$\mathrm{SU}(2)$ reduction in $\mathcal{N}=\mathbf{4}$ supersymmetric mechanics

Sergey Krivonos ${ }^{1, *}$ and Olaf Lechtenfeld ${ }^{2, \dagger}$
${ }^{1}$ Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia
${ }^{2}$ Institut für Theoretische Physik, Leibniz Universität Hannover, 30167 Hannover, Germany

(Received 3 July 2009; published 20 August 2009)

Abstract

We perform an $s u(2)$ Hamiltonian reduction of the general $s u(2)$-invariant action for a self-coupled $(4,4,0)$ supermultiplet. As a result, we elegantly recover the $\mathcal{N}=4$ supersymmetric mechanics with spin degrees of freedom which was recently constructed in [S. Fedoruk, E. Ivanov, and O. Lechtenfeld, Phys. Rev. D 79, 105015 (2009)]. This observation underscores the exceptional role played by the root supermultiplet in $\mathcal{N}=4$ supersymmetric mechanics.

PACS numbers: $11.30 . \mathrm{Pb}$

I. INTRODUCTION

In a recent paper [1], $\mathcal{N}=4$ superconformal mechanics with n bosonic and $4 n$ fermionic degrees of freedom has been endowed with a potential term through a coupling to auxiliary supermultiplets with $4 n$ bosonic and $4 n$ fermionic components [2]. This combination gave rise to an $\mathrm{OSp}(4 \mid 2)$ supersymmetric n-particle Calogero model. Subsequently, the one-particle case, i.e. $\operatorname{OSp}(4 \mid 2)$ superconformal mechanics, was analyzed on the classical and quantum level [3]. Simultaneously, it was demonstrated that the potential-generating strategy works perfectly for the most general $D(2,1 ; \alpha)$ superconformal one-particle mechanics [4]. It is quite satisfying how the spin degrees of freedom appear in the bosonic sector, with only first time derivatives in the action. Thus, the proposed coupling of two different $\mathcal{N}=4$ supermultiplets provides a simple and elegant way to incorporate spin degrees of freedom in supersymmetric mechanics.

In both previous treatments [3,4], on mass shell all components of the basic $(1,4,3)$ supermultiplet are expressed through those of the "auxiliary" $(4,4,0)$ one. It seems that just this auxiliary supermultiplet plays a fundamental role in the construction. It is therefore natural to inquire whether the these models can be reformulated purely in terms of $(4,4,0)$ supermultiplets. Of course, such a reformulation has to be supplied with a Hamiltonian reduction, which would reduce the four physical bosons to one boson plus spin variables. Alternatively, the passage from $S U(2)$-symmetric $(4,4,0)$ models to general $(1,4,3)$ models via gauging was described in [2] using harmonic superspace.

Incidentally, spin degrees of freedom have appeared in a bosonic system after Hamiltonian reduction (on the Lagrangian level) via the second Hopf map $S^{7} / S^{3} \simeq S^{4}$ [5]. In the bosonic sector this reduced system resembles those in $[3,4]$, besides the presence of four additional bosonic variables.

[^0]In the present paper we realize the above ideas and rederive the $\mathcal{N}=4$ supersymmetric "spin mechanics" of $[3,4]$ by an $s u(2)$ Hamiltonian reduction applied to the general $s u(2)$ invariant action for a self-coupled $(4,4,0)$ supermultiplet. It is a further manifestation of the fundamental importance of the root supermultiplet [6] in $\mathcal{N}=4$ supersymmetric mechanics $[2,7,8]$.

II. SU(2) REDUCTION

Our point of departure is a quartet of real $\mathcal{N}=4$ superfields $Q^{i a}$ with $i, a=1,2$ defined in the $\mathcal{N}=4$ superspace $\mathbb{R}^{(1 \mid 4)}=\left(t, \theta_{i}, \bar{\theta}^{i}\right)$ and subject to the constraints

$$
\begin{equation*}
D^{(i} Q^{j) a}=0, \quad \bar{D}^{(i} Q^{j) a}=0 \quad \text { and } \quad\left(Q^{i a}\right)^{\dagger}=Q_{i a} \tag{2.1}
\end{equation*}
$$

where the corresponding covariant derivatives have the form

$$
\begin{align*}
D^{i}=\frac{\partial}{\partial \theta_{i}}+\mathrm{i} \bar{\theta}^{i} \partial_{t}, & \bar{D}_{i} \tag{2.2}
\end{align*}=\frac{\partial}{\partial \bar{\theta}^{i}}+\mathrm{i} \theta_{i} \partial_{t},
$$

