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Let us think the unthinkable, let us do the undoable, let us prepare to
grapple with the ineffable itself, and see if we may not eff it after all.

Douglas Adams [Dirk Gently’s Holistic Detective Agency]






All right, but apart from the sanitation, the medicine, education,
wine, public order, irrigation, roads, the fresh-water system, and pub-
lic health, what have the Romans ever done for us?

John Cleese [ Monty Python’s Life of Brian]
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SUMMARY

Parasitism has probably existed since the first two organisms were made to interact, and
disease has been recognized by humans since long before they realized microscopic organ-
isms could cause it. Despite that realization and the immense scientific progress made in
understanding the processes parasites undergo at the many different levels — from molecu-
lar to population scales — it is still not trivial to describe how infection happens, and quanti-
fying the underlying processes is essentially an unresolved question. Most scientific work
on pathogens is restricted to a single level of organization, and integration is not only rare,
but difficult to describe conceptually, and even more so formally or mathematically. At-
tempts to do so with theoretical-physics-like approach have been hindered by the greater
complexity and lack of understanding of biological systems and of appropriate data when
compared to physico-chemical systems like quantum mechanical descriptions of atoms
and molecular structure, for instance. In the work developed towards the PhD degree,
most of which is described in this thesis, some of the gaps in concepts, methods and data
incorporation concerning disease transmission, and pathogen proliferation in geral are ad-

dressed.

The introduction describes the problem, some of the systems of interest for investigat-
ingit, the accepted theoretical basis, data, and other current methods available to tackle the
problem. Chapter 1 uses model organism Drosophila melanogaster, endosymbiont Wol-
bachia, and Drosophila C virus, for dose-response experiments to assess susceptibility to
infection in a novel way that allows the estimated parameters to carry to the population

level, as well as taking into account heterogeneity in host susceptibility. Chapter 2 ex-
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plores invasion of a population of insects by Wolbachia inducing cytoplasmic incompati-
bility, and other life-history modulating effects such as fecundity reduction, lifespan reduc-
tion, and protection against pathogens — in both a homogeneous and heterogeneous way,
as described in the preceding chapter. Chapter 3 investigates the time course of the levels
of type 1 dengue virus and Wolbachia inside Aedes aegypti hosts for different initial chal-
lenges by using a dynamic model to describe infection. The final results chapter, number
4, describes population transmission models of dengue virus in a population, by means
of forward simulation with parameters in an acceptable range, as well as inference from
simulated epidemics using time series of incidence as well as coalescent-based estimation
from sequences. The methods are also applied to real data from the city of Rio de Janeiro,
obtaining preliminary results for that real setting under one or two-serotype models.
Chapter 5 discusses the results and tries to relate the different levels explored, show-
ing how they shed light on unknown features of pathogen proliferation; it also tries to
acknowledge limitations in the methods and structure of the data gathered and produced
for the models proposed, why some of the objectives could not be achieved, and what the

author of the thesis learned about the entire process of tackling such a big issue.
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SUMARIO

O parasitismo provavelmente existe desde que os primeiros dois organismos tiveram
de interagir, e as consequéncias de microparasitas foram reconhecidas por humanos desde
muito antes da descoberta dos parasitas em si. Apesar desta descoberta e do imenso pro-
gresso feito para o entendimento dos patégenos nos mais diferentes niveis — desde o molec-
ular até a escala da populacio - a descri¢do de como uma infec¢do acontece continua nio
sendo uma tarefa trivial, e a quantificagio dos processos envolvidos é uma questiao nao
resolvida. A maior parte do trabalho cientifico sobre patdgenos fica restrita a um nivel de
organizagio, e a integragao do conhecimento sobre diferentes niveis nao é sé rara, mas
dificil de descrever conceitualmente, e ainda mais de maneira formal ou matematica. Ten-
tativas de abordar o problema como a fisica tedrica foi tratada no passado esbarram na
maior complexidade e falta de entendimento dos sistemas biol6gicos, e falta de dados ad-
equados em comparagio com as descri¢des de mecinica quéntica de dtomos ou estrutura
molecular. No trabalho desenvolvido para o grau de doutor — a maioria do qual esta de-
scrito nesta tese, algumas das lacunas nos conceitos métodos — e incorporagio de dados

relacionados & transmissao de doengas, e proliferagio de patédgenos em geral é discutida.

Aintrodugéo desta tese descreve o problema, o contexto, e alguns dos sistemas de trans-
missdo de interesse, as bases tedricas aceitas, os métodos, e o tipo de dados disponivel para
tentar entender infec¢io e transmissdo.. O primeiro capitulo de resultados descreve o uso
de Drosophila melanogaster, endosimbionte Wolbachia, e Drosophila C virus para a realiza-
¢a0 de experimentos de dose-resposta e inferéncia da suscetibilidade a infec¢do de uma

maneira inédita que permite a utilizagio dos valores estimados em um contexto popula-
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cional, além delevar em consideragio a heterogeneidade na suscetibilidade do hospedeiro.
A seguir (capitulo 2), um model matemético é utilizado para explorar o impacto de um
simbionte que induz incompatibilidade citoplasmatica e modula outros aspectos como
redugio de fecundidade e expectativa de vida, além de prote¢do contra patégenos — o que
é incorporado num contexto homogéneo e heterogéneo, como descrito no capitulo ante-
rior. O pentltimo capitulo de resultados (capitulo 3), investiga a progressdo ao longo do
tempo dos niveis virais de dengue tipo 1 e Wolbachia em mosquitos Aedes aegypti infecta-
dos com diferentes in6culos do virus — o que é feito utilizando um modelo dindmico para
descrever os dados observados. O capitulo final dos resultados (capitulo 4) descreve a
transmissdo de dengue na populagio, utilizando modelos para um ou mais sorotipos para
simulagdes com pardmetros mais ou menos conhecidos, além de inferéncia e validagao a
partir de séries temporais e sequéncias virais simuladas — os métodos sio aplicados a dados
reais para a cidade do Rio de Janeiro, obtendo estimativas para transmissao sob modelos
com um ou dois sorotipos.

O dltimo capitulo (ndmero ) discute o conjunto dos resultados e tenta relaciond-los
entre os diferentes niveis de organizagao explorados, e tenta mostrar que questoes foram
iluminadas por este exercicio. No mesmo capitulo sio ressaltadas as limita¢des dos méto-
dos, modelos, dados, e do trabalho como todo, e se explica por que alguns dos objetivos
ndo foram alcangados, além de resumir o que o autor da tese aprendeu sobre o processo

completo de tentar investigar um topico em profundidade.
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"Idealism increases in direct proportion to one’s distance from the

problem.”
John Galsworthy

Introduction

0.1 MOSQUITOES, VECTORIAL CAPACITY, AND INFECTION

VECTORS THAT TRANSMIT HUMAN DISEASE ARE ASSOCIATED TO THE IMPORTANT CON-
CEPT OF VECTORIAL COMPETENCE: theirindividual ability to harbor and transmit pathogens,
e.g. a mosquito is able to ingest a virus, have it multiply in enough numbers, and reach
a tissue where it can be transmitted to next host ( ; ).
Complementing the concept of competence is that of vectorial capacity, which describes
not only the individual but the entire of population to sustain disease transmission; for
instance, it is important to have a large enough population of mosquitoes and they need
to move and bite enough infected humans to keep the circulation of a pathogen — capac-

ity therefore includes population and ecological variables as well as individual properties

( )-



Although we could go as far as to say that a host is infected if it has pathogens in or on
it at any time, this is probably not a useful definition; most likely infection is not trivially
defined ( )- It is more accurately described as a dynamic process, where
a microorganism comes into contact with the host, colonizes a niche (tissue section, or-
gan, or cavity, for instance), and multiplies as any macroscopic species would (

). As a species a population of microbes will interact with other species in its envi-
ronment, and with the environment itself, i.e. the host, being susceptible to their version
of the weather and natural disasters. It is unlikely that someone would describe a valley
as populated because a few people passed by once, and similarly infection requires a more

comprehensive definition.

Aviral inoculum ingested by a mosquito, for instance, goes into the insect’s gut, which
presents itself as a strong barrier against crossing into the insect body cavity; once that is
surpassed, the viral particles that managed to get through can potentially reach different
organs, at which point the pathogen is further faced with immune responses. Whether a
particular pathogen challenge results in a population of particles that succeeds in generat-
ing a systemic infection depends on the balance between pathogen replication, its ability
to bypass passive barriers, the host responses aimed at eliminating the pathogens, and its
attempts to evade these attacks. This is a complex, multifactorial system that is guided by

nonlinear processes and interactions, which are affected by stochasticity in every step.

If the pathogen is successful, it is able to generate a systemic, persistent infection, and
to reach tissues important for further transmission such as salivary glands; if not, it may
be completely eliminated or have such low numbers that they are not able to successfully

transmit to the next host ( ).

Under that light, even the more restricted concept of competence is not straightforward
to define, and is even harder to quantify; therefore its assessment depends on proxies such
as presence of virus after some time, which do not contemplate subtle and complex aspects

of infection such as time and dose dependence ( ).



0.2 DISEASE, EPIDEMIOLOGY, AND HEALTH DATA

Many kinds of epidemiological data reflect different aspects of microbes and their trans-
mission in the population. Although invisible to the naked eye, pathogens have macro-

scopic manifestations that can be spotted without special tools, notably disease itself.

Records of disease cases are produced every time a diagnostic is made by a doctor;
whether that record is properly stored and organized is then a matter of a specific data
collection system being in place ( ; ; ). The
result of a clinical assessments based on observation of symptoms is most common; in
some cases laboratory confirmation of some sort can also be used as a more refined assess-
ment, but although increasing confidence or precision this does not change the nature of
the data. The result is then a report of a new case, or persistence of a known case; tradition-
ally, epidemiologists used to think about disease transmission in terms of these quantities:

incidence or prevalence of disease.

To be sure, prevalence is an instantaneous measure of the total number or proportion
ofinfected people in the population; like the concentration of a compound in a solution, it
is the “density” of infected individuals. Incidence is a rate: the number (or proportion) of
people that acquired the disease in some time interval. Measuring prevalence at any point
in time relies on being able to count everyone thatis carrying the disease then, or atleast get
an estimate of the proportion of people with the disease — it is harder to think of a system
that would repeatedly record that people are still sick, so obtaining this data is probably an
active effort. Incidence is arguably easier to measure, because unlike prevalence it relies
only on being able to count new cases as they appear, and people will commonly present
themselves to a health service when they first get sick. It is expected that not everyone
who is sick will see a doctor, so there should be under-reporting of incidence that may be
related to severity of the disease, accuracy of the diagnostic, among other factors, and it
is usually not trivial to estimate the amount of unreported cases ( )-
Because for many purposes both kinds of data are equally useful, whether one or the other
is used depends mainly on availability, as well as representativity of the specific disease and

also convenience.



A more modern method of observing pathogens indirectly is through the immune re-
sponses elicited against them; identifying antibodies specific to a virus or bacterium yields
a different kind of data, that is, whether an individual was infected in the past. Arguably,
it is a worse kind of data; it says whether an infection happened or not, but not when it
happened (unless individuals are periodically assayed for seroconversion, i.e. conversion
from absence to presence of antibodies for a specific pathogen). On the other hand, the
assay does not rely on testing individuals during the narrow window of time when indi-
viduals are sick. It also potentially allows characterizing secondary infections at once (i.e.
occurrence of multiple infections can be assessed with a single test). This obviously relies
on a laboratorial infrastructure, and sensitive and specific reagents to detect the signatures

of an infection and differentiate them from other infections ( ).

Pathogen can be observed directly, through a microscope (although not literally in the
cases of viruses, for which the closest would instead be an electron microscope); the para-
sitemia measured in this way is a common way of identifying malaria infections, although
probably not practical for large scale, routine detection. Another direct way of detecting a
parasite without a microscope is to identify its genetic sequences in a sample through any
one of a series of molecular techniques, among which polymerase chain reaction (PCR) is
probably the current choice ( ), and for some applications sequencing the

genome of the pathogen ( ).

Observing a parasite directly does not necessarily generate an entirely different kind of
data - it may just give greater confidence, which is otherwise no different qualitatively from
a clinical diagnosis by an experienced doctor. Nevertheless, different information can be
obtained from direct observation or molecular techniques: parasitemia can potentially be
quantified and give an additional dimension of the epidemic, e.g. the distribution of para-
site loads in the infected individuals; specific strains of pathogens can be ascertain; and the
nucleotide sequence can be verified by sequencing methods. There are many conceivable
kinds of data about pathogens and epidemics, and the conception of these kinds can be
quite arbitrary, for instance: the size distribution of Plasmodium parasites; the color of the
skin of people infected with hepatitis; the behavioral changes in zombies ( )

— whether any of these, as well as the above described types of data are useful depends on



the question athand. Put another way, it depends on what you want to infer from the data.

0.3 DYNAMIC MODELS AND THEORETICAL EPIDEMIOLOGY

A dynamic model is by definition a function where some variable (let call it y) depends
on time (t), or y = f(t). It can be as simple as a linear combination of the time variable
itself, e.g. y = at + b (or a polynomial y = a#> + bt + ¢), or a nonlinear function such as
y = Ne™. Nevertheless, it is important to realize that these explicit formulations are rarely
available through an analytical mathematical solution, and numerical methods have to be
used instead for many common models.

It is often, if not always, easier to formulate dynamic models in terms of the processes
that define the rate of change of one or more variables, that is, by using differential equa-
tions on time. For instance, while we known that the explicit equation y = Ne" /(1 +

kN(e™ — 1)) defines a logistic growth curve, it is probably more intuitive to describe the

model implicitly as ;}t} = ry — ky*, where growth can be seen to depend on the value of
y and the parameter r, and decrease depending on k and the square of y (therefore y will
grow if its value is “small”, and eventually saturate when its value becomes “large”, assuming
r > k) Similarly, instead of trying to guess the explicit form of a mathematical model of an
epidemic, the basic processes can be specified instead: individuals susceptible to disease
(S) get infected proportionally to the number of infected individuals (I) at some transmis-

sion rate f3, that yields a simple equation for a variable corresponding to the proportion of

individuals infected: a_ BIS (although it may be necessary to specify an equation for
the suscpetible individuals variable, which may nevertheless be as simple as realizing that
the sum of the two proportions equals unity, i.e. S + I = 1,and % = BI(1—1I)).

Most of what is recognized as theoretical epidemiology, mathematical epidemiology,
or modeling of infectious diseases is based on this simple process of building transmission
models ( ); it consists essentially on gathering simple facts
about disease transmission, and creating a self-consistent conceptual model, which can
then be converted into a formal mathematical description of population transmission of a

disease. For instance, a human population is first divided into kinds of hosts: susceptible



to, infected with, and recovered from infection; how many people hold each status defines
the overall state of the system. Then, the processes that increase or decrease the numbers
of each kind of host are acknowledged: it was shown how the number of infected individ-
uals increases, and as a consequence the individuals that become infected are no longer
susceptible (by definition, at least during the period of infection), so they decrease by the
same number; infected individuals may recover at some rate, and could either become

susceptible again, or resistant.

The description of these compartments that the hosts can occupy, as well as the pro-
cesses by which they move between them are a mathless description that underly what are
also called compartmental models, and can be easily converted into mathematical equa-
tions. The system just described is shown in figure 0.3.1, and is known as the SIR model

in its most basic version.

_BL
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Figure 0.3.1: SIR model. Arrows indicate rates at which any individual from one
compartment moves to the next.
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The SIR model is regarded as a generic model of disease transmission (

; ); it may still apply to specific diseases that do not
have very specific quirks, but otherwise it serves as the backbone of more realistic models.
Processes like demography and other characteristics of the population can be integrated
to the basic structure: individuals that are born (or migrate) into the population are sus-
ceptible, and all individuals die whether or not the causes are related to the disease; abso-
lute numbers (not just proportions) and population size may be used to characterize the
compartments; and an endless number of aspects can be added to a model. A straightfor-
ward way of incorporating the details above, for instance, is assuming the population has
a constant size H, maintained by a birth rate m equal to the death rates of each compart-

ment; if transmission is dependent on the total size of the population it may be written as



AS = —=§; everything in the transmission rate term except for the number of susceptibles
(S) is also known as the force of infection, and is often denoted by A.
This modified version is shown in the system of equations 1, and is more useful if the

time scales of demography are comparable to that of the depletion of susceptibles in the

population:
as BI
— =mH— =8 —mS§
dt H
- pI
—==8S—yl—ml
dt H (1)
dR
— =yl —mR
dt

While model 1 is arguably a more realistic one, there are still endless ways of modifying
it to become even more realistic or conform to a specific feature of one or another disease.
Common models include alternatives where individuals do not recover, or lose protection
after some time; these may be referred to by their compartmental structure — STand SIRS,
respectively — among other simple basic models ( ).

Estimates for some parameters in the model are sometimes available through obser-
vation or experiment, e.g. recovery period for many acute viroses is often 7 days, while
others like transmission rate are not easily estimated directly — (but see ;

). Assuming the compartments are able to correctly describe the state of
the population at any point in time (which is no small assumption), and epidemic can be

simulated for a given set of parameters in the model.

0.4 ANALYSIS OF DATA AND STATISTICS

0.4.1 OBSERVATIONAL STUDIES AND STATISTICAL TESTS

Given some piece of data, some features may be glaringly obvious, and no more than look-
ing at it could be necessary to learn something - e.g. the prevalence of HIV has not in-

creased considerably since the early 1980s ( ); malaria incidence in Mozambique is



not constant, but has a seasonal peak in the rainy months ( ); influenza
is barely detectable outside of the winter months ( ), etc.

Eventually, more subtle observations are likely to require statistical analyses. For in-
stance, the prevalence of tuberculosis in separate locations is almost guaranteed to be dif-
ferent; nevertheless, the differences may be entirely due to chance, and the methodology
for comparing this or any other quantities must take into consideration factors such as
sample size, and a number of other variables. Study design and analysis are therefore im-
portant to describe disease, and a myriad of methods have been developed to do just that,

even comprising an entire research area called biostatistics.

0.4.2 LEAST-SQUARES VS. LIKELIHOOD FREQUENTIST INFERENCE

Beyond summaries and statistical tests, it may be of interest to infer parameters, which
pertain to some model; therefore, in the absence of independent parameter estimates for
SIR-like models, they could be estimated from data that represents the output of the sys-
tem. Inference is also a research area on its own inside statistics; nevertheless, applying
the body of knowledge to the estimation of parameters from dynamics models is far from
a straightforward task. Even for simpler models, the problem of inferring parameters is not
a trivial one, and there is no magic bullet nor one-size-fits-all solution; in the case of linear
models it is possible to obtain an analytical solution to the problem of minimizing the sum
of the squares of the distances from the model to the data, e.g. the data points to the curve
( ), which is known as the method of Least-Squares.

Although the least-squares method is intuitive and has an exact solution, it has some
undesirable properties and underlying assumptions; without getting into the technical de-
tails, it suffices to say that the method can be shown to be a restricted case of the Maximum-
Likelihood Estimation (also known for its acronym: MLE). Maximum-Likelihood Estima-
tion has the disadvantage of not having a general analytical solution, and therefore relying
on optimization algorithms that are not guaranteed to find the best solution; nevertheless,
for nonlinear models, the Least-Squares method that solves a linear approximation to the
model relies on similar methods and therefore has much of the same caveats.

The concept of “likelihood” is related to specific probabilistic distributions for some



data, and can be an elusive one — possibly also due to its flexibility. I will therefore not try
to give a formal or comprehensive explanation of the likelihood in the abstract; instead I
will try to illustrate the advantage of formulations based on likelihood over least-squares
and describe it associated to the models in the thesis. One example is a classic coin-toss
example: the data for a series of coin tosses can be represented by the number of heads
(and conversely of tails) obtained; it is straightforward to compute the likelihood of the
data as a binomial process of N coin tosses and k successes (either the number of heads
or tails) and probability p = 0.5 (if the coin is unbiased, as expected): (1}\(]) (1 — p)Nk,
As a conceivable alternative, it is not possible to easily define the distance of the data to a
curve (i.e. specify the least squares problem).

Likelihood-based methods are also useful for model comparison when the alternative
models are not nested, i.e. one model is a particular case of the other, and benefit from
its relationship to concepts of information theory ( ) — thus, likelihood-based
methods are preferred for a number of reasons, including that they are broader and have

useful properties not displayed by other formulations of error models.

0.4.3 BAYESIAN INFERENCE

Orthogonal to the likelihood vs. least squares distinction there is the difference between
Bayesian and frequentist statistics, the latter of which most researchers call simply statis-
tics (at least in fields like biology where statistics is used mainly as a tool). While bayesian
inference abides to the principles of likelihood based estimation, it arguably extends them
in ways that make it more natural, easier to understand, and easier to find out when it is go-
ing wrong — which when working with nonlinear dynamics models can be a considerable
share of the time — less commonly it is overhyped, quoted as useful outside of statistics,
and marketed as a new philosophy ( ). The basic principle that underpins ev-
erything is a simple statement on conditional probabilities of two variables (
), and was put forward by 18th century priest Thomas Bayes:

_ p(0)p019) )
(o) = Z=FS (=)



If 0 is taken to be the model parameters, and y is the data, the probability of the parameters
given the data (p(6]y), i.e. the parameter estimates) can be calculated from the probabil-
ity of the parameters (p(6)) and probability of the data given the parameters (p(y|6), i.e.
the likelihood of the data). The estimate of the parameters actually comes in the form of a
distribution, the posterior distribution, or simply the posterior (as opposed to the distribu-
tion of prior, i.e. p(6)). Typically, it is not possible to compute the posterior exactly, and
instead it is necessary to use numerical methods to arrive at the distribution; this is often
done with Markov Chain Monte Carlo (MCMC) implementations. A basic implemen-
tation still commonly used was developed decades ago by ( ) and

( ); the relatively intense computational resources required explain the only
relatively recent increase in the use of these bayesian methods, which would have been

unfeasible without inexpensive powerful computers.

In a nutshell, the method works by starting an iterative chain with some parameter val-
ues and proposing new values at each iteration of the chain (based only on the current
values, hence the Markovian property), and accepting the proposal using the likelihood
function as a criterion to assess improvement — at the end of a number of iterations a large
number of samples will form a distribution of the parameter values, and the mean (or me-
dian, or mode), as well as the confidence intervals can be computed from the distribution
of parameter values. [This is likely to be an unwarrantedly short description of bayesian
MCMC estimation, but except showing the perceived reasons why it should be favored
over other methods for other chapters of the thesis, the technical details are quite main-

stream and can be found on textbooks such as ( ); ( ).]

A Metropolis-Hastings sampler should be able to make a Markov Chain converge for a
large number of iterations, and produce a distribution of samples that are nearly indepen-
dent, resulting in useful posterior distributions of the model parameters. There are never-
theless many reasons why an MCMC implementation could not converge in a reasonable
time, or at all. Convergence problems with Markov Chain-based bayesian estimation can
nevertheless still be seen as an advantage over maximum-likelihood (and nonlinear least-
squares) methods. While MLE will spit out an answer it is mostly a black box, and the inner

workings of any particular run of the method are essentially unknown; on an MCMC chain

10



the lack of convergence is potentially visible, as is the presence of local maxima.

0.5 GENEALOGIES, PHYLOGENIES, POPULATION GENETICS, AND “PHYLODYNAM-

»

ICS

Genealogies have been an important concept in biology since Charles Darwin sketched a
tree of life in his Origin of Species ( ); although morphological criteria can be
and has been used to establish relationships between species, the advent of molecular data,
and especially nucleic acid sequencing allowed phylogenetics to be developed into some-
thing systematic ( ). Phylogenies illustrate a kind of data that de-
mands reasonably sophisticated descriptions — it is not possible (not in any way one could
easily think of) to describe pairwise clustering as a least-squares problem — and it took
some time before practitioners could advance from more empirical neighbor-joining and
parsimony methods towards likelihood-based methods ( ), which con-
verted phylogenetics into a statistically-rigorous, model-based method (as well as almost
immediately allowing bayesian methods to be applied to it).

In the likelihood-based implementations, a mutation model underlies estimation (with
a substitution matrix being assumed and clock rate possibly being estimated) and branch
lengths are estimated; otherwise phylogenetics is essentially a clustering method, giving
information about the relationship of the samples at hand, but most likely yielding lim-
ited information about the population where it came from. Population genetics, on the
other hand, is concerned primarily with population dynamics and processes; to that end,
the bifurcating properties of genealogies can be used, although the trees themselves are
often treated as nuisances ( ). Bifurcation along time is seen
as merging backwards in time, or coalescence — the coalescence process or simply “the coa-
lescent” contains important information not only about the individuals sampled but about
the entire population where it came from, and it is a powerful tool in population genetics
( )-

Entire books have been written as introductions to coalescent theory ( )

or the implementation of general bayesian MCMC methods (

11



), to which I refer for a more detailed description. The incorporation of nonlinear
models like the basic SIR are described by an array of recent publications; I cite the work
of ( ) as a self-contained description of arbitrary, implicitly specified (e.g. by dif-
ferential equations) non-linear population models in the coalescent framework; I also cite
earlier contributions by ( ), and ( ), with no
ambition of providing a comprehensive list, but instead referring to the five pieces of work

which I have personally found most useful.

Finally, I briefly refer to the Wikipedia “viral phylodynamics” entry (as it is sometimes
called when it involves nonlinear models and viral sequences), and its original source (
) as a primer to the topic. That said, I provide here a very brief description of

genealogy-based inference.

Given a tree branching pattern, or an ordered topology with sequences at the tips, the
expected time before the first two sequences find a common ancestor is a function of both
the birth rate and population size (if the tree nodes are ordered, the first pair of sequences
to coalesce is a given information, the actual time is not), as shown by ( ); i.e. the
probability that two sequences coalesce is dependent on a population function. It can also
be stated intuitively that the probability that a certain number of mutations occur after
some time is dependent on a nucleic acid base substitution model (which includes the
mutation rate). Therefore, for a population function given by some arbitrary mathematical
model (from which the probability of a pair of sequences to coalesce can be calculated),
and a substitution model (from which the probability of a discrete number of mutations
to occur can also be calculated, e.g. a poisson distribution with parameter equal to the
mutation rate), the probability of a specific number of mutations happening before the

samples find a common ancestor can be computed ( ).

That can be done for all the coalescence events, i.e. for the whole tree. Therefore, the
likelihood that the (compound population plus substitution) model produced the ob-
served sequences can be computed for any given tree. From there, the real-valued pa-
rameters (such as processes associated population size or mutation) can be inferred by
a method such as MCMC estimation, although that assumes that the one tree underlying

the model is adequate; additional methods may be necessary to explore tree parameter

12



space, which is comparatively an odd variable type.
So like a model-based inference using incidence data, there is also a likelihood function
relating sequence variation to both the tree and population function, and that can be used

to describe the phylogenetic relationship but also the population processes.

0.6 'THESIS OUTLINE AND OBJECTIVES

The remaining chapters are structured in the following way: chapter 1 uses a risk analysis
kind of model coupled to survival models to estimate dose-independent parameters of sus-
ceptibility to viral infection for Drosophila melanogaster hosts with and without Wolbachia
symbionts ( ; ).

Chapter 2 introduces dynamic models of insects, and analyzes the question of inva-
sion of a resident population by a vertically-transmitted symbiont (e.g. Wolbachia) that
can modulate the host’s life history, including protection against horizontally-transmitted
pathogens ( ).

Chapter 3 uses a within-host dynamic model to explain the time course data of infection
ofaAedes-DENV system, inferring parameters related to the infection process, and relating
the results to the risk analysis type of models.

Chapter 4 describes population models of disease transmission between mosquitoes
and humans, and introduces multiple-serotype models. Forward and reverse modeling
results are shown, the latter mostly with simulated data, but also with incidence from the
city of Rio de Janeiro, where DENV is endemic.

Chapter s is a general discussion about how the chapters are related to each other, con-
clusions, and perspectives.

The general goal of this thesis is the development of a quantitative framework to analyze
the introduction and impact of the Wolbachia symbiont into Aedes mosquito populations
as a form of intervention to reduce disease transmission. Two scales are contemplated:
the host and population scales. Chapters 2 and 4 are dedicated to population models, with
the specific objective of unearthing what can be learned from this approach either through

simulation or inference from different kinds of field data. Chapters 1 and 3 describe host-

13



level experiments that give insight into infection of invertebrate hosts. The final chapter
discusses how the two scales are related to each other, how the different models could be
integrated, what would be the uses of doing so, and which kind of data or experiments
would be additionally necessary to do so, as well as what is missing from the results, and

what was found to be important after analyzing everything that is contained in this thesis.
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ABSTRACT

The biological effects of interventions to control infectious diseases typically depend on
the intensity of pathogen challenge. As much as the levels of natural pathogen circula-
tion vary over time and geographical location, the development of invariant efficacy mea-
sures is of major importance, even if only indirectly inferable. Here a method is intro-
duced to assess host susceptibility to pathogens, and applied to a detailed dataset generated
by challenging groups of insect hosts (Drosophila melanogaster) with a range of pathogen
(Drosophila C Virus) doses and recording survival over time. The experiment was repli-
cated for flies carrying the Wolbachia symbiont, which is known to reduce host suscepti-
bility to viral infections. The entire dataset is fitted by a novel quantitative framework that
significantly extends classical methods for microbial risk assessment and provides accurate
distributions of symbiont-induced protection. More generally, our data- driven modeling

procedure provides novel insights for study design and analyses to assess interventions.

