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“Myosin” is famous as a component of muscle fibrils, but the
majority of myosin family members act elsewhere with roles
unrelated to muscle contraction. The biological functions of a
relatively new family of these unconventional myosins, myosins
18A and 18B, are poorly understood. New research from
Horsthemke et al. describes a new isoform (Myo18A�) that is
essential for heart function and viability in mice. Their findings
both support and contradict other work in the field and raise
new questions about the roles of myosin 18 proteins in vivo.

The name “myosin” (from the Greek mys, myos meaning
muscle) derives from the fact that �50% of skeletal muscle mass
is composed of the proteins currently designated as myosin II
family members. These proteins assemble into bipolar fila-
ments arranged in repeating arrays that slide relative to actin
filaments during muscle contraction, a process propelled by
myosin’s F-actin–activated ATPase. Although myosin was
originally assumed to be unique to muscle cells, smaller pro-
teins with F-actin–activated ATPase activities were then iden-
tified in Acanthamoeba (1), and the field of unconventional
myosins in nonmuscle cells was born. Fast forward 46 years,
and there are now at least 30 classes of myosins, most of which
function outside of muscle (2).

Myosin 18 (myosin XVIII) is a relatively new class of uncon-
ventional myosins. The first isoform, Myo18A�, was discov-
ered as a differentially displayed cDNA in bone marrow cells
that support hematopoiesis, suggesting that it might play a role
in cellular architecture. This protein was named MysPDZ
because of a PDZ domain preceding the predicted myosin
ATPase domain (reviewed in Ref. 3). Subsequently, Myo18A�
was reported to localize to the vicinity of the Golgi and to be
present only in mature macrophages, whereas a differentially
spliced protein (Myo18A�) lacking the PDZ domain was found
in most hematopoietic cells. However, subsequent work found
neither co-localization of Myo18A� with the Golgi nor effects
on Golgi morphology after shRNA-mediated knockdown or
CRISPR/Cas9-mediated deletion of Myo18A messages in cul-
tured cells (4), and a separate study indicated that myosin 18A is
required for zebrafish muscle integrity (5). Meanwhile, a pro-

tein (Myo18B) with a predicted ATPase domain and C termi-
nus structurally similar to those in the Myo18A isoforms was
cloned from muscle (6) and shown to be required for sarcomere
assembly in muscle and for the stacking of myosin II into stress
fibers (see Ref. 7 and references therein). These findings effec-
tively bring the field of unconventional myosin-based motility
back to its intellectual home base, the muscle. However, the
true function of myosin 18A remains unclear.

To explore this question, Horsthemke et al. (8) started by
confirming that myosin 18A is required for muscle integrity in
mice, complementing the zebrafish study (5). Specifically, they
observed that homozygous deletion of myosin 18A in the whole
embryo or in cardiac myocytes results in disorganization of
muscle tissue in mutant embryo hearts at day 10.5 and embry-
onic lethality by about day 12.5. RNA sequence analyses of mes-
sages from mouse heart myocytes revealed that myosin 18A
and 18B mRNA sequences together are surprisingly abundant,
at �10% of the abundance of Myh6, the major sarcomeric myo-
sin II. Moreover, analyses of samples from mouse and human
heart tissue reveal that the myosin 18A present in these mus-
cles is a new splice form (Myo18A�) that diverges at both its
N and C termini from the previously characterized myosin
18 sequences (Fig. 1). The Myo18A�-specific, proline-rich N
terminus is well-conserved among mammalian species;
regions within the serine-rich C terminus also are found in
corresponding sequences from chicken, frog, and zebrafish.
The localization of EGFP-tagged Myo18A� to the myosin
II–rich A-bands in cardiomyocytes suggests that, like
Myo18A� (9) and Myo18B (7), Myo18A� may co-assemble
with myosin II filaments or bundles.

But what about myosin 18A’s other reported roles? Sur-
prisingly, given the original report of Myo18A� in mature
macrophages and subsequent studies in cultured cells (3),
Horsthemke et al. find that Myo18A� is the predominant
isoform in macrophages. They also report that Golgi mor-
phology is unaffected by the myeloid-restricted ablation of
Myo18A messages and that Myo18A-deficient macrophages
exhibit normal cell shapes, motility, and chemotaxis, in
agreement with the work of Bruun et al. (4).

