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Using the density-matrix renormalization-group~DMRG! technique, we calculate critical exponents for the
one-dimensional Hubbard model with open boundary conditions with and without additional boundary poten-
tials at both ends. A direct comparison with open boundary condition Bethe ansatz calculations provides a
good check for the DMRG calculations on large system sizes. On the other hand, the DMRG calculations
provide an independent check of the predictions of conformal field theory, which are needed to obtain the
critical exponents from the Bethe ansatz. From the Bethe ansatz we predict the behavior of the 1/L-corrected
mean value of the Friedel oscillations~for the density and the magnetization! and the characteristic wave
vectors, and show numerically that these conjectures are fulfilled with and without boundary potentials. The
quality of the numerical results allows us to determine the behavior of the coefficients of the Friedel oscilla-
tions as a function of the Hubbard interaction.
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I. INTRODUCTION

Recent Bethe ansatz studies of the one-dimensional H
bard model with open boundaries subject to boundary che
cal potentials or magnetic fields1–4 have opened new poss
bilities to apply the predictions of boundary conformal fie
theory5–7 for the asymptotics of correlation functions
quantum impurity problems. As in the case of period
systems,8–10 the corresponding matrix elements cannot
computed directly but must be extracted from the scal
behavior of the low-lying excited states. For generic fillin
and magnetization these finite-size spectra allow the ide
fication of the contributions from two massless bosonic s
tors associated with the spin and charge excitations i
Tomonaga-Luttinger liquid.

A crucial step in these studies of systems with op
boundary conditions is the correct interpretation of the fin
size spectra obtained from the Bethe ansatz. These sp
determine both the bulk correlation functions, which are
dependent of the boundary fields, and the nonuniversal
pendence of boundary phenomena such as the orthogon
exponent or x-ray edge singularities on the strength of
scatterer. Hence both in the requirement of conformal inv
ance and in the analysis of the finite-size spectra, the c
putation of correlation functions relies on assumptions wh
need to be verified by a more direct method, most notably
numerical calculations. Of course, comparison with exact
sults is also of interest for the numerical calculation: pred
tions of critical exponents for microscopic models allow t
algorithms to be improved, which can then, in turn, be e
PRB 580163-1829/98/58~16!/10225~11!/$15.00
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pected to produce better and more reliable results for m
general systems.

These considerations motivate our study of the Frie
oscillations for the single-particle density and magnetizat
in the open Hubbard chain with boundary chemical pot
tials, which is described by the Hamiltonian

H52 (
s, j 51

L21

~cj ,s
† cj 11,s1H.c.!1U(

j 51

L

nj ,↑nj ,↓

2p~n1,↑1n1,↓1nL,↑1nL,↓!, ~1!

where the lattice hasL sites,cj ,s
† (cj ,s) creates~destroys! an

electron on sitej ,nj ,s5cj ,s
† cj ,s , and we have made the hop

ping integral dimensionless so that the Coulomb repulsionU
and the on-site potentialp are measured in dimensionles
units.

Numerical calculations of critical exponents in low
dimensional systems such as magnetic chains or electr
systems have a long history. Due to the need to cons
systems of sufficient size, many earlier studies have u
quantum Monte Carlo methods to treat systems with perio
boundary conditions~PBC!.11 More recently, the density-
matrix renormalization group~DMRG! ~Refs. 12 and 13! has
become a new and powerful method especially suited to
study of one-dimensional systems with open boundary c
ditions ~OBC!.14,15 However, systems with PBC have als
been studied with this method.16–18

In the usual approach to the calculation of correlati
functions with DMRG, one considers large systems and
10 225 © 1998 The American Physical Society
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erages over an ensemble of correlation functions located
ficiently far from the boundaries. In the thermodynam
limit, this procedure removes the Friedel oscillations due
the boundary and gives the bulk behavior of the quantity
question.

Here we want to make use of the existence of the ex
solution of Eq.~1! in two ways in order to prepare the wa
for further extensions of the method. First, we use the qu
tities obtained from the Bethe ansatz to provide checks of
numerical method at large system sizes. Second, we us
information contained in the oscillating behavior to obta
more reliable results for the critical exponents.