AUTHOR SUMMARY

While control options for plant, animal, and human pathogens are emerging rapidly, re-
liable assessment of the effect of interventions in biological systems presents many chal-
lenges. A major question is how to connect laboratory experiments and measurements
with the relevant process in natural settings, where hosts are subject to pathogen expo-
sures that vary in time and geographical location. With this aim, measures of protection

that are invariant under varying exposure intensity need to be developed and integrated
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with mathematical models. In this article, we introduce a method to assess host suscep-
tibility to pathogens, and apply it to survival of Drosophila melanogaster challenged with
different doses of Drosophila C virus. By replicating the procedure in groups of flies that
carry the symbiont Wolbachia, we are able to estimate how the viral protection induced by
this intracellular bacterium is distributed in the host population. Our results disentangle
host infection status from observed mortality, accounting naturally for time since expo-
sure. The multiple-dose design proposed challenges traditional study designs to assess

interventions.

1.1 INTRODUCTION

HoOSTS EXPOSED TO DISEASE-CAUSING AGENTS RESPOND IN ACCORDANCE TO THE CHAL-
LENGE DOSE. THEREFORE DOSE-RESPONSE CURVES CONTAIN INFORMATION ABOUT DIS-
EASE PROCESSES THAT CAN BE EXTRACTED BY SUITABLE ANALYTIC FRAMEWORKS. Early
examples concerning microbial risk assessment include counting lesions caused by to-
bacco mosaic virus on plant leaves [ 1], as well as human responders to experimental chal-
lenge with polio viruses [2], Vibrio cholerae [3] and Streptococcus pneumoniae [ 4], for es-
calating challenge doses. Dose-response models have been in use for analyses and extrap-
olation of experimental datasets [5].

Models that account for the sigmoidal shape in log-linear scale of the typical dose-
response curve have been derived mechanistically, based on the assumption that each in-
dividual pathogen has a probability of infection independent of others, the so-called in-
dependent action hypothesis [6]. This results in a one-parameter exponential-function
model [7]. The frequent observation of shallower-than-exponential, or overdispersed, re-
lationships has then prompted the implementation of heterogeneity in the probability of
infection of individual hosts [8-10].

In the 1960s, Furumoto and Mickey [9] developed a dose-response model that could
accommodate both shallow and steep increases in the response by considering the proba-

bility of infection of individual hosts described by a Beta-distribution. Although a mech-
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anistic justification for this specific distribution has not been given, the model has been
widely applied in microbial risk assessment due to its ability to outperform the simple ex-

ponential model [s].

Susceptibility distributions other than Beta have also been considered and are more
commonly used in frailty models adopted in survival analysis [11], where the data con-
sist of survivor counts over time in host groups that are constantly subject to a hazard
[12,13]. These frailty models appeared in the 1980s and have since been adapted to in-
fection hazards, where surviving signifies remaining uninfected [ 14-16]. While most in-
formative when the exposure is continued or repeated over time, these formalisms would
be inadequate for estimating distributions of susceptibility to infection from instantaneous

challenge protocols.

The importance of accounting for time between challenge and observable toxicity re-
sponses to pathogens or other agents has been recognized. Recent models in ecotoxicol-
ogy [17,18], consider explicit kinetics within exposed organisms. Also in microbial risk
analysis, previous studies [ 19,20] have included time postinoculation as an additional pa-
rameter in classic dose-response models, although using an approach that conceptually al-
lows for a different susceptibility distribution at each time point. Here we present a schema
to infer a distribution of host susceptibilities to infection that holds consistently across
dose and time. We introduce an experimental design and inference framework that en-
ables such inferences by analyzing simultaneously a collection of survival curves, each rep-
resenting a different challenge dose. The resulting Beta distributions are compared against

those obtained by classic dose-response models based on single day measurements.

Recent evidence for symbiotic interactions that reduce host susceptibility to pathogens
has stimulated the development of quantitative frameworks to assess the levels of individ-
ual and population protection attributable to specific symbionts. The intracellular bac-
terium Wolbachia, found among many arthropod species including Drosophila melanogaster,
is one such symbiont [21,22]. To analyze the protection conferred by Wolbachia to D.
melanogaster, we apply our inference framework simultaneously to two sets of time-dependent
dose-response data: in one set the flies carry the symbiont bacterium Wolbachia (Wolb+);

while in the other they do not (Wolb"). In this instance we extract the Beta distribution
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that best describes individual protection attributable to Wolbachia, as well as population

statistics valid across entire dose ranges.

1.2 METHODS

1.2.1 SURVIVAL DATA

We used virus free D. melanogaster lines with DrosDel w'''® background, with or without
the endogenous Wolbachia strain wMelCS [21,23,24]. Flies were reared in standard food
at 25uC. To assure that potential for heterogeneities are minimized by the experimental
procedure, we used fifty 3-6 days old adult males per group, 10 per replicate and 5 repli-
cates. To study the response to viral infection, we anesthetized with CO, and pricked flies
with different doses of Drosophila C virus (DCV'). We used tenfold serial dilutions — from
10'0 TCID,, /ml to 10* TCID, /ml — in Tris-HCl buffer, pH 7.5. Controls were pricked
with buffer solution only. We used the pricking protocol described in [24], produced and
titrated virus as in [21]. After pricking, we kept flies at 18°C and checked daily survival
until day 80 and twice a week until the end of the experiment. Food was changed every s
days. We summarized the datain 16 dose-response curves (8 per group, including control)

from day o after treatment until day 139.

A B —— control
10 —— Wolb~ 1.0 . Wob™ 4t rc,,
_ 0.8 N _ 0.8 “‘\\ 10> TCID;,
. ‘2 06 Z 06 “-:\. 105 TCID;,
% o4 % 04 ' 107 TCID;,
0 s ny 10® TCID;,
" | N —— 10° TCID,,

0. —
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 —— 10" TCID,
days post challenge days post challenge

Figure 1.2.1: Figure 1. Survival curves for Wolb™ (A) and Wolb* (B) groups of
D. melanogaster. Dots represent experimental data. Dark blue curves show the model
fit to the survival of control flies. Shaded areas represents 95% Cl (credible intervals).
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1.2.2 DOSE-RESPONSE MODEL

Starting from established models, we refine the occurrence of mortality from infection, i.e.
the response, as a function of the concentration of infectious units given to hosts, i.e. the
dose. We present a step-by-step derivation of descriptions that integrate dimensions that

are usually treated separately as well as the motivations for doing so.

Assuming independent action of infectious units, each unit has probability p of causing
an infection, while for d infectious units infection occurs with a probability described by
Binomial(d, p). Given further considerations about the distribution of infectious units in
a homogeneous solution (see [9] for a complete derivation of the expression), the num-
ber of units causing infection can be described by a Poisson distribution, resulting in the
exponential dose-response model [7], that describes the probability of infection in a host

challenged with pathogen dose d:
Thom =1— ¢ P4 (1.1)

This most basic formulation is hereafter referred to as the homogeneous dose-response

model.

Furumoto and Mickey [9] expanded this formulation by allowing the probability of
infection to be described by a parametric distribution, specifically the Beta distribution.
To facilitate normalization across datasets, here we maintain the probability p fixed across
individual hosts (as in [25]), and introduce a multiplicative parameter, the susceptibility
factor o < x < 1, to describe any natural or induced effect that decreases susceptibility.
We assume that susceptibility to infection is Beta-distributed so as to describe the variation
of susceptibility in the host population. Thus, we obtain the probability phet that a host

contracts infection as
1
Thet = 1 — / e g (x)dx (1.2)
(o]

where g(x) = x* (1 — x)" 7' /B(a, b) and B is the Beta function. We refer to this formu-

lation as the heterogeneous dose-response model.
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At last we introduce a small parameter e to account for a small probability of ineffective
challenge, such that M ~ Binomial(n, (1 — €)= ) is the random variable representing the
number of infected hosts, in a group of n hosts challenged with a given dose. Assuming
that an ineffectively challenged host behaves like a control host with regard to death rates,
the probability that m hosts are dead a number of days after challenge is then

P(M=m) = <;> (1 —e)a]™[1 — (1 — )] ™ (1.3)
where 7 is either 7,5, (1) or 7yt (2) depending on which dose-response modelis adopted.

The parameters to be estimated for this dose-response model are the maximum prob-
ability of infection per infectious unit (p), the shape parameters for the Beta distribution
that describes the susceptibility factor (a, b), and the probability of ineffective challenge
(e).

These models require a choice of how many days post-challenge cumulative mortality
should be measured, which is difficult to establish for host-pathogen systems where times
to death from infection or other causes overlap significantly. To overcome this difficulty,
we develop a model that integrates an explicit representation of time to death with the
dose-response process for infection just described. It should, however, be noted that time
is introduced with the main purpose of enabling the use of survival curves to obtain robust
estimates for probabilities of infection given different challenge intensities and consistently
infer susceptibility to infection. From this perspective, parameters defined from now on

should be regarded as auxiliary and will be implemented as simply as possible.

1.2.3 TIME-DEPENDENT MODEL FOR CONTROL GROUP

We first consider a survival model for a control group of flies pricked with buffer solution
only (no DCV), subject to two hazards: h, , an age-dependent death hazard rate; and k.,
a background age-independent death hazard rate. The overall death hazard rate for unin-

fected hosts is therefore
hy(t) = ho(t) + hy(t) (1.4)
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Denoting TU the random variable representing time to death of control hosts, we have
P(Ty =t) = P(T, = t)P(T, > t) + P(T, = t)P(T, > t) (1.5)

where T, and T are the times to death from h, and hy, respectively. Their corresponding
distributions are assumed to be T, ~ Gamma(M,, s,) and Ty, ~ Uniform(1/x) , where x
is the background mortality rate, m, is the mean time to death, and s, is the shape param-

eter for the Gamma distribution of day of death from aging.

1.2.4 TIME-DEPENDENT DOSE-RESPONSE MODEL

Hosts challenged with pathogen can become infected or remain uninfected and this infec-
tion status is hidden. If uninfected, they are subject to the age-dependent hazard rate that
affects control hosts, hU ; if infected, they are subject to an infection hazard rate, h1, and
the age-independent background mortality. Thus the overall hazard rate of infected hosts

ha(t) = hi(t) + he(t) (1.6)

Now let I ~ Binomia(n, (1 — £)m) be the random variable representing the number of
hosts infected by challenge with a given pathogen dose. Then the probability that i hosts

are infected after n hosts were challenged is

PI=1) = () 6= )il — (1 — el (17)

where 7 is either 7y, (1) or 7 (2) depending on which dose-response modelis adopted.
Let T be the random variable representing the time to death of hosts challenged by a
given pathogen dose. The probability density of observing a death event at time t given

that i hosts are infected is

P(T=H1=i)= " 'p(Ty = t) + “p(T; = 1 (1.8)

28



where T denotes the distribution of time to death of infected hosts, given by
P(T; =t) = P(T, = t)P(T, > t) + P(T, = t)P(T, > t) (1.9)

and T, is the distribution of times to death from the infection hazard rate h,. This distri-
bution is assumed to follow T, ~ Gamma(m,, s,), where m, is the mean time to death of
infected hosts, and s, is the shape parameter for the Gamma distribution of day of death

from infection.

In setting the priors for parameter estimation we note that background mortality is
small and therefore « is kept small by setting 1/k to be much greater than the last day of the
experiment. To enforce that deaths due to infection occur earlier than deaths due to aging,
we constrain the mean time to infection death to be lower than old-age death, i.e. m, < m,
, and the probability of dying before the end of the study to be greater for infected hosts,
ie. P(To < tyax) < P(T, < tygy), where t, is the last day of the experiment.

To construct the likelihood to be maximized by the parameter estimation procedure,
we let D; be the random variable denoting the day fly j died and S the random number of
Survivors up to t,,,. Then the likelihood of observing the actual number of survivors s and

the times of death d = [d,, ..., d,—|, for a given dose is

P(S=s,D=4d) :iP(S:s,D:dU:i)P(I:i) (1.10)

= |P(T > tmaxI = i) [[P(dj -1 < T < dj1=1i)| P =) (1.11)

j=1

Since the observations for each dose are independent, taking the product of the likelihoods

over the different doses yields the global expression for the likelihood of the entire dataset.

In this time-dependent dose-response model, the parameters to be estimated are the
maximum probability of infection per infectious unit (p) used for normalization purposes,
the Beta distribution shape parameters to describe variation in susceptibility factor (a, b),

the parameters that control death due to aging (m,, s, ), infection (m,, s, ), and background
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mortality (k), as well as probability of ineffective challenge (¢). Parameters « and ¢ are

typically small and were introduced to improve performance of the likelihood.

1.2.5 PARAMETER ESTIMATION

Model parameters were estimated using Markov chain Monte Carlo sampling implemented
with the PyMC package [26] (code available from [27]). The prior distributions consid-
ered are listed in Table 1. Initial values were chosen so as to start with a non-zero likelihood.
Using Metropolis-Hastings algorithm, we ran two separate chains for 252,000 iterations.
The first 27,000 iterations were discarded. The recording interval was set to 250 so that the
autocorrelation between samples was negligible. Convergence was assessed by inspection
of the trace plots. All analyses were performed on the pooled samples from the two repli-

cate chains.

1.3 REsuLTS

Groups of Wolbachia-negative (Wolb") and positive (Wolb+) D. melanogaster flies were
challenged with a range of DCV doses and survival curves were traced as shown in Figure

1. This dataset was analyzed by applying the models introduced in Methods.

Table 1.3.1: Model parameters and their corresponding prior distributions.

Symbol Meaning Prior

my Mean time to death from aging U(0, 140)

50 Shape of the Gamma distribution for death from aging U(0,500)

my, mj Mean time to death from infection (for Wolb™ and Wolb", respectively) U(0,mqo)

sy sy Shape of the Gamma distribution for death from infection (for Wolb™~ and Wolb*) U(0,100)

P Per viral particle probability of causing infection uU(o,1)

a b Shape parameters of the Beta distribution for the susceptibility to infection of Wolb™ U(0.1,10)

K Background mortality rate, from causes other infection or aging U(1076,102)

B Probability of ineffective challenge N(0.001, 0.00125)[0,1]

Ulxy) is a Uniform distribution from x to y. N(x,y)[w,z] is a normal distribution with mean x and standard deviation y truncated so its values are always between w and z.
doi:10.1371/journal.pcbi.1003773.t001
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1.3.1 SUSCEPTIBILITY DISTRIBUTION FROM SELECTED DAY MORTALITY

To emphasize the importance of day selection to infer distributions of susceptibility to in-
fection by classic dose-response models [ 5] we have applied these procedures to mortality
data observed by two specific days (30 and 50). Parameter estimates from these models
are listed in Table 2. The model fits to the mortality data at the selected days are shown
in Figure 2, as well as the associated distribution of Wolb+ susceptibilities and the poste-
rior samples for the Beta distribution shape parameters. For simplicity we have adopted
the homogeneous model for Wolb™ and focus on comparing susceptibility distributions
of Wolb+ inferred at different days. Mean protection conferred by Wolbachia in this illus-
tration is estimated as 79% and 56%, based on mortality measurements at day 30 and 50,
respectively. Moreover, the distributions have fundamentally different shapes, with the
appearance of a high susceptibility group as 11 time progresses. This sensitivity to the day
by which mortality data are collected is a concern that raises the need to disentangle in-
fection status from the associated time-dependent mortality. In the following sections, in-
fection and mortality are estimated explicitly using the integrated time-dependent model

described in Methods. The procedure is illustrated in Figure 3.

Table 1.3.2: Estimated parameters by applying dose-response models to selected day
mortality.

Mortality data Parameter Median 95% HPD*
30 dpc® P 23310°° [1.67 107%,3.13 1079
a 030 [0.21, 0.41]
b 1.10 [0.29, 2.53]
e 1781072 [4.90 1074, 3.49 1077
50 dpc® P 26510°° [1.82 107,347 1079
a 034 [0.24, 0.51]
b 042 [0.12, 0.93]
e 1831072 [3.60 10%,3321077

®High posterior density interval.
Days post-challenge.
doi:10.1371/journal.pcbi.1003773.t002
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1.3.2  AGING AND BACKGROUND MORTALITY

Control curves from Wolb™ and Wolb+ flies pricked with buffer solution (no DCV') were
compared with the Kaplan-Meier method using the log-rank test and no significant differ-
ence was found (with a p-value of 0.47). By fitting the uninfected time-dependent model
(4-6) to the control survival curves (Figure 1) we estimated the parameters describing ag-

ing (m,, s,) and background (x) mortality (Table 3).
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Figure 1.3.1: Figure 2. Dose-response curves and susceptibility distributions
inferred from mortality measurements 30 and 50 days post- challenge. Dose-
responses models adopted here are the standard formulations (1-3). A,D, Curves repre-
sent the fitted dose-response model to mortality on selected day post-challenge (dots),
for Wolb™ (black) and Wolb™ (blue). Shaded areas represent the 95% CI. B,E, Distri-
bution of susceptibility to infection in Wolb™. The posterior median distribution is the
curve and the shaded area is the 95% Cl. C,F, Posterior samples of the Beta-distribution
shape parameters describing Wolb™ susceptibility in blue. Red dot mark the median of
the respective distributions. The homogeneous model was adopted for Wolb".
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1.3.3 SUSCEPTIBILITY DISTRIBUTION FROM SURVIVAL CURVES

For each group of flies (Wolb™ and Wolb+), the time-dependent dose-response model
constructed in Methods was fitted simultaneously to the entire dataset of survival curves
(one for each DCV challenge dose), fixing across doses the distribution of times to death
from infection (my, s;) and aging (m,, s, ), while estimating the susceptibility parameters
(p, a, b) that govern the dependence of response on challenge dose according to the adopted
dose-response model. The estimated parameter values are listed in Table 4. The deviance
information criterion (DIC) [27] favored the homogeneous model for the Wolb™ group
and the heterogeneous model for Wolb+ (Text S1). Mean time to death from infection is
9 and 14 days in the Wolb™ and Wolb+ groups, respectively. The variance in time to death
from infection is lower for Wolb’, with a standard deviation of 2 days, compared to 6 days
in the Wolb+. Figure 4 compares fitted with observed survival curves.

The fitted dose-response curves that result from this analysis are shown in Figure 5A,
while the inferred distribution of Wolb+ susceptibilities normalized by the Wolb™ measure
is displayed in Figure 5B and the corresponding posterior distribution of the Beta shape
parameters is in Figure §C. Given the homogeneity in the Wolb™ group, the distribution of
susceptibility in Wolb+ provides a direct indication of how antiviral protection conferred
by Wolbachia is distributed among its carriers. Typically defined as 1—RR , where RR is
the risk reduction attributed to the susceptibility modifier (Wolbachia in this case), we
determine the mean protection conferred by the symbiont to its host as 85% (with a 95%

HPD of 60-93%).

1.3.4 COMPARISON WITH SELECTED DAY MORTALITY

To assess the best possible performance of classic methods [ 5] in the inference of suscep-
tibility distributions (for Wolb+ in the case) we must have previously reduced the set of
survival curves to a set of effectively infected proportions - one entry per challenge dose.
To search for a range of days in which absolute mortality might provide an approximate
indication of infection, we compare the estimated proportions effectively infected by each

challenge dose with the mortality proportion measured at each day. Using a normalized
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Figure 1.3.2: Figure 3. Schematic illustration of the proposed experimental
design and inference procedure.

Euclidean distance between these two measures, a day- selection score is provided by the
red curve in Figure 6. We identify day 30 as optimal and 17-46 as the interval of days in
which the score is at least 95% of the optimal. Reassuringly, the optimal day appears to
coincide with the saturation of infection-induced mortality (see position of vertical dash-
dotted gray line in relation to the Gamma distributions). We now recall Figure 2 and Table
2 for the inferences based on day 30 mortality data to confirm that classic dose-response
models can in principle infer susceptibility distributions that are consistent with those ob-
tained under our extended model (Figure 5). A major issue, however, is that results are
sensitive to a day-selection criterion that relies on having previously carried out the en-
tire procedure. The appearance of a high susceptibility group in distributions inferred at
later days are an artifact due to the accumulation of background mortality that should be

factored out. These results highlight the importance of adequately representing the time
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Figure 1.3.3: Fit of time-dependent dose-response model to survival curves.
Black and blue dots are the observed proportions surviving over time for Wolb™ and
Wolb™ groups, respectively. The curve is the fitted mean posterior survival over time
and the shaded area is the 95% CI. Fifty flies per group were pricked with: A, buffer
solution (shown for comparison but not used on this analysis); and B, 10*; C, 10%; D,
10% E, 107; F, 10%; G, 10%; H, 10'0 TCID,, DCV.

dimension in the analysis.

1.4 DiscussiON

Dose-response models have become standard quantitative frameworks in microbial risk
assessment. Less recognized is their ability to estimate host trait distributions. Here we
illustrate the concept by extracting host susceptibility distributions from mortality mea-
sured as a function of pathogen challenge dose, but similar procedures can be developed
for measures of infection or infectiousness (instead of mortality), and can be made a func-
tion of other environmental variables such as temperature or humidity (instead of dose).
Understanding how to detach host trait distributions from environmental variables is cru-
cial for the formulation of measures that can be transported between laboratory and nat-
ural conditions [28].

We address this problem with an experimental design and inference framework that en-

ables the estimation of distributions of host susceptibility to infection by analyzing simul-
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Figure 1.3.4: Figure 5. Dose-response curves and susceptibility distributions
inferred from survival curves. A, Curves represent the estimated dose- response rela-
tionships from fitting the model described in Methods to survival over time, for Wolb
(black) and Wolb™ (blue). Shaded areas represent the 95% Cl. B, Distribution of sus-
ceptibility to infection in Wolb™. The posterior median distribution is the curve and the
shaded area is the 95% Cl. C, Posterior samples of the Beta-distribution shape parame-
ters describing Wolb™ susceptibility in blue. Red dot marks the median of distribution.

Table 1.3.3: Estimated parameters governing time to death from causes other than
DCV infection.

Parameter Median 95% HPD

o 117.18 [114.99, 119.84]

S0 118.93 [80.19, 166.15]

K 1141073 [5.36 10% 1.96 1073

doi:10.1371/journal.pcbi.1003773.t003

taneously a collection of survival curves, each representing a different challenge dose (Fig-
ure 3). The procedure is illustrated on a specifically collected dataset where two distinct
groups of hosts (D. melanogaster) were experimentally challenged by viruses (DCV): one
group consists of isogenic flies where no significant variability in susceptibility to infection
is found; and another with the same genetic background but now carrying the symbiont

bacterium Wolbachia known to reduce susceptibility to DCV [21;22].

Our inferences indicate that Wolbachia confers on average 85% DCV protection to D.
melanogaster under the specified laboratory conditions, and suggest significant variability

in this effect. This variance in susceptibility is induced by the symbiont, since model selec-
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Table 1.3.4: Parameters governing estimated number infected per dose of DCV chal-
lenge and time to death from infection using time-dependent dose-response models
described in Methods.

Parameter Median 95% HPD
p 17310°° [9.58 107,267 109
a 0.47 [0.25, 0.85]
b 321 [0.34, 8.40]
1.89 1072 [455 1074 3.40 1077
my 9.34 [9.10, 9.58]
ST 35.79 [26.60, 47.05]
m]*' 13.79 [11.31, 14.94]
si 5.59 [4.70, 11.12]
my 115.20 [113.94, 116.45]
50 140.39 [116.80, 166.97]
K 2151077 11651072 271 107°]
Parameters with superscripts ~ and ™ relate to Wolb™ and Wolb™ groups,
respectively.
doi:10.1371/journal.pcbi.1003773.t004

tion criteria did not support heterogeneity in the susceptibility of flies not carrying Wol-
bachia. Since the Drosophila and Wolbachia populations used in this study are isogenic,
the heterogeneity in susceptibility of Wolbachia-carrying flies uncovered here indicates
variation in the host-microorganism interaction that lacks a genetic basis. A simple hy-
pothesis is that variance in Wolbachia levels at the individual host level leads to variance
in resistance to viruses. Although several lines of evidence support this hypothesis [29-
32], further experiments are required to discriminate whether heterogeneity in resistance
is directly linked to variance in Wolbachia levels or, alternatively, a result of another envi-
ronmental/physiological variance that is only expressed in the presence of Wolbachia.

Previous estimates of protection were based on survival analysis or viral titres in a dose-
specific manner [21;22;24]. To our knowledge, the experimental design and analysis pre-
sented here provides the first estimation of protection in way that is detached from chal-
lenge dose. Future developments might consider: estimation of alternative distributions
to compare with the shapes suggested by the Beta family; extension of the adopted exper-
imental design to measure responses other that mortality; and move towards host popu-
lations and environmental conditions that are closer to natural systems.

The parameters estimated here should not be seen as isolated from the relevant 15 eco-
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logical context. On the contrary, they are intended as a first step to inform the construction
of ecological and epidemiological models where Wolbachia, other symbionts, or interven-
tions that modify host susceptibility to infection, are introduced to induce desired transi-
tions in populations. The introduction of Wolbachia into Aedes aegypti and other arthro-
pod vectors is being considered as a promising strategy to control dengue and other in-
fectious diseases of humans (see [33] and references therein). The inference frameworks
presented can be readily adapted to provide accurate quantification of Wolbachia-induced
protection and integrated in population models of public health importance.

The challenge of considering the time dependence of processes leading to observable
ecotoxicity responses has also been addressed in toxicology where the so-called General
Unified Model of Survival (GUTS) has been proposed [18]. These models simulate the
time-course of external and internal processes leading to toxic effects on organisms to gen-
erate an output that can be fitted to mortality over time. While those studies tend prioritize
the mechanistic descriptions of the toxicokinetic and toxicodynamic processes that dam-
age the organisms, we have chosen to adopt a phenomenological approach and focus on
the inference and interpretation of how susceptibility to infection is distributed in a pop-
ulation.

In epidemiological systems, the baseline transmission intensity is often not directly
measurable but indirectly inferred in a model-based manner. Dose-response models, on
the other hand, can account for experimentally controlled patterns of exposure [34;35].
Variation in host susceptibility to pathogens is one component of both classes of systems
that mostly influences estimates of intervention impacts [28]. Therefore, building on the
methods developed here furthers our potential to accurately evaluate the burden of infec-

tious diseases and design effective interventions.
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Figure 1.4.1: Figure 6. Selection of optimal days to collect mortality mea-
surements for traditional dose-response models. The red line traces a score
for how well mortality at any given day represents infection estimated by the time-
dependent model (referto axis on the right). The score is given by Q = 1 —

\/[Zf:(yf — ;7 )*+ (57 —%7)*]/2A where A denotes the number of doses in the

dataset, x; — (xf) represents the proportion infected in the Wolb~ (Wolb™) group sub-

ject to DCV dose j, and y; (t) (y;’(t)) the observed mortality proportion over time in the
Wolb™ (Wolb*) group subject to DCV dose j. Gray vertical lines mark the optimal day
to measure mortality for dose-response models (day 30, dash-dotted line) and the limits
of the acceptable range (days 17 and 46). Dashed lines represent the Gamma distribu-
tions that describe old-age mortality, and black (blue) full curves refer to the Gamma
distributions that describe infection-induced mortality in Wolb™ (Wolb™) (refer to axis
on the left). Curves are the mean posterior probabilities and shaded areas represent the
95
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This [solving mathematical models of Wolbachia spread] is as much

fun as you can have with your clothes on.*

Michael Turelli
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ABSTRACT

Facultative vertically transmitted bacterial symbionts often manipulate host reproductive
biology to facilitate their persistence. Wolbachia is one such symbiont where frequency-
dependent reproductive benefits are opposed by frequency-independent fitness costs lead-
ing to bistable dynamics. Introduction of carriers does not assure invasion unless the ini-
tial frequency is above a threshold determined by the balance of costs and benefits. Re-
cent laboratory experiments have uncovered that Wolbachia also protects their hosts from
horizontally transmitted pathogens. The expected consequence for this phenotype in nat-
ural environments is to lower the invasion threshold by a factor that increases with the
extent of pathogen exposure. Here we introduce a series of mathematical models to ad-
dress how resistance to pathogens affects Wolbachia invasion. First, under homogeneous
population assumptions, we obtain an analytical expression for the invasion threshold in
terms of pathogen exposure, and find a new regime where symbiont releases result in elim-
ination of the entire host population provided pathogen abundance is high. Second, we
distribute Wolbachia effects such that some carriers are totally resistant and others not
at all, and explore how this manifests at different challenge intensities, to conclude that
heterogeneity further lowers the threshold for Wolbachia invasion and increases system

resilience by reducing the odds of population collapse.

