable, because the sum is commutative: V =

1
Nb.NT−1

∑Nb
c=1

∑NJ
i=1(nci − µc)2. However, the shuffling destroys the covariance

between the variables. Nb is he number of jitter windows.
The core idea behind a shuffling test is to see how does one statistic from

the data compares with the distribution of statistics from the surrogate
data. For example, in this particular case, if we want to test whether the
measured correlation between the variables a and b is statistically significant,
we compute the distribution of correlations obtained when we shuffle the
data Q times, and see where does the correlation between a and b lies in this
distribution (see figure 5.4 C). If it is very far apart from the distribution
bulk (p value very small), we can reject the null hypothesis, that states
that the correlation between a and b is likely to have been generated by a
random fluctuation. The p-value is the proportion of surrogates that have
a correlation value higher or equal to the original correlation of these two
variables (see figure 5.4).

5.3.3.1 Shuffling the data in a particular subspace

This method consists in doing exactly what we just explained, but con-
sidering particular directions of the space of variables. For example, if we
project the data onto a subspace generated by two vectors < PCx, PCy >:
X.[PCx, PCy], we obtain a matrix of dimensions < T.2 >, in which each col-
umn is a time series of dimensions < T.1 >. In this method, we assess both
whether the variance λx is statistically significant with respect the variances
of the surrogate data in the direction PCx, but also whether the variance
λx is statistically different from the variance λy, by comparing how does the
projected variances of the surrogates tend to differ.
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For example, if λx = λy = λx+λy
2 , then a shuffled version of the data in

this subspace, that will preserve the total variance λx + λy, will have very
similar variances along both subspaces λx = λy = λx+λy

2 . From this simple
scenario, we will deduce two things: first, that the variance of the data λx
is not statistically different from the variance of the surrogate versions of
the data, projected in the direction PCx. Second, we will notice that the
variance of the component x is neither statistically different from the variance
of the component y. This will show us that the data is spherical in these
two directions PCx and PCy. We would arrive at an opposite conclusion if
we had for example λx >> λy (for example figure 5.4 taking λx = λ1 and
λy = λ2).

The question we will now answer is then how to do such shuffling in a
given subspace.

After computing the scores in particular directions, we compute their
variance λx and λy. If we project back the scores to the canonical space,
right multiplying by [PCx, PCy]′: X.[PCx, PCy].[PCx, PCy]′, we obtain a T
by N matrix of rank two. We can then apply the shuffle procedure in the
canonical basis.

As we know, this shuffle keeps the variance in the canonical basis, but
not the total variance in the subspace we are interested. Moreover, shuffling
the data this way makes the surrogate data be of rank N again (see figure
5.6 B and C). However, we obtain what we where looking for, which is that
the surrogate data is drawn from a spherical distribution.

After we shuffle the data (X̃), we project back to the directions of interest
Sc = X̃.[PCx, PCy]. We compute the variances of these scores V ar(Sc(:
, i)), i ∈ [x, y], and we scale these variances by a constant: var(Sc(:, i)) ←
var(Sc(:, i))

∑
i∈[x,y] λi∑

i∈[x,y] var(Sc(:,i))
in such a way that they have the sum of these

variances is the same as in the dimensions of interest from the original data.

5.3.4 Use of this shuffle to determine the statistical
significance of the principal components of the
data

We are going to see how to assess whether couples of variables in the original
data have correlations that would have been generated by chance if these
variables were uncorrelated. We can then quantify where does the actual
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value of the correlation between two variables lies in the distribution of
correlations obtained by shuffling these two variables, by computing the p-
value.

The principal components of the data give us an orthonormal basis in
which the directions point to the directions of the highest projected vari-
ances. When we shuffle the joint distribution of the two variables a and b,
we obtain a distribution that is spherical. We can, by projecting again the
shuffled distribution on the direction of the first principal component of the
original data, determine the projected variance onto the first PC for one
shuffle. Repeating the process for Q shuffles, we can compute the p-value
for the first principal component.

Distribution of projected
 variances along the PC11

a

b

Original data Shuffled data 

1

PC12PC
a

b

PC12PC

A B C

1

Figure 5.4: Shuffling the data in order to determine the statistical significance of
the first principal component. A: Sketch of data having strong correlations. B:
Shuffled version of the data in which the variance of the variables is preserved,
and the correlation is destroyed. C: Histogram of projected variances along the
original PC1 direction, using different shuffles of the data. In this cartoon, the
p-value is very small, and then the first PC is statistically significant.

Note that we projected the variance on a basis determined in the original
data, because the idea is to test whether the particular linear combination
of variables we are looking at is statistically significant, in the same way we
test whether the correlation between the two variables a and b is statistically
significant.