This $\mathcal{N}=4$ supermultiplet describes four bosonic and four fermionic but zero auxiliary variables off shell [9,10$]$. Let us now introduce the composite $\mathcal{N}=4$ superfield ${ }^{1}$

$$
\begin{equation*}
X=2\left(Q^{i a} Q_{i a}\right)^{-1} \tag{2.3}
\end{equation*}
$$

which, in virtue of (2.1), obeys the constraints [10]

$$
\begin{equation*}
D^{i} D_{i} X=\bar{D}_{i} \bar{D}^{i} X=\left[D^{i}, \bar{D}_{i}\right] X=0 \tag{2.4}
\end{equation*}
$$

The most general action for $Q^{i a}$ is constructed by integrating an arbitrary superfunction $\tilde{\mathcal{F}}\left(Q^{i a}\right)$ over the whole $\mathcal{N}=4$ superspace. Here, we restrict ourselves to prepotentials of the form

[^1]\[

$$
\begin{equation*}
\tilde{\mathcal{F}}\left(Q^{i a}\right)=\mathcal{F}\left(X\left(Q^{i a}\right)\right) \rightarrow S=-\frac{1}{8} \int d t d^{4} \theta \mathcal{F}(X) . \tag{2.5}
\end{equation*}
$$

\]

The rationale for this selection is its manifest invariance under $s u(2)$ transformations acting on the " a " index of $Q^{i a}$. This is the symmetry over which we are going to perform the Hamiltonian reduction.

In terms of components the action (2.5) reads

$$
\begin{align*}
S= & \int d t\left\{G\left(\dot{x}^{2}+\mathrm{i}\left(\dot{\eta}^{i} \bar{\eta}_{i}-\eta^{i} \dot{\bar{\eta}}_{i}\right)+\frac{1}{2} x^{2} \omega^{i j} \omega_{i j}\right)\right. \\
& -\mathrm{i}\left(2 G+x G^{\prime}\right) \omega^{i j} \eta_{i} \bar{\eta}_{j} \\
& \left.-\frac{1}{4}\left(G^{\prime \prime}+6 \frac{G^{\prime}}{x}+6 \frac{G}{x^{2}}\right) \eta^{i} \eta_{i} \bar{\eta}_{j} \bar{\eta}^{j}\right\} \tag{2.6}
\end{align*}
$$

where

$$
\begin{gather*}
x=X\left|, \quad \eta^{i}=-\mathrm{i} D^{i} X\right|, \quad \bar{\eta}_{i}=-\mathrm{i} \bar{D}_{i} X \mid \\
q^{i a}=\sqrt{X} Q^{i a}\left|, \quad G=\mathcal{F}^{\prime \prime}(X)\right| \tag{2.7}
\end{gather*}
$$

and

$$
\begin{equation*}
\omega_{i j}=\dot{q}_{i}^{a} q_{j a}+\dot{q}_{j}^{a} q_{i a} \tag{2.8}
\end{equation*}
$$

Here, as usual, (...)| denotes the $\theta_{i}=\bar{\theta}_{i}=0$ limit.
To proceed we introduce the following substitution for the bosonic variables $q^{i a}$ subject to $q^{i a} q_{i a}=2$:

$$
\begin{align*}
q^{11}= & \frac{\mathrm{e}^{-(\mathrm{i} / 2) \phi}}{\sqrt{1+\Lambda \bar{\Lambda}}} \Lambda, \tag{2.9}
\end{align*} q^{21}=-\frac{\mathrm{e}^{-(\mathrm{i} / 2) \phi}}{\sqrt{1+\Lambda \bar{\Lambda}}},
$$

In terms of the new variables $(\phi, \Lambda, \bar{\Lambda})$, the $s u(2)$ rotations $\delta q^{i a}=\gamma^{(a b)} q_{b}^{i}$ read [10]

$$
\begin{gather*}
\delta \Lambda=\gamma^{11} \mathrm{e}^{\mathrm{i} \phi}(1+\Lambda \bar{\Lambda}), \quad \delta \bar{\Lambda}=\gamma^{22} \mathrm{e}^{-\mathrm{i} \phi}(1+\Lambda \bar{\Lambda}), \\
\delta \phi=-2 \mathrm{i} \gamma^{12}+\mathrm{i} \gamma^{22} \mathrm{e}^{-\mathrm{i} \phi} \Lambda-\mathrm{i} \gamma^{11} \mathrm{e}^{\mathrm{i} \phi} \bar{\Lambda} . \tag{2.10}
\end{gather*}
$$

It is easy to check that

$$
\begin{align*}
& \omega^{11}=2 \frac{\dot{\Lambda}-i \Lambda \dot{\phi}}{1+\Lambda \bar{\Lambda}}, \quad \omega^{22}=\left(\omega^{11}\right)^{\dagger} \tag{2.11}\\
& \text { and } \quad \omega^{12}=i \frac{1-\Lambda \bar{\Lambda}}{1+\Lambda \bar{\Lambda}} \dot{\phi}+\frac{\dot{\Lambda} \bar{\Lambda}-\Lambda \dot{\bar{\Lambda}}}{1+\Lambda \bar{\Lambda}}
\end{align*}
$$

are indeed invariant under (2.10), as is the whole action (2.6).