2.1 INTRODUCTION

Wolbachia are vertically transmitted, obligatory intracellular bacteria present in a great num-
ber of species of arthropods and nematodes. In insects, they often manipulate reproduc-
tion of their hosts and thus assure persistence. One such reproductive manipulation phe-

notype prevents successful reproduction between male Wolbachia-carriers and female non-
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carriers due to cytoplasmic incompatibility (CI), confering a fitness advantage to the car-
rier population ( ), which is stronger when Wolbachia is more preva-
lent. Such positive frequency-dependence induces a strong Allee effect when Wolbachia
is costly to the host ( ), such that the resident population ap-
proaches elimination or remains nearly unchanged depending on whether the initial fre-
quency of carriers is above or below a threshold ( ) that can be
expressed as a function of the various Wolbachia-associated effects ( )
).

The use of Wolbachia to manipulate the life history of disease vectors has been proposed,
and more recently Wolbachia has been shown to confer protection against viral infections
in Drosophila melanogaster ( ; ), and against mosquito-
borne pathogens of humans in Aedes and Anopheles species ( ;

; ). Trial releases have been carried out in populations of Ae. ae-
gypti in Australia ( ), as a pilot intervention for interrupting endemic
dengue virus transmission ( ; ). The
perspective of successfully introducing carriers into natural mosquito populations where
Wolbachia is absent, and the variety of strains to be chosen from, makes it of practical in-

terest to estimate the thresholds for invasion of Wolbachia-carriers.

The invasion threshold has been the center of discussion concerning the spread of Wol-
bachia in both population-genetic ( ) and population-ecological
models ( ) if symbionts are believed to be parasitic. In the case of mutu-
alistic associations of Wolbachia or other symbionts there is no threshold, and they should
be able to diffuse spatially and spread ( ), with dynamics similar to that of
an advantageous gene ( ; ). Wolbachia strains induc-
ing fitness costs, however, may face an invasion threshold that constrains spatial spread
from a local introduction ( ). In a finite population, the level of
the threshold also affects the probability of fixation given a rare introduction (

) to an extent that is modulated by environmental factors. In the case of strains artifi-
cially introduced into Ae. aegypti mosquitoes (which are not natural hosts to Wolbachia),

for instance, fitness costs were identified in laboratory experiments and must be contem-
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plated in the assessment of planned releases of larger populations of carriers (

)

The idea that vertically-transmitted parasites may interfere with host susceptibility to

pathogens, which in turn affects the prevalence and persistence of the former in a host

population has been previously proposed ( ; ), and ex-
tended to Cl-inducing parasites, such as Wolbachia ( ), carried by many
host species ( ). The intuitive idea is that protection against viru-

lent pathogens would compensate for the costs of carrying the parasite, allowing its persis-
tence. Despite this general qualitative feature, the ability of CI-inducing parasites to actu-
ally invade a resident population is determined by a threshold frequency, which depends
explicitly on fitness costs and benefits ( ; ;

), but is likely to be entangled with ecological parameters. Such thresh-
old frequency has not been formally described, nor has the influence of host ecology been
thoroughly considered. Furthermore, all ecological models of Wolbachia assume homo-
geneity in the effects of the vertically-transmitted parasite, but variation in costs or benefits

can further affect these descriptions.

In this work we provide analytical results of systems where a Cl-inducing parasite (here-
after, Wolbachia) may induce fecundity and longevity costs while partially protecting its
hosts from a generalist pathogen ensemble. We derive an exact expression for the inva-
sion threshold under these conditions, and show how it relates to the quantity predicted
by population genetics. We emphasize the importance of specifying the traits affected by
fitness costs, as their weights on the invasion threshold depend on interactions with eco-
logical and environmental processes. We describe the temporal dynamics oflocal invasion.
Finally, we consider heterogeneity in pathogen protection. For a simple all-or-nothing im-
plementation we derive analytical model solutions, which motivate the introduction of a
more realistic distribution estimated from experimental data and a discussion of the reper-

cussions of heterogeneity on invasion and final size of the Wolbachia-carrying population.
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2.2 MOoODEL FOUNDATIONS

Our models build on continuous-time implementations of single-species models (
; ) also used more recently for tripartite interactions involving a
host, a vertically-transmitted parasite, and a horizontally-transmitted pathogen (

; ). These models consider a single stage of the host, namely
the adult stage, but see ( ); ( ) for age-structured mod-
els. The frameworks expand on population-genetic models by explicitly including demo-
graphic processes, such as birth and natural mortality rates. The specification of these pro-
cesses allows Wolbachia-mediated effects to manifest explicitly on the relevant ecological
parameters, i.e. fecundity costs reduce birth rates, while longevity costs increase baseline
natural mortality exclusively, enabling different forces of selection to be separately anal-
ysed. We construct and analyse a series of models with incremental attention on the im-
plementation of host susceptibility to pathogens. Definitions of all parameters, adopted

values, and references are given in Table 1.

Table 2.2.1: Parameters, values and references

Definition Value Reference

a, Birth rate of insect host 10 (
b, Density-independent death rate of insect host 1 (
k, Density-dependent death constant of insect host 0.01 (

sp, Proportion of inviable offspring in incompatible crosses 0.9
sf, Relative fecundity reduction of Wolbachia carriers 0; 0.6 (

s;, Relative lifespan reduction of Wolbachia carriers 0; 0.1; 0.4 This Study;

(

A, Infection-induced mortality 0-10 This study
0, 0, Mean relative susceptibility of Wolbachia carriers o.4;0.21  This study
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2.2.1 TOTAL PATHOGEN PROTECTION

In the special case where Wolbachia confers total protection against pathogens, the model

is given by the following system of differential equations:

%‘t] _ aU[[H—W(I_Sh)}—[bJrf(N)]U—AU, N
%/ = aW(l—Sf)— [l—bsl —l—f(N)} w,

where Uis the number of females not carrying Wolbachia, or non-carriers, Wis the female
Wolbachia-carrying population, and N is the total female population, therefore N = U +

W. The male/female ratio is assumed constant and equal to unity asin ( ).

In the absence of pathogens, the net rate of change in the U population is given by a
birth term, aU[U + W(1 — s;)]/N, where a is the birth rate and s;, is the proportion of
offspring killed in crosses of W males with U females, and a death term, —[b + f(N)]U,
where b and f(N) are the density-independent and density-dependent rates, respectivelly.
Similarly, the rate of change in the W population is given by a birth term, aW(1— s¢), where
sis a fecundity cost that affects the birth rate a, and a death term, —[b/(1 — s;) 4+ f(N)] W,
which has the same interpretation as that in the U population, except that the density-

independent component is modified by a life-shortening fitness cost s;.

In introducing pathogen effects we do not take explicit account of pathogen-infected
hosts in the dynamics, and —AU models the infection-induced mortality at a constant rate
A, following ( ). As equilibria are seldom attained in natural systems,
we envisage a situation where new strains or new pathogen species are constantly intro-
duced ensuring that manipulation of the target host species has a negligible effect on the
prevalence of pathogens. Notice that, mathematically, this implementation is equivalent
to simply increasing the death rate of U hosts by A and, in principle, composite parameters
could be defined to describe death rates specific to U and W hosts so that the number of

parameters would be reduced by one. To ease interpretation, however, we maintain the
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three-parameter formulation for the death rates. In the Supporting Text S1 we analytically
solve a model where pathogen-infected hosts are explicitly represented, as in
( ) and ( ), and show that the results agree qualitatively with those

presented here.

The parameters specifically associated to Wolbachia so far are: the intensity of the cyto-
plasmic incompatibility, s;, corresponding to the proportion of oftspring killed in crosses
of Wolbachia-carrying males with non-Wolbachia-carrying females; the fecundity cost, s¢
, representing the combined effects of reduced number of eggs laid by carriers and their
reduced viability, that is, the reduction in progeny of the W population by effects of Wol-
bachia on the fecundity of the host; and the longevity cost, s;, that models any increase in
the death rate that may be induced by the symbiont, that is, life-shortening effects.

This model assumes that Wolbachia is perfectly transmitted from mother to progeny. In
Supporting Text S2 we extend the formulation and demonstrate that the results of interest

are robust to small imperfections in Wolbachia transmission.

When Ais zero the system is bistable for realistic parameter values and equivalent to that
proposed by ( ) in the absence of pathogens. Under pathogen-induced
mortality (henceforth simply force of infection) greater than zero, thatis, A > o, the
system retains the features displayed by the pathogen-free model, including bistability.

Besides the origin, (U, W) = (o, 0), the system accommodates three non-trivial equi-
libria: pre-invasion, (Upre, W), and post-invasion, (Upes, Wpos), both stable, and an in-
termediate saddle point, (Uyys, Wy, ), which is unstable. Expressions from local stability
analyses are provided in Appendix A and numerical illustrations in Figure 2.2.1, for the
special case f(N) = kN. This linear function is used throughout to represent density-
dependent mortality, while comments on sensitivity of the results to this choice are pro-
vided where appropriate.

Equilibrium proportions of carriers are defined as p; = W;/N;, where N; = U; + W,
fori = pre, pos, uns. In analogy to population genetics, absence of Wolbachia has p,,, =
o, and the intermediate, unstable equilibrium defines the invasion threshold, p,,; = p.
Above this threshold, Wolbachia is expected to increase in frequency and invade, so we

expect ppos = 1, although under slightly imperfect vertical transmission of Wolbachia, a
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residual U population may be maintained (see Supporting Text S2), and under sufficiently
high force of infection, Wolbachia invasion may cause elimination of the entire insect pop-

ulation if protection is partial (N,s = 0, see partial-protection implementations below).

2.2.2 PRE-INVASION EQUILIBRIUM

In the absence of Wolbachia, the equilibrium of system (2.1) is reached with the total in-
sect density, Ny, given by the sum of U, = f (a—b—21)and Wpye = o; therefore, this
stable equilibrium population depends on the net growth, the difference between birth
and death rates, with carrying capacity of the population regulated by the inverse of the
density-dependence function, f*, so that the total population is defined for a suitable
choice of f and parameters adequate to the species of interest ( ;
; )-

The pre-invasion equilibium refers to an insect population that is susceptible to pathogens

and therefore decreases with the force ofinfection, A, being able to persist aslong as pathogen

pressure remains below a critical intensity:
A <a-—b, (2.2)

simply meaning that killing by pathogens must remain less than net growth by birth and

death processes.

2.2.3 POST-INVASION EQUILIBRIUM

The system admits an alternative stable equilibrium when the non-carrier population is
absent and only Wolbachia-carrying individuals are present, which is expected if carriers
invade successfully. In this case, the total population post-invasion, Np,, is given by the
sum of Upes = 0 and Wy = [ (a[1 — s — b[1 — ;] "), where a(1 — s¢) is the birth rate of
carriers affected by fecundity cost s;, and b(1 — s;) 7" is the death rate affected by longevity

cost s5; therefore, as with the non-carriers, equilibrium is a function of net growth.
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Figure 2.2.1: Phase plane for the total resistance model (egs. 2.1) and the possible
equilibria. Parameter values are a = 10, b =1, k = o.01, 54, = 0.9; and s = o, 5 = o.1,
A=1(a); ss=0.6,55=0,1=1(b); ss=0.6 5 =0,1=5(c). Solid black lines are
nullclines for the U population, which may have more than one solution, and gray lines
are nullclines for the W population. Dashed lines are invariant for the flow and separate
the basins of attraction for U-only and W-only steady states, defining the threshold for
Wolbachia invasion.

2.2.4 INVASION THRESHOLD

An additional, unstable equilibrium, which we denote as (Uyys, Wus) suggests the exis-
tence of a threshold initial frequency of Wolbachia carriers, p = W5/ (Uyns + Wins),

above which invasion is expected:

b A
?:Sf‘}_< d >_7 (2-3)

spoasy \1— s asy,

or zero, whichever is higher. Indeed, a straightforward calculation confirms that the straight
line that traverses the origin and the unstable equilibrium is invariant for the flow given in
(2.1) and therefore separates the basins of attraction of the pre-invasion and post-invasion
equilibria. This establishes p as the invasion threshold. See the phase planes in Figure 2.2.1.

Population genetics predicts p = sg/s), given the assumption of perfect Wolbachia trans-
mission ( ). The same result is obtained here in the absence of

horizontally transmitted pathogens (1 = o) and longevity costs associated to Wolbachia

(s = o).
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Expression (2.3) shows how the threshold of invasion depends on demographic pa-
rameters in the presence of longevity costs, extending previous studies, where ecological
parameters are either absent ( ) or costs apply to the net growth of the pop-
ulation ( ), and not to each process separately. By having CI and fe-
cundity costs affect birth rates specifically, and longevity costs affect death rates only, the
unstable equilibrium depends explicitly on these demographic parameters. In the case of
fecundity costs, since both this and CI act by reducing births, the component of the thresh-
old induced by this balance (first term on the right-hand side of (2.3)) is independent of
host ecology; however, in the presence of longevity costs, the relevant ecological process
is death rate, while CI must still act on birth rates only, so this threshold term depends on
the death/birth ratio, or b/g, as seen in the second term. By a similar argument, the com-
ponent of the threshold due to Wolbachia protection against pathogens depends on how

important infection-induced mortality is, which appears as the 1 /a ratio.

Two aspects are worth noting from this analysis: first, the threshold of invasion is inde-
pendent of the density-dependent mortality, that is, it is not necessary to specify a function
ftoarrive at expression (2.3) aslong as it affects U and W populations equally; and second,
each Wolbachia-mediated effect results in an independently interpretable term in the ex-
pression for the threshold. This result holds for the model with partial protection, below,

and the model including imperfect transmission (Supporting Text S2).

2.3 IMPLEMENTATIONS OF PARTIAL PROTECTION

In the more realistic scenario where Wolbachia induces only partial protection against pathogens,
a relaxed negative term, —oAW, is introduced in the equation for the rate of change of
Wolbachia-carrying insects, where ¢ is a factor between zero and one that represents the
relative susceptibility of W when compared to the U population: a o value of zero means
Wolbachia carriers have no susceptibility to infection, as described above, and unity means

they are equally susceptible as the non-carriers.
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2.3.1 HOMOGENEOUS MODEL

Under the assumption that protection is homogeneous, all Wolbachia-carrying individuals

have the same relative susceptibility to infection o, and the model is given by the following

equations:
U U+ Wi —
iTt = aU[Jr(lsh)]—[bJrkN]U—w,
(2.4)
dw
— = aWl(1—s7) — kKN| W — ocAW.
7 aW(1 — sf) [ISl—l— } o

The introduction of the cAW term does not qualitatively alter the equilibria of the system.

An invading Wolbachia-carrying population with relative susceptibility o is expected to
reach equilibrium densities now dependent on the force of infection, such that Ny, is the
sum of Uy, (which in this particular case is equal to zero) and Wyes = k™ (a[1 — s —
b1 — s)] " — o1). We therefore note that the balance between fecundity and longevity
costs imposed, sfand s;, and the fitness benefits Wolbachia confers, in terms of reduced sus-
ceptibility to pathogens, o, will determine how the post-invasion equilibrium population
size compares to the pre-invasion. In particular, for a monotonically increasing density-
dependence function, such as f(N) = kN, when as; + bsj(1 — s;) ™' < (1 — 0)4, namely
for relatively smaller costs than benefits, we expect invading Wolbachia carriers, W, to es-
tablish a larger population than the original U population, while the reverse is expected

otherwise.

As in the case where Wolbachia confers total protection from pathogens, also under
partial protection there is a reduction in the invasion threshold with the force of infection,

although more moderate:

?Zsf+b< . )1(1—0)’ (2:3)

spoasy \1— s asy,

or zero, whichever is higher. Figure 2.3.1 depicts the threshold and equilibrium popula-

tions of Wolbachia-carriers after invasion as functions of the force of infection for an im-
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plementation of partial protection (0 =o0.4),in comparison with no protection (o =1),
and the previously described extreme of total protection (¢ = o). In the presence of pro-
tection, pathogen exposure lowers the threshold for Wolbachia invasion and exclusion of
the resident population, establishing a post-invasion population of size Ny, = k™" (af1 —

sfl — b[1 — s1] 7" — o) aslong as pathogen pressure remains bound:

1<t [a(l—sf)— b } (26)
o 1—5
Comparison with the condition for persistence of the pre-invasion population (eq. 2.2) re-
veals that, depending on the level of protection and costs induced by Wolbachia, there may
be a range in the force of infection where the introduction of Wolbachia may eliminate a
previously established insect population, with extinction of both carriers and non-carriers
(range of A where Njos = 0 and Ny, > o in Figure 2.3.1(b)). Intuitively, CI enables a
population with lower fitness to replace the resident population. Once replacement occurs
we are left with a population of reduced size which may even vanish if pathogen pressure is
high enough. Although different choices for the density-dependence function and other

assumptions modify these descriptions, the reported phenomena persist within reason-

able bounds.

While population-genetic models predict low invasion thresholds if the fitness costs are
small, compared to strains that impose higher fecundity and lifespan costs, and are there-
fore considered to be more parasitic, the added effect of protection against pathogens must
be taken into account in a broader picture. More costly strains could provide an overall
greater fitness if they provide enough protection against natural enemies to balance the
fecundity costs. In terms of the invasion threshold this is described by p (eq. 2.5); the
quantitative effect of protection against pathogens is explored by plotting the expression
as a function of force of infection, 4, for a range of values, and susceptibility, ¢, from com-
plete to zero susceptibility. The resulting surfaces are shown in Figure 2.3.2 for fitness costs
approximating those estimated for wMel (a), and wMelPop-CLA (b) strains introduced
into Ae. aegypti ( ; ). Ecological parameters are simply
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Figure 2.3.1: Invasion threshold under total pathogen protection (model 2.1, solid
black line), as well as homogeneous (model 2.4, dark grey line), and all-or-nothing
(model 2.7, dashed line) partial protection models (¢ = 0.40), and no protection (light
grey line), as a function of the force of pathogen infection A (a). Dots mark a transition
from a regime where Wolbachia invasion progresses to fixation (left) to another where
elimination of the entire insect population occurs (right). Total insect population after
Wolbachia invasion (N,,) under the four models (line styles as before) and total insect
population in the absence of Wolbachia (N,.) (dotted line) (b). Shaded areas mark a
regime where the force of infection precludes persistence of the non-carrier population.
Parameter values are a = 10, b =1, k = 0.01, st = 0.6, sy = 0, 5, = 0.9.
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Figure 2.3.2: Threshold frequency for invasion by Wolbachia-carrying insects as a
function of both force of pathogen infection and relative level of resistance under the
homogeneous model (egs. 2.4). White lines mark a transition from a regime where
Wolbachia invasion progresses to fixation (right) to another where elimination of the
entire insect population occurs (left). Parameters values are a = 10, b = 1, k = o.01,
sp =0.9 ; and sy =0, s; = 0.1 (a); sy = 0.6, s = 0.4, (b)

those of previous studies where species are not specified ( ;

), so the surfaces are not intended as quantitative predictions for Ae. aegypti. The
white line divides the threshold surface into a region where invasion drives the Wolbachia
population to fixation (right) and another where the entire insect population collapses as
aresult (left), with the elimination of the originally resident population in both cases. No-
ticeably, invasion by a less costly strain would be easily attainable by the introduction of
a small number of Wolbachia-carrying individuals, p being zero for most of the parameter
space. In the case of a strain associated with high fecundity costs and life-shortening, the
threshold is high in the absence of pathogens or protection, as expected, however this is

considerably lowered by a combination of these two factors. Indeed, there is a region of

low susceptibility and high force of infection where the threshold is removed (p = o).
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Figure 2.3.3: Simulations (model 2.4) illustrating the threshold phenomenon and ex-
pected times to invasion of a non-carrier population in equilibrium. A population of
Wolbachia carriers (grey) attempts invasion of a non-carrier population (black) with
initial frequency slightly below (solid lines) or above (dashed lines) the threshold for the
elimination of non-carriers. The force of infection 2 = 2 conducts carriers to fixation
when p > p ~ 0.54 (a); A = 8 results in elimination of the entire insect population when
p > p ~ oas (b). (c) Time elapsed from time of introduction of Wolbachia carriers
until elimination of non-carriers for a range of initial frequency of carriers p, and a set
of values for the force of pathogen infection 1 equal to 0, 1, 2, 3, 4, 5, 6, 7 and 8. Dots
in (c) mark the initial frequencies relative to scenarios in (a) and (b). Parameter values
are as in Figure 1.

2.3.2 DYNAMICS OF WOLBACHIA INVASION

The analytical threshold p tells us whether Wolbachia-carriers at a given initial frequency
invade and eliminate a resident population of non-carriers; it does not, however, provide
direct information on the timescale to reach post-invasion equilibrium. We therefore pro-
ceed to use simulations, which consist of numerical integration of the system of differential
equations, to describe temporal features of the system.

Figure 2.3.3 shows simulations of model (2.4). Panels (a) and (b) illustrate scenarios
where invasion leads to Wolbachia fixation (A = 2) and collapse of the entire insect popu-
lation (A = 8), respectively. Because simulations were performed assuming b = 1 for the
density-independent component of the death rate, the time unit can be interpreted as the
average generation time. Panel 3(c) provides a summary of expected times to elimination
of the resident, in terms of the initial proportion of Wolbachia-carriers, letting the force of

infection take a set of values between o and 8. Dynamics are modeled deterministically
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on real variables, and we set as a criterion that elimination occurs when the population
(in this case U) falls below o.5. Each curve describes a trend from instantaneous (when
p approaches 1) to infinite (when p asymptotically approaches the threshold p) time for

elimination of the U population.

2.3.3 HETEROGENEITY IN WOLBACHIA EFFECTS
ALL-OR-NOTHING PROTECTION

Variation in Wolbachia effects has been found in association with genetic factors (

; ), although environmental and developmental factors are
also likely to be involved. To perform a theoretical exploration of heterogeneity we assume
that protection is distributed in an all-or-nothing manner, adopting terminology from vac-
cine studies ( ), resulting in a mean factor 7 of 0.4, as in the homogeneous
case, but with coefficient of variation of 1.22.

We compare the outputs of a model with susceptibility factors distributed among Wol-
bachia-carriers according to such an all-or-nothing mode to those of the homogeneous
model with the same mean susceptibility factor, where the coefficient of variation is zero
by construction. A fraction 1 — o is born into the W, subpopulation and has zero suscepti-
bility, while a proportion 7 is born into W, and has susceptibility equal to the non-carriers.
We still refer to W as the total Wolbachia-carrying population, so that W = W, 4+ W,. Sus-
ceptibility is assumed non-heritable, so upon reproduction the compound W population

contributes to both susceptibility subgroups. The system is written as:

W —
%] = aU [w] — (b + kN)U — AU,
aw,
= TaW(1—s5) — < + kN) W, — AW, (2.7)
dt 1— 5
W, _
ddt = (1—0)aW(1— sf) — (1 — + kN> W,.
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The equation for the non-carrier U population is unchanged, and so are the results in the
absence of Wolbachia. The limit ¢ = o restores the total protection model just as in the
homogeneous system (2.4). Figure 2.3.1(a) also shows, by numerical simulation of sys-
tem (2.7), that heterogeneity (dashed line) lowers the threshold of invasion in comparison
with the homogeneous implementation given the same mean effect on susceptibility, 7 of

0.4, to an degree that increases with the force of infection A.

The justification for this facilitated invasion is selection for increased protection, even
if susceptibility is not inherited from the parents - this phenomenon has been termed “sur-
vivor cohort effect”, or “depletion of susceptibles” ( ;

). Susceptible individuals die younger than resistant ones, increasing protection at
the population level and consequently increasing their population size relative to the ho-
mogeneous case (see Figure 2.3.4) — i.e. in a cohort of same age, resistant individuals ac-
cumulate and are over-represented in individuals of the same age (Figure 2.3.4(a)). This
build-up of protection also results in larger post-invasion populations (Figure 2.3.1(b),
dashed line), and may preclude the scenario of population collapse found under homo-
geneous protection, by allowing Wolbachia-carriers to persist under higher force of infec-
tion. Similar analyses could be performed for a heterogeneous distribution of longevity
costs (not shown, but it is straightforward to rewrite (2.7) to accommodate a distribution
of 5; values, as for susceptibility). A heterogeneous population loses its weaker individuals
earlier so that, as a generation ages, death rates decrease in relation to those expected un-
der homogeneity. Heterogeneous fecundity costs, on the other hand, do not influence the
threshold as in this case there is no selection for individuals of higher fecundity - traits are
not inherited, and more fecund individuals are not overrepresented in later generations,
despite variation being present — and unlike the previous Wolbachia-associated effects, all
groups die at the same rate. Therefore, mean fecundity will not deviate from the initial

average.

In sum, only a distribution of trait values that is subject to selection can act to increase
fitness at the population level; traits that are not selected keep their initial averages values.

( ) obtain similar results when considering the impact of survival and fe-
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Figure 2.3.4: Numbers of individuals in a cohort (model 2.7 with no births, or a = o)
with both the resistant population (W,, light grey shading) and the faster-decreasing
susceptible population (W,, dark grey) (a). Susceptibility ratio of the heterogeneous
Wolbachia compared to a homogeneous carrier population (/o) (solid curve re-
ferring to left axis), and total cohort size of heterogeneous Wolbachia carriers relative
to the homogeneous implementation (Wy.:/Wi,n) (dashed curve referring to right axis)
(b). The homogeneous implementation assumes ¢ = o.40, with the heterogeneous all-
or-none distribution having the same mean. 1 = 2 in this simulation; other parameters
are as in Figure 1.
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cundity in population growth. One way for selection to act on fecundity could be through

trade-offs with protection, although this is beyond the scope of this paper.

CONTINUOUS DISTRIBUTION OF PROTECTION

The homogeneous and all-or-nothing distributions of pathogen protection are two ide-
alized extremes. For more realism, a continuous beta distribution of protective effects
conferred by Wolbachia against Drosophila C virus has been estimated for an isogenic D.
melanogaster host population ( ). Following ( ), a con-

tinuous distribution of Wolbachia effects is introduced by rewriting the model as:

v U+ Wi —s)
T aU{N] — (b +kN)U — 12U, -
2.8
du;(tx) = q(x)aW(1—sp) — <1 ~ + kN) w(x) — xdw(x).

where g(x) is a probability density function describing Wolbachia-induced protection, and
W = fol w(x)dx continues to represent the total Wolbachia-carrying population. The
equation for the non-carrier U population is unchanged, and so are the results in the ab-
sence of the symbiont. The limito = fol xq(x)dx = o restores the total protection model
just as in the homogeneous system (2.4). Following ( ), we implement
q(x) as a beta distribution with shape parameters a = 0.30 and f = 1.10. As model (2.8)
is less amenable to mathematical treatment, the invasion threshold and the population af-
ter invasion were obtained numerically. Implementation of the model was by discretizing
the beta distribution into 5o equally spaced susceptibility groups between o and 1, with
subgroup density given by the integral of the beta probability density function in each of
the intervals. The cohort selection effect on the continuous distribution is shown in Figure

2.3.5 confirming the theoretical expectations from Figure 2.3.4.
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Figure 2.3.5: Beta distribution describing the susceptibility of a cohort of Wolbachia
carriers exposed to natural and infection-induced mortality over age (model 2.8, with
a = o) (a). Mean susceptibility of heterogeneous Wolbachia carrier population relative
to homogeneous implementation (T.t/Thom) (solid curve referring to left axis), and total
population size of heterogeneous Wolbachia carriers relative to homogeneous implemen-
tation (Whet/Wiom) (dashed curve referring to right axis) (b). Invasion threshold under
beta-distributed protection (solid curve referring to left axis), total insect population
after Wolbachia invasion (N,.) (dashed curve referring to right axis) and in the ab-
sence of Wolbachia (N,.) (dotted line referring to right axis) (c). Shaded area mark a
regime where the force of infection precludes persistence of the non-carrier population.
The homogeneous implementation assumes ¢ = o.21, and the heterogeneous is initiated
with beta-distributed susceptibility (¢ = o.21 and coefficient of variation 1.24). Other
parameters are as in Figure 1.
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2.4 DiscussioN

Wolbachia has been previously shown to provide their insect hosts with pathogen protec-
tion, promoting efforts to provoke invasions with Wolbachia-carrying Ae. aegypti. Trials
in semi-field cages were carried out with sizes of the resident, non-Wolbachia-carrying and
introduced carrier populations known to fairly good precision, and estimates of the fit-
ness costs of Wolbachia available. Using the more costly wMelPop-CLA strain, invasions
were observed despite the introduced proportion being below the theoretical threshold
( ). Although consistent with numerical simulations of age-structured
models ( ), to our knowledge no reasons were given for the discrepancy

from population-genetic predictions.