This paper is organized as follows. In Sec. II, we give
short description of the Bethe ansatz and DMRG metho
citing the relevant results from the Bethe ansatz and con
mal field theory~CFT! concerning Friedel oscillations. In
Sec. III, we study the Friedel oscillations of the densityN(x)
and the magnetizationM (x). Combining the CFT results
with those for noninteracting fermions, we obtain conje
tures for the explicit form of the Friedel oscillations. Afte
introducing the fit method used to obtain the exponents
coefficients from the DMRG results, we check the conje
tures for two fixed densities and varying on-site interact
U. In addition, we study the dependence of the expone
and coefficients on the boundary potentialp at one density.

II. METHODS

A. Bethe ansatz

The one-dimensional Hubbard model with OBC, Eq.~1!,
can be solved using the coordinate Bethe ansatz. The s
metrized Bethe ansatz equations~BAE! determining the
spectrum ofH in the Ne5N↑1N↓-particle sector read1–4

eik j2LBc~kj !5 )
b52N↓

N↓ sin~kj !2lb1 iu

sin~kj !2lb2 iu
,

Bs~la! )
j 52Ne

Ne la2sin~kj !1 iu

la2sin~kj !2 iu
5 )

b52N↓
bÞa

N↓ la2lb12iu

la2lb22iu
,

~2!

j 52Ne ,...,Ne , a52N↓ ,...,N↓ ,

where we have definedu5U/4 and identified the solution
k2 j52kj andl2a52la in order to simplify the BAE. The
boundary terms read

Bc~k!5S eik2p

12peikD 2 sin~k!1 iu

sin~k!2 iu
,

~3!

Bs~l!5
l12iu

l22iu
.

Since the BAE are already symmetrized and the solutionk
50 andl50 have to be excluded, the energy of the cor
sponding eigenstate of Eq.~1! is given by

E512 (
j 52Ne

Ne

cos~kj !. ~4!
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In Refs. 2–4 the ground state and the low-lying excitatio
were studied for small boundary fields. In Ref. 19 the ex
tence of boundary states in the ground state forp.1 was
established. Bound states occur as additional complex s
tions for the charge and spin rapidities.

Here we will use the explicit form of the BAE, Eq.~2!, to
check the energy convergence of the DMRG results for fin
L. Furthermore, the expectation values of the density at
boundaries can be calculated from the derivative of the
ergy with respect top ~cf. Sec. II B! allowing another check
of the numerics. Finally, the value of the magnetization
the boundaries for vanishingp can be calculated with a
slightly modified Bethe ansatz~i.e., with a magnetic field at
the boundary; see Refs. 3 and 4!.

Using standard procedures, the BAE for the ground s
and low-lying excitations can be rewritten as linear integ
equations for the densitiesrc(k) andrs(l) of real quasimo-
mentakj and spin rapiditiesla , respectively:

S rc~k!

rs~l! D5S 1

p
1

1

L
r̂c

0~k!

1

L
r̂s

0~l!
D 1K* S rc~k8!

rs~l8! D ~5!

with the kernelK given by

K5S 0 cos~k!a2u@sin~k!2l8#

a2u@l2sin~k8!# 2a4u~l2l8!
D . ~6!

Here we have introduceday(x)5 (1/2p)(y/y2/41x2), and
f * g denotes the convolution*2A

A dy f(x2y)g(y) with
boundariesA5k0 in the charge andA5l0 in the spin sector.
The values ofk0 andl0 are fixed by the conditions

E
2k0

k0
dkrc5

2@Ne2Cc#11

L
~7!

and

E
2l0

l0
dlrs5

2@N↓2Cs#11

L
, ~8!

where Cc(Cs) denotes the number of complexk(l) solu-
tions present in the ground state.19 In addition to the bound-
ary terms in Eq.~3!, the driving termsr̂c

0 and r̂s
0 depend on

whether or not the complex solutions are occupied or n
The explicit form can be found in Refs. 2–4 and 19. T
presence of these 1/L corrections leads to the shifts

up
c5

1

2 S LE
2k0

k0
dkr̂c2112CcD , ~9!

up
s5

1

2 S LE
2l0

l0
dlr̂s2112CsD , ~10!

where r̂c and r̂s denote the solution of Eq.~5! without the
1/p driving term, i.e., the bulk system solution.

