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Smooth muscle cell-specific TMEM16A deletion does not alter Ca2+ signaling, uterine 

contraction, gestation length or litter size in mice  

Running title. A genetic study of TMEM16A in myometrial cells  

Summary sentence. The TMEM16A is absent in myometrial cells and exerts no impact on Ca2+ 

signaling, contractile responses and pregnancy in mice. 
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Abstract 

Ion channels in myometrial cells play critical roles in spontaneous and agonist-induced uterine 

contraction during the menstrual cycle, pregnancy maintenance and parturition; thus identifying the 

genes of ion channels in these cells and determining their roles are essential to understanding the 

biology of reproduction. Previous studies with in vitro functional and pharmacological approaches have 

produced controversial results regarding the presence and role of TMEM16A Ca2+-activated Cl- 

channels in myometrial cells.  To unambiguously determine the function of this channel in these cells, 
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we employed a genetic approach by using smooth muscle cell-specific TMEM16A deletion (i.e., 

TMEM16ASMKO) mice.   We found that myometrial cells from TMEM16ASMKO mice generated the same 

pattern and magnitude in Ca2+ signals upon stimulation with KCl, oxytocin and PGF2α compared to the 

isogenic control myometrial cells.  At the uterine tissue level, TMEM16A deletion also did not cause 

detectable changes in either spontaneous or agonist (i.e., KCl, oxytocin and PGF2α)-induced 

contractions. Moreover, in vivo the TMEM16ASMKO mice gave birth at full term with the same litter size 

as genetically identical control mice.  Finally, TMEM16A immunostaining in both control and 

TMEM16ASMKO mice revealed that this protein was highly expressed in the endometrial stroma, but did 

not co-localize with a smooth muscle specific marker MYH11. Collectively, these results unequivocally 

demonstrate that TMEM16A does not serve as a pacemaking channel for spontaneous uterine 

contraction, neither does it function as a depolarizing channel for agonist-evoked uterine contraction. 

Yet these two functions could underlie the normal gestation length and litter size in the TMEM16ASMKO 

mice. 

Introduction 

Myometrial or uterus smooth muscle (USM) contraction and relaxation is a fundamental 

behavior of the uterus, essential for normal reproduction in humans.  In the non-pregnant stage, USM 

generates peristalsis to facilitate expulsion of menses (1, 2). This peristalsis is also required for embryo 

implantation and pregnancy establishment. During pregnancy, USM contractile activity subsides in 

order to maintain pregnancy (3, 4).  As pregnancy approaches full term, USM generates synchronized 

and coordinated contractions, leading to fetus delivery (5). Dysfunction in uterine contractility is a major 

cause of a variety of obstetrical and gynecological disorders such as dysmenorrhea, adenomyosis, 

miscarriage, preterm labor and postpartum bleeding.  

USM contraction and relaxation is a highly dynamic and versatile process. Yet, in essence USM 

exhibits two phenotypic contractile activities, i.e., spontaneous or induced. Compelling evidence has 

established that ion channels are the key proteins necessary to produce both types of contractions in 

D
ow

nloaded from
 https://academ

ic.oup.com
/biolreprod/advance-article-abstract/doi/10.1093/biolre/ioz096/5512587 by M

edical C
enter Library user on 03 July 2019



 

the USM (3, 4, 6, 7). Therefore, it is not only physiologically but also pathologically important to identify 

which ion channels underlie these two types of USM contractions. Among ion channels, the presence 

and identity of Ca2+-activated Cl- channels (CaCCs) in the USM cells have been highly controversial 

and debatable. Pharmacologically, several studies demonstrated that CaCCs participate spontaneous 

and agonist-induced uterine contraction (8-11). Importantly, a patch clamp recording study indicated 

that Ca2+-activated Cl- currents are present in ~30% of rat pregnant myometrial cells(12). However, the 

gene identity of CaCCs in myometrial cells remains unsettled. Song et al detected CLCA4 expression 

and its upregulation prior to parturition in rat myometrium, suggesting that this gene may encode 

CaCCs in USM cells(13). But whether the CLCA family can encode bona fide Cl− channels has been 

challenged by several studies. Mundhenk et al even found that CLCA3, a member of the CLCA family, 

is a secreted protein, thus it could not form an ion channel in the surface membrane (14, 15). Very 

recently, based on functional and pharmacological studies Bernstein et al proposed that ANO1 

(TMEM16A) and ANO2 (TMEM16B) are the CaCCs in myometrial cells in mice and human(16, 17).  