Previous studies have shown that parasitic vertically-transmitted symbionts could per-
sistin the population if they protected against more virulent horizontally-transmitted pathogens
( ; ). ( ) explored how systems that support
coexistence of different parasites have their stable equilibria changing as a function of eco-
logical and transmission parameters. ( ) expanded the analyses by includ-
ing Cl and therefore showing where, in the parameter space of Wolbachia-associated fitness
costs, could the symbiont invade. The invasion threshold was calculated for a system with-
outany pathogens, and considering fecundity costs as the only Wolbachia-associated effect,
which ultimately agreed with population genetics. To our knowledge, a more general an-

alytical treatment of the threshold has not been pursued.

Our results suggest that while population-genetic models accurately predict the effects
of fecundity costs on the invasion threshold, predictions for life-shortening and other ef-
fects benefit from considering host ecology. More generally, distinct Wolbachia-associated
effects have independent contributions to the threshold, and are scaled by the ratio of the
process which they affect and the birth rate, on which CI acts. Specific consideration of
these processes is needed to determine the invasion threshold. Some but not all of these
parameters may be straightforward to estimate; death rates could be estimated from pub-
lished data, for Ae. aegypti, for instance, see ( )and

( ), or could be directly measured from studies of insect survival. Total burden
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of disease, on the other hand, could be difficult to accurately estimate.

Itis expected that partial protection from pathogens lowers the threshold for Wolbachia
invasion; heterogeneity further decreases this threshold. Even in the absence of heritabil-
ity, high variance allows cohort selection effects ( ;

); we have shown that this effect can impact bistable systems by lowering the unsta-
ble equilibrium that determines the invasion threshold. This was initially explored with
an idealised all-or-nothing distribution of protection, and subsequently by implement-
ing variation in Wolbachia-induced protection as estimated for an isogenic population of
D. melanogaster, the natural host of the Wolbachia strains that are being considered for
dengue control interventions. The effects described here apply also to heterogeneity in
life-shortening effect, due to the same cohort survival bias. In contrast, heterogeneous fe-
cundity does not affect invasion, because there is no selection for higher fecundity, unless

it covaries with a selected trait.

Consideration of inheritance and possible trade-offs should be of interest for both in-
vasion analyses, population dynamics ( ) and long term evolution of
hosts ( ), pathogens and Wolbachia, and has obvious importance to the long
term success of intervention strategies based on the symbiont. The framework presented
here allows the population dynamics of the symbiont to be readily incorporated into eco-
evolutionary and epidemiological models of Wolbachia, which has been recognized as the
next step towards understanding coevolution of host, symbiont and other parasites in a

variety of contexts ( ).

While the transmission of dengue has had much attention because of its medical im-
portance, mosquito-only flaviviruses have been identified ( ), but rela-
tively little is registered about their transmission and general epizootology; nevertheless,
those could influence feasibility of provoked invasions ultimately aimed at controlling hu-
man disease. We here use a constant force of infection to model overall disease burden
due to an ensemble of pathogens ( ). Transmission may occur hori-
zontally, either directly (see supplementary material) or through an environmental stage,
for instance, as proposed by ( ); moreover, there is transmission with an

intermediate host, as for dengue virus in Ae. aegypti, or environmental reservoirs of gen-
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eralist pathogens, which would not depend much on the prevalence in any one species,
and could provide a more or less constant or seasonally fluctuating source of pathogens.
Modeling a specific mode of transmission could prove fruitful; however, quantifying the
importance of pathogen infection in such systems remains a great challenge. Nevertheless,
our approach allows us to clearly show how the interaction of infection-induced mortality

and CI affects invasion.

Analytical treatment of host ecology also gives insight beyond just frequency of Wol-
bachia carriers, uncovering regimes where population size post-invasion could be larger
than the original, or where the population could be suppressed altogether — both of which
are of interest in case of disease control strategies. Population suppression strategies based
on cytoplasmic incompatibility have usually been thought in terms of male-only releases
( ), or bidirectional incompatibility between different Wolbachia strains,
possibly with populations artificially sustained through continuous releases (

; )- As described here, suppression relies on a population that is
able to outcompete residents while being unable to persist; this is possible under an ex-
ternal, environmental effect — here force of infection — and may lead to divergent results

between predictions based on caged insects and subsequent field observations.

Extreme scenarios like population suppression by any of the mechanisms described
above may be sensitive to unknown (or dynamic, as discussed above) parameter values
such as force of infection, differences between lab and field effects, genetic background,
and density-dependent regulation; nevertheless, the perspective is an interesting one and
warrants further studies. Robustness of these predictions must be carefully considered,
as heterogeneity in the traits, again, affects all these possibilities and previously discussed
strategies ( ; ; ), and should be
taken into account. To our knowledge, this is the first description of the ecological nature

of the invasion threshold, and it provides clear analytical insight into this quantity.
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In my whole career, I have never seen a Tajima’s D statistic equal to

zero.®

Nick Barton

Stability analysis of the invasion models

Here we elaborate on the local stability analysis of the homogeneous system. The pro-
cedures are extensible to the other cases by analogy. Writing the system of differential

equation in condensed form as:
dX
— = F(X), A
dt () (A1)
whereX = [ U W | and Fis the vector field defined in (2.4), the associated lineralized

system can be written as:

dX
7 = JX, (A.2)
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where J is the Jacobian matrix of F evaluated at some equilibrium. To calculate the Jacobian

matrices we have that:

OF,  a(N*—Ws,)

v - e b -fu-a

OF, aU?sy,

0 (A3)
F,

oU = _fj(N)W

gs\; = =) - l_bSl —f(N) = f (N)W — o).

In the following we specify the density-dependence function as f(N) = kN, and proceed
to evaluate the Jacobian at each of the three non-trivial equilibrium points and calculate

the associated eigenvalues.

A.1  TRIVIAL EQUILIBRIUM

The trivial equilibrium, X,,,, = [0 o ]T , leads to a Jacobian matrix whose eigenvalues
take the form:
WZ
€lpre = a<1— N?’)—b—k
(A.4)
= —sf) — — ol
€2pre a(1—s) p— o

The first lies between a(1 — s;,) — b — 2 and a — b — A which, with this level of determi-
nation, may be negative or positive. Its upper bound, however, coincides with f ™' (U, ),
whose positivity is ensured by the monotonicity of f when X,,,, exists. The second eigen-
value coincides with f~*(W,,,) and, by a similar argument, is always positive when X,
exists, establishing that the trivial equilibrium is always unstable when the conditions for

Wolbachia invasion are met.
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A.2 PRE-INVASION EQUILIBRIUM

The pre-invasion equilibrium, Xpre = [ Upre  Wiyre ], is the same under all the models
considered in the main text and given by:
a—b—121

Upre = T and Wpre = o, (AS)

which can only represent an existing population when 2 < a — b. Replacing in (A.3) we

obtain a Jacobian matrix whose eigenvalues are:

elye = —a+b+21
bs; (A.6)

€2pre = —aSf—

The first is negative when X, exists, vanishing at A = a — b when the population goes
extinct due to pathogen pressure. The second can be rewritten as —as,p, where p is the
threshold frequency of Wolbachia-carriers (2.5) required for invasion. This eigenvalue is
therefore negative whenever there is a positive invasion threshold, confirming the stability

of the Wolbachia-free population when this condition is verified.

A.3 POST-INVASION EQUILIBRIUM

w,

pre |7, under model (2.4) is:

The post-invasion equilibrium, X, = [ Upre

a1 —s b ol
Upos = © and Wros = (k )_k(1—51)_k’ (a7)

which can represent an existing population when 1 < ¢ *[a(1 — sr) — b(1 — s)']. Re-

placing in (A.3) we obtain a Jacobian matrix whose eigenvalues are:

elye = a(sf—sp) +
1= s (A.8)

€2pre = —a(1— Sf) +
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The second is negative when X, exists, vanishingat 1 = o7'[a(1 — sr) — b(1 — s) 7]
when the population goes extinct due to pathogen pressure. The first can be rewritten as
asp(p — 1), which is negative for p < 1, confirming the stability of the Wolbachia-carrier

population.

A.4 INVASION THRESHOLD

The unstable equilibrium, X,ns = [ Uy Wi |7, under model (2.4) is:
—p b
Upyps = - [a(1 — ) — — 0’1:|
K P (A9)
W = L a(1—sf) — b ol .
uns k f =5 ’

Stability analysis is less tractable in this case but phase planes obtained numerically in Fig-

ure 1 are consistent with a saddle point, therefore always unstable.
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I don't believe in analytical results; I just set up a model and simulate
the shit out of it.%.

Mark Thomas

Within-host dynamics in a
DENV-Aedes-Wolbachia system
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ABSTRACT

Infection is a complex and dynamic process involving a population of invading microbes
and the host with its responses aimed at controlling the invasion. Depending on the pur-
pose, infection at the organism level can be described by a process as simple as a coin toss,
up to a multi-factorial dynamic model - the former may be adequate as a component of a
population model for instance, while the latter is necessary for a comprehensive descrip-
tion of the process from challenge with an infectious inoculum up to establishment or elim-
ination of the pathogen. Often, readouts of laboratory experiments are static, snapshots of
the process, assayed under some convenient experimental condition, and therefore can-
not thoroughly represent the system. As opposed to the discrete treatment of infection
in population models, or the summarized description of typical lab experiments, in this
chapter infection is treated as a dynamic process dependent on the initial conditions of
the infectious challenge, viral growth, and the host response as functions of time. Here,
experimental data is generated for multiple doses of type 1 dengue virus, and viral levels
are recorded at different points in time for two populations of mosquitoes: either carrying
endosymbiont Wolbachia or not. A dynamic microbe-response model is used to describe
pathogen growth in the presence of the host immune system, and to infer model param-
eters for the two populations of insects, revealing a slight — but potentially important —

reduction in viral levels along time conferred by the symbiont.

3.1 BACKGROUND

THE POTENTIAL OF A PATHOGEN TO SUSTAIN ITS TRANSMISSION IN A POPULATION IS
OFTEN SUMMARIZED INTO GENERAL QUANTITIES LIKE VECTORIAL CAPACITY, which in-
cludes host variables such as population size and biting rate, or more restricted ones like
vector competence, which is the ability of a single vector, e.g. one mosquito, to become
infected and further transmit the disease.

Because there is no real readout of “ability to be infected and then infect”, it is not pos-

sible to measure vectorial competence directly, instead it must rely on proxies such as sus-
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ceptibility to infection or, more concretely, probability of having detectable levels of virus

in the saliva.

As shown before ( ; ), measuring dose-independent
parameters of susceptibility to infection can be accomplished by constructing a dose-response
profile. It has also been shown that, if a proxy for infection response is time dependent,
that dependence should be treated appropriately; otherwise, there may be distortions in
the estimated parameters ( ). In the case of survival as a readout, a com-
bination of a survival profile for the infected individuals plus another profile for the unin-
fected can be used to determine the infected proportion of a group challenged by any one
dose ( ). This was used to assess the protection conferred by the bacterial
endosymbiont Wolbachia to its invertebrate host Drosophila melanogaster, by comparing

these dose-survival profiles for hosts with and without the symbiont.

In the case presented in the next sections, a comprehensive assessment of the response
to infectious challenges is conditioned on having an appropriate description of the dy-
namics of viral particles inside a host. The probability of developing a systemic infection,
therefore, is not determined by simple presence of virus at an arbitrary time point. Instead,
infection is determined by a dynamic profile that conforms to the establishment and per-
sistence of the pathogen - i.e. full blown, systemic infection — as opposed to pathogens
being transiently detected, but being quickly eliminated without greater consequences to
the host.

The natural history of a virus population ingested by an insect involves a passage through
the gut of the host, where some of the viruses are likely to be killed by physical, chemical,
enzymatic or immune processes. The viral particles that survive this first rounds would
then need to cross the midgut infection barrier (and escape barrier) ( ) to pro-
liferate in the body cavity and need to spread to different tissues in order to be transmitted
to other hosts, before the host either recovers or dies.

From this cartoon description, it can then be expected that an initially small population
of viruses will multiply inside a host and become manyfold larger. Indeed, trying to quan-
tify virus levels very early after inoculation may result in very low or undetectable levels,

while later on it could be very easy to find large numbers of viral nucleic acid copies in the
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host. Therefore, without much of a stretch, the first simple expectation is that if we follow
viral levels along time for a host, we should be able to see this growth and sketch a curve
describing it.

The second part of this illustration concerns the initial inoculum. The number of viral
particles must be large enough to accommodate initial losses, then replicate, and eventu-
ally reach high numbers. If the initial virus level is high, it will reach high numbers faster,
or more easily; conversely, if the number is small it may take longer, or it may not be able
to achieve high numbers at all. Presumably, there may also be some intermediate level,
at which either establishment or elimination could occur; therefore, otherwise identical
hosts (e.g. isogenic lines) can either become infected or not just because of small fluctua-
tions in the initial conditions, or due to stochasticity along the process of viral replication

and elimination by the host.

Considering this illustration of both the initial conditions and time course of infection,
we can hypothesize that to fully describe infection we need to describe a range of infec-
tive doses ranging from very low probability of infection up to extremely infective, as well
as measurements at early time points — when the virus is struggling to succeed in its first
replication rounds — time points in-between, and up to later times, when infection is es-
tablished (or eliminated) and any significant dynamics are no longer observed. In terms
of data alone, that would be a complete data representation of infection, as opposed to a
typical laboratory condition.

Although the interest in the evolutionary conflicts between host and parasites has along
history — see ( ) and references therein — the development of compartmental
models of microbes and associated immune responses within a host lags population trans-
mission models by at least a few decades ( ). An early example of
theoretical models of the immune system can be seen in ( ); models
of parasite-immunity interactions took about another decade to become more prevalent
( ; ; )-

The mathematical formulation of within-host dynamics typically includes simple, constant-
rate pathogen growth, with immune response-dependent pathogen death; immunity is de-

scribed as either induced by the pathogen ( ), constitutive (
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), or both. Less common formulations favor other features as a limiting factors, like
host biomass ( ), but these disregard immune response altogether.

Importantly, a pathogen-free state is not stable in these models and exists only in the ab-
sence of pathogens — deterministically, infection is eventually established once pathogens
enter the host. Therefore, they do not contemplate (except through stochasticity alone)
a scenario where an initial inoculum can either cause systemic infection or fail to invade.
Such a bistable model is potentially trickier to formulate, and may require a few extra pa-
rameters; an example is that of ( ), which has one more parameter than
similar ones ( ; ), but one less initial unknown, having
effectively the same number of degrees of freedom.

In this chapter I will describe an experiment designed to obtain a data set with a struc-
ture compatible with a dynamic model, where the time dependence of dengue virus 1
(DENV-1) in Aedes aegypti hosts is recorded for varying initial infectious doses. Dynamic
models are proposed to describe the entire data set, and therefore allow associating a pro-
file of viral growth for a certain initial condition to a probability of full-blown infection.
This model-based approach can then be used to compare two populations of Ae. aegypti
that differ in whether the individuals are carriers of endosymbiont Wolbachia or not.

In the chapter appendix the results of a mechanistic within-host model of pathogen
replication coupled to immune response is compared to a simplerlogistic growth/exponential
decay model. Overall the framework proposed here is designed to fully describe infection
in terms of initial conditions, pathogen dynamics, and system state. I also discuss the lim-
itations of the current data set and analyses, and how both could be improved in further

experiments of the kind.

87



3.2 METHODS

3.2.1 PRELIMINARY DATA AND GENERAL FRAMEWORK

As described in previous chapters, the (binary) outcome of an infectious challenge is un-
likely to be captured by a single experimental condition, in that case a single challenge dose
( ), so an additional variable accounting for challenge dose is needed. In
the same Drosophila-DCV system, not only the proportion infected but also the levels of
Drosophila C virus on a given day can be seen to be dose dependent, and for a single dose a
clear temporal trend can be observed ( ) — these features are

shown in figure 3.2.1.
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Figure 3.2.1: Time course data (at 1, 3, and 5 days post infection) of Drosophila C
Virus, on a pricking challenge with 10® TCID,, solution (panel A) - “control” referes
to an additional group of flies assayed later times whenever they become moribund.
Quantification of viral level as a function of pricking challenge dose, assayed at day 5 post
infection (panel B). (Reproduced with permission from ( )

Therefore, to describe and compare viral levels it is necessary to account for both the
inoculated pathogen dose (henceforth simply dose) and the time when viral levels are as-
sayed (i.e. the number of days post infection or simply the time). A complete design should
include data for all time points and doses. Figure 3.2.2 shows a typical setup where two

groups are compared for an arbitrary condition using simple statistical tests, and a multi-
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factorial design that require more sophisticated methods.
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Figure 3.2.2: A typical experiment comparing groups under a single condition (left),
and a multi-factorial design taking time after challenge and injected dose into account

(right).

The analysis framework must make a relevant assessment of the experimental readout
considering the controlled experimental variables; these dependent variables are the vi-
ral and symbiont levels inside each host. Unlike the typical experiment, where a simple
comparison of means between two groups could be applied, here a model that describes
titers as a function of time for varying initial doses is necessary. Figure 3.2.3 shows a dy-
namic system whose components interact to produce an observable outcome, that may be
dependent on the initial conditions.

In the next section I describe the formalization of this conceptual model, the precise
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Figure 3.2.3: Schematic representation of the system and its interactions. Dynamic
feedback between the components determines their levels as functions of time.

structure of the data set, and the detailed experimental methodology carried out.

3.2.2 EXPERIMENT DESIGN AND EXECUTION
REARING OF MOSQUITOES IN THE LABORATORY

The Aedes aegypti mosquitoes were reared following the protocol described by

( ). Egg laying is done on strips of filter paper, the surface of
which the eggs adhere to; afterwards they are put in dechlorinated water 1.5-liter contain-
ers for 24 hours for egg eclosion to occur. Larvae were fed with brewer’s yeast every two
days. Pupae were transfered to cages were adults emerged. Ideal temperature is 25°C, so
25 & 3°C and relative humidity 80 & 5% was used for 2-3 days, with 10% sugar meals ad
libitum, and allowing mating up to 24 hours before any infection.

Two distinct mosquito populations were used: wMelBr and wMelTET (henceforth also
simply wMel and TET'). The wMelBr population is the result of the crossing of brazilian
mosquitoes originally not carrying the Wolbachia with mosquitoes that did carry the sym-
biont; therefore these are mosquitoes with the genetic background of brazilian mosquitoes,
but carrying the Wolbachia endosymbiont. The wMelTET mosquito population was ob-
tained by treating of the wMelBr population with the antibiotic tetracyclin, hence elim-
inating the endosymbiont. The genetic background is then equivalent between the two

lines, with the only difference being the presence or absence of Wolbachia symbiont.

90



DENGUE VIRUS

The dengue virus (DENV) samples were collected from serotypes and strains circulating
in the city of Rio de Janeiro, Brazil, which were isolated from viremic patients and de-
posited in the Laboratory for Flaviviruses in Instituto Oswaldo Cruz (IOC-Fiocruz). The
first serotype was used (DENV-1), starting from a sample amplified to hundred million
(10%) times the 50% infective dose for tissue culture TCID,,ml* and stored at —80°C.
The original sample was then serially diluted tenfold down to ten thousand times the TCIDy,
(the dilution volume, milliliter, is implied hereafter unless explicitly stated), therefore re-

6

sulting in the concentrations of 104, 10%,10°, 107, 10® TCIDj,, as well as controls mock-

infected with virus-free medium.

INTRATHORACIC INJECTIONS WITH DENGUE VIRUS

Anticipating that the precise initial conditions would be very important for the model-
based analysis, we decided that by design our experiment would try to bypass any processes
other than the intrinsic viral replication ability and the host’s immune response against the
pathogen; therefore, we chose to inject DENV-1 directly into the body cavity (haemocoel)
of the mosquitoes, in an attempt to reduce variation in the observed viral levels. Here it is
worth noting that the mosquitoes midgut is the natural bottleneck to virus proliferation,
with physical and chemical barriers such as digestive enzymes, pH changes, as well as ep-
ithelial receptors; depositing viral particles directly in the haemocoel bypasses them, and
therefore skips some of the normal steps in infection by ingestion of contaminated blood.
To achieve high precision on this end we used a nanoliter-precision injector (Nanoject
I, Drummond ScientificCompany) that allows for automatic calibration of the injected
volume (and as a consequence of viral titer) in order to reduce variation in this initial con-
dition to a minimum. Three injections of precisely 69 nl then were used for every single
mosquito.

Experimentally executing an oral infection protocol is feasible, nevertheless, and in
some ways easier than using direct injection, so I discuss the potential implications of using

this unnatural route of infection and the importance of using a more natural oral infection
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methodology in the last section of this chapter.

It is assumed that Ae. aegypti can transmit DENV after 10-14 days of being exposed
to the virus, when the extrinsic incubation period is completed and it has disseminated to
different tissues and organs, finally reaching the insect’s saliva. Despite it being common to
assay infection once around the time the incubation period is expected to be complete, and
viral levels are expected to be higher (and more easily detectable), we decided to quantify
DENV at three time points: as early as 3 days post-infection (d.p.i.), and then at 7, and 14
d.p.i

Besides being performed in mosquitoes from the same generation, the whole procedure
of infection from dilution of the viral samples to infection and storage of the mosquitoes
was performed in a single day, over a period of 12 hours, as to minimize any variation
related to the mosquitoes, the viral sample or its dilution, or any other unforeseen time
dependent variables. A total of 616 mosquitoes were injected and kept in Falcon tubes, di-
vided such that each condition would have at least 15 mosquitoes at the beginning of the
experiment. The mosquitoes were kept at laboratory conditions and fed every day until
their time point was due, when each mosquito was individually stored whole and cryop-
reserved at —80°C until all mosquitoes were taken out at once for quantification of viral

RNA, and Wolbachia and mosquito DNA.

NUCLEIC ACID DETECTION

Mosquitoes were macerated and viral RNA was extracted using a commercial kit (High
pure viral nucleic acid kit — Roche). RNA detection for each individual was performed by
by quantitative real-time polymerase chain reaction (QRT-PCR, or more simply, qPCR), as
in ( ). The qPCR assay was based on a one-step assay (TagMan
Fast Virus 1-step Master Mix — Thermo Fisher Scientific).

Wolbachia DNA concentration was individually assayed by detection of the TMs13
gene of the symbiont, while Ae. aegypti DNA was quantified using the RPS17 housekeep-
ing gene for a stable reference, also through qPCR.

The serially diluted samples used for infection were also quantified to allow calculation

of the absolute virus concentration. Atleast one technical replicate was performed for each
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quantification of every sample.
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Figure 3.2.4: DENV-1 viral titer data for TET group (colors) overlaid to that of the
wMel group (light green).
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STRUCTURE OF THE FINAL DATA SET

The combination of the multiple virus dilutions (plus mock-infected controls) with the
different time points resulted then in eighteen different infection conditions, which we
expected to be representative of the full course of infection for different initial conditions
— in contrast to the traditional single high-dose/late-time assays often used as a proxy for
vector competence. Further combined with the two different population conditions, the
entire procedure resulted in a quantification of DENV-1 RNA, Wolbachia DNA, and Ae. ae-
gypti DNA for each of the 301 samples. Table B.1.1 (appendix B) shows the total numbers
of mosquitoes in the experiment identified by groups and subgroups.

It is plausible that mosquitoes infected with higher doses would die in higher propor-
tion, especially in later time points; these effects could result in a survivor bias, or cohort
selection, and the distribution of viral titers in some conditions being disproportionally
affected. At day zero mosquitoes were uniquely identified by population and challenge
dose, but not time point, and mortality was not recorded at each time point of PCR quan-
tification; therefore, it is not possible to formally analyze survival of the different cohorts
with this data set. As a function of dose alone losses do not show a clear trend; however,
it is not possible to completely eliminate or confirm the hypothesis of cohort bias. This
limitation could be overcome in future experiments of this kind.

To produce the final data set used for all analyses hereafter, both the levels of DENV-1
and Wolbachia were normalized by the mosquito’s housekeeping gene, expected to remain
unchanged for all conditions. The data set for viral levels in the TET group is shown in
figure 3.2.4. For the wMel group the viral level data is shown in figure 3.2.5.

As for the Wolbachia levels, the TET group was used as a negative control, and every
sample had undetectable qPCR levels of the symbiont in at least one of the technical repli-
cates, as expected. For the wMel group, the levels were computed relative to the same
house keeping gene used as a standard for the viral titer data. These are shown in figure

3.2.6.
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3.2.3 MODELS
PATHOGEN GROWTH PLUS IMMUNE RESPONSE BISTABLE MODEL

Here I use a variant of a model previously available in the literature, the only modifica-
tion being a logistic-like term in of the equations, inducing a carrying capacity (

). In the published model there was no need for such a term because only a binary
outcome was of interest — either infection elimination or persistence — and pathogen level
data was absent. As such, there was no need to include saturation in growth; once sim-
ulations were found to grow towards large numbers the simulation was terminated, and
therefore anything after that time point was disregarded.

This model includes one equation for the pathogen population (P), and one equation
for a host response (R), shown in 3.1. The explanation of how the two interact is given
below.

P
P _p_ §pPR — kP*

jlt{ (3-1)
i a+ AP — yR — §gPR

In this model ris the growth rate of pathogens and k the other parameter modulating the
carrying capacity level at which pathogen population size saturates. Reduction in growth
is dependent on a non-linear §pPR term accounting for the rate of destruction of pathogen
units which increases with the response R.

The host response can be described by pathogen-independent, or constitutive, com-
ponents a, a constant rate of recruitment of the response, minus a linear death rate ¥R,
as well as pathogen-dependent, or induced, components AP, describing the increased rate
of recruitment of the response minus a non-linear term Sz PR representing the pathogen-
induced destruction, use, or wear of the response.

The model has 7 free parameters, that describe actual biological processes. From these
rules bistable dynamics emerge. Parameters are dose-independent; therefore, whether
pathogens increase or decrease in numbers depends exclusively on the initial conditions.

Besides using a mechanistic description of the pathogen processes involved, this model

also makes predictions about the host response that may cause the decline of the pathogen
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population, or allow their increase — this response can be likened to a real immune re-
sponse, despite not representing one explicit immune process, but more of a composite

bundle.

3.2.4 STATISTICS AND INFERENCE

Means for each time/dose combination were computed and displayed only as a visual aid
(shown in figures 3.2.4 and 3.2.5). Significance tests were not performed, and pairwise
comparisons between conditions are not reported. Pearson correlations were computed
between the viral and Wolbachia levels in the wMel group, both for the dose/time points
separately as well as for all data regardless of challenge dose and time (i.e. a single correla-
tion for the complete data set). R* and p—values are reported for those cases.

Bayesian inference of the parameters in the non-linear models was performed using a
Markov Chain Monte Carlo implementation in the Python programming language (

). Since the data was normalized so that the lowest nonzero value was one and
all values were discrete, a poisson distribution was used to compute the likelihood of the
parameters given the data.

Uniform priors were used on a wide range of positive values unless otherwise stated,
ensuring that posterior values did not concentrate on the higher limit after the procedure;
in case that was observed estimation was repeated with wider prior intervals. Convergence
was assessed by stability of the chains, and replicate chains were run to make sure the same
approximate values were obtained regardless of starting point of the Markov chain (

, chap. 11). Burn-in was performed by discarding a number of initial sam-
ples according to the total length of the chain

The estimated mean or median, and their confidence intervals were used instead of
the frequentist pairwise approach to ascertain differences between groups. The dynamic
pathogen-response model was simultaneously fitted to both TET and wMel group data
sets.

Given the relatively high number of degrees of freedom, there are choices ranging from
fitting a completely separate set of parameters to each of the two data sets, up to fitting a

single set of parameters to both data sets. As an intuitive compromise between freedom
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and inferability, we choose to fix the pathogen equation parameters between groups, and
allow the host response parameters to differ between groups. In the appendix we use infer
alternative sets of parameters for robustness testing and in an attempt to improve inference.
We further discuss our choices for parameters that are shared or independent between the

two groups in the results section as well.

