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In 2011, the San Francisco Municipal Transportation Agency
(SEMTA) started a project on smart parking, called SFpark, whose
goal was the improvement of on-street parking management in
San Francisco, mostly by means of demand-responsive price ad-
justments [1]. One of the key points of the project was the
collection of information about on-street parking availability. To
this aim, about 8,000 parking spaces were equipped with specific
sensors in the asphalt, periodically broadcasting availability in-
formation. The SFpark project made available a public REST API,
returning the number of free parking spaces and total number of
provided parking spaces per road segment, for 5,314 parking
spaces on 579 road segments in the pilot area. We collected
parking availability data from 2013/06/13 until 2013/07/24, by
querying this API at approximately 5-min intervals. As a result, we
obtained in total about 7 million observations of parking avail-
ability on the road segments. These observations represent the
first dataset we are providing.

In addition, we simulated the achievable sensing coverage of on-
street parking availability that could be achieved by a fleet of
taxis, if they were equipped with sensors able to detect free
parking spaces, like side-scanning ultrasonic sensors [3], or
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windshield-mounted cameras [4]. In particular, by exploiting real
taxi trajectories in San Francisco from the Cabspotting project [5],
we first computed the frequencies of taxi visits for each road
segment covered by the SFpark sensors. Then, we downsampled
the first dataset, in order to have a parking availability information
for a road segment at a given time only in presence of a transit of a
taxi on that segment at that time. This step was replicated for 5
different sizes of taxi fleets, namely 100, 200, 300, 400, and 486.
Consequently, in total six datasets are available for further research
in the field of on-street parking dynamics.
All these datasets can be downloaded at: https://dataverse.
harvard.edu/dataset.xhtml?persistentld=doi:10.7910/DVN/
YLWCSU.
© 2019 The Author(s). Published by Elsevier Inc. This is an open
access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Specifications Table

Subject area Social Sciences: Transportation
More specific subject area Smart parking, On-street parking, Crowd sensing, Probe vehicles.
Type of data Text Files, in Comma Separated Value format, containing Parking Availability Data.

How data was acquired A first dataset has been acquired by means of the SFpark API, reporting parking availability
data collected from stationary sensors in the asphalt. The other datasets are a subset of the first
one, obtained by simulating the crowd-sensing capabilities of a fleet of 100, 200, 300, 400 and
486 taxis, used as probe vehicles for parking availability sensing.

Data format Raw + Downsampling of raw, obtained by simulation.

Experimental factors GPS data from the taxis were map-matched on the road network provided by Open Street Map.
Implausible GPS points were discarded.

Experimental features For 420 road segments in San Francisco, there is a record every 5 minutes containing information
on the total and free number of parking stalls.

Data source location San Francisco, USA.

Data accessibility Data is available in the Harvard DataVerse Repository. URL: https://dataverse.harvard.edu

/dataset.xhtml?persistentld=doi:10.7910/DVN/YLWCSU

Related research article Smart Parking: Using a Crowd of Taxis to Sense On-Street Parking Space Availability.
In IEEE Transactions on Intelligent Transportation Systems (2019)
DOI: 10.1109/TITS.2019.2899149 [1].

Value of the data

o The first open-access dataset reporting real-world on-street parking availability data on a wide urban area.

e Our dataset provides real on-street parking availability data collected from stationary sensors in the asphalt, for about 500
road segments in San Francisco downtown, plus simulated availability data that would have been collected by a fleet of
taxis, acting also as probe vehicles.

e Researched from many fields (ICT, Transportation, Social Sciences, etc.) can exploit this dataset to investigate, for the first
time in a data-driven fashion, the dynamics underlying on-street parking.

e Our dataset has a fine-grained temporal resolution, of 5 minutes, allowing for detailed investigations.

o This is the first and only dataset to investigate the potentialities of probe vehicles to sense on-street parking data. The
information about probe vehicle sensing are built on real trajectories from 100, 200, 300, 400 and 486 taxis.

