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Doping of a Spin-1 Chain: An Integrable Model
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An exactly soluble model describing a spth= 1 antiferromagnetic chain doped with mobile
S = 1/2 carriers is constructed. In its continuum limit the undoped state is described by three gapless
Majorana fermions composing the @) triplet. Doping adds a scalar charge field and a singlet Majo-
rana fermion with different velocity. We argue that this mode survives when the Haldane gap is added.
[S0031-9007(98)07027-6]

PACS numbers: 71.10.Pm, 75.10.Jm, 75.50.Ee

It is well known that mobile holes introduced into below) the ratio between the exchange integral and the
antiferromagnetic Mott insulators by means of dopinghopping is fixed in (1). We do not expect this to be a
cause frustration which seriously affects the magnetiserious restriction on physical properties of the model.
properties of the system. In this paper we study arhird, hopping processes such 4ds;|;)—1|l;1;)
doped spin-1 chain which in the presence of mobileare allowed. Finally, the integrable model contains an
holes interpolates betweefi= 1 and S = 1/2 states. antiferromagnetic exchange interaction between nearest
According to Refs. [1-3] this situation is realized in neighbor hole states which is responsible for the absence
the carrier doped Haldane system_YCa.BaNiOs [4]:  of a ferromagnetic phase of (2) for sufficiently large hole
For x = 0 the interactions between the spin-1’Niions  concentration. Such an interaction has, however, been
are well described by a Heisenberg model, upon dopingonsidered in Ref. [3] to improve agreement with the
mixing of the S = 1/2 holes on the Oxygen sites leads experiments at = 1.
to a low energy doublet state in an effective one-band In the following we will use the exact solution of (1)
Hamiltonian which can move in thg = 1 background. to deduce an effective field theory for the low-energy sec-

The model we study is an integrable model whoseor of the system which will enable us to study possible
Hamiltonian closely resembles the Hamiltonian intro-relevant perturbations. The low-energy limit of the un-
duced in [2]: doped systemx(= 0) is well known to be a realization

L . 4 ovP of an SU2) level k = 2 Wess-Zumino-Novikov-Witten
H Z Ho + Huner}s (WZNW) model with central charge = 3/2. This model
= is equivalent to a model of three massless Majorana fermi-
ons composing an SW) triplet [5]. A completely filled
SiS; (x = 1) band corresponds to tie= 1/2 chain which in
@) the low-energy limit is equivalent to the $2); WZNW
+ 3s5,a[1 — (S - Sj)2]>, model. For finite doping we find, as may be expected,
hopp one free bosonic mode in the charge sector. The spin sec-
Hij " == = 85,5)P;(Si - S)). tor, however, turns out to be rather unusual containing a
Here S2 = S;(S; + 1) with S; =1 or 1/2 and P; direct sum ofc = 3/2 an.dc = 1/2 models with diffgr—
permutes the spins on siteand j. Comparing (1) to the ent v_elocmes. Thus doping generates the fourth Majorana
effective one-band Hamiltonian for the doped Ni oxide fermion—a feature observed in various models related to
given in [2], two-channel Kondq physics [6,7]. _
The model (1) is constructed from solutions to the

H;; = 85.5,198i * Sjr1 — ’_Pl.j<si -8 + l>, (2) Yang Baxter (YBE) equation invariant under the action

2 of the graded Lie algebra/(2|1) in the “atypical”
we find several differences. First, the spin exchangeepresentatior]S]+ [8]. These representations contain
betweenS = 1 sites contains biquadratic terms giving the two multiplets of spinS and(S — 1/2) with respect to the
spin-1 Takhtajan-Babujian chain for hole concentrationSU(2)-subalgebra of/(2]1). A well known example for
x = 0. Therefore in the undoped limit the spectrum isa lattice model obtained from thé/2]-representation in
gapless and one may think that the most spectacular fe#his approach is the supersymmetrid model (see, e.g.,
ture of the doped = 1 chain—filling the gap with holes, [9]). Denoting the generators of the 8l subalgebra
is lost in our model. We shall see later, however, that itby S¢, the U(1)-charge operator by and the remaining
is possible to reintroduce a gap in the continuous limitfermionic generators f/(2| 1) by V=, W= (which create
where we have a field theoretical description of the modeland annihilate the holes, see [8]) the lodaloperator of
Second, due to a hidden supersymmetry of the model (sébe quantum inverse scattering method reads

1
exch __
Heh = 2(
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w + 2iB iN2W™ iN2w™
L) x| iv2VT  uw+ i(B + §9) —ist (3)
—i2V™ —iS~ w+ i(B — 59

The spectrum of the transfer matrix for a vertex modelwhere all densities marked by tilde correspond to holes,
with L of these weights per row is obtained by meansf * g(x) denotes a convolutions(x) = 1/(2 coshmx),
of the algebraic Bethe ansatz [10]. Starting from thea,(x) = (2n/7)/(4x*> + n?) and

fully polarized state of spi%- multiplets on each site
we consider states withv, holes (generating sites with
spin § — 1/2) and magnetizatiolM? = LS — iN;, —

