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The noncommutative sine-Gordon breather

André Fischer® and Olaf Lechtenfeld®
Institut fiir Theoretische Physik, Leibniz Universitit Hannover, Appelstrafle 2, 30167
Hannover, Germany

(Received 17 November 2008; accepted 23 January 2009; published online 9 April 2009)

As shown by Lechtenfeld et al. [Nucl. Phys. B 705, 447 (2005)], there exists a
noncommutative deformation of the sine-Gordon model which remains (classically)
integrable but features a second scalar field. We employ the dressing method
(adapted to the Moyal-deformed situation) for constructing the deformed kink-
antikink and breather configurations. Explicit results and plots are presented for the
leading noncommutativity correction to the breather. Its temporal periodicity is
unchanged. © 2009 American Institute of Physics. [DOI: 10.1063/1.3093825]

I. INTRODUCTION AND SUMMARY

The sine-Gordon model is a paradigm for relativistic integrable models in 1+1 dimensions
(e.g., see Ref. 1). Its multisoliton spectrum is well known and consists not only of multikink
scattering configurations but also of bound states, the simplest of which is the so-called breather.
It may be obtained formally by analytically continuing the kink-antikink configuration in its
relative velocity variable, v—iv, and oscillates periodically in time.

A systematic procedure for deriving the integrability features of the sine-Gordon model relates
it to the self-duality equations of SU(2) Yang-Mills theory in 2+2 dimensions.” In a light-cone
gauge, these equations follow from the Nair—Schiff action.” A first and straightforward dimen-
sional reduction produces Ward’s modified chiral sigma-model action for SU(2)-valued fields in
2+1 dimensions.” A second dimensional reduction then generates an Abelian sigma model equiva-
lent to the sine-Gordon theory. To arrive there, one must prescribe a particular dependence on one
spatial coordinate (rather than trivial independence) and also algebraically restrict the field from
SU(2) to a U(1) subgroup. The remaining phase ¢(f,x) turns out to be ruled by the sine-Gordon
equation, with the coupling or mass « appearing as a parameter of the dimensional reduction.

For several years now the Moyal deformation of integrable field theories has been of some
interest. In particular, the Ward model’” and the sine-Gordon model®® have been generalized to
the noncommutative realm. The key insight for the latter case was that the extension of SU(2) to
U(2), necessary for implementing the Moyal deformation in the Yang-Mills theory, should be
retained under the dimensional and algebraic reduction, so that the noncommutative sigma-model
field takes its values in U(1) X U(1) rather than U(1). The deformed sine-Gordon model so
obtained® features rwo scalar fields (phases) ¢, and ¢_, whose noncommutative Abelian Wess-
Zumino-Witten (WZW) actions are coupled in a simple way. In the commutative limit, the average
cp=%(¢++ ¢_) of these phases produces the standard sine-Gordon field while their difference ¢,
—¢_ decouples as a free field.

Since the powerful techniques for constructing multisoliton solutions in integrable models
have been shown to survive the noncommutative deformation, it is straightforward (but may be
tedious) to work out such configurations for the Moyal-deformed sine-Gordon model as well. The
basic strategy was already outlined in Ref. 5 but has been applied only to the simple kink so far.®
However, owing to the relativistic invariance, a one-kink configuration depends only on its single
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comoving coordinate 7(¢,x), and so it cannot get deformed. Only multilumps with relative motion
should be affected by noncommutativity. The first instances are the two-kink, kink-antikink, and
breather solutions.

In this letter we apply the Moyal deformation to the two latter cases. It is important to verify
the effect of noncommutativity, since the tree-level computations of Ref. 8 had suggested that
perhaps the entire Moyal deformation of the sine-Gordon model might be ficticious. Here, we
demonstrate this not to be the case, by working out the first-order (in the noncommutativity
parameter) correction to the “classical” kink-antikink and breather configurations. It turns out that
this leading correction affects only the would-be free field ¢, — ¢_; the generalized sine-Gordon
field ¢ gets modified at second order onward, as does the energy density. Only the substantial
calculational effort prevented us from evaluating higher orders, but we present the starting-point
equations for doing so. As an exact result, the temporal periodicity of the breather is unchanged by
the deformation.