However, Dodds et al could not detect the presence of ANO1 in mouse myometrial cells even though 

CaCC inhibitors can inhibit agonist-induced contraction(9). To this day, the genetic evidence for the 

presence of CaCCs in USM cells is lacking. 

We recently used smooth muscle cell-specific TMEM16A deletion mice establishing that 

Tmem16a encodes CaCCs in smooth muscle cells from airway and internal anal sphincter (18, 19).  In 

this study, we characterized the expression of TMEM16A and TMEM16B in mouse uteri, and studied 

the impact of smooth muscle specific Tmem16a deletion on in vivo reproduction behavior and in vitro 

Ca2+ signals and contraction responses in mice.  

Materials and Methods 

Mice 

All experimental protocols for animal research were approved by the Institutional Animal Care and Use 

Committees at the University of Massachusetts Medical School (UMMS) (protocol number A1473) in 

accordance with the National Research Council Publication Guide for the Care and Use of Laboratory 

D
ow

nloaded from
 https://academ

ic.oup.com
/biolreprod/advance-article-abstract/doi/10.1093/biolre/ioz096/5512587 by M

edical C
enter Library user on 03 July 2019



 

Animals and NIH Guide for the Care and Use of Laboratory Animal. Mice were maintained under a 

standard 12 h light/dark cycle (lights on at 07:00 AM) with food and water ad libitum (room temperature 

22±20C). C57BL/6 mice were purchased from the Jackson Laboratory in Bar Harbor, ME, USA, and 

bred in the animal care facility at UMMS, Worcester, MA, USA. Tmem16aflox/flox mice with germ-line 

transmission were generated and confirmed by genotyping analysis and Southern blot analysis as 

described previously(18). To generate smooth muscle cell-specific Tmem16a knockout mice, 

Tmem16aflox/flox mice were crossed with SMACre mice. Tmem16aflox/+; SMACre mice were used as the 

control and designated as TMEM16A CTR while Tmem16aflox/flox; SMACre mice, i.e., TMEM16ASMKO 

mice, were used as the experimental group. TMEM16A CTR and TMEM16ASMKO mutant mice were 

in a mixed C57BL/6 and Sv/129 background and were used at ages of 8-12 weeks.   

Mouse mating and pregnancy monitoring 

One-to-one pair matings were set at the end of the day. Female mice checked early the following 

morning with a vaginal plug were deemed a successful mating and designated as day 0 of pregnancy.  

Starting on day 18 of pregnancy mice were monitored twice a day for delivery.  

Preparation of myometrial tissues   

Female mice at estrus or at day 18 of pregnancy were euthanized by CO2 inhalation and cervical 

dislocation. The estrus stage was selected because spontaneous uterine contraction in this 

stage is dominated by a single large spike (9) that makes frequency analysis more reliable.  

Uteri were quickly removed and transferred to ice-cold and oxygenated Krebs physiological buffer 

(KPS) which was comprised of (in mM): 118.07 NaCl, 4.69 KCl, 2.52 CaCl2, 1.16 MgSO4, 1.01 

NaH2PO4, 25 NaHCO3, and 11.10 glucose.  

Measurement of myometrial contractility   

Uteri from estrus mice were cut into circumferential rings (1.5 mm), while uteri from the 

antimesometrial border (i.e., the side opposite the implantation site) from d18 pregnant mice were 

cut into longitudinal strips (5 mm x 1.5 mm). The rings or strips were then transferred to 5-mL muscle 

baths containing ice cold oxygenated KPS. The rings or strips were mounted on a wire 
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myograph chamber (610-M, Danish Myo Technology, Aarhus, Denmark), and tension was 

measured by a PowerLab (ADInstruments, Colorado Springs, CO, USA) recording device. Each 

smooth-muscle ring or strip was equilibrated for 60 minutes with new KPS solution every 15 min, and 

then a 0.1 g load was applied. To test contractile responses, each ring or strip was stimulated twice 

with KCl (60 mM), separated by 10 min, before proceeding to other treatments.  For the dose-response 

to KCl, each dose of KCl was added and kept for 5 min followed by three washes with KPS. For the 

dose-responses to oxytocin and PGF2α, either oxytocin or PGF2α was added in a cumulative manner 

at the concentrations as indicated in the figures. The contractile responses were calculated as area 

under curve (AUC), and normalized to the values (AUC/min) induced by 60 mM KCl pre-tested in the 

same ring or strip. 