Cnm(x) = 6nm6(x) - (5n+l,m + 511—1,m)s(x)'
Writing the energy (5) in terms of densities dholes and

N,. This leads to an auxiliary eigenvalue problem forp we obtain

an inhomogenous graded six-vertex model on a lattice
of n = Nj, + N, sites which is solved by means of a E/L = —2 —
second Bethe Ansatz through addition of states with

fermionic grading (holes) to its eigenstate with= N|

(for details see, e.g., [9]). As a result the spectrum of the
supersymmetric vertex model is parametrized by the roots

of the following set of Bethe-ansatz equations (BAE)

N, +N, Ni

f dx[2m(as * 5) + wlp)

+ / dx2ms(x)oa(x) — ,I,i_rﬂcan dx 0,(x).
(7)

By minimization of the free energy we obtain the ther-

Aj + S L B Aj— A+ Nj—ve — 3 modynamic Bethe ansatz (TBA) equations for the ener-
Aj — iS - /D A= A — io!:ll A — vy + i giese, = T'In(G,/0,) of A strings andk = T'In(p/p)
, ! / 2 for the hole rapidities
J = 1,...,Nh + Nl
Nt Ny A+ (4)  €,(x) = Ts * In[1 + e /T[] 4 &1 (/T
a — Nk 2
1 - 7[ s _ _ *K(X)/T
e Ve — A — & 2w 8,08(x) — 8,1Ts * In[1 + e 1, (8)
a=1,...,N,. subject to the condition lip.«(e,/n) = H and
For § = 1/2, where the model becomes the supersym-—[27a; * s(x) + u] — Ts # In[1 + ¢®/T]
metric -J model, and Egs. (4) are Sutherland’s form of = + TR #In[1 + ¢ <W/T 9
the BAE [11]. The grading of the underlying algebra x(x) [ ¢ I (.)
allows to construct two more sets of (equivalent) BAEWhereR = a, = (1 + a2)~'. Interms of these functions

[9,12]. Equations (4) are most convenient for our analythe free energy reads

sis, however.

To construct docal Hamiltonian forS = 1 we project
the graded tensor producf,(u + 3)®L,(u — 3) in
two copiesV,, V, of the matrix space of (3) onto the
[1]+ representation inV, ® V,. The result L[}, (u)

F/L = -2 — Tf dx s(x)In[1 + e=™/T]

- T/ dx(ar * s)x)In[1 + e “®/T]. (10)

of this fusion [13,14] defines a new vertex model with For temperaturesT < H the energiese,~, can be
eigenstates again parametrized by the roots of (4). Theliminated from (8), giving the following equation fas:

logarithmic derivative of its transfer matrix at = 0 is
2
2o+l

the Hamiltonian (1) with eigenvalues
+Lm
a=1 a 2

N+N,
> (n-
— LH (5)

k=1
[we have added an external magndiidield and a (hole)
chemical potentiaik = w + 1 to the Hamiltonian].

In the thermodynamic limit the solutions of the BAE
(4) are real hole rapiditieg, whose density we denote
as p(v) and complexA strings with densitieso,(A)
(n = 1,2,...). The equations for the densities are

5n,ZS(-’C) = Un(x) + Cpp * &m(x) - 5)1,13 * ,O(X),
ays(x) = p(x) + [1 + @] = p(x) + 5 % 71 (x),

E({Aj}{ve)) — HM® — Ny,

(6)

€(x) — TR # In[1 + =T = —275(x) + H/2

+ Ts # In[1 + eW/T7],
(11)

Together with then = 1 equation from (8) and (9) this
equation determines the low-temperature phase diagram
of the system (Fig. 1). For sufficiently large negatje
Eq. (9) impliesk > 0 corresponding to vanishing hole
density. The remaining TBA coincide with those for the
integrableS = 1 magnet [15,16]. Choosing. > H/2

we find k < 0 and e; < 0 which implies a hole density

x = 1. The resulting TBA fore,=, are those of the

S = 1/2 Heisenberg chain. Similar considerations for
intermediateu yield the complete phase diagram and lead
us to identify k and €; as the energy of the charge and
spin modes associated with the mobile carriers whilées

the magnetic mode of the background spins.
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Herepo(x) is the density of hole rapidities &t = 0

40 ¢ Q
pote) = [ dy REx = po(3) = @z % 500
3.0 andv is the velocity of the charge mode
1 (?KQ
" 20 t Y7 2mpo(Q) ox =0 (16)
In the lowT limit T < —u where this form is
valid one may replace(x) and spo(x) in (15) by their
1O | asymptotics. Now we have TBA equations in such
A form that the spin sector is manifestly decoupled from
0.0 ‘ , ‘ ‘ the charge one. The free energy of the latter is given
0.0 0.2 0.4 0.6 0.8 1.0 by Eq. (14) representing a scalar bosonic mode, while
X Egs. (12) and (15) describe the thermodynamics of the