Il. THE MODEL

The integrable noncommutative sine-Gordon model introduced in Ref. 8 involves two U(1)-
valued fields,

g.(t,x)= eglﬁ*(l’x) e U(l), and g_(t,x)= e:5¢'(f’x) e U(1)_, (2.1)

and may be defined via its action,

Slg+8-1= Swzwlgs] + Swzwle-1+ azf dtdx(gig_ + gig+ -2), (2.2)

where Syzw 18 the Abelian WZW action

Swawlgl==7 f didx(d,g"9,g — 9,8"0.8) - f dtdx f AN *§'0 g xg'g.  (2.3)
0
with a homotopy path g(\) connecting ¢(0)=1 and g(1)=g and a Moyal star product

(F1 % f2)(6.0) = £, (t.x)exp{ £(3,00, — .69, }f>(t.x) so that [r.x], =i0. (2.4)

In light-cone variables,

wi=3(t+x), vi=3(-x), 6,=0,+0, Jy=0— 0, (2.5)

the corresponding equations of motion read

&v(gi* aug+"'gi"" d,8-)=0,

o, * g, —g *a,8) =20 (gl xg_—g *xg,), (2.6)

which in the commutative limit §— 0 simplifies to

au&v(¢+ - ¢—) =0 and &uav(¢+ + ¢—) =-8a’ Sin%(¢+ + ¢—) (27)

Hence, the identification of the standard sine-Gordon field ¢ with mass 2« is made via

Mt d)=¢+0(0) or glxg,=c+0(0). (2.8)
For later use, we embed the U(1)-valued fields into U(2),
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[eere sme | cos¥ sin;—o
Gi=> — o) . (2.9)

2 RN

8.— 8 8g.+g_ isin cosy

Ill. DRESSING CONSTRUCTION

The breather solution may be obtained from a kink-antikink configuration with relative ve-
locity 2v by an analytic continuation v—iv. The comoving coordinates for the kink and antikink
read

1 1
m=+pu——v=+y(x—-vt) and 7p=——u+pv=—yx+vi), (3.1)
p p

respectively, where p € (0, 1),

1- 2>0 S el 1 1( 1) (3.2)
= Sp= =——==|p+—|. .
VI Py M YR e TP,

A convenient way to construct the kink-antikink solution employs the dressing method. For
the case at hand, it yields5

1-v .
G:1_2(1+—P2>*TI*[Tf*(l—UPz)*Tl]:l*TT
v
I+v
_2(1_ —Pl) * Tox [T5 % (1= 0P * ], % T
A\
1-v -1
=1—2 l+_P2 *Pl*[l—O'P2*P1]*
\%

I+v
—2(1——P1) * Pyx [1—oP, * P,J,", (3.3)
v
where o=-4p?/(1-p*)?=1-v~2, and we introduced Hermitian projectors

Pi=Tix(T{xT));'xT] and Py=To* (Ty* Ty);' * T} (3.4)

based on 2 X 1 matrix-valued functions T,(7,) and T,(7,) related to the kink and antikink com-
ponents of the configuration. The 7; are determined only up to right (star) multiplication with an
arbitrary invertible function and may be taken as

1 1
Tl = (ieza"]l ) and T2 = (_ iezanz) (35)

by a suitable choice of the coordinate origin. Note that we have dropped the star index on the
exponentials since each one depends on a single coordinate combination only.

By inserting these T into (3.4), the ensuing projectors into (3.3), one is in principle able to
read off g. from (2.9) and extract the noncommutative breather configuration ¢...

IV. COMMUTATIVE BREATHER

Before delving into the explicit computation, let us first retrieve the familiar commutative
breather in the §— 0 limit.

Since a coordinate rescaling modifies the coupling a, we take the freedom to put 2a=1 in the
following. Dropping all stars, one first builds
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1 1 —ie™m 1 1 ie™ il
Pi= 1+e*m\jem &M and P, = 1+e*n\—je™ *m “.1)
and thus

1+ &>
(1=0)(1 =em™ )2 4 (e + e™)?

[T{(1-oP)T]" = for (j,k)=(1,2) or (2,1).