One could have also computed the PCA on the surrogate data and de-

Amplification in cortical networks 228



5 Determination of the number of statistically significant principal components

termine the eigenvalues, irrespectively of the dimension. In that case we
would be testing whether the projected variance is statistically significant
with respect to any other joint fluctuation of the measured system, like in
Parallel analysis. Remark that in both cases it is essential, in order to make
a fair comparison, that the variance of all the variables in the shuffles be
equal to the variance of the original data.

5.3.5 Signal and noise
The basic assumption when we do such tests, is that the PC’s that have a
variance that is significantly different of what could be expected by chance
are called signal, and the others are called noise. According to Bro and
al. [19] "the noise can be loosely defined as any specific variation in a mea-
surement which is not correlated with any other variation in the measured
data".

We place ourselves in the case in which we test the statistical signifi-
cance of one direction, i.e., we project the shuffled data onto the same PC
determined in the original data set. Now, imagine that in the figure 5.4, the
first PC corresponds to signal and that the second PC is noise. When we
compare the values of the projected variances onto the PC1 and the PC2
for the original data and for the shuffled data (see A and B, figure 5.4),
we see that the projected variance of the PC1 in the shuffled data is much
smaller than in the original data, and that the projected variance onto PC2
is bigger in the case of the shuffled data with respect to the original data:
when shuffling the data, there is a transfer of variance from the signal, -in
this case the PC1- to the noise -the PC2-.

We then understand that we must adopt an iterative approach to evaluate
the statistical significance of the PC’s: at first iteration, we observe whether
the eigenvalues of the original data fall, one by one, inside the respective
histograms of projected variances. If that is indeed the case, it means that
there are no correlations in the data which are statistically significant. How-
ever, if it is not the case, the existence of this transfer of variance implies
that we must be careful when evaluating the statistical significance of subse-
quent PCs. More precisely, in order to establish the statistical significance of
the second PC’s with respect to the next PC’s, one must first subtract out
from the data the contribution of the first PC, and then shuffle the data (and
then rescaling by a constant), to see if it is spherical on those PC’s. In this
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chapter, when we use the term subtract a subspace from a data set, we mean
project onto its orthogonal complement. This approach was introduced by
Schwartz et al. [134].

For example in the following figure 5.5 we see that there are three di-
mensions. After subtracting the first principal component to the data (in
green in A and B). After shuffling the data on the subspace formed by
< PC2, PC3 >, we see (in B) that the projected variances are undistin-
guishable from the projected variances that would have been generated by
two uncorrelated variables PC2 and PC3 (in blue).

a

b

PC12PC

Original data

1

c

PC3 2PC

PC3

Subtract PC1 and shuffle

Original data 
minus PC1

Shuffled data

A B

Figure 5.5: Subtracting PC1 to the data and then shuffling the data in the
< PC2, PC3 > subspace shows that λ2 is not statistically significant with re-
spect to λ3. In A, original data. The principal components find the directions of
more variance. Given that the PC1 is statistically significant, we subtract its pro-
jection from the data (green circle). In B, zoom and rotated version of data having
excluded the contribution from the first PC (green). In blue, shuffled version of
the data. As we see in this sketch, the variances projected are very similar. This
means that the second and the third PC might be considered as noise.

A fact that is often neglected in the literature, is that the variance can be
significantly higher than the one that we would obtain by chance (amplified
variance), but also significantly smaller (compressive variance) at the end of
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the eigenspectrum, as pointed out by Schwartz and al [134]. In our iterative
procedure, we will then eliminate -if necessary- PC’s from both extremities
of the eigenspectrum. The iterative procedure stops when, for each of the
remaining PCs, the eigenvalue of the data is inside a confidence interval of
the surrogate distribution: [α; 100−α]%. α is the false alarm rate (see figure
5.7 D).

5.3.6 Detailed procedure
Lets call X the data after having binned the spikes, centered the counts
in fixed windows (as described previously), and z-scored (i.e. divided each
column representing the activity of one neuron, by its standard deviation).
X has dimensions NT by N. This method is an iterative procedure, we will
first simply describe the algorithm and then comment it.

inputs:

X, tc, NJ , Q, DimProjOut.
Q is the number of shuffles.
DimProjOut is a list of numbers that encompasses all the PC we

want to substract of from the data.
Example: [1,2,3,N]. In the first iteration, we obviously let the list

empty: [].

outputs:

λo,{λsi}
s=1,...,Q
i=1,...,N
λo is the eigenspectrum of the original data.
{λsi}

s=1,...,Q
i=1,...,N are the eigenspectra for every shuffle.
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algorithm:

[PCo, λo] = PCA(X)
Sc = X.PCo.
DimProj = {1, ..., N}\ DimProjOut.
X∗ = Sc(:, DimProj).PCo(:, DimProj)t
∀s = 1, ..., Q
∀n = 1, ..., N

Xshuff (:, n) = Permute(NJ )(X∗(:, n))
Scshuff = Xshuff .PCo

if n ∈ DimProj
λsn = var(Scshuff (:, n))

∑
i∈DimProj λ

o
i∑

k∈DimProj var(Sc
shuff (:,k))

else : ∅
Compute p-value of λoi=DimProj(1) or DimProj(end)

comments:
Permute(NJ )(v) reassigns randomly the time counts of vector v inside the

blocks of length NJ .
Dimensionality:
Sc : scores. Dimension: < NT .N >, Scshuff : < NT .N >.
rank(X∗) = card(DimProj) Ex: DimProjOut = {1}, and DimProj =

{2, 3, ..., N}, then rank(X∗) = N − 1.