3.3 RESULTS

3.3.1 DESCRIPTIVE DATA SUMMARIES AND CORRELATIONS

From the panels in figure 3.2.4, for the TET group, a broad trend can be observed, where
the lowest doses have mainly zero/undetectable levels, while the highest doses are several
fold greater and appear to increase with time. Looking at the mean values computed from
the data, indicated by the horizontal lines, it can be generally observed that lower doses
tend to remain low or even become undetectable, while high doses increase on average.
There is the exception, however, of the second highest dose (107 TCIDy,,) at the last time
point (day 14 post-infection); it is noteworthy that while the values themselves do not look
like outliers, the number of points for that dose and time are comparatively low (due to loss
of insects that died throughout the experiment), and may be insufficient to represent the
full distribution of viral titers.

As mentioned before, although we cannot confirm or discard that there was an in-
creased mortality for both that dose and time, there are only six data points for that con-
dition, which less likely to be representative of the whole viral titer distribution, especially
in the light of the previous time point, the other doses at this time, as well as other prelim-
inary data (not shown). I discuss further the treatment of data points that do not conform
to this broad decrease/increase pattern in the following sections.

Beyond the summaries of the mean, it can be observed that the spread in the viral titers
increase with time in the case of the highest doses, with the highest values at each point
increasing and the lowest decreasing. For the lowest doses, with viral titers being low from
the beginning, what is observed is the tendency to go to zero with time. Without formal

tests of the quantitative aspects, the broad picture is compatible with that of a viral chal-
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lenge that can be eliminated by the host, but that otherwise increases with time until some
saturating higher level.

As a preliminary analysis of the dynamic trends, we fit a straight line (viraltiters = a -
time + b) through the first two time points of the highest dose in log scale, as a means of
obtaining a crude estimate of the exponential growth rate (which would be straight line
in log scale) as the angular parameter, and the initial concentration of the virus, as the
logarithm of the linear parameter estimated by this simple, analytic method. The estimates
area = 0.94, b = 3.1, withap-value < 0.001. Because these estimates are based ona very
restricted subset of the data, the values are taken as a rough quantification only. Instead of
a hard restriction, the estimates are used as prior information in the bayesian estimation

method to constrain the parameter space.
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Figure 3.3.1: Correlations between DENV-Iand Wolbachia titers, displayed in log scale
for the entire data set (A), and per-dose subsets (B) — color code follows that of the
raw data.

In the case of the wMel group viral titer data set (figure 3.2.5) the trends are similar,
although the lowest doses seem to have a greater number of data points with detectable
titers (at low levels, nevertheless), and the highest seem to increase somewhat more slowly
(which supported by a smaller growth, as well as lower mean at the last time point). As

for the Wolbachia levels, shown in figure 3.2.6, they seem fairly stable and independent of
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challenge dose or time point; I do not compute any summaries for this data alone.
Because both DENV-1and Wolbachia titers are available for each individual insect, the
correlation between viral and symbiont levels can be computed (figure 3.3.1). We find a
significant (p-value = 0.05) but low (R* & o0.25) positive correlation when computing
it for the whole data set. Looking at correlations for each dose and time point, I find vary-
ing levels of correlation (table 3.3.1) with unclear trend in strength or significance of the
correlations. It may be noted that all correlations computed are positive, but the lack of

consistency in the significance makes them inconclusive for the most part.

Table 3.3.1: Virus/symbiont correlation

Dose
lobal infecti
Globa (TCID,,) 3 7 14 (days post infection)

10* - - -

10 - - -

E
0.25 (0.051) 108 - - - R* (p-value)
7

10 - 0.88 (0.049) 0.1 (0.81)

108 0.50 (0.093) 0.57(0.14) o0.21 (0.474)

The lack of clear temporal dynamics in the Wolbachia levels and their low correlations
with viral levels, gives additional support to the treatment of the symbiont as a factor that

can be either present or absent, instead of a dynamic variable of its own.

3.3.2 MODEL PREDICTIONS
DETERMINISTIC ANALYSIS

In the absence of pathogens, besides the trivial result of all processes in the pathogen equa-
tion being zero, i.e. dP/dt = o, the response equation reaches a stable equilibrium as a
result of pathogen-independent recruitment a being balanced by pathogen-independent
decay (but linearly dependent on the response) yR. As a result the baseline response in

this modelis given by R* = a/y. This stable equilibrium (as denoted by a star henceforth)
is therefore given by (P*,R*) = (Pf,., Rf...) = (0,a/7) ( ).

101



In the original formulation by ( ) the lack of the —kP* term causes the
pathogen-free equilibrium to be the only stable steady state; the other equilibrium being a
saddle point for the range of parameter values explored by the authors. The two solutions

to that system are the following:

pr R: a P adp — yr R r
= 0 Rfree — — | » saddle — y Rsaddle — o
free 7/ ddl TSR _ l SP ddl SP

The unstable equilibrium defines a threshold between the stable pathogen-free state,
and endless growth of the pathogens.

The addition of the logistic-like, square term (—kP*) limits this unbounded growth to
a a maximum carrying capacity, with otherwise little qualitative impact in the other equi-
libria of the system. The pathogen-free solution is unaltered, but the mathematical form

of the two other solutions becomes more complicated, as shown below:

* * a
Pfree - O;Rfree - ; )

p _rw— 8 — vk + /(84 + vk + rw)> — a8w(ak + Ar)

systemic — 2kw ’
R _rw+ 8+ vk — /(84 + vk + rw)> — 48w(ak + Ar)

systemic ’

20w

>

( rw — 80 — yk — /(8 + 7k + rw)* — 48w(ak + Ar)
2kw ’

R=

rw + 81 + vk + /(82 + vk + rw)> — 48w(ak + Ar)
28w
For a biologically meaningful, real-numbered solution, it can be verified that the equi-
librium value for the pathogens in the second solution is greater than the last, defining
the systemic infection equilibrium (P;“ystemic ) R;“ystemic) , and the intermediate equilibrium
(P, R) creating a bistability threshold (where the hat henceforth denotes equilibrium at
this unstable values specifically).
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Therefore, in the presence of pathogens, and in the range of positive values of inter-
est, the three equilibrium states are possible: pathogen elimination, which is stable and
reachable by elimination of all pathogens; the other stable equilibrium being one where
pathogens are established. The saddle point, which defines a ratio P/R, at which deter-
ministically speaking, a perturbation in favor of the pathogens tilts the system towards
pathogen establishment, and conversely, towards pathogen elimination when the ratio fa-
vors the host response. Except at these particular value set (P, R), the separatrix that would
deterministically define whether the system goes one way or the other is not defined by this

ratio — (see ).
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Figure 3.3.2: Numerical solutions of the system of differential equations with initial
conditions of the response given by their Rf ., value, and and increasing value of P for
each darker shade. Parameter values are: r = 3.5, §p = 0.042, a = 4.8, ¥ = 0.032,
Sgr = 0.045, A = 0.12, k = 1075.

These solutions do not determine what is the state of the system at any time; consid-

erations about initial conditions must be made, which can constrain the possible state of
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the system. In a host that has never seen infection - or that has eliminated any infection
long enough before — one can assume the system will be in the pathogen-free equilibrium;
introduction of a P, pathogen inoculum results in the state (P,, R,,. ) as initial condition.
Under these constraints, initial conditions are determined by the initial pathogen inocu-
lum alone.

These qualitative features of these solutions can be thought to match those of the data
set, so it is a reasonable candidate to explain the data. A graphical example of the behav-
ior predicted by the model under these assumptions is shown in figure 3.3.2, with an in-
creasing initial number of pathogens moving the stable equilibrium from elimination to

establishment of the pathogen population.

3.3.3 INFERENCE

The experimental data is used to infer parameters for the differential equation model de-
scribed above. In appendix B a simpler logistic-growth/exponential-decay model is fit to
the data; additionally, both models are fit to single doses at a time for methodological
checking purposes. Although both models perform somewhat similarly, the pathogen-
response model (egs. 3.1) does not require additional assumptions about initial condi-

tions to produce the entire dynamical spectrum seen in the data.

DYNAMIC PATHOGEN-RESPONSE MODEL

For the pathogen-response model 3.1, the parameters were estimated from the experimen-
tal mosquito challenge data taking into consideration the possible equivalence in some
parameters between the two groups. Because Wolbachia is generally accepted to have an
effect on virus proliferation, a different set of parameters is fitted to the TET and wMel data
sets; as mentioned above, the symbiont is assumed to affect the response rate parameters.

We take the parameters specific to the pathogen, i.e. the growth rate r and §p, to be the
same for both groups. We also assume the carrying capacity k is not affected by the pres-
ence of Wolbachia; that is supported by the observation and comparison of the averages

for the lates time point at the highest dose (where carrying capacity is presumed to have
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been reached), which does not reveal striking differences between the two groups.

Conversely, the response processes are assumed to have different values between the
two populations; therefore, the baseline rates recruitment a, and natural degradation of
the response 7, as well as the pathogen-dependent recruitment A and degradation rates

are different between TET and wMel population groups.

Initial conditions are also assumed to be equal between groups, since the exact same
aliquot and dilution volumes are used for both groups. Therefore, how much each dose
is diluted from the highest concentration (which I call the dosefold parameter) is fixed at
between groups, and so is the highest dose — gamma distributed priors are used for these
parameters. Together with the highest concentration phieh parameter (equal to PS, the fifth

1

and highest dose in this data set), all other initial concentrations (P., P, P}, P¥) can be

computed from the two parameters, obtained by simply dividing it by the dilution volume.

Figure 3.3.3A shows a lower infection profile for the PS dose in the wMel group, but

higher pathogen levels for the P¢ trajectory — the lower three doses are essentially zero.

Under the assumptions of the mathematical model, the parameter values have mecha-
nistic biological interpretations. From the posterior distribution of the parameters (figure
3.3.3B), it can be seen that the constitutive recruiting rate (a) is smaller in the population
with the symbiont, although pathogen-independent decay () is also lower. Conversely,
induced recruiting (1) is larger for that population, and in turn pathogen-dependent decay

(8R) is larger as well.

Generally speaking, the posterior distributions for all parameters are quite narrow, this
can either mean that the data is very informative and there is little uncertainty about the
“correct” value of the parameters, or that something else is artificially causing the MCMC
chain to underestimate the uncertainty, possibly affecting the accuracy of the method as
well. While it is normally not straightforward to distinguish between the two, even in sim-
ple cases or simulation studies with known parameters it is rarely the former. To rule out
some gross methodological error, in appendix B the model is fitted to a single dose at a
time, which is unlikely to yield very precise estimates, and indeed there is greater uncer-

tainty in the posteriors. Although that confirms that the MCMC algorithm is working as
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intended, it does not exclude that for the entire dataset the inferred values are being arti-
ficially constrained - this possibility is further considered in the next subsubsection and
discussion section.

In any case, from panel A of the same figure, still, it is clear that the model does not
fit the data averages for the second highest dose. Considering the issue of small numbers
for the last time point of that dose, and the somewhat unexpectedly low average level, we
suspect that may be causing the lack of fit and distorting the trajectory and, ultimately, the
model parameters. Therefore, we also fit the model to a subset of the data set that does not
include that dose/time point (dose 107 TCID,,, 14 d.p.i.).

Figure 3.3.4 shows the results for this subset of the data. Panel A shows a generally
lower profile of infection progression along time for the two top doses for the wMel group
(for the two lowest prediction of both populations is just zero, or vanishingly small). The
middle dose estimate is low for TET and nearly steady until around day 10 post infection,
decreasing slowly afterwards. It is also near the threshold, where stochasticity is most im-
portant in determining whether fixation or elimination occurs for this mosquito popula-
tion. For the wMel group the middle dose is essentially zero from very early.

The posterior estimates of the underlying parameters of the model for both groups are
shown in figure 3.3.4B, and again narrow distributions are obtained. The qualitative rela-
tionships between the parameters are maintained, although the actual values change con-
siderably.

Despite the qualitative relationships being maintained, the choice to remove a condi-
tion where average titers are lower in the TET group is ad hoc, and may be seen to bias
results towards Wolbachia protection; therefore, in appendix B the same analysis is per-
formed on a further reduced subset of the data where a condition in the opposite direction
is removed. The results are consistent with the first subset results (ﬁgure 3.3.4), not the
entire data set (figure 3.3.3). These subset analyses, as well as approaches that eliminate
the need for any post hoc analysis are further considered next section and in the chapter
discussion.

Besides the subsets, inference with alternative sets of free parameters are also performed
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in appendix B. In sum, initial conditions are allowed to vary and/or pathogen-independent
processes are fixed between groups. Overall, results are consistent, with the fit being mostly
dependent on the data subset being considered, and the parameter relationships being
maintained for any choice of parameter set. Because the main objective of the analysis
is the broad comparison between insect populations, which is consistent for the differ-
ent models, information-theoretic or likelihood-based comparisons of the models are not
performed.

Taken together, inference suggests that in the wMel group there are fewer pathogens
that go against a stronger induced immune response, thus supporting the hypothesis that
Wolbachia confers protection to Aedes aegypti hosts against DENV-1. The protection is
observed mostly for higher doses, so the degree of protection is not of a fixed-proportion
proportion kind, but is rather described as a property emerging from the dynamic model,

possibly with negligible or even incrased risk for intermediate doses.

STOCHASTICITY IN THE SYSTEM STATE

Stochasticity is expected, and will, cause the system to drift from the deterministic predic-
tion, so the equilibria described are not guaranteed to be reached as a function of initial
conditions alone. Stochastically, but influenced by the deterministic vector field, the sys-
tem will then fluctuate along time either to pathogen elimination or establishment.

An illustration of this stochastic trajectories is shown in figure 3.3.5A. Panel B shows
data points sampled from the stochastic simulation at specific time points together with the
deterministic output for the same doses — from that panel it looks like the deterministic
model could capture the mean behavior of a an ensemble of stochastic runs. A clearer
visual comparison, however, would be taking a poisson samples from the deterministic
prediction — that is shown in panel C. It is clear that the variation expected by the latter
model is a lot smaller than that of the former.

To be clear, in the discrete stochastic model, the noise propagated along time results in

a greater variance in the observed levels than that assuming a deterministic trajectory, and
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viral titers

time time time

Figure 3.3.5: Full stochastic trajectory of the pathogen-response model with data
points shown at chosen time points (A). Deterministic trajectory overlaid to data points
from stochastic model (B). Deterministic trajectory with data points sampled from a
poisson distribution that uses deterministic prediction as distribution parameter (C).
Parameter values are: r = 3.5, §p = 0.042, a = 4.8, ¥ = 0.032, §p = 0.045, A = 0.12,
k =1073, P, =15, dosefold = 2. Time discretization is 5-10~* days.

atany time point assuming an error model around it. This illustrates the fact that stochastic
implementations of dynamic models are parametric descriptions of more complex, time-
dependent distributions, for which closed forms may not be available. This process can
be analytically shown to represent the likelihood, making it a formal (although not always
practical) tool for inference.

Under this model, bistability will tend to increase variance along time, as trajectories
above the bistability threshold tend to go further up, and the ones that go below are at-
tracted to zero. One important prediction in such a system is that both high levels of
pathogens and zero/undetectable levels are expected to be seen for replicates with the
same initial conditions — especially if they are near the bistability threshold.

Increasing the initial pathogen inoculum, or dose, should increase the proportion of
individuals with established infections, and reduce the variance in the pathogen levels, just
as reducing doses will result in observed levels that are increasingly close or completely at
the value of zero. Those are features that can be broadly observed in the Ae. aegypti data
set (as well as in the D. melanogaster preliminary data).

It is worth noting that — for these specific parameters — the simulation shown can take
minutes on a desktop computer, as opposed to a fraction of second for the continuous

model. If finer time discretization is needed the computational demand will be higher,
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and it may be infeasible with methods like the Gillespie algorithm ( ).
In any case, the effects of stochasticity in this system are quite striking, and can account
for data points that would otherwise be considered outliers, or very incompatible with a

deterministic model.

3.4 DiscussioN

The difference in viral titers between two groups cannot be captured by a single arbitrary
experimental condition; furthermore, variation between experiments may cause equiva-
lent conditions to have seemingly inconsistent results, but which can in fact be explained
by a neglected variable, such as time or dose ( ).

Here, for any one group, the viral levels can also clearly be seen to be dose dependent.
Taking the dose dimension into consideration in infection experiments has been proposed
to be important for obtaining generally applicable parameters ( ;

), and that idea haslater been used to get more reliable estimates in Aedes-dengue-
Wolbachia systems ( ). A temporal trend is also clear, which has long
been recognized and is the essence of dynamic models ( ) — that has re-
cently been also applied to dengue with convenience samples from human patients and
more traditional dynamic models ( ). By considering a range of doses
from harmless to almost-certain infection, as well as a time period from inoculation until
establishment, or clearance, of infection, local inconsistencies can be interpreted as minor
shifts between the extremes, which do not change the overall picture. The combination of
these features provides a more comprehensive understanding of the process of infection.

This kind of data can be interpreted under a dynamic mathematical model with varying
initial conditions, as shown by the results in this chapter. Most importantly, the use of a
model also allows a full dynamic profile to be constructed through inference from a data set
of areasonable size, as opposed to such a data intensive experiment unfeasible in practice.

The conclusions presented here generally agree with the literature ( ;

; ); however, individual conditions also show the

fragility of a typical experimental design. In that context, others have assayed different
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time points in the hope that both conditions would agree, and the effect would not seem
condition-specific; however, if results are contradictory, no conclusions can be drawn from
that approach. Under the model proposed here, temporal dynamics have a clear meaning.
The profile of infection in the population with Wolbachia is always below that of its TET
counterpart for the same dose. The biological interpretation is that wMel protects Aedes
aegypti mosquitoes against DENV-1 through a resistance mechanism that reduces the level

of infection, and as a result reduces the risk of a full-blown infection.

Besides the model-predicted viral dynamics, the biological mechanism of the virus pro-
tection can be interpreted through the underlying parameters of the model, which can be
compared between the two groups. In the Wolbachia-carrying population the rate of re-
cruitment of the response (1) is estimated to be higher, while the rate of pathogen-induced
decay of the response (§r) is larger — the former is robust to alternative model parameter-
izations (table B.6.1, appendix B); the latter is not. In the case of constitutive responses
recruitment (a) as well as decay () are lower for the wMel group. Despite some estimates
favoring one or other group, the general infection profile is mostly unchanged under alter-

native model analyses (appendix B).

Accepting a model implies accepting its assumptions, caveats, constructs, and artifacts.
By reducing the biology of a highly structured and complex process to a two-equation
model much is guaranteed to be lost; nevertheless, there is often a practical limit to how
much detail can be included ( ). One of the main arguments of this chap-
ter is that traditional analyses can be simplistic and overly reductive; that is not to say that
there are no caveats in more sophisticated approaches, and that all results are immediately
interpretable as the actual biology of the system. For instance, in previous studies (in a
different insect system) it was observed that viral titers were undetectable immediately
after inoculation with any dose ( ); nevertheless, the model
can predict that initial levels are higher than some of the lowest detectable levels. This im-
plies that the P! parameters are a construct from the models (whether it is the pathogen-
response, logistic, or the simple regression, all the same); the estimates may be useful, but

cannot be interpreted directly as virus concentration at that very early time point.

As always, validation of the claims made here require replication of the experiment,
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repetition under more natural conditions (like oral infection of mosquitoes), as well as
independent assays (when possible) of the parameters estimated by the model. Inference
with mathematical models provide estimates of an entire parameter set, subject to the con-
straints and limitations of the model, and the parameters may or may not have directly

measurable quantities that can be independently validated.

While it is clear that the time profile for any single dose can be well described by the
pathogen-response model (as well as the logistic model in the appendix B), the entire data
may have patterns that are more difficult to describe — like the unusually narrow posteri-
ors — and may point to failures of this particular models, or other aspects of the inference
framework. Due to the lack of alternative mechanistic models that describe the broad fea-
tures of the data, and the difficulty of developing new models from scratch, model selection
criteria were not applied here. Simple logistic growth/exponential decrease does not seem
to describe the data better than the pathogen-response model; nevertheless, some aspects

of the data set seem to be out of the reach of the latter.

One possible direction for improvement is to account for stochasticity in the dynamics
( ). The ability of the stochastic version of the model to generate
distributions of viral titers with greater variance than its deterministic counterpart can be
easily illustrated by a forward simulation. The actual implementation of a stochastic infer-
ence method is not as simple as plugging a stochastic simulation model into the numerical
solution portion of the inference procedure, and requires a more sophisticated method
to track the dynamic system and integrate stochasticity out ( )- In the
context of MCMC-based inference, where simulation parameters are unknown and many
iterations are needed, computational costs may be prohibitive, and steep improvements
and optimization are probably required. Nevertheless, it is promising for tackling issues

with over-dispersed data, which is often the case.

Another avenue for future research is the inclusion of inter-individual variation in key
response parameters, such as A and dg, which can be mistaken for intra-individual stochas-
ticity ( ). Given the results in chapter 1, asserting the origin of a more
heterogeneous distribution of susceptibility is a logical priority. The alternative hypothe-

ses for the mode emergence of this heterogeneity are further speculated on in chapter s.

113



Improvements on the experimental side are also possible, the first being the preventable
loss of mosquito lives as a consequences of a design flaw inherited from traditional time
point experiments: in a typical time point experiment, specific times are predefined, data
is recorded only then, so the readouts can be compared for the same time points. Here,
since the data points are fitted to a model that has an observable value at any time point,
the recording time of the data is essentially arbitrary. Because mosquitoes are monitored
and fed every day (and could be monitored every few hours during the day if necessary),
moribund mosquitoes could be identified on time, and instead of letting mosquitoes die
and discarding them they could be frozen and have their viral levels recorded at that time.
Because we did not anticipate a great (or small) loss of mosquitoes, the experiment was not
designed to maximize the number of data points, as this would require additional monitor-
ing and storing effort (e.g. storing every mosquito individually and checking them several

times a day).

The pathogen-response model produces an inferred dynamic profile of both pathogens
and immune response. An independent validation of the model, could therefore be made
by correlating the inferred response to a real measure of immune response. However, it
must also be observed that the model implementation is an abstraction that aggregates all
host immunity into a single differential equation, so a straightforward correlation between
that and any proxy for immune response is not trivial. It is also possible that the response
does not correlate with a measure of immune response but rather on a combination of fac-
tors involved in resistance and tolerance mechanisms, either with and without interference
of Wolbachia.

Although it is best to eliminate any ad hoc treatment, clear lack of fit and low number of
data points forced an analysis of a subset of the data. The work present here attempted mul-
tiple improvements with respect to data generation, model implementation and inference,
but by no means exhausts all possibilities in any one of those components. Some of the
weaknesses of the work in this chapter can be addressed by repetition of the experiment,
or implementation of more sophisticated methods, none of which are — unfortunately —
feasible without considerable more time and effort that can no longer be put into this the-

sis.
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In sum, there are recognized possible improvements, as well as caveats; nevertheless,
the results presented here provide the basic framework for a dose- and time-dependent
explanation of viral establishment and elimination dynamics. The biological interpreta-

tions based on the model agree with simpler assays, and expand the scope of analysis of
this tripartite system.
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Markov Chain Monter Carlo is a great method for losing your hair.*

Simon Tavaré

Additional inference and validation of within-host

models

B.1 MOSQ_UITO NUMBERS AND SUBGROUPING DATA TABLES

As mentioned in the main text, a total of 616 mosquitoes were divided by symbiont status
(absent, TET colony, and present wMel) into two groups of approximately half that size,
and challenged with five different DENV-1 doses plus mock-infected controls injected with
culture medium. These numbers are shown in table B.1.1.

The mosquitoes actually assayed through qPCR are also shown classified by days post
infection (d.p.i.), as well as in aggregate. The difference between the latter and the to-
tal number of challenged mosquitoes includes all causes: natural mortality, virus-induced

mortality, loss due to freezing, unfreezing, and any other aspects of experimental handling
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Table B.1.1: Number of mosquitoes challenged and assayed for viral titers

d(,)se / 10 10° 10° 107 10® ctrl (TCIDs,) total
time (column sum)
TET
challenged all s4 51 55 49 57 38 304
3 d.pi. 9 3 8 12 8 8 48
TET 7 d.pi. 12 3 8 10 9 1 43
qPCR 14d.pi. 4 3 7 6 14 3 37
assayed all 25 9 23 28 31 12 128
(row sum)
wMel
challenged all S1 57 55 54 §5 40 312
3 d.pi. 12 11 9 9 13 11 65
wMel 7 d.pi. 6 10 10 10 10 6 52
qPCR 14 d.pi. 7 4 8 10 14 6 49
assayed all 2§ 2§ 27 29 37 23 166
(row sum)

of the mosquitoes.

Despite the apparently heavy losses in mosquitoes, given the multiplicity of factors
causing them, I do not speculate further on specific effects responsible for the losses, and
assume they are random for al practical purposes. Limiting losses can be accomplished by
taking advantage of the analysis framework and through a more individualized treatment
of mosquitoes, which nevertheless implies more intensive work — these are detailed in the

discussion section of the main text.

B.2 LOGISTIC GROWTH/EXPONENTIAL DECLINE MODEL

A logistic growth model is considered to describe simple exponential viral titer growth
with saturation at some carrying capacity in the doses where levels are seen to increase.

Therefore there are two parameters to describe one curve. If pathogen levels decrease,
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growth rate is negative, and the carrying capacity is irrelevant, resulting in an model of
exponential decrease. The model can be described as a simple differential equation (and

an explicit solution for it also exists):

dpr
— =rP—kP*
dt
Despite the logistic-like model not having any mechanistic biological interpretation, it

is a simpler, more predictable model that can be used to test the ability of simple dynamic

to fit the data.

Because there is no single set of parameters for all five curves of each of the data sets,
there are at least a couple of options to fit all curves: either one of the two models (two-
parameter logistic or one-parameter exponential, depending on growth or decline charac-
teristics) is used for each curve, which for the total of 5 doses results in between s and 10
parameters, or some assumption is used to reduce the total number of parameters. Here,
it is assumed that the positive growth parameter as well as the carrying capacity are the
same for all doses. The growth rate is reduced by a dose dependent factor m; (equation

B.1) where i represents the ith dilution.

Intuitively, carrying capacity can be assumed not to change as a function of challenge
dose, as it is a property of the host when viral titers become high enough. On the other
hand, the growth and the dose-dependent reduction can be treated in a range of ways, from
the reduction factor being a free parameter for each dose, to it being a single parameter
representing a constant multiplicative reduction as the dose gets lower, ie. the for the
highest, undiluted dose m, = o and growth is given by r, for the first dilution m, = m,
for the second m, = 2m, and so on. I assume this formulation as the null model because
of the low number of free parameters: 3, not considering the initial conditions, which may

need to be estimated as well:

P
% = (r — m;)P — kP* (B.1)

This model is considered as a simple baseline description of the main features of the
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Figure B.2.1: Fit of the logistic model to the three highest doses, (A,B,C, starting
from the highest), and the posterior distributions of the parameters (D,E,F).

data with the fewest number of parameters I can think of.
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B.3 SINGLE-DOSE, TIME COURSE FIT

As afirst test, single doses can be used to test the ability of the models to fit the data. In the
main text a linear regression is performed for the logarithmic transformation of the first
two time points of the highest dose; here, logistic growth is fit to the entire time range of
the three highest doses.

The fit and confidence intervals of these preliminary fits are shown in figure B.2.1 for
the logistic model and figure B.3.1 for the pathogen-response model.

It is necessary to point out that while five curves are shown, only one of them is sup-
posed to fit the data, so in figure B.2.1A the top curve fits the crimson data points, in fig-
ure B.2.1B the second highest curve should fit the blue data points, and so on. All other
curves are just extrapolations from the single-dose parameter estimates, that nevertheless
illustrate the need for multiple-dose time course data to describe the possible infection
profiles.

It is also worth noting that what is expected of a good fit is not necessarily that the
model passes right on the horizontal lines indicating the means. While this is desirable for
the higher doses, where the large numbers would cause the poisson distribution to become
normal-like, for lower doses the distribution can be skewed towards zero. Therefore, this
alone does not suggest lack of fit. On the other hand, the data is only displayed in base 10
logarithmic scale, so the spread, or more formally the observed variance of the data cannot
generally be grasped by alook at the whole data set, but instead deserves a more systematic
treatment.

That said, both models can produce the broad patterns of the data, fitting the highest
dose quite well (in this case going right through the mean values). For the second high-
est dose the increase profile is also generally described by either model, although neither
model is able to reproduce the decrease in viral levels at the last time point. As I have
pointed out in the description of the stochastic pathogen-response model, these low titers
can be expected even for high doses, but they are not something that can be predicted
from the deterministic trajectory. Also, because I have few data points and low titers on

day 14, the carrying capacity can not be well estimated from this dose alone. Finally, for
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Figure B.3.1: Fit of the pathogen-response model to the three highest doses, (A,B,C,
starting from the highest), and the posterior distributions of the parameters (D,E,F).

the middle dose, the two models produce somewhat different decrease profiles. Because

most data points are zero it is not straightforward to evaluate the best fit. Overall, these
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inferences show that either model could reproduce general aspects of any single dose.