] _.spin sector. Such TBA equations (i.e., with two driving
FIG. 1. Low temperature phase diagram of the doped chain igo ) arise also in other systems combining different
a magnetic fieldd > T: the saturated ferromagnetic phase is __. 18 d in the t h | Kond del with
labeled FM. At intermediate fields the low-energy propertiess‘plns [18] and in the two-channél Kondo model wi
of the system are determined by gapless bosonic modes with channel anisotropy [19]. As shown in Ref. [7] such
energiesk (A, B1), € (A,B,FM), and €, (A,B1,,C). The a two-channel Kondo model can be written in terms of
H = 0 phase is discussed in the main text. four Majorana fermions. These considerations lead us to
hypothesize that the effective low-energy theory for the

We now concentrate on the case of finite doping in ai@miltonian (1) at small doping is

vanishing magnetic field which corresponds to chemical . —F
potentialsm — 4 < w < 0. In this regime we have < Her = | dx[H + H]

0 for |x| < Q. For temperatures smaller than the Fermi P ;
energy of holesT < —u one can replace in Eq. (8) H=—-—— Z VaXaOxXa — = V1X09x X0 a7
by its zero temperature valug(x) and the free terms by 2 = 2
their asymptotics. As a result we get + gXOX1X2X3
€x(x) = Ts # In[1 + e VT[] + ¢&n@/T] and a similar expressiodH ({x}) for the left movers.
_ 275”,2€—w|x| _ 27TA8n’1€77r|x|’ (12) T_he fieIdsX_O, X« are Majorana fermions. and thg mar-
o _ ginal coupling g between two sectors in (17) is the
where A = —(2m)~! [Z, dye™ko(y). To study the only one possible by symmetry (we have omitted mar-

specific thermodynamic properties of the present modgjinally irrelevant interactions between sectors with dif-
we have to separate the contributions to the free energirent chirality). A magnetic field couples to the term
stemming from the charge sector from those due tqQ [(B8y,x. + €wexsx.) quadratic in the fermions with
the €,. Considering low temperatures again the leadingsome constang.
contributions tox come from the vicinity of the Fermi The parameters of the effective theory have to be ex-
wave vectorstQ. In this region one can safely neglect tracted from the TBA at small doping. This corresponds
contributions to Eq. (9) frong; and rewrite it as to A < 1 and implies that the two terms in (15) are domi-
B _ “lk()l/T nated by contributions from the regiotix ~ In(27/T)

[27maz # s(x) + u] = TR »In[1 + e ] (Wherele,| ~ T) and bywx ~ In(2wA/T), respectively.

0 This separation of scales allows one to obtain the srall

= k(x) — fQ dy R(x — y)x(y), (13) behavior of (15) at low temperatures

aT* (1  3A
where Q is determined by the conditior(+Q) = 0. fa= —a<5 . InA)
Using the procedure introduced by Takahashi [17], we can 5
rewrite the free energy (10) &/L = Ey/L + f1 + f>» _ 7T (i + 34 InA) +
whereE, is the ground-state energy and 6vy \2 47w
B (Ol T ) For A = 0 this is the free energy of a single Majorana
fr= _Tf dx po(x)In[1 + e "V ] = —7T7/6v.  fermion [y, in (17)] with velocity v; and that of the
(14) SU(2), WZNW model with velocityv, which can be ex-

pressed in terms of massless triplet of Majorana fermions
fr= —Tf dx s(x)In[1 + e=0/T] [5]. The ratio of the velocities is given by

1 [ dvemro(y)
2 [2, dye™po(y)

(18)

- Tf dx(s * po) (x)In[1 + e®/T]. (15) vifv2 =

2118



VOLUME 81, NUMBER 10 PHYSICAL REVIEW LETTERS 7 BPTEMBER 1998

The coupling constang needs to be chosen such thatthe integrableS = 1 Takhtajan-Babujian and thé =
it produces theA dependence off,. Similarly, the 1/2 Heisenberg chain. For finite doping we find up to
parameteid can be determined from tHe = 0 magnetic three massless modes determining the low temperature

susceptibility. At smald < 1 we get thermodynamics of the system. In the @Vinvariant
171 1 A case = 0) these are a bosonic charge mode and a di-
X = —(— by InA + ) rect sum of a S(2), WZNW model and one Majorana
T \VU) V1 2T

fermion with different velocities in the spin sector. Fur-
giving B2 = A/2x. In Fig. 2 some of these quantities ther analysis of the TBA is necessary to gain more insight

are given as a function of the hole concentration in the nature of the phase diagram of this and the related
The simplest S(2) invariant perturbation of (17) is a § > 1 systems.
mass termi [ dx(m Zi:lya)(a + My, xo) for the par- This work has been supported by the Deutsche

ticles in the spin sector (recall that the model of threeForschungsgemeinschaft under Grant No. Fr/232.
massive Majorana fermions is a good continuous approxi-

mation for theS = 1 Heisenberg antiferromagnet [20]). .
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