5.3.7 Explanation
If the data is spheric, there is not a direction that has more variance than
the others, so that when we shuffle the data, the projected variance of the
shuffled data in the original PC basis is not significantly different from the
original variance. Now, lets suppose that we found that the first PC was
significant (as in figure 5.4), and that the remaining eigenspectrum didn’t
fell into the tube, which would mean that there is nothing else to explain.
When we talk about the tube we mean the tube comprising [α%, 100−α%]
of the variances of the surrogate data (see 5.7). In the second iteration,
we are going to subtract to the data the first PC. If one does not remove
the first PC, there is a transfer of variance from the signal to the noise, as
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shown in 5.4 (look at the change of variance of the second PC before and
after shuffling).

To test whether the second PC is statistically significant, one has to
remove the first PC from the data and then test the specificity of that
modified data. This means that we have to shuffle the data in the subspace
spanned by < PC2, PC3, ..., PCN >. To do so in a way that preserves the
remaining variance of each cell, we perform the shuffle on X∗, which is the
data in the canonical basis to which we substracted the first PC.
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a

b

PC12PC

Original data

c

PC a

b

PC12PC

Projected data

c

PC3
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b

PC12PC

Shuffled data

c

PC3

Reprojected and scaled data

PC2

PC3

2

3

A B
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2
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2

Figure 5.6: Method summary. A: Schematic of data in 3D, and associated PCs.
B: subtract the projection of PC1 from the data. Insight projection of the data
on the {PC2, PC3} basis, λ2,λ3: associated eigenvalues. C: Shuffled data: When
we shuffle the data, it becomes full rank again. D: We re-project back the data
onto the PCs and rescale the eigenspectrum by a constant in such a way that the
projected variances have the same value as in B. In this case the second PC doesn’t
have significantly more variance than the PC3.
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However, as we perform the shuffle onX∗ two things happen: on one side,
the data is not confined anymore to the subspace < PC2, PC3, ..., PCN >
and the variance projected on the axis {PC2, PC3, ..., PCN} scales multi-
plicatively. To overcome these two drawbacks we respectively first reproject
the shuffled data in the directions PC2, PC3, ..., PCN and then we rescale
the variance in each of those dimensions by a factor

∑
i∈DimProj λ

o
i∑

k∈DimProj var(Sc
shuff (:,k)) .
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Figure 5.7: Determining the significant components consists in taking out itera-
tively the components that have significant variance, and making the eigenspectrum
of the remaining components to lie into the "tube". A: Nil iteration. B. First it-
eration. C: Second iteration. D: Third iteration. In blue: data eigenspectrum.
In red: projected variances of the shuffled data. Number of shuffles: 1000. Ar-
tificially generated data, normal multivariate of dimension 9 and of covariance
matrix called (1) in [114] (see in a subsequent section). T: 27 observations. From
this analysis we conclude that there are 3 significant principal components.
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5.4 Comparing different methods

5.4.1 Comparing methods with different data-bases
A standard procedure in the literature is to evaluate the methods in standard
databases. These data bases are described in the table 5.1, and are publicly
available [48],[86]. Peres-Neto et al.[114] do a very thorough comparison
with known biological databases. However, we didn’t used the same data
sets they used, because not all of them are publicly available, and from the
ones we could have access to, they have missing data and a small number of
observations.

We didn’t applied local preprocessing to this data, because all these
databases include conditionally independent samples. We only z-scored the
data. The kind of preprocessing we described in figure 2.26 is more adapted
to multivariate continuous process, or to several samples from the same
entities.

Data set Variables Observations
BUPA 7 345
COW 10 50
IRIS 4 150
WINE 13 178

Table 5.1: Description of different databases.

We then applied to all of these data sets, many of the methods described
previously.

Method | Data set BUPA COW IRIS WINE
MAP 1 1 1 3
Parallel 1 3 1 3
Eigenvect 1 1 2 4
Our method 1 2 3 3

Table 5.2: Different number for different data sets, using different methods.