Isolation of mouse USM cells   

Uteri from day 18 pregnant mice were quickly removed and placed in a pre-chilled dissociation 

solution consisting of (in mM): 135 NaCl, 6 KCl, 5 MgCl2, 0.1 CaCl2, 0.2 EDTA, 10 Hepes, and 10 

glucose (pH 7.3). After gently removing the endometrium, the longitudinal myometrium were isolated 

and cut into strips (5 mm x 1.5 mm).  The tissue strips were first incubated in a dissociation medium 

containing 30 unit/ml papain (Sigma-Aldrich), 1 mM DTT, and 0.5 mg/ml amino acid-free BSA (Sigma-

Aldrich) at the room temperature for 30 min, and then transferred to a dissociation medium containing 

3 unit/ml collagenase F (Sigma-Aldrich) and 0.5 mg/ml BSA at 35°C for another 5 min.  Finally, the 

strips were agitated with a fire polished wide-bore glass pipette to release the cells.   

Immunohistochemical analyses  

Cryosections with an 8-μm thickness were fixed in pre-cooled acetone for 10 minutes and washed with 

PBS. The non-specific binding of primary antibodies was blocked by incubation with PBST containing 

1% BSA for 1 hr. Incubation was carried out overnight at 4°C with a rabbit polyclonal antibody to 

TMEM16A (ab53212, 1:200; Abcam) and a mouse monoclonal antibody to MYH11 (ab683 clone 1G12, 

1:200; Abcam). The specificity of these antibodies has been established by others (18, 20). After 

washing in PBS, cells were incubated with an Alexa Fluor 555-conjugated goat anti-Rabbit IgG (Cell 
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Signaling Technology, dilution 1:500) or an Alexa Fluor 488-conjugated goat anti-Mouse IgG (Cell 

Signaling Technology, dilution 1:500) for 1 hr.  Negative controls were performed by omitting the 

primary antibody (Supplementary Figure 1). Immunoreactivity was evaluated using a Leica TCS SP5 

confocal laser scanning microscope system (Leica Microsystems Inc., Buffalo Grove, IL, USA). 

Measurement of global [Ca2+]i  

Fluorescence images using fluo-3 as a calcium indicator were obtained using a custom-built wide-field 

digital imaging system. The camera was interfaced to a custom-made inverted microscope, and the 

cells were imaged using a 20x Nikon 1.3 NA objective for global [Ca2+] measurement. The 488 nm line 

of an Argon Ion laser provided fluorescence excitation, with a shutter to control exposure duration; 

emission of the Ca2+ indicator was monitored at wavelengths >500 nm. The images were acquired at 

the speed of 1 Hz for global [Ca2+] measurement. Subsequent image processing and analysis was 

performed off line using a custom-designed software package, running on a Linux/PC workstation. 

[Ca2+]i was represented as (F-F0)/F0*100, i.e., F/F0*100, where F is the fluo-3 fluorescence from entire 

cells in the time series and F0 is the “resting” level derived from the same time series by computing the 

median value before treatments. 

Reverse transcription-PCR and Quantitative Real-time PCR 

The uterine endometrium and myometrium from mice were carefully isolated and quickly cleaned by 

removing connective tissues. Subsequently the samples were frozen and ground to homogeneity in 

liquid nitrogen. Total cellular RNA was isolated by using Trizol (Invitrogen, Carlsbad, CA, USA) as 

described in the manufacturer’s instructions. Then 2µg of isolated RNA from each sample was reverse-

transcribed into cDNA using SuperScript® III reverse transcriptase (Invitrogen, Carlsbad, CA, USA). 

The cDNA synthesis products were diluted to 200 µl, of which 1 µl was used as template for 

amplification of Tmem16a and Tmem16b. The housekeeping gene β-actin was used as a positive 

control. 