Next, we introduce the standard Poisson brackets

$$
\begin{equation*}
\{\pi, \Lambda\}=1, \quad\{\bar{\pi}, \bar{\Lambda}\}=1, \quad\left\{p_{\phi}, \phi\right\}=1 \tag{2.12}
\end{equation*}
$$

so that the generators of the transformations (2.10),

$$
\begin{gather*}
I_{\phi}=p_{\phi}, \quad I=\mathrm{e}^{\mathrm{i} \phi}\left[(1+\Lambda \bar{\Lambda}) \pi-\mathrm{i} \bar{\Lambda} p_{\phi}\right] \tag{2.13}\\
\bar{I}=\mathrm{e}^{-\mathrm{i} \phi}\left[(1+\Lambda \bar{\Lambda}) \bar{\pi}+\mathrm{i} \Lambda p_{\phi}\right]
\end{gather*}
$$

will be the Noether constants of motion for the action (2.6). To perform the reduction over this $\mathrm{SU}(2)$ group we fix the

Noether constants as (c.f. [5])

$$
\begin{equation*}
I_{\phi}=m \quad \text { and } \quad I=\bar{I}=0 \tag{2.14}
\end{equation*}
$$

which yields

$$
\begin{equation*}
p_{\phi}=m \quad \text { and } \quad \pi=\frac{\mathrm{i} m \bar{\Lambda}}{1+\Lambda \bar{\Lambda}}, \quad \bar{\pi}=-\frac{\mathrm{i} m \Lambda}{1+\Lambda \bar{\Lambda}} \tag{2.15}
\end{equation*}
$$

Conducting a Routh transformation over the variables ($\Lambda, \bar{\Lambda}, \phi$), we reduce the action (2.6) to

$$
\begin{equation*}
\tilde{S}=S-\int d t\left\{\pi \dot{\Lambda}+\bar{\pi} \dot{\bar{\Lambda}}+p_{\phi} \dot{\phi}\right\} \tag{2.16}
\end{equation*}
$$

and substitute the expressions (2.15) into \tilde{S}. A slightly lengthy but straightforward calculation gives

$$
\begin{align*}
\tilde{S}_{\text {red }}= & \int d t\left\{G\left(\dot{x}^{2}+\mathrm{i}\left(\dot{\eta}^{i} \bar{\eta}_{i}-\eta^{i} \dot{\bar{\eta}}_{i}\right)\right)\right. \\
& -\frac{1}{4}\left(G^{\prime \prime}-\frac{3}{2} \frac{\left(G^{\prime}\right)^{2}}{G}\right) \eta^{2} \bar{\eta}^{2}-\frac{m^{2}}{4 x^{2} G} \\
& -\frac{m\left(2 G+x G^{\prime}\right)}{2 x^{2} G(1+\Lambda \bar{\Lambda})}\left(2 \Lambda \eta_{1} \bar{\eta}_{1}-2 \bar{\Lambda} \eta_{2} \bar{\eta}_{2}\right. \\
& \left.\left.-(1-\Lambda \bar{\Lambda})\left(\eta_{1} \bar{\eta}_{2}+\eta_{2} \bar{\eta}_{1}\right)\right)\right\} . \tag{2.17}
\end{align*}
$$

To ensure that the reduction constraints (2.15) are satisfied we add Lagrange multiplier terms,

$$
\begin{equation*}
S_{\mathrm{red}}=\tilde{S}_{\mathrm{red}}+\int d t\left\{m \dot{\phi}+\frac{\mathrm{i} m(\dot{\Lambda} \bar{\Lambda}-\Lambda \dot{\bar{\Lambda}})}{1+\Lambda \bar{\Lambda}}\right\} \tag{2.18}
\end{equation*}
$$

Finally, by employing new variables $v^{i}=q^{i 1}$ and $\bar{v}_{i}=$ $\left(v^{i}\right)^{\dagger}$ we rewrite this action in the symmetric form

$$
\begin{aligned}
S_{\mathrm{red}}= & \int d t\left\{G\left(\dot{x}^{2}+\mathrm{i}\left(\dot{\eta}^{i} \bar{\eta}_{i}-\eta^{i} \dot{\bar{\eta}}_{i}\right)\right)\right. \\
& -\frac{1}{4}\left(G^{\prime \prime}-\frac{3}{2} \frac{\left(G^{\prime}\right)^{2}}{G}\right) \eta^{2} \bar{\eta}^{2}-\frac{m^{2}}{4 x^{2} G} \\
& +\mathrm{i} m\left(\dot{v}^{i} \bar{v}_{i}-v^{i} \dot{\bar{v}}_{i}\right) \\
& \left.-\frac{m\left(2 G+x G^{\prime}\right)}{2 x^{2} G} v^{i} \bar{v}^{j}\left(\eta_{i} \bar{\eta}_{j}+\eta_{j} \bar{\eta}_{i}\right)\right\}
\end{aligned}
$$

$$
\begin{equation*}
\text { with } \quad v^{i} \bar{v}_{i}=1 \tag{2.19}
\end{equation*}
$$

Amazingly, this final action coincides with the one presented in [4] and specializes to the one derived in [3] for the choice of $G=1$, which corresponds to $\operatorname{OSp}(4 \mid 2)$ symmetry.