(4.2)
Next, one obtains
l+ez”2 il_ e™ .
1-v " 1 v \ 1 —ie™
1+—P,|T\T) = 3 . 2 ’
v 1+e ™ Y 1, ie™m "M
—1i e” 1+ —e™
v
r d+v
— — 4 i 8771
(1{ 1+VP)TTT ! v ' ( 1 ieﬂz) (4.3)
v )T 4 etm 1+v 1, —iem M)’ '
—i e 1——e ™M
v v
which combine to
1 V21 =M™~ (eM + ™) 2ivi(e™ +e™)(1 — e™M*72)
G= V21— e )2 4 (eM 4+ e™)?\ 2ivi(eM+e™) (1 —e™*R)  v2(1 —eMt )2 — (¢ 4 ¢™)?
1 (sinh2 it —v? cosh? yx  2iv sinh vz cosh yx ) 4.4)
~ sinh? yvz + v? cosh? yx \ 2iv sinh yvs cosh yx  sinh? yvt—v? cosh® v/’ '
with the help of
m+mpm=—2wt and 7 — 1 =2yx. (4.5)
Comparing with (2.9) we learn that, with ¢, —¢_=:4p,
. sinh? yvt — v? cosh? yx : 2v sinh yvt cosh yx
eP cosf= — W 3 3 Y and P sinf = 7’\’2 2)/ , (4.6)
2 sinh” yvt+ v“ cosh” yx 2 sinh” yvt+ v“ cosh” yx
so that
. P
SmE 2v sinh yvt cosh yx
tanZ = =— — A 3 3 (4.7)
4 [ (e + 1)sinh® yvr + (¢’ — 1)v? cosh? yx

analytically continues via v—iv to

o 2v sin yvt cosh yx
tan— = —; o - 2 5 _ > (4-8)
4 (e +1)sin® i+ (e = 1)v? cosh? yx

with 7=1/\1+v2. Since & is real we must have 8=0 or B=. The boundary condition &— 0 for

|x| — o selects the second option,1 and we have recovered the celebrated breather c:onﬁguration1

!Alternatively, begin with ¢, =¢_=¢ and shift ¢ — ¢. + 27, or else, put S=0 and shift ¢— @+21.
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in yvt
-p=4 arctan{LW_}. (4.9)
v cosh yx

V. NONCOMMUTATIVE CONSTRUCTION

When attempting to repeat the above computation in the Moyal-deformed case, one must
account for the noncommutativity of the comoving coordinates,

v
1-v

[tx],=i0= [, 7], = 2i0yv =2i0—— =2\, (5.1)

which leads to the fundamental intertwining relation,

e(u1+bl)771+(az+b2)772= e—(i/Z))\u/\bea1m+a2772* eblnl+b27]2= e(l/2)(a1771+a2772) * gb17n+b2772 * 6(1/2)(a1771+u2772)’
(5.2)

which (for f regular at zero) implies
e MFarm *f(ebﬂll*'bz’/z) =f(eb17;1+b2172+i>\a/\b) * e MFa (5_3)

Again, we put 2a=1 for convenience. The projectors (4.1) are unaffected by the deformation,
but the star products become relevant when T or P, meets T, or P,. As a basic ingredient in (3.3),
we first compute

T/ (1- 0Py * T,

1 =0+ e2™ —ige
=(1,—ie”) * {(1 + eZWk)—<1/2)< i‘;ﬂf . (1lfea)e2”k>(1 + ezﬂk)‘“/z)] * (;ﬂj)
— (1 + eznk)—(l/z) * (1 _ U+e2’7k) * (1 + eznk)—(l/z)
+(1+&2M)012) s e T (2N 4 (1 4 2m7200)~(172)
+ (1 + 2WE2N)=112) o ronmE 2N o (1 4 @27)~(1/2)
+ (1 + 220 =02) o (o7 4 (1 = )2 T2) e (1 + 27 2N)=(112)
=1+ V2D % [(1 = 0)(1 = ™) 4+ (eM + ™) ] x (1 + )" V2 1 O(\?). (5.4)
In the last step, we dropped terms of O(\?) in order to arrive at a manageable expression. Inserting
the above into (3.3) and abbreviating
N, = T};Tk= 1+e® and D=(1-0)(1—-eM*P)?+ (e +e™)?, (5.5)

we find the matrix elements of G up to O(\?) (denoted by “="),

1 1-v .
G” ~1- 2N£1 * |:627]2+ — e'r]l+7]2—t/2)\ *Né/Z * D—l *Né/Z
\% A\

1 1+v :
_ ZMI . |:€27h = 6771+1]2+z/2)\:| *N:/Z *D_l *N%/Z, (56)

v v

1 1-v .
G12 ~ ZlNEl * |:e27]2+ — er]l+772—z/2)\ *N;/Z *D_l *N;Q * e
\Y% \%

v .
e’71+’72+’/2)‘] * N2« D' % N{? % e, (5.7)
v

- ) 1 1+
—2iN] * e ——+
Y
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v 1 .
e™ + _e’r;l+27/2—1)\:| *Né/Z *D_l *N§/2
A% A\