Quantitative real-time PCR (qRT-PCR) was carried out to determine the mRNA levels of 

Tmem16a with iTaq™ Universal SYBR® Green Supermix (Bio-rad, Hercules, CA, USA) in accordance 
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with the manufacturer’s protocols. The PCR cycling consisted of 40 cycles of amplification of the 

template cDNA with primer annealing at 60°C. Then the relative level of expression of each target gene 

was calculated using the 2-ΔΔCt method. Target genes were normalized against the housekeeping gene 

β-actin before further analysis in Fig. 1.  All the primers are listed in Supplementary Table 1.  

Statistics 

Unless stated otherwise, data are reported as mean ± standard error of the mean (SEM) and n 

represents the number of myometrial cells, uterine rings/strips, or mice.  Statistical analyses of 

differences were carried with Student’s t-test when data was from independent groups. Dose response 

curves had an ANOVA followed by post-hoc pair-wise t-tests at each dosing level. The significance 

level was set at p<0.05. 

Results 

USM cells do not express TMEM16A 

TMEM16A and TMEM16B are two canonical Ca2+-activated Cl- channels (CaCCs) in a variety of 

cells and tissues (21-23), we therefore performed RT-PCR using endometrium and myometrium (with 

the serosa) from estrus and day 18 pregnant mice with specific primers for Tmem16a and Tmem16b.  

Figure 1A shows that positive control tissues from the eye and brain expressed both TMEM16A and 

TMEM16B, while myometrium and endometrium from both reproductive stages expressed TMEM16A, 

but not TMEM16B. To quantify TMEM16A expression, we measured TMEM16A mRNAs with 

quantitative PCR using endometrium and myometrium from estrus and day 18 pregnant mice.  As 

shown in Fig. 1B, in both stages endometrium expressed more TMEM16A than myometrium, and in 

both tissues, TMEM16A level was higher at estrus than in day 18 pregnancy.  

To determine whether USM cells express TMEM16A, we conducted dual-immunostaining of 

TMEM16A and MYH11 in uterine tissues from estrus and day 18 pregnant mice. MYH11 was selected 

because this protein is a highly specific smooth muscle cell marker(24). As expected, MYH11 staining 

was robustly detected in the smooth muscle layers in both estrus and day 18 pregnant mice (Figure 

1C).  However, essentially no TMEM16A staining can be found in the MYH11 positive smooth muscle 
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cells (Figure 1C). Interestingly, TMEM16A staining was detected in the stroma, but not in the luminal 

epithelium in both estrus and pregnant mice. 

Smooth muscle cell-specific TMEM16A deletion does not change spontaneous uterine 

contraction in non-pregnant mice. 

In our previous studies, we generated a line of mice whose TMEM16A in smooth muscle cells 

was specifically deleted with the LoxP-Cre technology (18). With these mice, we have successfully 

established that TMEM16A encodes CaCCs in smooth muscle cells from airway smooth muscle and 

internal anal sphincter (18, 19). Because no TMEM16B is expressed in the myometrium from both 

reproductive stages, we used TMEM16ASMKO mice to study the role, if any, of TMEM16A in USM cells.  

We first examined its potential effect on spontaneous contraction.  In our preliminary study of CTR 

mice, we noticed that both isolated uterine circular rings from estrus and longitudinal strips from day 18 

pregnant mice generated spontaneous contraction, but after equilibrating for 60 min, the contractions 

from the pregnant mice eased while it persisted for several hours in the uterine circular rings from 

estrus mice.  Hence we focused on examining the effect of TMEM16A deletion on spontaneous 

contraction in the estrus stage. To quantify this effect, we calculated the contraction activity in the first 

10 min post-equilibrium.  As shown in Figure 2, the frequency of spontaneous contraction in the 

TMEM16ASMKO mice was 0.055 ± 0.005 Hz which was not significantly different from 0.064 ± 0.006 Hz 

in the CTR mice (n=20 uterine circular rings from 5 mice, P>0.05). To minimize the variation in the force 

due to the factors such as ring size and contamination of endometrium, we compared the force 

differences in the spontaneous contraction after normalizing with 60 mM KCl. In the CTR mice, the 

spontaneous contraction was 63.5 ± 5.1% of KCl-induced contraction, and in the TMEM16ASMKO mice, 

this value was 61.5 ± 3.0% (n=20 uterine circular rings from 5 mice, P>0.05 CTR vs TMEM16ASMKO).    

Smooth muscle cell-specific TMEM16A deletion exerts no change in KCl-induced contraction. 