B.4 LOGISTIC/EXPONENTIAL MODEL INFERENCE

The most important question at this point would be what is the performance of the mod-
els to the entire data set. How either model performs under this additional constraint is
probably not obvious from the single-dose fits. Here I make the decision to exclude the
last time point for the second highest dose in the TET group; although it is not something
that can be done arbitrarily and without regard to its impact on the analyses, the arguments
to do so are mutlifold. Neither model can reproduce the increase-then-decrease shape of
the curve, so that neither should a priori favored by this, and I expect that there is more
information in the other time points and the rest of the data set to make up for this in an
unbiased way.

As for the comparison between wMel and TET groups, it is likely that removing a dose-
time point where the mean value for the TET group is lower could bias the estimates to
those showing Wolbachia do protect mosquitoes. Nevertheless, this is the only dose-time
point where the means are lower for this group in the two highest doses (in the lower doses
the levels being very low anyway). Furthermore the number of replicates happened to
be low for this dose-time point, and seemed to contradict a number of previous separate
and independent experimental challenges with similar doses for the same two mosquito
poulations.

I therefore feel that the confusing effect of an outlier would be worst than any bias re-
moving it could induce. Anyhow, as an analysis control I also make the same analyses
removing the second time point (7 d.p.i.) for the second highest dose in the wMel group,
where it is lower for this group. I also note, that this should not be an issue if a stochastic
model is used to fit the data, for instance using a particle filtering algorithm; nevertheless,
due to the additional complexity and sophistication of combining that with an MCMC
bayesian estimation for such a complex and non-standard model, I do not pursue this here.

That said, the fit of the logistic growth model (Eq. B.1) is shown in figure B.4.1.

The highest dose seems well fit by the simple and familiar shape of logistic-like growth,
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Figure B.4.1: Fit of varying-growth logistic growth/exponential decrease model (A,
left), and posterior distribution of estimated parameters (B, right).

as expected; the other doses at least visually do not seem to fit as nicely, the second highest
dose shows a near linear growth (on log scale). The middle dose shows increase, instead
of the apparent decrease shown by the data, and only the lowest dose shows a clear trend
of exponetial decrease (seen as a straight line in the semilog plot). Looking at the distribu-
tion of posterior estimates, the histograms are quite narrow. It is noteworthy that the initial
conditions seem not to be well estimated, with the P value apparently grossly overesti-
mated, and the fold difference between doses seemingly underestimated. Once again we
alert to the distortions of using a visual guide only as criterion to determine goodness of

fit; nevertheless, some striking indications of lack of fit are present.

B.s SUBSET DATA ANALYSIS

The pathogen plus response model is given by the two differential equations, respectively:

dp

5 =P §pPR — kP*
d; (B.2)
o =a-+ AP — yR — §zPR

Parameters are r pathogen-growth rate, k parameter governing saturation of growth,

SpPR, response-dependent elimination. Also a, constitutive response recruitment rate,
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7R, natural response decay, and their pathogen-dependent counterparts AP and §g PR.

As exemplified by the stochastic implementation of the pathogen-response model, the
compound stochasticity along time cannot be fully accounted by the simplification pro-
vided by a continuous model with a standard parametric error model such as a normal or
poisson distribution around a deterministic prediction. Therefore, evenifthe correct error
model is known, the distribution of data points is bound to be quite different from these
parametric distributions by the simple virtue of being augmented in time.

Given the huge computer power that could be necessary to implement inference using
stochastic models, the error incurred here by using a continuous model, and the conse-
quence of trying to assess outliers on an ad hoc basis is evaluated here by performing the
same analysis on the full data set (shown in the main text), and on a different subset of it.

Another subset of the data is tested here by removing an experimental condition show-
ing the opposing trend to that of the main text. The second highest dose (107 TCID,)
at the second time point (7 d.p.i.) is considerably lower on average for the wMel group,
so removing it should have the opposite effect on the inference as removing the previous
one; nevertheless, the general trend in the data for this dose is not as odd as the latter in
that the trend could be explained by the model. The results for inference with this subset

of the data are shown in figure B.s5.1.
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Figure B.5.1: (A) Fit of dynamic host-pathogen model for a subset of the data not
containing dose 107, 14 d.p.i for the TET group, and 107, 7 d.p.i for the wMel group.
(B) Posterior distribution of estimated parameters (green is specific to wMel).
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In general, these ad hoc subdivisions of the data set show that the results are robust to
missing data. It therefore seems that the general Wolbachia protection is a robust feature
of the data set; nevertheless, ideal treatment should include representative distributions
for all conditions and adequate treatment of survivor biases, besides the methodological

improvements discussed in the main text.

B.6 ALTERNATIVE MODELS AND SUBMODELS

Table B.6.1: Shared and distinct parameters for alternative models

ASr | a v P, dosefold
model 1 # # = = (main text)
model 2 #+ | = = # =+
model 3 = = = =

In the main text initial conditions and pathogen-associated variables are fixed between
the two experimental groups, while response-related parameters are set to be different be-
tween groups, in an attempt to minimize assumptions and choose a standard model. Un-
fortunately, there is no such thing, so it is often wise to consider alternative models or sub-
models to assess robustness and consistency in the results. Table B.6.1 shows the parame-
ters shared between groups or different (= and # signs, respectively). The host-associated
A and 8y parameters are different for all models, and all pathogen associated parameters
are always equal for the two groups, and are omitted for clarity.

In alternative model 2, initial conditions are allowed to vary between the two groups,
while a and y are fixed between them. The results for that model are shown in figure B.6.1.
Model 3 fixes all parameters between the two groups with the exception of 2 and 8 (figure
B.6.2).

The relationship between parameters is maintained between wMel and TET for all model

variations, that is 4,51 > ArpT, but the same consistency is not observed not for §g. Fur-
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Figure B.6.1: (A) Fit of dynamic host-pathogen alternative model 2 (P, and dosefold
are different between groups). (B) Posterior distribution of estimated parameters (green
is specific to wMel).
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Figure B.6.2: (A) Fit of dynamic host-pathogen alternative model 3 (A and 8y are
the only two parameters that differs between groups). (B) Posterior distribution of
estimated parameters (green is specific to wMel).

ther refining of the inference methods, like assessment of intra-individual vs inter-individual
heterogeneity, could explain model discrepancies and give more robust results; however,
these are beyond the scope of this thesis, and are discussed only as perspectives in the last

section of the chapter’s main text.
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ABSTRACT

With around 3 billion people at risk, dengue virus is endemic to many parts of the world.
In the Brazilian city of Rio de Janeiro, surveillance measures require notification of new
dengue virus cases, and are supplemented by serum collection from patients and sequenc-
ing of viral RNA. Phylogenetic analyses have been performed for all serotypes circulat-
ing in the country to identify viral genotypes, potentially identify new introductions, and
compare viruses presently circulating in the country with those in the past, and of other
countries. As a separate type of analysis, a number of mathematical models have been
developed to describe dengue virus transmission — particularly qualitative incidence or
prevalence patterns — although few have been tested. In this chapter, I show how different
mathematical formulations could represent transmission of dengue virus by mosquitoes
to humans, how the different model structures entail assumptions about the process, and
how these affect outputs qualitatively. Inference from simulated data is used as proof of
principle that the kind of data available could be used to accurately estimate all model pa-
rameters; however, it is shown that stochasticity may severely hamper efforts to test the
models quantitatively. I further implement inference from sequence data for the different
models, and compare the performance to that of time series. The methods are applied to

the data available for the city of Rio de Janeiro.

4.1 BACKGROUND

The persistence of dengue fever (as well as more severe syndromes caused by dengue
virus) constitutes the most extensive viral epidemic transmitted by arthropods, with around
3 billion people at risk worldwide, and 300 million annual cases estimated (

). The recently recorded expansion in the range of the main transmission vectors,
Aedes aegypti and Aedes albopictus ( ) — presumably due to higher tem-
peratures at temperate regions resulting from climate change — in combination with the
emergence of other Aedes-transmitted diseases further increased attention to vector con-
trol.

Although among the vector transmitted viruses dengue itself has arguably lost some of
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the attention to Chikungunya and especially to Zika virus (due especially to the previously
unknown relationship between the latter and birth defects) at the population level the
study of either of these diseases is to a very large extent the study its human and mosquito
hosts. The fact that licensed vaccines for these disease was essentially absent — dengue
virus had a vaccine in phase 3 clinical trials ( ; ;

) that was just recently licensed ( ) — further highlights the im-
portance of vector control, and of the knowledge about dengue virus transmission in the

control of all of the diseases transmitted by the Aedes mosquitoes.

One half of the of cycle of dengue virus (DENV) - that is, the mosquito-to-human
transmission — happens through the bite of an infected Aedes aegypti or Aedes albopictus
mosquito (i.e. the vector in vector-transmitted disease); the transmission cycle is completed
when an infected human is bitten by a mosquito that in turn becomes infected (

). Although importation from other geographical areas ( ;
; ) as well as sylvatic cycles between non-human
primates and other Aedes species may play a role in sustaining transmission (
), these basic steps of the human-Aedes cycle should be enough to create chains of
transmission that allow endemicity, and this is considered the primary cycle in explaining

dengue virus persistence.

A few details are noteworthy in a general model of dengue virus transmission, which
would otherwise conform nicely to that of a generic vector-transmitted mode of propaga-
tion. Dengue virus has four antigenically distinct variants — types, or strains — commonly
referred to as serotypes (DENV-1 through 4). Anything from a single one to all four of
them can be circulating in any one place. If only one serotype is present, a simple de-
scription of transmission where a susceptible host gets infected, recovers, and becomes
immune to further infection is generally adequate, since infection with a serotype is ac-
cepted to confer human hosts lifelong immunity against that same type. If more than one
serotype is circulating, infection can happen at least twice (but not more than four times,
because unlike influenza, for instance, evolution of the virus does not allow it to escape
immunity built against it), one for each previously unseen serotype. In this case multiple

infections may need to be accounted for. Also, it could be important to differentiate be-
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tween strains, as a secondary infection can only be caused by a serotype different from the

previous.

Dengue virus transmission has been extensively explored through mathematical mod-
els ( ). As usual, the disease states of the human hosts have been de-
scribed by simple extensions of the susceptible-infected-recovered framework, often (but
not always) coupled with susceptible-infected description of the mosquito hosts. A mix-
and-match of other known or suspected features specific (although possibly not exclu-
sive) to dengue virus have been further added: secondary infections, temporary strain-
transcending immunity (cross-protection), enhanced (or reduced) susceptibility to sec-
ondary infections, increased lethality in case of severe presentations (often associated to

secondary infections, as well as other risk factors such as age or blood-related dysfunc-

tions) ( ).

Therefore, dengue virus transmission can be described mathematically by multiple ex-
plicit serotypes, which we denote by multiple-serotype models (e.g. a two-serotype model
means two different strains of dengue are explicitly described), or by a single explicit virus
type, hereafter denoted by SIRX models (which include the classic SIR and SIRS models,
as well as intermediate formulations, as described in the methods section). Both formu-
lations purport to describe settings where one or more serotypes may be circulating; in
the former description each explicit serotype causes infection once, while in the latter the

ensemble of unspecified serotypes causes infection twice or more.

Although seemingly subtle, the conceptual difference between the two modeling ap-
proaches is profound: while in the SIRX vector models secondary infections depended
exclusively on waiting for recovered individuals to become susceptible again, in the multi-
type models strains compete for multiply susceptible individuals. This feature can causes
serotype alternation and induce oscillation even in the absence of seasonal forcing. More
importantly, this model is less of a caricature of the process of disease transmission, since
it is widely accepted that an individual infected with a serotype cannot be infected again
by the same strain, rendering the explicit description of the SIRX models technically im-
possible. Whether one approach or the other is more suitable to describe real dengue

epidemics, however, cannot in principle be decided without confronting both models to
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epidemiological data.

On the epidemiological records side of dengue, some unique patterns are often high-
lighted in dengue virus epidemics, particularly the oscillations with multianual periods
and serotype replacement in successive epidemics ( ). These can be veri-
fied, respectively, from incidence records that show greater number of cases usually around
the rainy seasons, and through serological surveys or, more recently, sequencing of circu-
lating viruses. Mathematical models of dengue transmission therefore are built to repro-
duce these broad patterns; nevertheless, different combinations of anyone’s favorite model
components may reproduce them, in a way that is indistinguishable from someone else’s

choice of building blocks. A non-exhaustive list of processes that could produce realis-

tic outputs in a computer simulation include: stochasticity( ), spatial
structure ( ), enhanced secondary infectivity ( , “un-
natural” transmission routes ( ).

One of the most hyped effects among the many incorporated one way or another into
the mathematical models is that of antibody dependent enhancement, by which a sec-
ondary infection would be more severe than the first in the presence of titers of heterol-
ogous antibodies against DENV ( ). The inclusion of the effect has been
shown to drive chaotic dynamics even in deterministic mathematical models (

), s0 as a result it has been suggested that it could be the most important effect
modulating the observed somewhat erratic epidemic patterns. The plausibility of the ef-
fect is asserted through the observation that in the presence of subneutralizing antibodies
invasion of the cell by viruses is facilitated ( ); however, in terms
of a mathematical model it is not clear if that would translate into increased susceptibility,
increased infectivity, or simply a transmission-unrelated increase in virus lethality. If the
magnitude of the enhancement could ever be aslarge as claimed in modeling studies is not
established either. Furthermore, it is not clear whether, if present, the effect would be the

dominant factor, or if it would be important to the transmission dynamics at all.

Many other effects and combinations would still not exhaust the list of tens of mod-
els that purport to explain dengue transmission ( ); nevertheless, a

quantitative evaluation of the conformity of these models to real data was not done sys-
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tematically [but see ( ) for a rare exception]. Here, I put together
amodel of the human and vector population with secondary infections, either one or two
serotypes, and temporary immunity after any infection, but otherwise minimal in what re-
gards any other asymmetries, enhancements, or alternative routes of transmission. I show
that minimalistic multi-serotype models can sustain oscillations in the absence of any of
the latter effects or stochasticity; I also implement an individual-based model that can sim-
ulate both epidemiological and viral evolution. I further develop inference methods to fit
these models to time series and multi-serotype sequence data, compare the inference re-

sults for the differentkinds of simulated data, and apply the estimation method to real data.
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Figure 4.1.1: Structure of an SIRS plus vector model, with possible loss of immunity
indicated by the dashed arrow. All compartments are subject to natural mortality
m, but the arrows corresponding to those processes are ommitted in all but the last
compartments to avoid repetition and clutter.
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4.2 METHODS

4.2.1 SIR MODEL EXTENSIONS FOR DENGUE VIRUS TRANSMISSION
SIRX PLUS VECTOR MODELS

The simplest model to describe dengue transmission is arguably the vector SIR model,
not unlike the first basic models of malaria transmission with a human and mosquito pop-
ulation, although malaria may have an indefinite number of reinfections, making it a SIS
model ( ; ). The SIR model assumes human hosts are only sus-
ceptible once (S), and after infection (I) enter the recovered compartment (R) perma-
nently, being immune to any further infection by dengue afterwards.

The vector compartment is modeled as a susceptible mosquito compartment (U), and
an infected one (V), from which a mosquito host never exits once it enters — noting that
the female mosquitoes are the only ones transmitting disease, so the male population is
absent, or implicit.

Alternatively, human hosts may be allowed to lose immunity acquired from past infec-
tions and become susceptible again; under that assumption a single host can potentially
be reinfected an unlimited number of times before it dies.

The schematic drawing of both model formulations is shown in figure 4.1.1, the only
difference between the two being the arrow representing hosts that exit the recovered com-
partment and reenter the initial susceptible compartment. In this latter case, the structure
of the human compartments is that of what is dubbed the SIRS model - the first and last
susceptible compartments being the same.

The compartments and parameters are very much standard: m being the human host
mortality rate;  the mosquito to human transmission coefficient, or rate; y the human
recovery rate; ¢ is the immunity loss rate (which is equal to zero in the SIR version of the
model); b is the mosquito host mortality rate; Q is the human to mosquito transmission
rate. Additionally, it is assumed that the birth rates are the same as the mortality rates for
each host species; therefore the population sizes stay constant: H is the value set for the

human population, while M is the size of the female mosquito population. The mathemat-
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ical formulation of the SIRS dynamics of transmission is given by the system of equations

(4.1).
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In addition to vector and human basic demographic and epidemiological parameters, it
is also common to assume seasonal forcing of the vector population, emulating changing
conditions from more to less favorable throughout the year, usually attributable to either
hot/cold, or humid/dry seasons. The result of that function is then added either to the
birth or death rate of the mosquito population, resulting in a deterministic sinusoidal os-
cillation.

For clarity the seasonality function is not introduced in this first display of the mathe-

matical system (egs. 4.1), but is detailed in the following system (4.2) instead.
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Figure 4.2.1: Structure of an SIR plus vector model, with explicit number of possible
reinfections (in the particular case illustrated the vector SIRx2).
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SIR-VECTOR MODELS AND MULTIPLE INFECTIONS

Given that dengue virus has a finite number of serotypes, it is expected that any one host
can only be infected with dengue a few times in a lifetime; therefore, secondary infections
can be modeled by explicit compartments for the secondarily or further infected.

In this case, the total number of times a single individual can be reinfected has a hard
limit given by the number of infected compartments in the model, which are never revis-
ited. This is straightforwardly modeled by a series of SIR compartments chained together
(i.e. an SIR structure followed by another SIR).

The identities of individual serotypes are not explicit in this model, but sequential in-
fections implicitly describe this feature of dengue virus transmission. The case with two
consecutive infections is shown in figure 4.2.1.

The compartmental structure of the vector population is unaltered, while the human
host population follows a susceptible-infected-recovered path, being immune to reinfec-
tion for the time they stay in the first recovered compartment (R, ). After that, loss of im-
munity takes individuals to a second susceptible state (S,, unlike the SIRS model where
the first state is revisited), where individuals are again susceptible to infection by infected
mosquitoes.

In case of infection they move to the secondarily infected compartment (I, ), and after
recovery they move to the last compartment (R), where they are recovered and can only
exit by the ultimate process of death.

The model parameters are the same as the previous model and describe exactly the same
processes as before, with the single and only slight exception being that ¢ describes a path
of waning immunity through different compartments due to the general model structure.
The mathematical formulation of the model with two sequential infected compartments
is given by the system of equations (4.2).

As mentioned above, system (4.2) also has a seasonality term acting on mosquito birth
rates. This consists of a time dependent cosine function with argument 27 multiplied by
time itself plus a phase variable §; this assumes these variables are given in years, resulting
in an oscillation period of one year, but can trivially be transformed into months, weeks,

or days, for instance, by dividing by the appropriate factor. The cosine multiplies the am-
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plitude scaling parameter a; this factor is added to the constant birth rate, resulting in a

population whose size oscillates between (1 + a)M.
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In contrast to the three-compartment SIRS model I refer to this model as the SIRx2
model (given that the human population states are described by a SIR plus SIR, or two
times the SIR structure), where once-recovered individuals would again become suscep-
tible to infection. Because DENV has 4 human-infecting serotypes infections may further
be tertiary or quaternary; unless explicitly stated, I hereafter refer to all infections after the
first simply as secondary, as opposed to primary. SIRx3 and SIRx4 models where indi-
viduals infected twice or three times, respectively, become once again susceptible can be
built by straightforwardly extending the SIRx2; therefore, I do not show specific schemes
or systems of equations for those.

In the infinity limit these models become the SIRS model, except human hosts enter
an infinite number of new compartments instead of entering the same compartments an
infinite number of times, provided of course hosts stay alive long enough. Depending on

rates of infection and death, a smaller number of compartments may be enough for a hu-
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man host to have enough new compartments for many lifetimes of repeated infection, in
which case the model will also approach the SIRS model even with a finite number of re-
infections.

I refer to this entire class of models as SIRX, which include the shown SIR, SIRS, as
well as the SIRx2 (or any other number between two and infinity) models. In any of those
cases, however, the identity of multiple serotypes are only implicit in the fact that human
hosts can have secondary infections, because there is only one class of infected mosquitoes

that transmit to all susceptible humans regardless.
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Figure 4.2.2: Structure of an explicit two-serotype model and its rate parameters.

MULTIPLE-SEROTYPE INFECTIONS IN THE DESCRIPTIONS OF DENGUE VIRUS INCIDENCE

A more complete description of multiple-serotype transmission is one that differentiates
not only between primary and secondary infections but also disinguishing which serotype
causes infection each time. This requires not only a series of compartments, but also par-
allel paths that describe the order in which the multiple serotypes cause infection. For two
serotypes, for instance DENV-1 and DENV-2, it is accepted that a human host could be
infected twice, once for each serotype; that is accounted for by the two sequential infected

compartments of the SIRx2 model described previously.
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Here I wish to account for the order of infection: a human host can either be infected
by DENV-1 and then DENV-2, or by DENV-2 and then DENV-1; this creates two alterna-
tive paths which are shown in figure 4.2.2 — e.g. I, denotes individuals first infected with
serotype 1 and now infected with serotype 2.

Unlike the SIRx2 models the mosquito hosts can either harbour one or the other serotype;
therefore, also in contrast to the previous formulations, a secondary human infection de-
pends on transmission from a mosquito with different serotype from that of the primary.
The mathematical description of this explicit two-serotype model is given by the system

of equations (4.3).
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Although the model described by the system of equations (4.3) does contain (more
than a couple) SIR-like components, and could possibly be seen as a parallelization of the
SIRx2 model, the level of complexity arising from further introducing DENV -specific fea-
tures is considerably higher. It may be more useful to look atit as two interacting epidemics
( ), since it is unlikely that either the compound output or the individual
serotype dynamics can be predicted to trivially conform to that of its more well known
building blocks.

Regarding the basic reproductive number, R,, because it is calculated with regard to

a fully susceptible population, the secondary compartments do not cause the models to
BQ
b(m+y)
actually verified in the output of the model, it would be due to the structure of the im-

differ in that matter, and the quantity is given by R, = % If such differences are
munological states believed to represent a population at risk of a multi-serotype dengue

epidemic, since all other processes are present in the previous models as well.

On top of the structuring of basic epidemiological and demographic processes (

), additional complexity may appear by introducing asymmetries between
serotypes (e.g. serotype 1 more infective than serotype 2, or causing infection for a longer
period of infection) or order-dependent rates of infection (e.g. secondary infections more
or less likely than primary), which are plausible for various biological or medical reasons,

and are likely in comparison to the narrow null hypothesis of perfect symmetry.

Other common extensions that are known to be present to some degree, unlike more
complex hypothesized immunological or epidemiological effects, include exposed com-
partments (describing individuals that harbor the pathogen but cannot transmit it yet),
spatial structure of transmission, heterogeneity in contact rates, susceptibility to infection,
or in infectivity, gamma-shaped (as opposed to exponential) host survival, and many oth-
ers. Nevertheless, none of these are included in the models used here, I discuss some of
these later in the text, although it may become clear by the section on inference which are
the difficulties of including too many parameters however simple and concrete the pro-

cesses may be.
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IMPLEMENTATION

The models were initially implemented as continuous ordinary differential equations (ODEs),
solved by numerical methods to approximating the deterministic solutions of the system;
commonly available as ODE solver functions in multiple programming languages such as
Matlab, Python, and R languages, which were used at different times with no particular

preference for either.

4.2.2 INDIVIDUAL-BASED MODELS

Discrete, stochastic, individual-based versions of the models described above were also
implemented. Besides the importance of the randomness of the events in the epidemio-
logical model, it was important to be able to simulate not only the epidemiological outputs,
but also the evolution of viral sequences. Because there is no direct continuous approx-
imation neither to the appearance of a random mutation, nor to a genetic sequence of
nucleotides, the most straightforward way of simulating evolution is to explicitly attribute
viral sequences to infected individuals, and allowing them to randomly acquire new muta-
tions as they get transmitted.

Implementations were done in both C++ programming language by using a previous
implementation ( ; ), and later by adapting the
algorithm to the Python programming language to take advantage of the random number
implementations in the latter.

In brief, an “Individual” class was created to have a “sequences” attribute (which was
empty if the individual was not infected), and each human or mosquito host was an in-
stance of that class. At each time step (At, which multiplies all probabilities hereafter men-
tioned), the number of new infections was drawn from a random binomial distribution,
since the maximum number of infections is bounded by the total number of susceptible in-
dividuals; the probability parameters were equal to the force of infection (e.g. A = pV,/H
for infections caused by mosquitos infected with serotype 1) and number of trials equal
to the susceptible population (e.g. the susceptible to all S, or to type 1 S,, equivalently.)

Because the infectivity of all individuals is assumed to be the same, the sequence infecting
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each new host is randomly drawn from the pool of all existing sequences from the previous
time step. After a successful infection of a new individual, new mutations have the oppor-
tunity to arise with probability determined by a per-genome mutation rate — mutations
are assumed to follow an infinite alleles and sites model, so every new mutation is one that
was not previously present in the population. Mutations do not affect any of the model
parameters, so evolution is completely neutral. The number of sequences inside a single
infected host can be greater than one, in which case this within-host population undergoes

a Wright-Fisher sampling step ( ).

The number of new births of the mosquito population, apart from the sinusoidal addi-
tional factor, is drawn from a poisson distribution with mean g ,. = b; deaths are drawn
from a binomial distribution with probability parameter also y ,. = b, so the total popu-
lation is expected to fluctuate around the initial value. The human population is assumed
to be strictly constant; that is enforced by the number of births being exactly equal to the

number of stochastic deaths - this condition can be easily relaxed, however.

Otherwise, as a general rule, the number of events at each time step was drawn from a
random binomial (and when applicable, multinomial) distribution where the number of
trials was given by the number of individuals in the compartment, and the parameter for
probability of success in each trial was given by the rates in the model (e.g. the number
of individuals recovered from an infected compartment I, is given by a random binomial
distribution draw with parameters I, and 7). If competing processes were present, a multi-
nomial was used instead. If the number of events was not bounded, for instance by the size
of the compartment, a poisson distribution was used instead (e.g. the number of mosquito

births, or number of new mutations).

The output of this implementation is both a stochastic time series of susceptibles, in-
fected, recovered, and incidences (i.e. the randomly drawn number of new infections
recorded at each step in the human and vector populations), and the pool of all extant
pathogen sequences for each serotype at all or selected time points (for convenience, split

into mosquito and human harbored sequences).
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4.2.3 EPIDEMIOLOGICAL SURVEILLANCE DATA (AND PSEUDODATA)

In countries like Brazil, where notification of dengue is compulsory to doctors, the records
commonly consist of periodically reported new cases into the Information System for Inci-
dent Notification [Sistema de Informacio de Agravos de Notificagdo] ( ). As with
many other common endemic diseases, laboratory confirmation is not routine, so diagnos-
tic relies mainly on clinical criteria; neither the serotype causing the infection is normally
recorded, nor if the infection is primary or not. Therefore, typical time series do not dis-
tinguish between serotypes or sequential infections; what would be available would be a
series of equally spaced, discrete values representing the number of cases of “dengue fever”
generically defined reported every month or week ( ).

The time series data set used here is from the Brazilian , with the absolute num-
ber of new weekly cases of dengue from the year 2009 until 2013 in the city of Rio de
Janeiro, when three large incidence peaks are observed. More specific diagnostics data
have also been occasionally produced in the form of serological surveys, although these
were obtained for specific studies and small cohorts. Because this kind of data is sparse
and difficult to access, I do not use any such data, but merely note that it exists for the
disease and location I am (mainly) concerned with, even if in a fragmented way.

Relatively recently, routine surveillance of dengue started to include genetic data of the
virus. It is now routine activity to isolate samples from patients and obtain nucleotide se-
quence from the virus in the isolate; an immediate result is the identification of serotypes,
and possibly of more specific variants such as genotype (a finer grained distinction within
each serotype) as well as the relationship to strains previously found elsewhere (

). This data set therefore consists of somewhat sparsely sampled viral iso-
lates sequenced along several years — the total number is in the order of tens for the city of
Rio de Janeiro — and is to a great extent available as part of published studies (

; j ’ j ’

; ), as well as in public databases for genetic sequences such as
GenBank ( ).

The individual-based models described in the previous subsection were designed in a

way that could directly reproduce the form observed in the real data available. Unless there
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is specific interest in greater details, whenever a model is simulated I try to store the output
in a format that mimics the amount, type and level of aggregation, period and interval of
collection, and any other feature pertinent to a specific data set. When used in the same
way as the real data (e.g. for parameter inference), I call a data set of this sort synthetic, or
pseudo-data.