1. Data

The data files we provide in this article are in CSV format. Data have been collected according to the
pipeline described in Fig. 1, for five different sizes of the fleets of taxi. The size of the fleet is the suffix at
the end of the file name (e.g. XXX_100taxis.tab is the set of files obtained by a simulated fleet of 100
vehicles). The dataset contains a set of six files, as described in the following table:
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Filename Description
sfpark_filtered_segments.csv Geometrical information on the road segments under investigation
sfpark_filtered_XXXtaxis.csv Parking availability information for the investigated road segments,

as may have been sensed by a fleet of XXX taxis (where XXX can
be 100, 200, 300, 400, or 486).

1.1. Format of the sfpark_filtered_segments.csv

Each line of the file corresponds to a road segment with on-street parking stalls, covered in the
SFpark pilot area (also called block face by the SFpark project). The parking segments of the SFpark pilot
area were filtered for data plausibility as described in Refs. [1,7]. The columns correspond to the
following content:

o segmentid: ID of the parking segment (also called block face by SFpark) as defined by the SFpark
project.

o streetname: Name of road with house number range.

e startx, starty, endx, endy: WGS84 coordinates of start and end point of parking segment.

1.2. Format of the sfpark_filtered_XXXtaxis.csv

Each line of the files corresponds to the parking situation of a parking segment described in the
previous file, at a specific timestamp. The parking segments of the SFpark pilot area were filtered for
data plausibility, as describe in Ref. [ 1]. The crowd-sensing observations were computed as described in
Ref. [7].

The columns correspond to the following content:

o timestamp: Timestamp reporting when the SFPark API was polled, rounded to the closest minute.

o segmentid: ID of the parking segment as defined by SFpark, whose geometry is described in the file
sfpark_filtered_segments.csv.

e capacity: current total number of parking spaces in the parking segment (please note that the ca-
pacity may vary over time, due to parking restrictions)

e occupied: current number of occupied parking spaces in the parking segment, reported by the
SFpark sensors.

Then there is the block of simulated availability information, as they might have been sensed by the
probe vehicles for parking crowd-sensing. Since we downsampled the original dataset of trajectories
(please refer to section 2 for further details), we report data about 10 repetitions, to reduce biases due
to the random downsampling, as follows:

e observedK: has value 1 if, in the time frame indicated by the timestamp, at least one taxi passed over
this road segment, 0 otherwise. K corresponds to the K repetition of the random sampling of taxis
and of their lane choice. For any further use of this dataset, whether observedK has value 1, this
means that a probe vehicle would have reported the same value of occupied as by the sensors of
SFpark.

o diffK: difference between the last occupancy measurement of the taxis and the current number of
occupied parking spaces; K like above.

2. Experimental design, materials and methods

The pipeline to collect the experimental datasets is described in Fig. 1.
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2.1. Data from stationary sensors

The real-world on-street parking availability data comes from the SFpark project [2]. This project
made available a public REST API, returning the number of free parking spaces and total number of
provided parking spaces per road segment, for 5,314 parking spaces on 579 road segments in the
pilot area. We collected parking availability data from 2013/06/13 until 2013/07/24, by querying this
API at approximately 5-min intervals. As a result, we obtained in total about 7 million observations
of parking availability on the road segments. Let us observe that, due to design of the SFpark AP, it
was not possible to collect availability information at a stall granularity, but rather at road segment
level.

To cleanse the dataset from implausible sensor values, we excluded a road segment from our
investigation if, for more than three days, data was missing or the number of occupied parking
spaces on it was constant. We removed road segments never showing an occupancy rate higher
than 85%, too, based on the assumption that either some sensors failed, or parking was not
competitive there and that road segment was thus less relevant to monitor. Finally, we excluded
tow-away periods, such as street cleaning or peak hour drive way periods, using the SFpark API,
which reported, during those time frames, both zero parking capacity and zero occupied spaces
for the involved road segments. As a result, of the original 579 road segments, we kept in our
dataset 420 of them, for a total of more than 5 million observations. To have a common geo-
spatial layer, we used the OpenStreetMap road network. All these steps are represented in
block (1) of Fig. 1.