Considering controversial results on the role of TMEM16A in the evoked uterine force 

generation, we assessed the effect of its deletion in smooth muscle cells on the contraction induced by 

KCl and contractile agonists (see below).   In uterine circular rings at estrus from the CTR mice, KCl at 
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10 mM caused a substantial contraction (i.e., 36.3 ± 5.1% of 60 mM KCl-induced contraction), and as 

its concentration was incrementally raised to 40 mM, KCl caused a dose-dependent contraction to 

reach 95.9 ± 5.2% of the 60 mM KCl-induced contraction.  Beyond 40 mM, KCl-induced contraction 

was inversely related to its concentration, i.e., the higher the concentration, the less the contraction (At 

120 mM, KCl caused 54.0 ± 4.6% of the 60 mM-induced contraction) (Figure 3A).  The same KCl-

induced dose response curve was observed in uterine circular rings from TMEM16ASMKO mice (Figure 

3A).  

In day 18 pregnant CTR mice, KCl at 10 mM caused a marginal contraction (i.e., 4.6 ± 2.6% of 

the 60 mM KCl-induced contraction) in uterine longitudinal strips. Yet, it induced markedly larger 

contractions at 20 mM (71.1 ± 3.3% of the 60 mM KCl-induced contraction) and at 40 mM (131.2 ± 

3.1% of the 60 mM KCl-induced contraction).  Similar to non-pregnant uteri, KCl-induced contraction 

was inversely decreased as its concentration was increased further to 120 mM (which was at 48.5 ± 

4.6% of the 60 mM KCl-induced contraction) (Figure 3B).  This biphasic contraction response to KCl 

was detected in TMEM16ASMKO mice, and no difference was detected between the CTR and 

TMEM16ASMKO mice (Figure 3B).  

Smooth muscle cell-specific TMEM16A deletion causes no change in OT- and PGF2α-induced 

contraction. 

Oxytocin (OT) and PGF2α are two of the most important hormones regulating uterine 

contractility in both non-pregnant and pregnant stages, we therefore studied whether TMEM16A 

deletion in smooth muscle cells exert any effects on OT- and PGF2α-induced uterine contraction.  In 

CTR mice at estrus, OT and PGF2α induced dose-dependent contractions (Figures 4A and 5A).  In  

uteri (at those same stages) from TMEM16ASMKO mice, both agonists also caused dose-dependent 

contractions, and moreover, the dose-response curves were not different compared to those from the 

CTR mice (Figures 4A and 5A). 

Compared to the circular uterine rings from mice at estrus, 60 mM KCl generated a similar force 

in the longitudinal uterine strips from day 18 pregnant mice.  Using 60 mM KCl as a reference, we 
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found that uteri strips from day 18 pregnant mice generated stronger force in response to OT in both 

CTR mice and TMEM16ASMKO compared to those from mice at estrus (Figure 4B vs Figure 4A), but 

dose-force response curves to OT between CTR mice and TMEM16ASMKO mice were not significantly 

different (Figure 4B). In day 18 pregnant mice, PGF2α generated the same magnitude force, but dose-

force response curves were right-shifted compared to mice at estrus (Figure 5B vs Figure 5A).  

However, there was no significant difference in dose-force response curve between CTR and 

TMEM16ASMKO mice (Figure 5A and 5B). 

Smooth muscle cell-specific TMEM16A deletion produces no effect on KCl-, OT- and PGF2α-

induced rise in intracellular Ca2+ in USM cells from day 18 pregnant mice. 

Ca2+ is the primary signal for USM contraction and a ligand for TMEM16A, we hence tested 

whether the KCl- or agonist-induced increase in intracellular Ca2+ concentration [Ca2+]i was impaired  in 

TMEM16ASMKO  mice. Since no difference in the contraction of non-pregnant and pregnant uteri was 

detected in TMEM16ASMKO mice, and isolation of single USM cells was much easier from day 18 

pregnant mice, we focused on examining the Ca2+ signal in the USM cells from longitudinal 

myometrium at this stage of mice.  KCl at 60 mM markedly increased [Ca2+]i often in an oscillating 

pattern. To simplify the analysis, we compared the maximal peak Ca2+ signal in the train of Ca2+ 

oscillations.  As shown in Figure 6A, there was no significant difference in the peak Ca2+ rise upon 

stimulation with KCl when TMEM16A was deleted. PGF2α at 3 µM produced a similar oscillating Ca2+ 

response as KCl (Figure 6B). TMEM16A deletion neither altered this pattern nor changed the peak Ca2+ 

rise in response to PGF2α.  Interestingly, OT at 100 nM elicited a sustained rise in [Ca2+]i, and  this rise 

was not changed when TMEM16A was deleted (Figure 6C).  