So where do these results leave us? Horsthemke et al. raise a
host of questions about Myo18A that should keep this field
busy for some time. First and foremost is the question of what
specific roles Myo18A� and Myo18B play during sarcomere
assembly and how they perform them. Deletion of either pro-
tein causes embryonic lethality due to cardiac defects. This is
likely due to nonoverlapping functions because heterozygotes
of each knockout strain survive and breed, but protein levels in
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the heterozygotes have not been reported, and regulation of
protein expression or degradation could theoretically obscure
potential dosage effects. A second important question is
whether Myo18A� is able to co-assemble with myosin II. The
extensive coiled-coil domain in all Myo18A isoforms is fol-
lowed in Myo18A� by a serine-rich region that might be either
incompatible with myosin II co-assembly or limit bipolar fila-
ment formation to an even greater extent than in Myo18A� (9),
which has a much shorter C terminus (Fig. 1). Third, does the
predicted myosin ATPase domain contain an actual myosin-
like, F-actin–stimulated ATPase, and if so, is it important for
function? Cell-based experiments are consistent with such
activity in vivo, but it’s possible that this ATPase activity comes
from associated myosin II, and in vitro experiments have not
been able to confirm the presence of an inherent ATPase (3).
Fourth, do the novel Myo18A� N and C termini lead to new
protein–protein interactions or serve as regulatory sites?
Sequence analyses predict that the proline-rich N terminus
should bind to class I and class II SH3 domains and that both
the N terminus and the serine-rich C terminus are kinase sub-
strates, leaving open a world of possibilities. Abundant interac-
tion partners have been identified for the Myo18A� N termi-
nus, but these interactors are not expected to be relevant for the
cardiac isoform, given the predicted absence of their N-termi-
nal binding sites. Paradoxically, it should be noted that overex-
pression of the Myo18A� PDZ domain in zebrafish recapitu-
lates the knockdown phenotype (5), raising questions about
whether Myo18A� is present in zebrafish heart or whether the
PDZ domain interferes with cardiac function through an
unknown mechanism. Finally, are the defects in the Myo18A
and Myo18B mice limited to the sarcomeric apparatus? Stain-
ing for dystrophin and dystroglycan at the muscle membrane
(sarcolemma) is reportedly disrupted in myo18A-deficient
zebrafish muscle (5), inviting speculation about potential addi-
tional defects in gene expression, differentiation, or sarcomeric
connections to the sarcolemma. Additional or alternative non-
sarcomeric changes would be consistent with the reported

nuclear localization during myodifferentiation of Myo18B (6).
Thus, as is typical for exciting research areas, answers to the
initial questions about myosin 18 isoforms have led to a trove of
additional questions of interest to researchers in muscle and
nonmuscle motility.

References
1. Pollard, T. D., and Korn, E. D. (1973) Acanthamoeba myosin. I. Isolation

from Acanthamoeba castellanii of an enzyme similar to muscle myosin.
J. Biol. Chem. 248, 4682– 4690 Medline

2. Kendrick-Jones, J., and Buss, F. (2016) Editorial overview: myosins in re-
view. Traffic 17, 819 – 821 CrossRef Medline

3. Buschman, M. D., and Field, S. J. (2018) MYO18A: an unusual myosin. Adv.
Biol. Regul. 67, 84 –92 CrossRef Medline

4. Bruun, K., Beach, J. R., Heissler, S. M., Remmert, K., Sellers, J. R., and Ham-
mer, J. A. (2017) Re-evaluating the roles of myosin 18A� and F-actin in
determining Golgi morphology. Cytoskeleton 74, 205–218 CrossRef
Medline

5. Cao, J., Li, S., Shao, M., Cheng, X., Xu, Z., and Shi, D. (2014) The PDZ-
containing unconventional myosin XVIIIA regulates embryonic muscle
integrity in zebrafish. J. Genet. Genomics 41, 417– 428 CrossRef Medline

6. Salamon, M., Millino, C., Raffaello, A., Mongillo, M., Sandri, C., Bean, C.,
Negrisolo, E., Pallavicini, A., Valle, G., Zaccolo, M., Schiaffino, S., and Lan-
franchi, G. (2003) Human MYO18B, a novel unconventional myosin heavy
chain expressed in striated muscles moves into the myonuclei upon differ-
entiation. J. Mol. Biol. 326, 137–149 CrossRef Medline

7. Jiu, Y., Kumari, R., Fenix, A. M., Schaible, N., Liu, X., Varjosalo, M., Krish-
nan, R., Burnette, D. T., and Lappalainen, P. (2019) Myosin-18B promotes
the assembly of myosin II stacks for maturation of contractile actomyosin
bundles. Curr. Biol. 29, 81–92.e5 CrossRef Medline

8. Horsthemke, M., Nutter, L. M. J., Bachg, A. C., Skryabin, B. V., Honnert, U.,
Zobel, T., Bogdan, S., Stoll, M., Seidl, M. D., Müller, F. U., Ravens, U., Unger,
A., Linke, W. A., van Gorp, P. R. R., de Vries, A. A. F., Bähler, M., and
Hanley, P. J. (2019) A novel isoform of myosin 18A (Myo18A�) is an essen-
tial sarcomeric protein in mouse heart. J. Biol. Chem. 294, 7202–7218
CrossRef Medline

9. Billington, N., Beach, J. R., Heissler, S. M., Remmert, K., Guzik-Lendrum, S.,
Nagy, A., Takagi, Y., Shao, L., Li, D., Yang, Y., Zhang, Y., Barzik, M., Betzig,
E., Hammer J. A., 3rd, Sellers, J. R. (2015) Myosin 18A coassembles with
nonmuscle myosin 2 to form mixed bipolar filaments. Curr. Biol. 25,
942–948 CrossRef Medline

Figure 1. Comparative structures of the three characterized Myo18A isoforms and Myo18B. Sequence conservation between Myo18B and correspond-
ing regions in Myo18A is 40 – 45%. The divergent N and C termini of the Myo18A isoforms arise from differential splicing. Coiled-coil structure is predicted by
the Eukaryotic Linear Motifs (ELM) program (elm.eu.org) (please note that the JBC is not responsible for the long-term archiving and maintenance of this site
or any other third party hosted site) and has been demonstrated for Myo18A� by EM (9). Myo18� and Myo18B are each required for normal sarcomeric
formation, cardiac development, and embryonic viability.
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