2.2. Simulated crowd-sensed data

The simulation of the obtainable crowd-sensed parking availability data is based on the hypothesis
that all the considered probe vehicles are equipped with sensors able to detect empty parking spots
while passing by a road segment, like described in [3] or [4], and sending this information to a back-end
infrastructure, where it is aggregated to obtain a dynamic parking availability map.
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Fig. 1. Schematic view of the pipeline used to build the datasets.
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To simulate the achievable spatio-temporal coverage of crowd-sensed parking data, we used a
public repository of taxi trajectories in San Francisco, to measure how often a road segment might be
visited by a taxi, sensing its parking availability.

To this aim, we started by exploiting a repository of taxi traces was collected within the Cabspotting
project [5]. Each taxi periodically sent to a central server a Floating Car Data (FCD) record, containing
information on its latitude, longitude, timestamp, and passenger occupancy. The resulting dataset
contains 11,219,955 observations, collected from 536 vehicles of the Yellow Cab company, over 25 days
in the San Francisco Bay Area.

We first map-matched the sequences of GPS points with the OpenStreetMap road network, using
the approach described in Ref. [6]. Then, we split each taxi's FCD flow into a set of independent tra-
jectories. The trajectories corresponding to a total of 8,839,942 GPS points (78.8% of the original
dataset) were retained in the considered dataset. About one third of the missing points were discarded
due to too few GPS points per trip. The remaining two thirds were excluded because at least one
segment of the trajectory required an implausible speed, with respect to the underlying road network,
mainly due to sporadic GPS sensing errors. As next step, a spatial filtering of the trajectories was
performed, by removing all the trajectories not overlapping road segments covered by the SFpark
project.

In order to simulate different sizes of the taxi fleet, from the full dataset of 486 taxis, a down-
sampling for a lower number N of taxis (100, 200, 300, 400) was computed, by randomly sampling
vehicles. To reduce selection biases, we generated ten independent subsamples for each considered
fleet size. The data we are providing is computed on the average over these ten subsets.

Since only probe vehicles moving on a lane adjacent to a parking lane can monitor availability, the
number of lanes and the driving direction must be considered. As the lane choice of the taxi drivers is
unknown, we considered a uniform distribution of the taxis over the lanes, and therefore, only 1/
#(lanes) of the visits (randomly chosen for each subsample) in the corresponding driving direction
were used for the subsequent calculations.

To compute the spatio-temporal sensing coverage of the taxi fleets, it is necessary to compute the
temporal resolution of the taxi visits for each road segment, as described in Ref. [7]. The average time
among two subsequent taxi visits for each road segment were computed also for smaller fleets of 50,
100, 200, 300 and 400 vehicles.

Finally, to generate the dataset of crowd-sensed parking availability for a fleet of size s (CSPs), for
each road segment and hour of each day of the week, we used the taxi transits of this hour to mask
observations from the original SFpark dataset. More in detail, each CSPs dataset, represented in block
(2) of Fig. 1, has the same number of road segments and the same temporal resolution of the SFpark one,
namely 420 segments with a record every 5-min, and is generated as follows: for each road segment r
and each 5 minutes time frame, centered on an observation in the SFpark dataset (—2.5min and
+2.5min), we checked the visit of at least one probe vehicle from the fleet of size s. If this is the case, a
taxi visit function Viaxi(s, 1, t) yields 1, else it yields 0. If Viii(s, 1, t)=1, we simulated the crowd-sensing
of parking availability by copying the corresponding information from the SFpark dataset into CSPs. On
the contrary, if no vehicle visited the road segment r in the time frame t, no parking information could
have been crowd-sensed, and the corresponding entry in the CSPs dataset is thus a missing observation.
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