TMEM16ASMKO mice have normal gestation duration and litter size. 

As smooth muscle cell TMEM16A deletion results in hypotension (25), we assessed whether 

there was a change in reproduction in TMEM16ASMKO mice.  TMEM16A KO mice had a gestation of 

approximately 19 days, which was not different from the CTR mice (Table 1). These KO mice had a 

litter size of 7 pups, which also was not different from the CTR mice (Table 1).   
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Discussion 

Identifying ion channel genes that are required for uterine contraction is essential to understand 

uterine function and reproduction. In this study, using an integrative approach of molecular biology, 

genetics, and physiology, we firmly established that Tmem16a is not the gene encoding CaCCs in 

mouse USM cells. We have several lines of evidence to support this conclusion. First, when TMEM16A 

is specifically deleted in smooth muscle cells, myometrium generates the same spontaneous and 

agonist-induced contraction compared to the myometrium from isogenic control mice. Second, smooth 

muscle cell-specific TMEM16A deletion does not alter isolated single USM cell [Ca2+]i responses upon 

stimulation via depolarization or contractile agonists oxytocin and PGF2α. Third, smooth muscle cell-

specific TMEM16A deletion does not impair mouse reproduction in terms of their gestation duration and 

litter size. Fourth, immunostaining with a specific antibody for TMEM16A could not detect TMEM16A 

expression in USM cells from both isogenic control mice and Tmem16a knockout mice. This failure in 

detecting TMEM16A in USM cells is not due to the TMEM16A antibody used because the same 

antibody showed robust staining signals in endometrial stromal cells (see below) in the same tissue.   

A major strengthen of this study is its use of smooth muscle cell-specific TMEM16A knockout 

cells and mice.  Previous studies have depended on using CaCC inhibitors (e.g. niflumic acid) or 

TMEM16A inhibitor benzbromarone to infer the involvement of this gene in uterine contraction (9, 10, 

16, 17, 26).  CaCC inhibitors such as niflumic acid are well known to have off-target nonspecific effects.  

For example, in addition to inhibiting CaCCs, niflumic acid blocks or activates many other ion channels 

including big-conductance Ca
2+

-activated K
+
  channels in smooth muscle cells (27-30). Benzbromarone is a 

newly identified TMEM16A inhibitor (31). But this compound can also activate the Kv7 (KCNQ) 

K+ channel family, inhibit CFTR chloride channels, and alter mitochondrial function and structure (32-

34).  Considering the non-specific effects of these pharmacological inhibitors, we took a genetic 

approach to specifically delete TMEM16A.  TMEM16A is widely expressed in many cell types including 

nerve system, epithelial cells, secretory cells and smooth muscle, and its global deletion results in 

mouse death shortly after their birth (21-23, 35, 36). Therefore, we used a line of mice whose 
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TMEM16A in smooth muscle cells are specifically deleted with the LoxP-Cre system.  A potential 

drawback for this system is the insufficient activity of Cre to delete the gene of interest in targeted cells. 

We confirmed that the Cre line used in this study effectively deletes TMEM16A in smooth muscle cells, 

and moreover, the same TMEM16A deletion abolishes Ca2+-activated Cl- currents in smooth muscle 

cells from airway and internal anal sphincter (18, 19). Therefore, our genetic approach provides 

compelling evidence that TMEM16A is neither expressed and nor functional in mouse USM cells in 

both pregnant and non-pregnant stages. 

The uterus is a myogenic and spontaneously active organ. A major unresolved question about 

this organ relates to the cell types and cellular mechanisms of the pacemaker underlying this autonomic 

contractile behavior. One potential cell type and mechanism is that CaCCs in USM cells function as a 

pacemaking channel (7, 37, 38).  As smooth muscle cells have a reversal potential for Cl- around -25 

mV which is less negative than the resting membrane potential (e.g., -60 mV), activation of CaCCs is 

expected to generate a current that would depolarize the membrane beyond the threshold of its action 

potential. Our present study indicates if this mechanism works in the uterus, TMEM16A is not the CaCC 

channel which generates this pacemaking current in USM cells as myometrial tissues from 

TMEM16ASMKO mice exert the same spontaneous contraction compared with the isogenic control mice.  