We also tried using factor analysis, and the cumulative modes of the
correlation matrix, but these techniques were not conclusive. In both cases,
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in factor analysis and in cross-validation of the correlation modes, in spite
of evaluating the model on a test set, the more factors we added, and the
higher the log-likelihood was (or respectively the fraction of explained vari-
ance). One could always put an arbitrary cut-off to the fraction of explained
variance -for example- and say, that when it attains 95 %, this defines the
number of components. In my opinion, this is not a very principled proce-
dure: on one side this means that the cross-validation step doesn’t work,
and that we are reintroducing a rule-of-thumb. On another side, given that
the cross-validation doesn’t fullfills its function, we could directly use other
more direct and ad-hoc rules like the Bayesian information criterion (BIC)
to determine the complexity of the model, but we didn’t do it, since is not
very satisfactory.

As Ferré [41] highlights, comparing different methods, in absence of a
ground truth, is a current procedure, but it is a bit worthless, given that we
don’t have a ground truth, because all the methods might be inaccurate. In
a subsequent paragraph, we will numerically generate data from a known
distribution, and we will observe how does these methods perform on it.

Even more, one might think that even the notion of ground truth is
not totally transparent. In the case of the IRIS data set, it is known that
there are three types of IRIS flowers: Setosa, Versicolour, and Virginica.
Two of these species (Versicolour and Virginica) are very similar. When
we do PC with our method it appears that even if the second and the
third eigenvalues are not in the envelope of projected variances, they are
not far from being on it. It is then patent that even if our method can
pick those the differences between the three species, it could have been that
even if those differences existed, they might have been so small that there
are statistically undistinguishable. In fact, we have the same problem when
we generate artificial databases, because we can not know in advance how
a qualitative difference in the variance of two PC’s will translate into a
categorical statement of significant or non statistically significant.

Conversely, even if it is good to know whether one PC is statistically
significant, we have to remember that on the first place, a PC can be signif-
icant and not be interesting, i.e. to not explain much more shared variance
than what is explained by chance.
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5.4.2 Comparing methods with different artificially gen-
erated data sets

5.4.2.1 Generating ground-truth data sets

11
0.5

0.3

0.0

12
0.8

0.0

14
0.3

0.0

9
0.8

0.5

0.0

0.0

0.3

0.8

0.5

0.0

10

13
0.5

0.0

2
0.8

0.8
0.3

0.3

0.8

1
0.8

0.8
0.0

0.0

0.8

7

0.8

0.5
0.0

0.0

0.3

8

0.8

0.5
0.1

0.1

0.3

6

0.3

0.3
0.0

0.0

0.3

3

0.8

0.8
0.5

0.5

0.8

4

0.5

0.5
0.0

0.0

0.5

5

0.5

0.5
0.2

0.2

0.5

0.8

0

0.8

0.80.8

18

15 16
0.5

0.5

0.50.5

17
0.3

0.3

0.3

1-4

8-9

5-7

(1-12)

(13-21)

(22-27)

1-4

8-9

5-7

(1-12)

(13-21)

(22-27)

1-4

8-9

5-7

(1-12)

(13-21)

(22-27)

4-6

7-9

1-3
(1-9)

(10-18)

(19-27)

4-6

7-9

1-3
(1-9)

(10-18)

(19-27)

4-6

7-9

1-3
(1-9)

(10-18)

(19-27)

Figure 5.8: Correlation matrices used to generate data. The diagonal elements are
omitted. The matrices can have two sides: 9 by 9 or 27 by 27. At left, the variable
numbers. The numbers inside the matrices are correlations. Adapted from [114].
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Following the approach proposed by Peres Neto et al [114], we generated
artificial data from a known distribution. In our case, we limited ourselves to
generate data from normal multivariate correlated variables (Peres Neto et al
also use exponential and exponential cube). Using the correlation matrices,
proposed by them, -see figure 5.8-, we generated correlation matrices of
size N = 9 or N = 27, and we also varied the amount of observations to
respectively 3N , 6N and 9N for each matrix.

After having generated the 18 correlation matrices C , we rotate them:
C∗ = PCP ′. We use the same unitary rotation matrix P for every matrix of
the same size. We obtain the rotation matrices, by computing the eigenvec-
tors of a symmetric matrix: M = N+N ′, whereNij ∼ N(O, 1), i, j ∈ {1, N}.
We eliminated the matrices 2,3,5 and 8, because it is not totally clear what
is their ground truth (1 or 3 PCs ?).