Gy = - 2iN," x {e”‘—

1+v 1 .
+2iN;" * {e”2+ e — =2 |y N2 D71 s 12, (5.8)
v A%

v 1 .
e™ + _e711+2772—1)\:| *N;/Z *D_l *Né/Z* e

GZZ:I—ZI\GI*[e”I—
\% \%

_ ZMI . [e,,“_ 1 +Ve”1 _ lezmﬂhm] *Ni/z *x D! *N}/Z xe. (5.9)
v v
There is some pattern with respect to the interchange 7, < 7, and regarding sign flips of v and A,
but no obvious symmetry under §— —6. We have chosen the positions of the N; such that their
arguments are not shifted. By construction (2.9), we have the equalities G;,=G,, and G,=G,.
These are not manifested in (5.6)—(5.9) because the neglected O(\?) terms are not equal, but they
are straightforward to verify at O(N). Note that, for the exact result, D is to be inverted with
respect to star multiplication. However, since D' —D~'=0(\?), we may take the ordinary inverse
in (5.6)—(5.9). Finally, the commutative limit collapses G to (4.4), since all N, factors cancel and
disappear.

We can also employ the last equation of (3.3), which expresses G in terms of projectors only.
After rescaling the projectors to

~ l-v ~ 1+v -~ =
P1=TP1 and P2=—TP2 such that P, * P,=0gP, * P,, (5.10)

we rewrite

G=1-2P, %[1=Pyx P\J;' x[1+ P,]-2P, % [1= P, x P,];' % [1 + P,]

v~ - -~ < P
=l—1_[P1+P1*P2+P1*Pz*P1+"']+1_[P2+P2*P1+P2*P1*P2+"'].
\% +vV

(5.11)

In the last line, we have traded the notorious star inverses for formal geometric series,

[1-P;x P I = 2 [P PJ} with (j,k)=(1,2) or (2,1), (5.12)
n=0

which may be truncated in an approximation for large velocities v— 1. In this way, G is given as
a power series in words P;* Pyx P;x - -+ x P;. Remembering (3.4) and abbreviating also

Nj=T{xTy=1-elxe=1- Nt (5.13)

the “projector words” simplify to

1
1 1 1 .
Pj* Py Pk - *P€=(iienj>1\g * Njy* N Ny o+ % N (1, = i)

Al "% N, x N7 Sl ~(112) 12
—(1/ )
~\ xie127 N * Ny * Nig *x Nyj* === %Ny (e e, + 12y

(5.14)

where the last line is a symmetric rewriting with
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Ny=e T +e% and

Ny= e~ 127 3 o= 215 _ (U275 4 (120 — o 218N (o=(12)(mit ) _ p(12)(mim)) (5.15)

Pulling all together, one arrives at

G —1—21\r‘—21\r‘+2ﬂ1\r1*1v *Arl_zl;vz\rl*N IV S
11— 1 2 v 1 12 2 v 2 21 1 ’

1+v 1-v

Gy =2iNy'e™ = 2iN;'e™ + 2i

Ni' % Npp* Ny'e™ +2i Ny % Ny > Ny'len+ -

1+v 1-v

Gy =—2ie™N;" +2ie™N," + 2i——eMN;' * Njy* N;' + 2i——e™N,' * Nyy x N{' + -+,

A%

+Vv 1-v

1
Gyy=1-2e"N; e —2e™N, ™ - 2——¢"IN;' % Ny x Ny'e™ + 2

v v

) (5.16)

e™N,' * Ny * Ny'e™

+ ...

with Ny and N, to be taken from (5.5) and (5.13), respectively. This is an exact result. No star
inverse needs to be taken, but we are left with infinite series, which may be summed in closed
form only for =0.

VI. EXPANDING IN ¢

The task is to extract the deformed breather configuration

efzd)i:g::Gn“—LGzl:GuiGlzz’ G. =G, (6.1)
from (5.6)—(5.9) or from (5.16), at least to subleading order in a 6 expansion,
F=fOe NN = O for fe{Gigaige ) (6.2)
Keeping v fixed and noticing that e”=¢+O(\?) for any function h, we have
b= T2 g, = 72iIn(g?+reg?) = 7 2i In g© 7 2ing/g® = 0 T 2ing V774"
(6.3)

and thus

1 i i
5(({4 +¢) =+ i)\gil)e_i“’ —ingVer® =+ 2)\G£]) sin;—p + ZiAGgl) cosg,

1 i i
S(6- ) =2mringVe20+ ingVes® =2+ 2G) cosg +2AGY sin(zp (6.4)

since d)(io):(pi 24r. From (5.16) one learns that, in the X expansion, the even orders of G, and the
odd orders of G, are real while the odd orders of G, and the even orders of G, are imaginary.
Because (6.4) must be real equations for G € U(1) X U(1), this implies that
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e sing +iG cos;—p =0 = ¢PV=-9¢V= 2iGS)/cos;—D = 2Gf,l)/sin('2—p =2x,
(6.5)

and so the sine-Gordon field %(¢++¢_) gets deformed only at O(\?) while the orthogonal com-
bination %(¢+— ¢_) is turned on at O(\). Interestingly, the relation (6.5) is again the commutative
one, thus