We stress that the $s u(2)$ reduction algebra, realized in (2.10), commutes with all (super)symmetries of the action (2.5). Therefore, all symmetry properties of the theory [including the $D(2,1 ; \alpha)$ invariance for a properly chosen prepotential $\mathcal{F}]$ are preserved in our reduction.

III. CONCLUSION

We have demonstrated that the novel $\mathcal{N}=4$ supersymmetric "spin mechanics" of [1,3,4] is nicely interpreted as an $\operatorname{su}(2)$ reduction of a self-interacting root supermultiplet with $(4,4,0)$ component content. This procedure is remarkably simple and automatically successful.

An almost straightforward application of this insight is a similar $\operatorname{su}(2)$ reduction applied to the $\mathcal{N}=4$ "nonlinear" supermultiplet [10]. The resulting system will contain only spinor variables accompanied by four fermions. In this regard, one could also investigate the nonlinear root supermultiplet and its action [11].

Finally, we mention that our reduction will almost never work for the $\mathcal{N}=8$ supersymmetric mechanics in the literature. The reason is simple: these systems do not
possess any internal symmetry which commutes with all eight supersymmetries. This is also the situation discussed in [5]. The one positive exception is the "real" $\mathcal{N}=8$, $d=1$ hypermultiplet, which is obtained by dimensional reduction from $\mathcal{N}=2, d=4$ and requires $\mathcal{N}=8, d=$ 1 harmonic superspace [12,13]. We expect the corresponding $\operatorname{su}(2)$ reduction to produce some spin extension of the recently constructed $\mathcal{N}=8$ superconformal mechanics [14]. We intend to turn to this issue soon.

ACKNOWLEDGMENTS

We thank Evgeny Ivanov for comments. S. K. is grateful to the ITP at Leibniz Universität Hannover for hospitality. This work was partially supported by Grants No. RFBR-08-02-90490-Ukr, No. 06-02-16684, and DFG Grant No. 436 Rus 113/669/03.
[1] S. Fedoruk, E. Ivanov, and O. Lechtenfeld, Phys. Rev. D 79, 105015 (2009).
[2] F. Delduc and E. Ivanov, Nucl. Phys. B770, 179 (2007).
[3] S. Fedoruk, E. Ivanov, and O. Lechtenfeld, arXiv: 0905.4951 [J. High Energy Phys. (to be published)].
[4] S. Bellucci and S. Krivonos, arXiv:0905.4633.
[5] M. Gonzales, Z. Kuznetsova, A. Nersessian, F. Toppan, and V. Yeghikyan, arXiv:0902.2682 [Phys. Rev. D (to be published)].
[6] M. Faux and S. J. Gates Jr., Phys. Rev. D 71, 065002 (2005).
[7] S. Bellucci, S. Krivonos, A. Marrani, and E. Orazi, Phys. Rev. D 73, 025011 (2006).
[8] F. Delduc and E. Ivanov, Nucl. Phys. B753, 211 (2006); B787, 176 (2007).
[9] E. Ivanov and O. Lechtenfeld, J. High Energy Phys. 09 (2003) 073.
[10] E. Ivanov, S. Krivonos, and O. Lechtenfeld, Classical Quantum Gravity 21, 1031 (2004).
[11] S. Bellucci, S. Krivonos, O. Lechtenfeld, and A. Shcherbakov, Phys. Rev. D 77, 045026 (2008).
[12] A. S. Galperin, E. A. Ivanov, V.I. Ogievetsky, and E. S. Sokatchev, Harmonic Superspace (Cambridge University Press, Cambridge, England, 2001).
[13] E. Ivanov and O. Lechtenfeld, J. High Energy Phys. 09 (2003) 073.
[14] F. Delduc and E. Ivanov, Phys. Lett. B 654, 200 (2007).

[^0]: *krivonos @ theor.jinr.ru
 ${ }^{\dagger}$ lechtenf@itp.uni-hannover.de

[^1]: ${ }^{1}$ We stress that $Q^{i a} Q_{i a} \sim \mathrm{e}^{-U}$ in the standard parametrization [10], where U is the superdilaton. Therefore, the new superfield X is well defined.