5.4.2.2 Number of PC for different methods

In order to evaluate the performance, we counted as a hit if the rules gave
exactly the putative good answer, that we call "ground truth". We call
"corr #" the number of the correlation matrix shown in the figure 5.8.

rule | corr # 1 4 6 7 9 10 11 12 13 14 15 16 17 18 Performance
MAP 3 0 0 1 2 0 0 1 0 0 1 1 1 0 42,8 %
Parallel 3 2 4 3 3 4 4 3 5 4 1 1 1 5 42,8 %
Eigenvector 3 3 2 2 2 1 1 1 1 1 1 1 1 1 57,1 %
Our Method 3 2 0 1 2 0 0 1 0 0 1 1 1 0 42,8 %
Ground truth 3 3 3 3 3 2 2 1 1 1 1 1 1 0 100 %

Table 5.3: Different number of statistically significant components for different
data sets, using different rules. N: 9, T: 27 (number of observations)

rule | corr # 1 4 6 7 9 10 11 12 13 14 15 16 17 18 Performance
MAP 2 0 0 1 0 0 0 1 0 0 1 1 1 0 35,7 %
Parallel 3 3 2 3 4 3 3 2 2 4 1 1 1 4 42,8 %
Eigenvector 3 3 1 3 2 2 1 1 1 1 1 1 1 1 71,4 %
Our Method 3 1 1 3 2 3 0 2 1 0 1 1 1 0 50 %
Ground truth 3 3 3 3 3 2 2 1 1 1 1 1 1 0 100 %

Table 5.4: Different number of statistically significant components for different
data sets, using different rules. N: 9, T: 54 (number of observations)
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rule | corr # 1 4 6 7 9 10 11 12 13 14 15 16 17 18 Performance
MAP 3 2 0 0 0 2 0 0 0 0 1 1 1 0 42,8 %
Parallel 3 3 3 3 4 2 4 3 4 5 1 1 1 7 57,1 %
Eigenvector 3 2 1 3 2 3 1 1 1 1 1 1 1 1 57,1 %
Our Method 3 3 1 4 4 2 1 2 1 0 1 1 1 0 57,1 %
Ground truth 3 3 3 3 3 2 2 1 1 1 1 1 1 0 100 %

Table 5.5: Different number of statistically significant components for different
data sets, using different rules. N: 9, T: 81 (number of observations)

rule | corr # 1 4 6 7 9 10 11 12 13 14 15 16 17 18 Performance
MAP 3 4 3 4 3 2 2 2 1 0 1 1 2 0 64,2 %
Parallel 3 3 3 3 3 5 5 5 1 8 1 1 1 11 64,2 %
Eigenvector 3 3 3 4 3 2 2 1 1 1 1 1 1 1 85,7 %
Our Method 3 3 3 3 3 2 2 3 1 1 1 1 1 0 92,8 %
Ground truth 3 3 3 3 3 2 2 1 1 1 1 1 1 0 100 %

Table 5.6: Different number of statistically significant components for different
data sets, using different rules. N: 27, T: 81 (number of observations)

rule | corr # 1 4 6 7 9 10 11 12 13 14 15 16 17 18 Performance
MAP 3 3 3 3 3 2 2 1 1 1 1 1 1 0 100 %
Parallel 3 3 3 3 3 5 3 6 4 3 1 1 1 12 57,1 %
Eigenvector 3 3 3 3 3 2 2 1 1 1 1 1 1 1 92,8 %
Our Method 3 3 3 3 3 6 3 7 1 1 1 1 1 0 78,5 %
Ground truth 3 3 3 3 3 2 2 1 1 1 1 1 1 0 100 %

Table 5.7: Different number of statistically significant components for different
data sets, using different rules. N: 27, T: 162 (number of observations)

rule | corr # 1 4 6 7 9 10 11 12 13 14 15 16 17 18 Performance
MAP 3 3 3 3 3 2 2 1 1 1 1 1 1 0 100 %
Parallel 3 3 3 3 3 6 5 13 6 2 1 1 1 13 57,1 %
Eigenvector 3 3 3 3 3 2 2 1 1 1 1 1 1 1 92,8 %
Our Method 3 3 3 3 3 12 3 1 2 1 1 1 1 0 78,5 %
Ground truth 3 3 3 3 3 2 2 1 1 1 1 1 1 0 100 %

Table 5.8: Different number of statistically significant components for different
data sets, using different rules. N: 27, T: 243 (number of observations)
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5.5 Determining the different number of sta-
tistically significant components in dif-
ferent experiments during desynchronised
state

We then used these methods in order to compare how many significant
principal components where there in the recordings of spontaneous activity.
We applied to the data the usual preprocessing (local centering), with the
usual parameters tc = 0.1s, and NJ = 10. Given the time count chosen there
where between 3000 and 6000 observations. Because of the computational
complexity of our method and of the "Eigenvector" method, we limited the
number of observations for this methods to 1000 observations for all data
sets.

Data set N neurons MAP Parallel Eigenvector Our method
Set 1 100 2 20 1 1
Set 2 116 3 22 1 3
c065a 65 1 11 1 2
c065b 47 1 6 1 6
c043 67 2 19 1 0
c048 44 1 12 1 0
c008b 93 2 32 1 0

Table 5.9: Different number of statistically significant components for different
data sets, using different rules.