Here we will be mainly interested in the exponents of t
Friedel oscillations, given in Table I. The quantity that d
termines the critical exponents is the dressed charge m
Z:8,20
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Z5S Zcc Zcs

Zsc Zss
D 5S jcc~k0! jsc~k0!

jcs~l0! jss~l0!
D T

, ~11!

which is defined in terms of the integral equation

S jcc~k! jsc~k!

jcs~l! jss~l!
D 5S 1 0

0 1D 1KT* S jcc~k8! jsc~k8!

jcs~l8! jss~l8!
D .

~12!

In Ref. 21 it was shown that then-point correlation functions
of the open boundary system are related to the 2n-point
functions of the periodic boundary system. Thus the exp
tation value of the local density in the open system,^N(x)&o ,
can be extracted from the two-point correlation functi
^N(z1)N(z2)&p of the periodic system~see also Ref. 22
where a spinless fermion model was considered!. We can
therefore use the results obtained in Refs. 8 and 9 for
density-density correlation function. As a function ofzc5x
1 ivct and zs5x1 ivst ~wherevc and vs denote the Ferm
velocities of the charge and spin sector, respectively!, the
asymptotic form ofGnn(x,t)5^N(x,t)N(0,0)& is

Gnn~x,t !5ne
21

B↓cos~2kF,↓x1d↓!

uzcu2g↓,cuzsu2g↓,s
1

B↑cos~2kF,↑x1d↑!

uzcu2g↑,cuzsu2g↑,s

1
Bncos@2~kF,↑1kF,↓!x1dn#

uzcu2gn,cuzsu2gn,s
, ~13!

with kF,↑,↓5pn↑,↓ . The exponents are displayed in Table
Equation~13! shows the oscillating terms which are the mo
relevant ones asymptotically. For vanishing magnetizat
the momentakF,↓ andkF,↑ coincide, and one has to consid
logarithmic corrections inx ~see Ref. 23!—this case will not
be considered below.

Following Cardy21 one has to replaceuzcu2→x and uzsu2
→x to obtain^N(x)&o from Eq. ~13!. The final result is

^N~x!&5ne1A↓
cos~2kF,↓x1w↓!

xg↓,c1g↓,s
1A↑

cos~2kF,↑x1w↑!

xg↑,c1g↑,s

1An

cos@2~kF,↑1kF,↓!x1wn#

xgn,c1gn,s
. ~14!

The correlation functionGss
z ;^M (x,t)M (0,0)& with mag-

netization M5N↑2N↓ has the same critical behavior a
Gnn(x,t). Therefore,̂ M (x)& has the same form as^N(x)&,
but with different coefficientsAa .

B. Density-matrix renormalization group

The density-matrix renormalization-group meth
~DMRG! ~Refs. 12 and 13! has become one of the mo
powerful numerical methods for calculating the low-ener

TABLE I. Exponentsga,c andga,s as a function of the element
of the dressed charge matrix.

ga,c ga,s

a5↓ (Zcc2Zsc)
2 (Zcs2Zss)

2

a5↑ Zsc
2 Zss

2

a5n Zcc
2 Zcs

2

c-

e

t
n

properties of one-dimensional strongly interacting quant
systems. The expectation values of equal-time operator
the ground state, such as the local density or magnetiza
which interest us here, can be calculated with very go
accuracy on quite large systems~on lattices of up toL
5400 sites in this paper!. As we will see, access to suc
large system sizes is essential for the real-space fit
method used to extract the coefficients and exponents of
Friedel oscillations~see Sec. III B!. In the DMRG, open
boundaries are also the most favorable type of boundary c
ditions numerically: for a given number of states kept~which
corresponds to the amount of computer time needed!, the
accuracy in calculated quantities such as the ground-s
energy is, in general, orders of magnitude better for op
boundary conditions than for periodic bounda
conditions.13,24