Generally summarizing the two types of pseudo data sets used here, the time series are
weekly records of all new cases (the weekly sum of daily-generated incidences), and the
second type are genetic sequences. The genetic equivalent of the all-inclusive time series
datawould be a sequence (or group of sequences) for every newly infected individual time-
stamped with the week (or any other time step) when it appeared. That is impractical
even for simulated data set, and for a series of reasons it is essentially impossible in real
epidemics.

Instead, the pseudo-sequence data is a sample from different times, where the number
of sequences from each time point is proportional to the number of cases then, i.e. it is
a sample of sequences over one long period, weighted by epidemic size at each of mul-
tiple small intervals. A total number of 100 sequences per serotype over the course of a
few years was assumed to be a sufficient number, comparable to that of previous data sets
used for similar purposes ( ), and considered feasible in a city with
a population on the order of 10 million, and outbreaks on the order of a few tens of thou-
sands ( )-Itis also comparable (though larger) in size to data sets collected for other
purposes in the city of Rio de Janeiro ( ) When needed, the specific
pseudo and real data sets are detailed at the pertinent results sections.

The objective is to obtain pseudo data sets suitable for inference purposes. It is difficult
to establish beforehand what the most informative sampling scheme would be (

); that is a question on its own right that is not explored here.

4.2.4 BAYESIAN INFERENCE FROM TIME SERIES

Analytical solutions for the systems adopted in this chapter are not available; therefore, a
numerical approximation to the continuous solution was obtained through an ODE solver

whenever needed.
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Because the number of new cases in any given week is an integer number I chose to use a
poisson distribution: the likelihood of the observed value is computed using the sum of all
possible human infected states as the poisson parameter (as modeled by compartments, i.e.
the total number of dengue cases of any kind in the model output), and the total likelihood
is therefore the product of that over all time points in the series — or, more conveniently,

the sum of their logarithms.

A binomial distribution could as well be used, in which case its probability parameter
could be given by the forces of infection and the number of trials would be given by the
susceptible populations at risk. While that would be possible, and possibly mimic more
accurately our simulation model and the bounds in the maximum number of infections,
it is more cumbersome to add the parameters coming from the different compartments
and, more importantly, the poisson distribution expects greater or equal variance when

compared to the binomial, and therefore can accommodate any overdispersion in the data.

The bayesian Markov Chain Monte Carlo (MCMC) inference algorithm was imple-
mented in Python language using the PyMC module ( ). Unless detailed
otherwise, as a norm gamma-shaped priors were used for parameters that have indepen-
dently estimated or commonly accepted values, and priors uniform over a wide range were
used otherwise. As technical criteria for quality of the inference, the following criteria were
used ( , chap. 11): Markov chains were run until the likelihood and
posterior traces converged to a maximum and attained stationarity with that regard; for all
results shown, replicates of the chains were run to assure mixing (unless otherwise speci-
fied, model fit and posterios are computed and shown for individual chains only); initial
sampling corresponding to one tenth of the total number of iterations was discarded as
warm-up or burn-in period. Correlation between parameters were computed at the end

of the chain for at least one replicate when parameters seemed systematically biased.

Most critical was the time limit of around one month that was imposed for practical rea-
sons; that allowed chains as long as a few million iterations on a dedicated high-capacity
computer. Most implementations did not seem to have issues with the likelihood con-
verging with a few hundred thousand iterations; nevertheless, more subtle issues were ob-

served in some cases and are discussed in the results and discussion sections.
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I applied this estimation method to both simulated data sets, as well as to a time series
of dengue incidence from the city of Rio de Janeiro running from 2009 to 2013 ( ).

The estimation method used does not therefore account for noise in the system state.
Stochastic solutions can be used instead; however, doing so is not as simple as replacing
a deterministic solution by a single stochastic one (which may be only slightly slower to
obtain), but requires a considerably more sophisticated and a computationally much more
intensive method method to estimate the likelihood ( );

( ), with possibly a couple of thousand simulations at each iteration of the Markov
Chain. I discuss these so called Sequential Monte Carlo or particle filters as perspectives

in the end of this chapter.

4.2.5 POPULATION GENETICS AND PHYLODYNAMIC INFERENCE

Although the individual-based model can produce a simulated data set that mimics a set
of viral sequences sampled at arbitrary time points along time, unlike with the time series
data there is no simple way of calculating the likelihood of the model parameters given that
kind of data.

The conceptually most straightforward method is probably the following: make up
metrics that are assumed to be representative of the data; simulate the model; compute
the same metrics for a large number of model outputs; and try to find the model param-
eters that best approximate the real data. In spite of the gross oversimplification of this
description, this is the basis of Approximate Bayesian Computation (or ABC) methods.

An alternative framework to compute the likelihood of a model given sequence data —
and arguably a more elegant one, at least in the sense that it is based on a full likelihood
expression — relies on the bifurcating properties of the trees that connect related sequences,
or conversely (with time flowing backwards) the coalescence of a set of related samples
into a common ancestor. The latter gives the name to the coalescent theory, or simply,
the coalescent, as described by ( ). Since then the problem of estimating a
Wright-Fisher (or Moran) population size from sequence data using the coalescent has
been extended to varying environments ( ), to implicitly defined

population functions ( ), and more generally to structured populations
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( )-

The Beast 2 software (Bayesian Evolutionary Analysis by Sampling Trees) contains many
basic as well as advanced implementations of coalescent-based MCMC inference (

); it is written in the Java programming language, and uses an XML file to
input the actual sequence data and the specifications to the multiple classes involved in
the calculations. A phylodynamics package is also available, which among many things in-
cludes implementations of the SIR model ( ). Other software for that purpose is
also available, notably as packages for the R programming language ( ; ).
Beast 2 was chosen due to the existence of a general community of users, its openness and
extensibility, apparent propensity to phylodynamics implementations, and especially the

helpfulness of some of its earliest developers.

Nevertheless, there were no tools built in to the core software, nor any extension pack-
ages (including the phylodynamics package developed by ) that were suitable for
direct application to the inference using the models pertinent to dengue virus transmis-
sion as describe above. For one, a structured implementation is needed — in the simplest
case, viral sequences may be either in the human or in the mosquito host, and intuitively
coalescence can only happen if they are inside the same hosts (unfortunately, further de-
tails about structure in the coalescent for this kind of model are way out of scope, but
see ( ) for a complete description of how structure is incorporated in the con-
text of disease transmission models). The implementation was greatly facilitated by code
shared from a previous implementation from ( ), which consisted
of an epidemiological model Java class and a structured coalescent likelihood computation
class; these extensions could almost directly be applied to the SIR-vector model, and could
straightforwardly be used for the SIRS model as well, and more or less easily adapted to all
SIRX models.

The implementation of the two-serotype models, however, required additional tinker-
ing. Because DENV serotypes are only 60% similar by sequences, they are usually treated
separately ( ; , ). Therefore, they
are not expected to find a common ancestor in the recent period of a few years of dengue

transmission, in which case two separate trees are needed. The two-serotype epidemio-
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logical model produces the poulation dynamics function for both serotypes, so a single
Java class was implemented with this model; however, the likelihoods have to be calcu-
lated for each tree, so two separate classes were implemented that used separate trees and
substitution model parameters, but fetched (different, serotype-specific parts) of the same
population model output. The combination of the two tree likelihoods was then the global
likelihood of the one-epidemiology, two-tree model, and from then on could be used by
the MCMC algorithm in Beast 2 with no additional tinkering needed to perform inference.
The same quality checking criteria as in the time series inference were used; one month of
real time amounted to a few tens of millions of iterations in Beast 2 for the most complex
models. Additionally, Beast 2 computed the effective number of samples (

, chap. 11) as an additional metric to assess convergence.
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Figure 4.2.3: SIR+vector models with (red) and without seasonal forcing (blue) Pa-
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4.3 RESULTS

4.3.1 FORWARD MODEL SIMULATION
PREDICTIONS FOR DISEASE INCIDENCE AND PREVALENCE

Figure 4.2.3 shows a deterministic simulation of the SIR-vector model without, and with
seasonal forcing in the birth rates. It is worth noting, that although the amplitude of sea-
sonal forcing is of the magnitude of 10%, oscillations can quite easily be greater than that
through resonance of the natural (damped) oscillations and the forcing (

). The average incidence, however, is roughly the same in the presence or absence of
forcing.

In the case of waning immunity, secondary infections are also possible, which poten-
tially increases the total incidence at any point in time. Figure 4.3.1 shows the total inci-
dence for the vector transmitted SIR, SIRx2, SIRx4, and SIRS models; for a set of param-
eter values, changing only the transmission rate within a certain range can result in a very
similar incidence profile even in a deterministic setting.

Although for larger transmission rates the number of susceptibles may dominate and
cause the models to output distinguishable time series, it must be acknowledged that for
some parameter sets, model structure is not easily identifiable from the incidence pattern.
Therefore, not only parameter values, but also model structure, are likely to be critical to
describe the transmission of dengue virus, and can have a great impact in the parameters
estimated.

The structure of the two-serotype model is not directly comparable to the previous
models; nevertheless, the output of the model with the same common set of parameters
(except for B) is shown in figure 4.3.2, except for transmission.

Besides the obvious difference that this model has explicit series for both serotypes, the
incidence pattern is less regular. A more striking qualitative difference is the fact that the
numbers of infected individuals get much closer to zero (at least for individual serotypes);

in a deterministic model it means just that, but in a stochastic model that may mean in-
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Figure 4.3.1: SIR+vector models in some of its variants: standard vector SIR (red),
SIRx2 (green), SIRx4 (light blue), and SIRS (purple), showing approximately the same
incidence levels at or near near the oscillatory equilibrium. The single changing pa-
rameter is transmission intensity for the SIR, SIRx2, SIRx4 and SIRS models, re-
spectively: Q = B = 0.2536;0.1835; 0.1680; 0.1665. Additional parameter values in are:
b=o0.1,m=3.65-10"°,7 = 0.14, p = 0.00165, a = 0.02,8 = 0, H = 1000000, M = 513789.

creased probability of extinction.
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Figure 4.3.2: Incidence dynamics for an explicit two-serotype dengue virus model.
Shown incidence is that for each serotype separately (a), and the sum of new infections
for both serotypes (b). Parameter values are: b = 0.1,Q = 0.7, = 0.7,m = 3.65 -
1075,y = 0.14, ¢ = 0.00165,a = 0.02,8 = 0, H = 1000000, M = 513789.

DISCRETE TIME AND INDIVIDUAL-BASED IMPLEMENTATIONS OF VECTOR TRANSMISSION
or DENV

Discrete time and stochasticity in the system state transitions can significantly affect the
oscillations in resonating systems ( ). Thisisillustrated by the incidence

outputs of both the vector SIR, and more extremely the vector SIRS models, in figure 4.3.3.

The probability of extinction of the pathogen is generally low in those cases, although
it is clear that numbers are much lower for the case without reinfection (vector SIR), such
that if extinction doesn’t commonly occur, the trajectories are nevertheless much more
prone to the general process noise. Similarly, the intermediate models with two and four
infections are prone to effects of discretization and stochasticity. Figure 4.3.4 shows the

results for the remaining SIRX models.

For the chosen parameters, extinction is more likely in the two-serotype model Figure

4.3.5 shows the results for this model.
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Figure 4.3.3: Stochastic output of vector SIR model (a), and of SIRS model (b). Gray
lines show solutions to the deterministic system. Parameter values are: b = o.1,m =
3.65-10 5,7 = 0.14,¢ = 0.00165,4 = 0.02,8 = 0o,H = 1000000, M = 513789., and
Q = B = o.7 for the SIR, and Q = = o.47, for the SIRS.

SUMMARY OF FORWARD MODELING PREDICTIONS

Models that are structured differently but with the same parameters, and therefore same
basic reproductive number, will have different outputs and observed incidence and preva-
lence levels. Conversely, qualitative aspects of the observed disease data can be repro-
duced by different combinations of model structure and parameters. It is not at all trivial
to determine what aspects of the model are known, or best approximate reality, which
can be treated as nuisances, and which of them are robust to structure or parametrization

changes.

In the case of genetic diversity, it is even harder to distinguish clear relationships be-
tween the real data and the model predictions. Summaries are useful to make broad as-
sessments about the data, but are usually not suitable for finer grained comparisons, nor
model testing. A quantitative comparison is therefore needed to assess which model best

represents reality, and what parameter values explain the processes of disease transmission.

The forward simulation approach is quite convenient when good estimates are available
for all or most parameters, and there is good confidence in the model structure, or the

outputs are robust or easy to evaluate for unknown parameters. Even for a reasonably large
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Figure 4.3.4: Stochastic output of vector SIRx2 model (a), and of SIRx4 model
(b). Gray lines show solutions to the deterministic system. Parameter values are:
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amount of synthetic (or pseudo-) data it is feasible to perform computation of genetic
summaries in a reasonably short time without much algorithm optimization effort.

For complex, non-linear models it may, however, be difficult to thoroughly perform
sensitivity analyses for more than a couple parameters and identify disease dynamics com-
patible with real data. For genetic diversity computations that rely on individual-based

simulations it is even more costly and time-consuming to adopt the forward approach.

4.3.2 INFERENCE: QUANTITATIVE HYPOTHESIS TESTING
TIME SERIES-BASED INFERENCE

The MCMC algorithm produces samples of the joint posterior, which consist of a series of
parameter sets accepted by the method, the fit can be empirically computed by simulating
the model for a representative subset of these samples, and computing the mean or median
values of the model output. Credibility intervals can be similarly computed by taking the
score at some percentile (e.g. a 95% CI results if 2.5% and 97.5% are chosen). We present
the mean computed as described above and call it the “fit” hereafter, together with the 95%

credibility intervals, unless otherwise stated.
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Figure 4.3.5: Stochastic output of two-sreotype model. Gray lines show solutions to
the deterministic system. Parameter values are the same as before.

For inference purposes, the ratio of mosquito population M to human hosts H is the es-
timated parameter, denoted hereafter as M, ,. The mean time of immunity before becom-
ing susceptible, that is 1/¢ or 1/¢ are the parameters actually estimated, and are denoted

just as such, the inverse of the original parameter.

The easiest data set the inference method can fit is a deterministic simulation with some
noise added afterwards to the continuous solution. This best case but unlikely scenario
serves as proof of concept that there would be enough information in a data set with this
format. Figure 4.3.6, panel A shows the fit of the two-serotype model to pseudodata pro-
duced by a deterministic simulation of 209 weeks (approximately four years) with poisson
noise added to each of the 209 time points, i.e. the model used for estimation is the same

as that used to produce the simulated data.

The fit shown in is extremely good, considering the pseudodata is the output of a highly

nonlinear model, and that only an aggregated and partial observation of the system is used
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(i.e. the sum of the changes in the infected compartment ). Therefore, while this is the
best case scenario, it is not a given that it would be possible to adequately fit the model,
and furthermore estimate the parameters accurately — the parameters could be structurally
unidentifiable, or the amount or type of data could not allow accurate estimation of the
parameters. The estimates of the model parameters are shown in figure 4.3.6, panel B,
which displays the prior and posterior distributions. Most estimates are quite precise even

in the absence of informative priors.

The case of the exact same estimation method applied to a data set produced by the
stochastic individual-based model simulation instead is shown in figure 4.3.7. While the
fit to the data is still quite good, the effect of stochasticity on the posterior estimates can

be observed as pronounced biases in some posterior distributions.

Unlike the previous case, gamma priors were used for the initial population states, and
they are nevertheless not as well estimated as before, but contain the true values (not
shown). Particularly important is the estimate for R,, which is significantly lower than the
true value and the estimate of the temporary cross protection time (i.e. strain-transcending
immunity - the inverse of the rate of immunity waning ¢ — only present in models with

secondary infections), which is precisely estimated.

The observed biases are similar to those observed with a simpler vector SIR model (ap-
pendix C, figure C.1.1), and the fact that these are not observed with the continuous sim-

ulation suggests that model complexity or data structure are not the main factors.

Indeed, fixing some parameters and/or initial conditions can improve estimation of the
remaining parameters. Appendix C shows that fixing all other epidemiological parameters
except for R, improves it estimate and fixing initial conditions improves it further (figure
C.1.2). However, it is not necessarily true that the more parameters fixed, the better the
estimates, as leaving a few of the epidemiological parameters results in the best estimate of

R, when compared to the above (figure C.1.3).

The MCMC algorithm allows empirical computation of the correlation between the
parameters, since it relies on repeatedly sampling the posterior distribution of parameters.

The biases could therefore be atleast in part attributed to correlation between the estimates
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Figure 4.3.6: Fit of the continuous two-serotype model with poisson likelihood to
data simulated from the continuous model with poisson noise added afterwards (A).
Posterior distributions (crimson) of epidemiological parameters (B) — prior distributions
are shown in light blue (possibly not visible if the densities are very low compared to
the posterior density). True values, i.e. parameter values used to simulate the data set,
are shown as vertical black lines.

(not shown, but see discussion section); however, the problem seems to go beyond lack
of identifiability of specific parameter combinations, since allowing some parameters to
accommodate uncertainty can improve inference results. I further discuss parameter cor-
relation, fixing parameters, uncertainty in estimates, and possible methods to get around

these issues in the next section.
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simulated from its stochastic version (A). Posterior distributions (crimson color) and
priors (light blue) of epidemiological parameters and initial conditions (B).

Because incidence data most likely does not differentiate between infecting serotypes, a
time series gives no information about the number of circulating serotypes, and therefore
itis not possible to decide on single or multi-serotype models based on that alone. For in-
ference purposes a number of circulating serotypes must be assumed when a transmission
model is used.

The previous results assume the correct model structure (although not the correct er-
ror model) is known; with real data other factors such as model misspecification can in-

troduce further sources of errors. Appendix C shows that using the vector SIRx2 model to
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estimate parameters from a time series simulated from the two-serotype model can throw
estimates off (particularly that of R, ); using the same model on data simulated from the
vector SIR model can have equally problematic results. That highlights the importance of
testing different alternative models for the same data set, when it is not possible to favor
any specific model based on the data alone.

It is in principle possible to distinguish the infecting serotype, and even the order of
infection, for time series data; however, that would require elaborated tests and/or record
keeping for current and previous infections for every single recorded case. Sequence based
inference relies on a sample of cases, not all possible records, and differentiates infecting

serotype by default, which can get around some of these issues.

GENEALOGY-BASED INFERENCE

The aim of this section is to show results of methods comparable to that of time series-
based inference. In Rio de Janeiro, the available dengue virus sequence data seems to be a
result of concentrated efforts to obtain data representative of each single epidemic period,
not an overall data set with particular features. To my knowledge, there is no specific goal
for the entirety of the available data as to the total size, sampling interval, or representativity
of both epidemic and inter-epidemic periods, for instance. Therefore, the simulated data
set used for inference here is created to mimic more of an ideal yet feasible data set to
collect. In practice that was done by deciding on the total number of sequences desired
and sampling with a constant probability that would yield that expected value — given that
binomial sampling was done every week, periods with greater number of cases would be
more represented in the data.

For a constant probability to be specified, the total number of cases in the entire inter-
val should be known before sampling, which cannot be the case in the real world; even
if that was known a probability of sampling a sequence cannot be directly decided on by
researchers. Nevertheless, the computational sampling scheme mimics the real world in
that the greater the number of infected individuals, the more report to hospitals and health
centers, and the probability of obtaining consent to get biological samples and sequencing

them can be set by an arbitrary rate (e.g. a goal to obtain a sample from one out of 100
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patients) that would yield a total number of samples over a usual epidemic.
For the vector SIR model, a pseudodata set was sampled from the last four years of a
sixteen year run resulting in 106 simulated sequences with random mutations. The results

from estimation based on that data are shown in figure 4.3.8. The posterior contains the
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Figure 4.3.8: Reconstruction of the epidemic with a vector SIR model from sequences
simulated by its corresponding individual-based model(A). Red portion of the time series
denotes period from which samples were taken. Posterior distributions (crimson color)
and priors (light blue) of epidemiological parameters (B).

true values of the parameters, although some are slightly biased, not centered around the

true value.
Again an expected value and confidence intervals are computed from the sets of param-
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eters in each step of the Markov Chain; however, figure 4.3.8A does not show a fit, since
the time series data is not used for estimation, but rather a reconstruction of the incidence
patterns. Nevertheless, this reconstruction may accurately depict the mean incidence if
the sequence data is informative enough, and here it indeed reproduces oscillations on
the same order as those in the data. The phase of the oscillations are not perfectly syn-
chronized, and the amplitude is more regular than the actual incidence (although this is
expected due to the stochastic data as opposed to the deterministic nature of the inference

method; this is further discussed in the next section).

For the two-serotype model, the pseudo-sequences used here for inference were pro-
duced by the same run of the individual-based model as the time series pseudodata (in
the previous subsection) — as would be the case with a real epidemic, where all possible
new cases are recorded as incidence, and some of them are sampled for sequencing. The
pseudo-sequence data is sampled from the same 209 weeks for which pseudo-incidence
time series was recorded; the total simulation length was 16 years (therefore, the pseudo-
time series in the previous subsection actually consists of the last 4 years of this longer

run. Only the sequence data is used to produced the results that follow.

Inference using 119 type 1 sequences and 104 type 2 sequences sampled according to

the above scheme from a population of simulated individuals is shown in figure 4.3.9.

The general MCMC settings are the same as with the time series wherever applicable,
despite them being different implementations as explained in the methods section. Also,
there is no way around the fact that some parameters in this estimation are absent and
do not apply to the previous case — for instance the origin time of the epidemic (which
for a time series is trivially defined as the first time point), the mutation rate and the tree
itself (both of which have no impact on the incidence series). Otherwise, the estimates are

generally comparable.

Biases are not nearly as pronounced as in the inference with the time series; Besides,
the variables with gamma-distributed priors seem not to get much information from the
likelihood and stay almost unaltered compared to their priors. The origin parameter, the

time before the present when the epidemics starts, is fixed at 5852 days; this choice is
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Figure 4.3.9: Reconstruction of the epidemic with a two-serotype model from se-
quences simulated by its corresponding individual-based model (A). Posterior distribu-
tions (crimson color) and priors (light blue) of epidemiological parameters (B).

discussed in the following sections. On the other hand, parameters with uninformative
priors such as the mosquito mortality rate are quite well estimated; moreover, the basic

reproductive number is quite accurately estimated.

INFERENCE FOR EPIDEMIOLOGICAL DATA FROM THE CITY OF R10 DE JANEIRO, BRAZIL

We apply the methods tested above to epidemiological data from the city of Rio de Janeiro,
Brazil. Weekly incidence data for a period of approximately four years between the end of

2009 and that of 2013 was used to fit both the vector SIRx2 and the two-serotype models.
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Given the caveats observed for the simulated data, preliminary estimation was performed
using the MCMC method for time series described above. In addition to the continuous
model described above, a fixed scale (or reporting rate) parameter multiplies the incidence
output to account for underreporting of cases in the recorded series —i.e. a parameter value

lower than one means the actual epidemic is larger than the observed time series record.
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Figure 4.3.10: Fit of the vector SIRx2 continuous model with poisson likelihood to
epidemiological data from Rio de Janeiro (A). Posterior distributions (crimson color)
and priors (light blue) of epidemiological parameters and initial conditions (B).

The parameter estimates for the vector SIRx2 model are shown as posteriors (Figure

4.3.10B); the parameters with independent estimates (included in the inference method

167



as prior probabilities) deviate from that expectation, notably the population size H, and
human mortality rate m, both of which are grossly overestimated. It could be that there
is a biological explanation for the departures from the independent estimates, but as seen
in the previous subsection, bias and correlation between parameters is likely to affect the
estimates. Another well accepted value is recovery happening in around a week (1/7); the
posterior confidently places that at around twice that time. The biological parameters of
interest without accepted values place the mosquito lifespan (1/b) at around 22 days, and
temporary immunity period (1/¢) at 1 day, while R, is estimated to be around 8. Param-
eters of more epidemiological interest are the reporting rate (“scale” parameter) close to
only 4% and the vector to human ratio of close to 2 mosquitoes for every human host. The
general fit (Figure 4.3.10A) is good, although the model predicts a lower incidence at the
first and third peaks, as well as an early outbreak around the 20th epidemiological week,

which is not present in the epidemiological data.

Next, the two-serotype model is fitted to the same data set; the results are shown in
figure 4.3.11. The general fit is visibly improved. Interestingly, again some of the better
known, or accepted, parameters deviate from expectation in the same direction as with the
vector SIRx2 model; human lifespan (1/m) is again underestimated, but population size
H s inferred to be close to the census-recorded number. Recovery v is again estimated to
be twice as slow as the commonly accepted rate of a seven day long infection; mosquito

mortality rate b also has a similar value to that in the one-serotype model.

The robustness of the estimates can be interpreted as a strong signal in the data for these
parameters, although it is difficult to know how much they are affected by the deviation in
the independently-estimated values, as well as the others with no accepted values such as
the temporary immunity period 1/¢. The robustness of some of the estimates can be fur-
ther tested by fixing the parameters with well accepted values (y, m, H). These results are
in appendix C; figure C.1.6 shows that while preventing parameter values very inconsis-
tent with prior beliefs or independent estimates, most estimates are affected by the choice

of free parameters estimated.

Contrary to the vector SIRx2 model, the estimate for R, is on the high end of the uni-

168



9000
8000
7000
Q@ 6000
C 5000
O 4000
9]
€ 3000
2000
1000
0
0 20 120 200
time (weeks)
Ry 1/0) b o )
2z
73
f=4
()
kel
4 8 12 16 20 24 28 200 400 600 00 02 04 06 08 10 00 02 04 06 08 10 100 200 300 400 500
L io v m H scale
.,
00 04 08 12 16 0.00 005 010 0.15 020 30.0 40.0 50.0 600 00 20 40 60 80 100 00 02 04 06 08 10
(x107%) (x10%)

Figure 4.3.11: Fit of the two-serotype continuous model with poisson likelihood to
epidemiological data from Rio de Janeiro (A). Posterior distributions (crimson color)
and priors (light blue) of epidemiological parameters and initial conditions (B).

form prior probability assigned to the variable, around 26; the mosquito to human ratio is
also opposite to the estimate of the previous model, being about twice as low as the mean
of the prior distribution at 0.2, and the cross protection time is in the complete opposite
side of the range at 729 days. Mosquito lifespan is close to the previous estimate, 18 days,

and the reporting rate is on the order of 10%

The values inferred, however, must not be taken at face value, considering the limita-
tions observed in the inference using the simulated data. We discuss that further in the

next section.
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4.4 DiscussioN

The issue of modeling dengue virus transmission is far from trivial, as is probably model-
ing most infectious diseases. Writing on a paper or programming a SIR-like model into
a computer is indeed straightforward; that in its simplicity that alone can capture unintu-
itive features from disease transmission is quite surprising, but going beyond that is a long
and winding road, and extending the basic models in the right direction even more so. It
may also be reasonable to ignore variation and selection in some cases (even out of ne-
cessity), which greatly simplifies model formulation; still under these simplified models
there is plenty to criticize in the existent body of work in modeling dengue transmission
( ). Basic simplifications whose consequences are taken for granted

may also rear up their ugly heads when the model needs to be confronted to real data.

Inference is a logical next step, although it is an arduous task that may not be as reward-
ing as straightforward simulation. Despite perfection being far out of sight, the critical
exercise can be a constructive one. The difficulties in the case of dengue are illustrated by
the issue of multiple serotype interactions, and more subtle effects that are expected — like

asymmetry between serotypes or antibody dependent enhancement.

From the forward simulation point of view, it is clear that the structure of the model
radically affects the observed incidence — in what can be understood as the crucial factor
of the availability of susceptibles — therefore interpreting epidemic series in terms of a sin-
gle preferred model and its associated parameters is guaranteed to be problematic. The
impact of structural differences for a given parameter set — as shown by the forward sim-
ulations — is evident, others may not be so clear beforehand, but are indisputable once we
become aware of it; for instance, heterogeneity in any rates is more than expected, it must
be present, and can have dramatic consequences ( ) ). These effects

are likely to be larger than those of small asymmetries.

Abaseline problem of this order is likely not to be solved by adding parameters and pro-
cesses to the same model structure ( ), but instead the basic structures
and multiple extensions have to be systematically compared. In theory this problem could

be solved by formally comparing the performance of all available models against real data;
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in practice, the task is a harder one: a record of a time series that aggregates all kinds of

infections may lack the information necessary to distinguish between alternative models.