5.6 Discussion and conclusions

5.6.1 Results from the comparison with simulated data
As we see, from the previous results, our rule to determine has comparable
results to the other state of the art rules, but it doesn’t outperforms them.
The rule that seems to have better results across conditions is the eigenvector
rule. Our method only does better in one of the six tests. When we compare
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our method with parallel analysis, our method always performs similar or
better than parallel analysis. In general all these methods do better when we
increase N the size of the matrix and also the number of available samples
per matrix. The problem of the "Eigenvector" method is that it is very time
consuming, so it becomes intractable for long enough data sets. The method
called MAP, in its revised version [153] shows excellent performance when
there is enough data, but has the worst performance with small amounts of
data.

If we observe the errors, we can see that for small amounts of data, our
method underestimates the number of PC, and for big amounts of data, our
method overestimates the number of PC.

5.6.2 Results from the analysis of spiking data from
desynchronised state

The parallel analysis gives a number of factors that is not coherent with
the result of the three other methods. The first reason that might explain
this result is that this analysis is simply based on the fact that the data
eigenvalues are above or below the mean eigenvalues of the shuffled data. In
the original version of parallel analysis [69], there is no notion of distribution
width.

When the eigenvalues of the are very above from the mean eigenvalues of
the shuffled data, there is no doubt about the significance. However, when
the decay of both "eigensprectra" is parallel and has a small distance between
the two, then it is very unreliable.

The three methods, MAP, "Eigenvector" and our method, display results
that are not equal but that have a small number of statistically significant
components.

5.6.3 Advantage of the preprocessing to evaluate non-
stationarity of the data

The preprocessing introduced in the second chapter (see 2.4.2) and also men-
tioned in this chapter is very interesting because it allows to evaluate the
correlations at different time scales. We choose to compare our method to
simulated data set, following [114], because it provides a way of assessing
some of the dimensions that these methods have to deal with: data size,
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number of variables, number of significant PCs. However, one of the limita-
tions of this evaluation framework, is that it only generates stationary data.
One of the possible future directions would be to test this method and this
preprocessing with controlled non-stationnary data, to see how well it cap-
tures the correlations. Indubitably, when comparing our method with the
other methods, we should also apply the preprocessing to the data before
feeding it to the other methods.
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Chapter 6

General conclusion and
discussion

HIGHLIGHTS

• We recapitulate the main results of this work.

• We open the discussion on the different research possible
future paths.
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6.1 Main subject of this work

This thesis could also had been called "connectivity and dynamics in cortical
circuits". Our efforts have been targeted to understand the link between the
observed activity and circuit mechanisms by which this activity could have
been generated.

One of the angles by which we tackled this problem both for the data
analysis as well as for the modelling, was to use the framework of Ganguli et
al [46] and Murphy and Miller[105], in which there is a simple interpretation
of how does connectivity shapes spontaneous activity . In this framework,
it is considered that local circuits receives unstructured activity from the
outside, and that the connectivity of these circuit constrains the range of the
expressed activity patterns. Therefore, this motivates the use of multivariate
analysis tools like PCA, to observe whether there are specific patters of
activity that are specially amplified.

Using PCA, we discovered the existence of population-wide temporal uni-
dimensional structure during the asynchronous state, that we characterised.
Seeing that there is one pattern of activity that has more variance than the
others, the formalism of the Schur decomposition gives us a first hint of one
characteristic of the effective connectivity matrix. Using a previous model
of competition [155], we proposed two models which could reproduce such
competitive dynamics. One of the two models, TCA, has a particular asym-
metry in the connectivity, and generates dynamical predictions that match
the data. Our interpretation of the most important prediction of the model,
the lag in the ccg between the two populations, is that it is a signature of
non-normal amplification.

We then made a second study in which we also explored a direct link be-
tween the connectivity and the amplification. We concentrated on modelling
and simulating how does the positive correlations between neurons increase
as the fraction of shared input that these cells receive increase. This mod-
elling gives support to the anatomical evidence brought by N. Morgenstern
showing that in layer four and between layer four and layer 2/3, specific
sub-networks, with similar receptive fields are thought to be preferentially
connected.
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6.2 Results

6.2.1 Competitive activity during desynchronised state
After comparing what previous studies had shown about the temporal struc-
ture of spontaneous activity - mainly during the more synchronised states-,
we identified that during the desynchronised states there are coherent uni-
dimensional fluctuations such that the population firing rate stays constant
and alternatively half of the population increases its firing rate while the
other half decreases its firing rate.