Another possibility for the uterine pacemaking could be due to the TMEM16A CaCCs in the interstitial 

cells of Cajal (ICCs) or PDGFRα+ cells as in the gut (39, 40).  However, the presence of ICCs or ICC-

like cells in the uterus has been highly controversial and remain to be settled (41-44).  Importantly, ICC-

like cells in the uterus do not generate spontaneous currents(42), a characteristic of the pacemaking 

current, and uterine cells don’t express TMEM16A(45). Hence TMEM16A is most likely not the channel 

which produces pacemaking currents in these cells.  

Uterine contraction is under tight control by endocrine and paracrine hormones. Among these 

hormones, oxytocin and PGF2α are two of the most important ones regulating uterine contraction 

during both pregnant and non-pregnant stages and during labor. Oxytocin and PGF2α activate oxytocin 

receptor (OTR) and PGF2α receptor (PTGFR) in USM cells, respectively. Activation of these two 
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receptors turns on a canonical Gq/11-mediated signaling pathway, leading to a rise in intracellular Ca2+. 

This rise in Ca2+ can activate CaCCs which in turn functionally couples with voltage gated Ca2+ 

channels or ORAI Ca2+ influx channels (46-48). Should TMEM16A CaCCs be present in USM cells, we 

would expect to observe that the oxytocin- and PGF2α-induced rise in intracellular Ca2+ and/or 

contraction would be suppressed in our KO experiments. Yet, our experiments in TMEM16A-/- cells and 

uterine tissues do not show this.  

A significant finding in this study is that TMEM16A is expressed in the endometrium. Although 

the cell type(s) expressing TMEM16A in the endometrium is yet to be determined, the TMEM16A 

immunostaining pattern suggests that these cells are not luminal endometrial epithelial cells, instead 

they are likely to be stromal cells. This raises a possibility that TMEM16A in these cells may play an 

important reproductive function. Indeed, a very recent study found that TMEM16A is upregulated during 

embryo implantation and decidualization, and pharmacological inhibition of TMEM16A impairs these 

two processes in mice (49). It would be highly significant to identify the stromal cell type that expresses 

TMEM16A, determine the role of TMEM16A in the stromal cells in embryo implantation and 

decidualization, and delineate the molecular mechanisms by which TMEM16A may mediate these 

reproductive processes. 

In conclusion, mouse USM cells from both non-pregnant and pregnant stages do not express 

TMEM16A CaCC channels, and these cells do not use this channel to generate spontaneous and 

agonist-induced contraction relating to reproduction.  Since TMEM16A is robustly expressed in mouse 

endometrial stromal cells, it is likely this gene may play an important role in reproduction processes 

such as embryo implantation and decidualization.   Whether our findings in mice can translate to human 

myometrium warrants further investigation. 
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Figure 1.  TMEM16A is expressed in endometrial stromal cells but not in myometrial cells.   A. 

RT-PCR of Tmem16a and Tmem16B in endometrium and myometrium from estrus and day 18 

pregnant CTR mice. M: Molecular marker, Lane 1: myometrium from day 18 pregnant mice, lane 2: 

endometrium from day 18 pregnant mice, lane 3: myometrium from estrus, lane 4: endometrium from 

estrus, lane 5: eye, lane 6: brain, lane 7: no primer negative control. Eye and brain were used as 

positive controls. B. Quantitative PCR analysis of TMEM16A mRNA in endometrium and myometrium 

from estrus and day 18 pregnant CTR and TMEM16ASMKO mice.  Bars represent mean ± SE, n=5 

repeats.  C. Co-immunostaining of TMEM16A and MYH11, a smooth muscle cell marker, in uteri from 

estrus and day 18 pregnant CTR and TMEM16ASMKO mice.  White bars equal 30 m. 
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Figure 2. TMEM16A does not contribute to spontaneous uterine contraction in non-pregnant 

mice at estrus.  A. B. Representative recordings of spontaneous contraction in circular myometrial 