Identifiability analyses may uncover structural features of the model that may prevent
inference of particular parameters, and may point to reparametrization of combinations
that prevent structural identifiability issues ( ); however, it can be cumber-
some to implement for larger models ( ), and it is uncommon (and
possibly not feasible) that researchers in the different communities go about all the meth-
ods that could improve their results. The analysis of the data simulated by a continuous
model strongly suggests that there are no severe structural issues with the method, al-
though I did not perform any of the above-mentioned analyses. Alternative to structural
identifiability analyses are more empirical assessments of parameter inferability (

), and model comparison based on information criteria ( , chap.
7)-

Formal model selection criteria rely on a reasonable fit by the different models; con-
versely, there should be enough information in the data to grant support to the most ap-
propriate model - for instance, a more or less regular oscillating pattern produced by a
two-serotype model may be easily reproduced by a one-serotype model, and the latter
may be favored for having fewer parameters; what is more, a single cosine function (or a
couple of them) could fit the pattern with fewer of parameters, but that does not change
the fact that the data was produced by, and the correct modelis still, a two-serotype model.

An example of the difficulties mentioned above are the estimates obtained here from
incidence data of the city of Rio de Janeiro. Similar parameter values for different models
suggest robustness in the estimates; nevertheless, large deviations from independent es-
timates may call into question these supposedly robust estimates. Conversely, disparate
values for different models may point to the inadequacy of one of the models, and lack
of robustness of estimates under model misspecification, but it does not guarantee that
either estimate is correct - it is not possible to check deviation from the correct value if
no independent estimate is available. Fixing the known parameters can be an additional
constraint to the parameter space; however, it may force the remaining parameters into

erroneous values due to the decreased flexibility in the model.
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The more fine-grained the data is, the more precise can the comparison between models
be, but that assumes that some of the models can explain the data well enough. It may,
however, be the case that more detailed data causes the models only to fail more miserably
than before. In the end, all models are approximations (at best, reasonable ones, but most
likely rather crude ones), so that the multiple aspects of model and inference framework

must also improve as data becomes better and more plentiful.

The use of sequence data for model-based inference presents itself as both an exciting
perspective as well as a challenge: on the one hand it can make important distinctions such
as genotypes and serotypes of pathogens, and by design allow inference about the entire
population to be derived from a sample. It also carries, by default, information about more
than one time series at the same time - i.e. incidence, prevalence and, if applicable, migra-
tion ( ). On the other hand fitting a model to sequences relies on elaborate con-
structs that are difficult to visualize and evaluate — some of the improvements that come

with new kinds of data are therefore not without new issues.

One thing that seems to be unique to epidemiological models is that the data associated
to the pathogens can be acquired simultaneously in different formats, so inference with
one kind of data may be independently validated by another kind (e.g. sequence-based
reconstruction of the epidemic can be compared to incidence data, as shown for pseudo
data). Alternatively, these and other kinds of data (serological, vector population data, etc)

can be used in combination to improve estimation, if the problem is scarcity of data.

This aspect is probably an important contrast to coalescent-based methods in fields like

conservation genetics, where great strides have been made to incorporate processes like re-

combination ( ), structured environments (as opposed to change
in effective population size) ( ) and even allow inference from a single
recombining genome ( ), but where very little validation of alternative

models exists, especially with alternative types of data, which are not available for hun-
dreds or thousands of years ago. Coalescent methods in epidemiology offer the opportu-

nity of trying the methods, and validating them with more stringent criteria.

Increasingly it seems that scarcity is not the main problem ( ), but

rather the difficulty of inferring multi-dimensional parameter sets (or constraining their
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space enough via independent estimation of individual parameters), and formally com-
paring full models in a way that makes the estimates actually useful, in addition to more
subtle aspects of data collection ( ).

Although its effects are clear in the individual-based simulations, the issue of stochas-
ticity in the system state was not directly tackled here; therefore, a deterministic model
can be forced to fit a different trajectory only by changing its parameters, even if the devi-
ation is caused by chance. Methods such as particle filtering (or Sequential Monte Carlo)
allow tracking of the stochastic system state along time ( ); these have
been incorporated into genealogy-based estimation ( , ), po-
tentially solving the issue of the effect of stochasticity in the population immunological
states. These methods apply straightforwardly to population immunological states along
time, which in the case on inference from time series is directly correspondent to the
likelihood; in the coalescent-based estimation that is one of the components of the in-
ference model, but it is not as easy to illustrate genetic drift in a similar way. Implementing
methods that account for stochasticity is beyond the scope of this thesis, although the re-
sults shown strongly suggest that the simple fact that stochasticity is present can hamper
progress in an otherwise simple task.

It can be tempting to focus specifically on the fine-tuning mathematical models, devel-
opment new inference methods, and on extensive efforts to gather comprehensive data
sets, but it is important to take into account how the weaknesses of each of the steps com-
pound into a larger impediment. Concentrating particularly into just one of these (or other
even more particular) aspects may prevent a realistic use of data-driven, model-based anal-
ysis. I have shown how model structure, assumptions about stochasticity, prior informa-
tion and data requirements all deserve specific treatments lest the lack thereof introduces
or amplifies biases and inaccuracies in the results, and therefore hope to have contributed
to the integration of model building, inference frameworks, as well as future efforts to

gather epidemiological data of different kinds.
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“Inference is not the inverse of a hypothesis test.”

Andrew Gelman

Additional MCMC chains for dengue

transmission models

C.1 TIME SERIES-BASED INFERENCE

C.1.1  ONE-SEROTYPE MODEL INFERENCE

The results for the inference with the one-serotype model from simulated data is shown in
figure C.1.1. Biases similar in magnitude are also observed for this simpler model.
C.1.2 INFERENCE OF A REDUCED SET OF PARAMETERS

The inference from time series generated by a continuous model with noise added inde-

pendently to each time point serves as proof-of-concept for time series as suitable data to
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Figure C.1.1: Fit of the one-seroytpe model to stochastically simulated data (A). Pos-
terior distributions (crimson color) and priors (light blue) of epidemiological parameters
and initial conditions (B)

infer the parameters in the model; nevertheless, the jump to inference from a fully stochas-
tic model is quite a big one, and testing some intermediate conditions for inference could
be warranted. Assuming all epidemiological rate parameters except for R, were known,
the estimates for the parameter are shown in figure C.1.2, for the case where the initial

conditions are inferred and that when these are also assumed to be known.

The bias in the estimate is of the order of around 10% in the first case, and less than 5%

when R, is the only estimated parameter.
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Interestingly, when assuming that initial conditions are known, but estimating other

parameters for which independent estimates are difficult to obtain, R, is underestimated

by less than 2%.
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Figure C.1.3: Estimates of a subset of epidemiological parameters assuming initial

conditions are known.
These results shown that identifiability and estimation of multiple parameters is an is-
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sue, but that the estimation of initial conditions alone can bias the estimation. It is worth
noting that even when the known initial values are fixed — not estimated — the time series is

still subject to stochasticity, which is not fully accounted by this method or the assumption

of known parameters, and can therefore bias the estimates.
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Figure C.1.4: Fit of the vector-SIRx2 continuous model with poisson likelihood to data
simulated from a stochastic two-serotype model (A). Posterior distributions (crimson
color) and priors (light blue) of epidemiological parameters and initial conditions (B).

Ca .3 INFERENCE UNDER MODEL MISSPECIFICATION

The vector SIR model is a submodel of the vector SIRx2 and the two-serotype model,

both of which collapse into it when the immunity waning parameters equals zero (the lat-
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ter also collapses when only one serotype is circulating). While it is theoretically possible
that either model will correctly estimate the appropriate parameters to be zero, in practice
the over-specification of the models may affect parameter estimates; conversely, under-
specification is guaranteed not to have all parameters, and yet the estimates for the param-
eters that are still included could be robust to that kind of misspecification.

The result of fitting a one serotype model to a single time series recorded from two-

serotypes interacting (but indistinguishable from the data) is shown in figure C.1.4.
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Figure C.1.5: Fit of the vector-SIRx2 continuous model with poisson likelihood to
data simulated from a stochastic vector-SIR model (A). Posterior distributions (crimson
color) and priors (light blue) of epidemiological parameters and initial conditions (B).

Conversely, a model with more than one infected compartment can be fit to data from
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a single type of infection; that kind over overfitting is shown in figure C.1.s.

While the fit is visually acceptable, the inference is unable to estimate most parameter
values correctly; unexpectedly, convergence seems better against the data simulated by a
two-serotype model, although the biases are clear.

This highlights the importance of having enough alternative models to test against the

data, and shows that even seemingly convergent estimates may hide significant biases.
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Figure C.1.6: Fit of the two-serotype continuous model with poisson likelihood to
epidemiological data from Rio de Janeiro (A), with y, m, H parameters fixed. Posterior
distributions (crimson color) and priors (light blue) of epidemiological parameters and
initial conditions (B).
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C.1.4 INFERENCE OF A REDUCED SET OF PARAMETERS FOR ROBUSTNESS TESTING

The results for inference from epidemiological data with the y, m, and H parameters fixed
are shown in figure C.1.6. The model fit is not visually affected by the fixed parameters.
Parameters ¢ and M, are radically affected; mosquito mortality rate b also changes con-

siderably, while the rest shift more slightly. Particularly, R, is shifted down to 14.

C.2 (GENEALOGY-BASED INFERENCE

C.2.1 ALTERNATIVE PRIORS

Considering the effect of stochasticity on the system state, as well as the apparent lack of
information aboutitin the data, itis expected that different priors for these parameters may
affect the inference. Arguably the strongest assumption about the initial conditions is that
they were completely known, and therefore are kept fixed for estimation of the remaining
parameters for the epidemiological rates. If the conditions are observed, or estimated in
any manner, they can be treated as less of a certainty and incorporated probabilistically,
into the likelihood function in addition to the coalescent process, or time series data.

A weaker imposition is to consider information about the system state as priors in the
bayesian method. That too would have different gradations, ranging from strong priors
with a mode at a given value, uniform priors over some larger or narrower ranges, or some
other sensible choice of priors. In any case, the choice must be justified, but is probably
not the strongest assumption embedded into the inference framework. I show the effect
of alternative choice of priors for the population initial conditions on the estimates, and
detail in which case the priors could be an appropriate choice.

In the case where there is an estimate for the state of every population described by the
model, but as mentioned above it is not treated as true, or incorporated into the likelihood,
gamma-distributed priors could be used to make the MCMC chain tend towards those
values unless there is stronger information in the likelihood that brings them elsewhere.
The results for this case, all else being equal to the main text, are shown in figure C.2.1.

Since there seems not to be a strong signal to estimate the population state parameters
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Figure C.2.1: Reconstruction of the epidemic (A), and posterior distributions (crimson
color) and priors (light blue) of epidemiological parameters (B) for the two-serotype
model and gamma-distributed priors for the initial conditions.

when using priors that are uniform or nearly so, using these parameters will essentially
recover the prior distribution. The estimate for R, is more precise, although 1/¢ is biased

to lower values, and a is less precise. Otherwise, the difference is not striking.

The opposite of the above is using uniform priors over an extremely range of possible
values (since here we know that the total population is a million people, and that that is
enforced by the gamma-distributed prior on that parameter, this is roughly translated to
uniform over the range from zero to a million, which could also be made even larger for

the sake of it). For these wide uniform priors, the results are shown in figure C.2.2.

For the human infected compartments shown in panel C of figure C.2.2, instead of

having the posteriors squeezed close to zero, they are distributed over a wider interval,
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color) and priors (light blue) of epidemiological parameters (B) for the two-serotype
model and wide uniform priors for the initial conditions.

although the susceptible and recovered parameters do not differ notably from what was
observed before. The most striking difference is the vector infected compartments are
estimated to have values on the higher extreme of the distribution, which in this case is
known to be wrong, as both human and vector infections oscillate in around a few thou-
sand of infections at any point in time. As for the epidemiological parameters, shown in
panel B, R, is overestimated in this case, and 1/ ¢ is overestimated with very little precision,
covering most of the uniform prior (with notable exception of the actual value). Neverthe-
less, reconstruction of the epidemic is not severely affected, but does have wider credibility

intervals.

Aless conservative use of uniform priors is that with different ranges depending on the

populations. Because the human infected compartments are at least partially observed,
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it may be reasonable to define a narrower uniform distribution for these variables More
generally it is easy to do that for the simulated data because it is known what is a reason-
able range for each variable; nevertheless, when that is unknown or doubtful there is the
risk of limiting the interval too much and excluding the correct range. The results for this

specification for the priors is shown in figure C.2.3. The estimates of the epidemiological
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Figure C.2.3: Reconstruction of the epidemic (A), and posterior distributions (crimson
color) and priors (light blue) of epidemiological parameters (B) for the two-serotype
model and wide uniform priors for the initial conditions.

parameters (figure C.2.3, panel B) are similar to those obtained before, with somewhat
less precision in the estimate of R, compared to the results in the main text, or the gamma-
distributed priors, but the posterior for 1/¢ includes the true value better the the latter -
although the distribution is quite wide. Regarding the population states, the posteriors

are not very precise compared to the priors, but even that can mean a better precision than
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the posteriors obtained with wide uniform priors, since the latter can span 3 or 4 orders of
magnitude more. The reconstruction of the epidemic has somewhat narrower credibility

intervals, and overall inference is improved compared to the wide priors.

C.2.2 ONE SEROTYPE SUBSET FOR TWO-SEROTYPE INFERENCE

Furthermore, inference for the two-serotype model can be made by computing the likeli-
hood of the coalescent process for only one serotype, so results are shown for that case in
conditions similar to that of the two serotypes. The results for gamma-distributed priores

are shown in figure C.2.4. For completely flat priors, using the subset of the data corre-
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color) and priors (light blue) of epidemiological parameters (B) for the two-serotype
model and gamma-distributed priors for the initial conditions, using data from only one
of the serotypes (“serotype 2").
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sponding to the second seroytpe, the results are shown in figure C.2.5. For the counterpart
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Figure C.2.5: Reconstruction of the epidemic (A), and posterior distributions (crimson
color) and priors (light blue) of epidemiological parameters (B) for the two-serotype
model and wide uniform priors for the initial conditions, using data from only one of

the serotypes (“serotype 2").

of the data set, that is the first serotype, the estimates are shown in figure C.2.6. In this case,
the estimates can be seen to be worse than the alternative serotype; because the amount
of data is comparable, the difference could in principle be attributed to stochasticity in the

mutations that happened to appear and were sampled in each data set.
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"It is clear, then, that the idea of a fixed method, or of a fixed theory or
rationality, rests on too naive a view of man and his social surround-
ings. To those who look at the rich material provided by history, and
who are not intent on impoverishing it in order to please their lower
instincts, their craving for intellectual security in the form of clarity,
precision, “objectivity”, "truth”, it will become clear that there is only
one principle that can be defended under all circumstances and in all

stages of human development. It is the principle: anything goes.”

Paul Feyerabend

General discussion, perspectives and conclusions

§5.1 MODELING, AND INTEGRATING OR CONFRONTING MULTIPLE ORGANIZA-

TION SCALES

INFECTION IS A PROCESS THAT DEVELOPS AT MANY DIFFERENT LEVELS, FROM MOLEC-
ULAR AND CELL PROCESSES, TO WITHIN-HOST PROLIFERATION, TRANSMISSION TO DIF-
FERENT HOST, AND SUSTAINING A POPULATION-WIDE EPIDEMIC. It cannot be said that
any one scale of organization is dominant over all others; it likely depends on the magni-
tude of the effects and how they carry over to the higher levels (or feedback to the lower
ones). Nevertheless, it is almost always necessary to abstract from the complete integra-

tion between all of them and focus on one or a couple of scales at most.

Evolution will act on the mechanisms at all levels, provided again that the magnitude of
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the process is relevant at one or more scales, and there is enough variation in the traits to
allow change in the population of host, pathogen, symbionts, or any other participants in
the interactions; the result will be a continuous competition or some equilibrium between
them ( )- More generally, and ignoring the somewhat artificial separa-
tion between species, the system is just like evolution of different traits in a single species
subject to trade-offs or changing environmental constraints. Alternatively, in the excep-
tional case that selection is not at all important for the system (or, more likely, that it is
not significant at the time scale considered) neutral evolution still sculpts defined patterns
that contain information about the population growth, size, and structure ( ),

making genomes into a sort of recording machine.

The systems of interest in this thesis were concentrated on two scales: host and popu-
lation. Population models (as in chapters 2 and 4) reduce the host to a rate or probability,
e.g. infection of a host is treated as a random number draw with a binary outcome - suc-
cessful or failed transmission — and the model makes sense only insofar as a group of these
simplistic hosts mimic the behavior of a real epidemic ( ). Some of
these probabilities or rates can be be measured, or estimated directly at the host level — e.g.
the recovery rate can be estimated to be the inverse of the usual recovery period of 7 days
for many viral diseases, while death rate can be estimated to be the inverse of the average
life span of around 7o years, for instance, or a more refined age-dependent death rate if the
population model is age-structured — while others are the emerging host-level outcome of
a within-host process, like the susceptibility/transmission rate. Because the transmission
rate is derived as a product of contact and susceptibility ( ), this
emergent property can be derived as a contact-outcome, or dose-response model(

; ) — and that is the purpose of chapter 1.

Alternatively, the within-host process can be described explicitly (as in chapter 3); in
this case the host is treated as the environment where virus replication competes with its
immune system, and is a dynamic process instead of an instantaneous outcome. At this
point, it should be clear that integrating both levels (while conceptually and mathemat-
ically possible) would be extremely complicated, and require accurate (reasonably so, at

least) estimates of individual parameters. Alternatively, the set of parameters for this multi-
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scale model could be inferred if enough data is available, but the task is probably no easier,
and despite a few serious attempts, the approach is has not been and entirely successful one
( ; )- Instead of a “total modeling” approach, I argue that
accepting the limitations of descriptions at any one level and trying to make progress from

comparing the outcomes at the interfaces of the different levels is a more fruitful strategy.

For instance, the work described in chapter 1 forwards the idea that the susceptibil-
ity parameter or distribution can be estimated from a dose-response model (

; ); the within-host model in chapter 3 describes the dynam-
ics of viral titers ultimately resulting in establishment or clearing of (i.e. probability of)
infection for any given dose — therefore both approaches yield a dose-response relation-
ship, and ultimately they should be compatible. Beyond the connection between levels,
the results at the interfaces can be contrasted. The dose-response models in chapter 1 in-
fer a homogeneous probability of infection for hosts without Wolbachia and distributed,
or heterogeneous, probability for symbiont-carrying hosts ( ). In terms
of the within-host model this can be seen in at least two perspectives: heterogeneity is
an emergent property of a different set of microbe-response parameters, which generate
a shallow dose-infectivity profile; or, heterogeneous susceptibility at the host level stems

from heterogeneity in the within-host (sub-organismal) parameters.

The latter hypotheses were not directly tested, but it is in principle possible to compare
the output of the within-host results (for instance stochastic runs of the model in chapter
3), with that of the host-level dose-response model (chapter 1). This remains as a perspec-
tive for future work. This piecewise, more artisanal than automated approach can be seen
as defeatist by the more megalomaniac or believers in silver bullets, but in the face of the
limited success of the more data-intensive, brute force approaches, it can also be argued

that it is a cleverer one after all.
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5.2 TIME-DEPENDENT VARIABLES AND EXTENDING PARTIALLY OBSERVED DATA

SETS FOR DYNAMICS MODELS

In any given system, not all variables are recorded simultaneously. Even if a model with
multiple variables is used to interpret the system, most of the time only a fraction of them
is observed. In the case of disease transmission models, it may be of interest to describe
incidence or prevalence (which relate to the new and current infected individuals), but
the other compartments are also necessary to fully describe the state of the system. When
estimating the parameters of the model, including the estimate of incidence/prevalence
along time, the estimate of other compartments — such as recovered individuals - is also
produced; therefore, two possibilities arise: this data can also be obtained and used for
inference, or it can be independently compared to the estimate obtained from the main

data set (e.g. incidence alone).

There is of course a reason why the number of recovered individuals is normally not
recorded: it would require assaying every single person (or at least a reasonably large sam-
ple of people) at every point in time for antibodies against the pathogen, as opposed to
only observing individuals who develop the disease. A third possibility that requires less
effort and puts less weight in this additional data, would be trying to record the state of the
system (ie. the value of all compartments) at a single, early point in time, and using the

data as prior information for the initial state of the system.

For systems such as a within-host microbe-response model, the easiest variable to be
recorded is pathogen levels (as described in chapter 3); other dynamic variables are in-
terred from that. Unlike epidemiological models, where unobserved variables are never-
theless easily defined, an immune-response variable can be hard to specify, instead being
a conceptual construct that aggregates observables, but lacking a defined metric. Despite
not being nearly as straightforward as the previous example, trying to observe a correla-
tion of the inferred response with an independently-recorded time series of host responses
could nevertheless be a good indication that the model is representing a relevant compo-

nent of host immunity

Generally speaking, different kinds of data can be combined to increase power of the

200



inference, or at times left out to allow independent validation of the estimates; that can be
especially important when sequence data is used, since it is not trivial to visually inspect
the model fit — this becomes abundantly clear when attempting to reconstruct an epidemic
profile form sequences: if an epidemic reconstructed from sequences bears no similarity

to actual incidence/prevalence data, it is probably not a good one.

5.3 DATA COLLECTION IN THE FIELD, EXPERIMENTAL ASSAYS IN THE LABO-
RATORY (AND THE LIKELIHOOD OF A QUANTITATIVE MODEL EXPLAINING

THEM)

Given enough information about the workings of any system, a mathematical model can
be built to describe these processes and represent the main outputs. The structure of a
model is invariably an abstraction or approximation at best, but even in the unlikely event
the model structure is correct for all practical purposes, the unknown parameter values
still preclude outright simulation of the process to reproduce real data or predict future
outcomes.

Parameters need to be estimated, either independently or by joint inference of the en-
tire parameter set. As mentioned above some parameters are directly measurable, e.g. a
population size can be estimated by going out and counting every individual, others need
some sort of model (whether simple or complex), e.g. an exponential growth rate can be
estimated by plotting the numbers (of say, bacteria) on alogarithmic scale - in this case it is
assumed that the base of the exponent is known (for instance base 2 or ¢), and that growth
is the only active process. Under more complex models, the assumptions are looser and
more uncertain, but otherwise it is unlikely that anything can be inferred at all - it is im-
portant to accept that fact: there is no such thing as assumption-free approaches, any more
than there is free lunch.

While a model can be coherent from a mathematical and/or biological point of view,
for inference purposes it is desirable that the specification of the model parameters makes
them identifiable, e.g. Watterson’s 8 = 4N,y is estimated because it is not possible to sep-

arately estimate the effective population size (N,) and mutation rate (), but only their
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product ( ). Algebraic methods exist to assess iden-
tifiability of parameters in models such as the SIR model, but slightly more complicated
models may require more general methods ( ), and the approaches
may become unfeasible as large scale models are formulated ( ). Often, as
is the case in this work, an empirical approach where simulating simple data and making
test inferences is used, although might not be as elegant, it can still be very useful to assess
inferability ( ).

Under a likelihood-based inference framework, the available data will determine the
likelihood function; however, except for the simplest cases (two- or three-dimensional
functions) it is impossible to visualize these surfaces, and its complexity normally makes
itimpossible to assess beforehand if an inference algorithm will be able to find the optimal
values, and whether more data is needed. It is possible to test estimation methods against
a known parameter set by simulating a data structure similar to that collected or obtained
in alab, that s, simulating the actual experiment: model, sampling, stochasticity, expected
losses, etc; however, the parameters of the experiment are unknown, and one (or many)

simulated data sets can be indication, but not proof success with real data.

In the case of SIR-like models, once these basic structure or variations are accepted (or
under a simulation study scenario), some unknown parameter values may be restricted
by independent estimates or ballpark figures, and in principle the job is facilitated. With
exception of the notoriously difficult to estimate transmission (compound of contact and
susceptibility) rate ( ) (and in the case of multiple pathogen strains
the cross-protection factor or time) most parameters have either been estimated, or re-
stricted to a narrow range, so the most important issue becomes whether the structure of
the data available contains enough information in the likelihood function about the un-
known parameters. In the case of a dengue incidence time series, there is basically an os-
cillating pattern, and it is not difficult to imagine that many different models could repro-
duce that general pattern — although it is also not possible to rule out that there are unique

features that favor a specific model.

In the case of viral sequences, there is the advantage of separating dengue serotypes

from the start. The coalescent process incorporates birth rates, population size, as well
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as structure ( ), which in terms of vector transmission models (as formulated in
chapter 4) represent multiple time series from different hosts. Conceptually this amounts
to having specific dataabout both human (primary and secondary infections) and mosquito
incidence and prevalences, for both serotyopes, i.e. having 14 different time series instead
of asingle incidence one — nevertheless, these are informative only indirectly through poly-
morphisms in viral genomes. Given that sequence based inference eliminates some of the
biases observed in estimates from time series, it would be important to assess whether in-
cluding multiple explicit time series (per-serotype, mosquito prevalence, etc) for inference

corrects the more pronounced biases.

Often the discussion is about producing or gathering more or “better” data, but rarely
does it ever come up whether these idealized data sets are informative enough through
the lens of the likelihood function. It could be argued that despite the increased quality
and abundance of data ( ), and interesting new perspectives (

), basic steps remain challenging ( ), and seemingly simple tasks like
simulating some data and recovering the right parameters can have disappointing results.
I would argue that this may stem from placing most efforts on either the side of data gath-
ering or method development, but neglecting the more tedious intermediate steps like the
effects of data sampling, of interactions among recombination and structure (and other
details). It is understandable that that kind of work can be seen as a minor improvement
and less rewarding, but unless there are additional incentives to do so, maybe the commu-

nity will be at risk of having very fancy methods that never work in practice.

Stochasticity is by definition at the center of inference endeavors, and its presence alone
may spell the difference between very accurate or very poor results (as shown for the two-
serotype model). Using continuous approximations is guaranteed to fail somehow, al-
though it is important to know how bad and in which way they do fail. Inference methods
that adequately accommodate stochasticity exist ( ), but they may re-
quire additional tinkering to work with processes like the coalescent and a tree parameter
( ; ). The computational costs can also be pro-
hibitive depending on the specific implementation — which happens to be the case for the

within-host model in this thesis — nevertheless incorporating stochasticity is likely to have
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greater effects than an ensemble of system-specific deterministic processes.

Abstaining from using models altogether is a solution to all these problems only insofar
as scientists want to give all hope of making progress; therefore, a concerted effort of all
these fronts, including the tedious bits, is essential. The issues are general when trying to
estimate anything with any kind of data, and the work presented in this thesis illustrates
broader concerns for furthering model-based approaches in biology and other complex

systems.

5.4 FINAL REMARKS

Many of the issues pointed out have existing and well researched solutions, although they
may require intense experimental design and performance, extensive data collection, and
systematic implementation of sophisticated analyses frameworks (and potentially the com-
putational demand associated to it); presumably each of those has been separately achieved
in a safe, limited environment, but going all out on the biggest problems may never happen
if there are no real incentives to develop the tedious parts

A very good example are models of dengue transmission themselves, alternative for-
mulations can be grouped by the dozen of publications in reputable journals, as listed by
a single review from ( ) but possibly getting up to the hundreds in
total — so there is not shortage of models to be tested as hypotheses. There certainly is
enough data, or the potential to collect extensive and detailed data sets (

; ), and sophisticated methods exist that, though computation-
ally intensive, could be implemented without requiring supercomputer infrastructure to
run. And nevertheless full-model estimation in published papers can be counted on the
fingers of one hand, twice probably.

Trying to push the frontier of research further in the most meaningful way can therefore
be a thankless task, consuming hours, days, months, years, or the time of an entire PhD.
For an individual there is no guarantee that the effort will be deemed worthy of the time
invested in that particular endeavor, as opposed to some more “relevant” or “sexy” research

— that is especially true if the progress is measured by century-old metrics (
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; ). Partial success is nearly tantamount to failure: no bravery
medal; no honorable mention. That is a great way of getting an entire community stuck
with mediocre practices.

Therefore, not all of the goals I set at the beginning of the research work towards Ph.D.
were accomplished, for a number of reasons, and not always was I capable of identifying
the best approach to solve a problem, or guarantee all the tools were used to make sure all
bases were covered. However, I have always tried to try learn things I did not know be-
fore, and try do create new things that I believed no one knew before. I believe the greatest
(and there are many, and big) limitations of the work summarized in this thesis stem not
from choosing a difficult, ungrateful, and apparently less accomplishing path, but not be-
ing able to push the boundaries even farther back by trying even more unconventional
ideas (whether it was a question of time limitation, exhaustion, frustration, or the many
obstacles in the way of anyone taking on themselves to do such a task).

If it is to be anything, I hope this thesis expresses that desire to try harder and different,
not for oneself but really to burst through the frontiers instead of chipping away at it.
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