We characterised the competitive activity: we first saw that the direction
of the competition remains still over time in all the recordings. When study-
ing the time scale of the competition, we found that there is competition
at many time scales. Also, we understood that each group can be labelled
independently given the firing properties of the cells: in one group, the neu-
rons fire more tonically while in the other group they fire in a more bursty
way. Finally, we identified that the competition happens locally: neurons
with positive and negative loadings are intermingled in a single recording
shank.

6.2.2 Modelling of competitive activity
Given that the randomly connected network [123], which is the standard
model of desynchronised state, doesn’t show competitive amplification, we
proceeded to model the competitive activity, trying to find a circuit motif
that reproduced the dynamical observables of the data. We ended find-
ing two possible circuits based on two different mechanisms: NCA -normal
competitive amplification- and TCA -transient competitive amplification-
based on non-normal amplification. TCA reproduces better many dynami-
cal observations of the data and in particular the asymmetry in the cross-
correlogram between the two populations E1 and E2. In a second moment,
we asked how could we generate such low dimensional dynamics in a high
dimensional network. We then extended the low dimensional TCA motif to
high dimensions. In high dimensions there are as many possible amplified
directions as there are dimensions, but the directions that dominate the dy-
namics are still the dimensions of the low dimensional model. This model
confirms the previous predictions of the low dimensional model, and adds
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high dimensional dynamical predictions that also reproduce well the data
(graded correlation matrix, population raster, PC1 loadings, histogram of
pairwise correlations).

6.2.3 Probing the relationship between local and long
range connectivity

In a separate anatomical study, done in collaboration with N. Morgenstern
and L. Petreanu, we studied the spatial specificity of long range thalamocor-
tical projections. N. Morgenstern and L.Petreanu proposed a technique to
quantify the amount of shared axons on pairs of neurons, using patch clamp-
ing and optogenetic stimulation. Stimulating optogenetically long range
axons with minimal intensity, one can observe how pairs of cells covariate
and then know if they receive shared inputs or not, and separately measure
whether those cells are connected or not.

Using this technique, they showed spatial selectivity of the thalamo-
cortical projection into layer four: connected pairs of cells tend to receive
more shared inputs from axons coming from the visual thalamus. I mod-
elled the experiment in two different ways: a more analytically grounded,
and a more heuristic one, based solely on simulations, which made different
assumptions on the way the experiment was run. The retained approach,
using simulations, shows how a difference in the mean number of shared ax-
ons leads to differences in the way the number of correlated sites grow with
the number of recruited axons, and this simulation resembles qualitatively
to what we observe in the data.

6.2.4 Methodological contributions

6.2.4.1 Data analysis

On the data analysis side, we came out with some methodological approaches
that are useful when dealing with high dimensional data. The three most
relevant are respectively:

- The pre-processing of the data consisting in centring the binned spike
trains in fixed jitter windows. This simple procedure controls for non-
stationarities, puts an upper-bound on the time scale of the correlations
and cuts the data in a very useful way for cross-validating models on the
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data.
- A statistical framework to assess the sufficiency and necessity of par-

ticular subspaces of activity in order to explain the correlation matrix.
- A new method to evaluate the number of relevant principal components

in a data set.

6.2.4.2 Modelling of recurrent networks

On the modelling side, we propose a way of modelling high dimensional
linear recurrent networks, which is fairly general: make a low dimensional
circuit with suitable dynamics and expand it to high dimension, and then
add noise on the connectivity in a principled way. Doing so, the low dimen-
sional dynamics are carried from the low dimension into the high dimensional
representation, but in a way that the high dimensional model is full rank
and shows heterogeneity in the connectivity.

The condition we impose on the noise makes the Schur decomposition of
the total matrix (deterministic plus noise connectivity matrix), be the sum
of the Schur decomposition of both connectivity matrices. This condition
gives a simple and clear dynamical interpretation of the high dimensional
network.

6.3 Discussion

6.3.1 A new form of amplification: feed-forward am-
plification

We showed in this work that adding structure to the connectivity, we could
reproduce the competitive nature of the desynchronised state. However,
other modelling choices are also possible. Another possibility to gener-
ate competitive could have been that different populations received anti-
correlated input, which is totally plausible, but trivial to model. A less triv-
ial alternative was recently proposed by Rosembaum et al [127]. Starting
from the randomly connected balanced network, they plugged two uncorre-
lated non overlapping feed-forward sources of white noise on two arbitrary
halves of the population (figure 6.1 A).

In this case, they observed that in each half of the population the balance
is broken, and the activity in each of the halves is synchronous (figure 6.1
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B). Interestingly, they observe that the activity between the two halves is
negatively correlated 6.1, in such a way that even if locally -at the level of
a single halve of the network- the balance is broken, at the network level,
the asynchronous state is preserved, because the mean correlation is close
to zero (figure 6.1 C).
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Figure 6.1: Two independent selective feed-forward inputs cause a break in the
asynchronous state. A: two independent feed-forward inputs project to two non
overlapping halves of the population. B: Competitive activity appears in this net-
work. C: histogram of pairwise correlations of each half of the population and of
the all population. This figure was adapted from Rosenbaum et al. [127].