rings from CTR mice (A) and TMEM16ASMKO mice (B).  C, D. Comparisons of the frequency (C) and 

amplitude (D) of spontaneous contraction between CTR mice and TMEM16ASMKO mice. Bars represent 

mean ± SEM, n=20 strips from 5 mice; P>0.05 unpaired t-test CTR vs TMEM16ASMKO. 
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Figure 3. TMEM16A does not contribute to KCl-induced uterine contraction in non-pregnant and 

pregnant mice.  A. A representative dose-force response upon stimulation with KCl in an estrus 

circular myometrial ring from a CTR mouse (a) and a TMEM16ASMKO mouse (b), and the summarized 

data (c) (Bars represent mean ± SEM, n=12 rings from 5 mice; P>0.05 ANOVA CTR vs 

TMEM16ASMKO).  B. A representative dose-force response upon stimulation with KCl in a day 18-

pregnant longitudinal myometrial strip from a CTR mouse (a) and a TMEM16ASMKO mouse (b), and the 

summarized data (c) (Data represent mean ± SEM, n= 8 strips from 4 mice; P>0.05 ANOVA CTR vs 

TMEM16ASMKO).   
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Figure 4. TMEM16A does not contribute to OT-induced uterine contraction in non-pregnant and 

pregnant mice.  A. A representative dose-force response upon stimulation with oxytocin (OT) in an 

estrus circular myometrial ring from a CTR mouse (a) and a TMEM16ASMKO mouse (b), and the 

summarized data (c) (Data represent mean ± SEM, n=8 rings from 4 mice; P>0.05 ANOVA CTR vs 

TMEM16ASMKO).  B. A representative dose-force response upon stimulation with OT in a day 18-

pregnant longitudinal myometrial strip from a CTR mouse (a) and a TMEM16ASMKO mouse (b), and the 

summarized data (c) (Data represent mean ± SEM, n=8 strips from 4 mice; P>0.05 ANOVA CTR vs 

TMEM16ASMKO). 
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Figure 5. TMEM16A does not contribute to PGF2α-induced uterine contraction in non-pregnant 

and pregnant mice.   

A. A representative dose-force response upon stimulation with PGF2α in an estrus circular myometrial 

ring from a WT mouse (a) and a TMEM16ASMKO mouse (b), and the summarized data (c) (Data 

represent mean ± SEM, n=8 rings from 4 mice; P>0.05 ANOVA CTR vs TMEM16ASMKO). B. A 

representative dose-force response upon stimulation with PGF2α in a day 18-pregnant longitudinal strip 

from a CTR mouse (a) and a TMEM16ASMKO mouse (b), and the summarized data (c) (Data represent 

mean ± SEM, n=8 strips from 4 mice; P>0.05 ANOVA CTR vs TMEM16ASMKO).  
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Figure 6. TMEM16A does not contribute to KCl- and contractile agonist-induced rise in 

intracellular Ca2+ concentration in day 18-pregnant myometrial cells.  A. A representative Ca2+ 

response upon stimulation with KCl in a day 18-pregnant smooth muscle cell freshly isolated from 

longitudinal myometrium from a CTR mouse (a) and a TMEM16ASMKO mouse (b), and the summarized 

data (c) (Bars represent mean ± SEM, n=20 cells from 3 mice; P>0.05 unpaired t-test CTR vs 

TMEM16ASMKO).  Images shown were expressed as fluorescence intensity and were taken at the time 

marked in the F/F0 traces below.  The same convention is applied to the images in B and C.  B. A 

representative Ca2+ response upon stimulation with PGF2α in a day 18-pregnant smooth muscle cell 

freshly isolated from longitudinal myometrium from a CTR mouse (a) and a TMEM16ASMKO mouse (b), 

and the summarized data (c) (Bars represent mean ± SEM, n=20 cells from 3 mice; P>0.05 unpaired t-

test CTR vs TMEM16ASMKO).  C. A representative Ca2+ response upon stimulation with oxytocin (OT) in 

a day 18-pregnant smooth muscle cell freshly isolated from longitudinal myometrium from a CTR 

mouse (a) and a TMEM16ASMKO mouse (b), and the summarized data (c) (Bars represent mean ± SEM, 

n=20 cells from 3 mice; P>0.05 unpaired t-test CTR vs TMEM16ASMKO).  
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