G, G, cosZ isine
S e 2
G= = ! THAX ) (6.6)
G i sing cosE
o GE 2 2

For computing y it suffices to look at any one of the G matrix elements.
In order to expand G to O(\) we need the first subleading term in multiple star products,

Jixfaxfyx - *fnzflefS'”fn'i'%)\Efl"'(a[lfi)"'(ﬂz]fj)'”fm (6.7)
i<j

where  (d f)(d o1f ) = (9f i/ dm)(3f ;/ Io) = (f i/ Imy)(If i/ Imy).  The products appearing  in
(5.6)—(5.9) take the forms

! !

i N, N.
N;' % " % NSV2 % D71 N§?) = 'D7! 4 —)\e”D‘2<2Da1h—2 — D2~ h 2]D>,
2 N, N,
(6.8)
1, h 1/2) -1 1/2) hel by opee2 Ni Ni
Ny x e x N2 x D71 a NV = "D — —Ne"D™2| 2Ddyh— = 3,D— = 3, hd 3D |,
2 N, N,
(6.9)

]\rzl *eh*N(ZI/Z)*D—l *N(zl/z)*e”l
! !

i N. N
~ "Dy N MDD 2D9h—2 - 9,D—= - 3, hd yD + D - Ddsh |, (6.10)
5 N, " hda

2
N,
Ny *eh*lv(ll/Z)*D—l *N(l”z)*e’h
i N N
= e"mpt — —\e""mD™| 2Ddrh— — HhD— — dp hd YD+ ;D - Dk |,  (6.11)
2 N, N,
with £ being linear in 7, and 7,. Collecting all terms and noticing cancellations we obtain

N; N; N;
ivD*’G\)) = - (71DF2 - e’71+”2<(91D(1 - FZ) — 9D - D(l - 2]72>) +(12),
2 2 2

N; N;
-DG\) = e”1+2”2<o"1D<2 - #) +0,D — 2D> +e2M (9D - 20)(1 - ]72) +(12),
2 2

N} N,
DG = em((w - 9,D)—2 - &2D> + e’?za,D(l - —2) +(12),
N2 N2
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FIG. 1. (Color online) Commutative breather ¢(,x) for v=0.21.

!

N} N
ivD*GY)) = 22 m(9,D — 20)(2 - #) - e’71+’72(&1D<1 - #) + 0D — D) +(1<2),
2

2
(6.12)
which further collapses to
GO0 Y- (1= eM*m)2 —y2(e™ + ™) iv sinh? vt — v? cosh? yx
=-2ive =—— ,
¢ [(1=emM*™)? 42 (e™ + ™)) 2 [sinh? vz + v? cosh? yx]?
1 2 mien (eM+e™)(1 —eM*™) ) sinh yvt cosh yx
G, =4vie™™ Z ot 2 (e 4 o™ Tsinh? 2 2 2° (6.13)
[(1-e ) +vi(e™+e™)] [sinh* yvt + v* cosh® yx]
Comparing to (4.4), we indeed confirm that G"=iyG), and hence
Y . -v/2
g+ =e™MeT3¢  with y= (6.14)

sinh? vt + v? cosh® yx

It appears as if the sine-Gordon field gets deformed via ¢ — ¢ & 2\, but this is misleading.
This formula provides the explicit O(6) correction to the commutative kink-antikink configu-
ration. To obtain the breather, we still must analytically continue v — iv, which yields2

v/2

sin? vz + v* cosh® yx

v
A—26

5=k and x—i =: iy, (6.15)

1+v
so that the leading correction to G remains a phase factor. This is the main result of this letter.
Clearly, y oscillates with twice the classical breather frequency w=7v. More generally, our con-
struction shows that the deformed breather frequency does not depend on @ at all. In Figs. 1 and
2 we illustrate the shapes of @(r,x) and x(z,x) for a typical value of v.

The comoving coordinates (3.1) turn complex and lose their physical interpretation. However, the fundamental Heisenberg
algebra (5.1) of the actual (¢,x) coordinates and thus the nature of the deformation remains unchanged.
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FIG. 2. (Color online) Noncommutative correction y(,x) for v=0.21.
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