Rosembaum et al [127] argue that this break in the balanced state is
provoked by the fact that a same population can not track both inputs at
the same time, so that the shared current inherits shared fluctuations from
their feed-forward inputs in each population, and this somehow introduces
a competitive dynamic between the two populations.

Although this study was published only a few weeks ago, so that we did
not have time to properly consider its implications for our work, it is clearly
relevant to our investigation of different mechanisms capable of generating
amplification in recurrent networks. Our current view is that the mechanism
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proposed in [127] is qualitatively distinct from the ones we have considered.
Using the framework developed in [123], it can be understood that the kind
of amplification presented in [127] results from a specific interaction between
the feed-forward and the recurrent connectivity in the network. We could
thus call it ’feed-forward amplification’. It is distinct from the models exam-
ined in this thesis, in which we have focussed on the effect of the recurrent
connectivity on amplification, and have therefore assumed that the external
input was independent for all neurons. Qualitatively, feedforward amplifica-
tion arises when the feed-forward connectivity tries to generate patterns of
activity in the recurrent network that are not favoured by the recurrent con-
nections, i.e., when the feed-forward input is close to orthogonal to the range
of the recurrent connectivity matrix. In the balanced regime, the cancella-
tion between excitation and inhibition implies that overall recurrent input
needs to cancel the overall external input. When the previous relationship
between the feedforward and the recurrent connectivity holds, this ongoing
cancelation requires very large fluctuations in certain patterns of network
activity, i.e., amplification. From a quantitative perspective, however, feed-
forward amplification is equivalent to an increase in variance in the external
inputs onto particular patterns of recurrent network activity. How this ex-
ternal noise is processed by the recurrent network is still determined by the
two kinds of mechanisms discussed in our thesis.

6.3.2 Overall view on amplification
In the modelling chapter we discussed ways by which the cortical circuits
could amplify the thalamic inputs, mainly based on the connectivity pattern
of the recurrent circuit.

The first one, initially proposed by Douglas et al [38] in 1995, is nor-
mal amplification, which consists in decreasing the negative feed-back of a
network towards the instability. The most characteristic signature of non-
normal dynamics is the trade-off between amplification and speed.

The second kind of amplification, non-normal amplification, was pro-
posed by Murphy and Miller [105] in 2009, and consists in trading positive
feedback against feed-forward gain in the Schur domain.

These two kinds of amplification are not easy to disentangle, because to
do so we must observe the data, the amplified patterns, and other dynamical
features, and try to make models using normal and non-normal amplification
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to see if there is some robust feature of the data that is idiosyncratic of one
of these mechanisms.

In the continuation of the work by Murphy and Miller [105] and Hen-
nequin [64], we showed how to build high dimensional networks that amplify
certain patterns of activity, through the recurrent connectivity, and to ac-
commodate the model predictions to the variability of the different neurons.

In the two studied models (NCA and TCA), we didn’t considered the case
of shared input. The inputs to all of the three populations were supposed
to be independent and of the same variance. The feed-forward amplification
[127], offers a third possible mechanism by which amplification might be
happening in the cortex. Besides, these three mechanisms are not mutually
exclusive. To prove it, we must first recall, quoting Douglas et al [38], that
"connections arising from the LGN make up less than 10 % of the excitatory
synapses formed with the recurrent input neurons of layer IV". Second,
we also must cite the seminal study by Lien and Scanziani [87], showing
how the recurrent amplification in the cortex amplifies multiplicatively the
signals coming from the thalamus onto layer IV (see figure 4.2).

In the chapter of anatomy, we discussed recent evidence pointing at the
fact that shared thalamo-cortical axons tend to connect more with pairs of
cells that are connected. In the light of the recent study [127] on feedforward
amplification, it is interesting to consider the effect that this pattern of
connectivity would have on the potential amplification of thalamic signals
by the visual cortex. It is currently difficult to predict whether the data in
our study [104] would lead to amplification of the kind described in [127].
If our current understanding is correct, this would be the case if the degree
of segregation of thalamic input to different cortical subnetworks is much
larger than the corresponding segregation of these groups by local recurrent
portico-cortical connections. However, if the degree of segregation is similar,
this would not lead to feedforward amplification. Given that the current
data only shows that the segregation of thalami-cortical and cortico-cortical
connections goes in the same direction (but not the relative magnitude of
the two types of segregation), the question is still open.

To finish we will recall on the importance of the study of amplification
of spontaneous activity both during anaesthetised and in behaving animals,
to the extent that it might reveal the constraints that connectivity impose
on the dynamics, and therefore it might give us hints on the computations
that neural circuits are performing.
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