In this work thefinite-systemDMRG method is used: af-
ter the system is built up to a given size using a variation
the infinite-systemmethod, a number of finite-system itera
tions are performed in which the overall size of the syst
~i.e., the superblock! is kept fixed, but part of the system~the
system block! is built up. Optimal convergence is attained b
increasing the number of states kept on each iteration,
the convergence of the exact diagonalization step is
proved by keeping track of the basis transformations a
using them to construct a good initial guess for the wa
vector.25 For all calculations shown in this paper, we ha
performed five iterations with a maximum ofm5600 states
kept. The resulting discarded weight of the density mat
wasO(1027) and below.

We illustrate the convergence of the algorithm explici
in Figs. 1–3. One finds that for all the parameters which
used in this paper the ground-state energy per site is accu
to O(1026) or less, Fig. 1, while the expectation value of th
density at the first site~or at the last site, due to symmetry! is
accurate toO(1025), as can be seen in Fig. 2.

The magnetization shows an analogous behavior but w
results correct up toO(1024), Fig. 3. It is also interesting to
note that forU<10 there is no strongU dependence of the
accuracy of either the density or the magnetization expe
tion values.

We now want to examine the effect of switching on t
boundary fields simultaneously at the first and last sites

FIG. 1. The difference between the ground-state energy per
calculated with the DMRG,E0

D , and the exact BA energy,E0
B , as

a function of the number of DMRG iterations for a typical syste
(L5400, ne50.55, n↑50.35, U510, andp50!.
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the quality of the DMRG results. In order to do this, w
compare the mean density^N1(p)& from DMRG calculations
with Bethe ansatz results calculated in the thermodyna
limit. Within the Bethe ansatz, the mean density is calcula
from the derivative of^H& with respect to the boundar
field p.

The numerical results, shown in Fig. 4 on anL5100 lat-
tice for electron densityne50.55, n↑50.35, and for two
values of the interactionU, are again in very good agree
ment with the values for the thermodynamic limit. The d
ferenceN1

D2N1
B is now O(1023). While this seems to be

worse than thep50 case, we have neglected finite-size c
rections to^N1& since we have compared to thermodynam
limit Bethe ansatz calculations. If we explicitly take the 1L
corrections to the Bethe ansatz values into account, we
agreement toO(1025). This value is already smaller tha
the 1/L2 corrections so that finally we state that^N1& is ac-
curate toO(1024).

III. FRIEDEL OSCILLATIONS

In general, the presence of an impurity or boundary i
one-dimensional fermion system leads to Friedel oscillati
in the density, which have the general form

dr~x!;
cos~2kFx1w!

xg , ~15!

FIG. 2. The difference between the expectation value of
density at site 1 calculated with DMRG,N1

D , and with BA,N1
B , for

the fillings ne50.55 andne50.70 without boundary fields.

FIG. 3. The difference between the expectation value of
magnetization at site 1 calculated with DMRG,M1

D , and with BA,
M1

B , for ne50.55 andne50.70, without boundary fields.
ic
d

-

d

a
s

where the exponentg depends on the interaction. In additio
to numerical studies of these oscillations for spinle
fermions17 and Kondo systems,18 several theoretical attempt
have been made to clarify the role of interaction. Usi
bosonization it is possible to obtain the asymptotic expone
as a function of the interaction parameters and correction
the power-law behavior of Eq.~15!.26,27 CFT results were
used to calculate the interaction dependence of the expo
g for interacting spinless fermions.22 Here we start with non-
interacting fermions to obtain some conjectures for the c
nection between the explicit form of the Friedel oscillatio
and Bethe ansatz results. These conjectures will then
checked using the DMRG results.

A. Noninteracting fermions

By considering only spin-↑ electrons without any bound
ary potential, one can easily obtain the expectation value
the electron density:

N~x!5
N↑1

1
2

L11
2

1

2~L11!

sinS 2px
N↑11/2

L11 D
sinS px

L11D . ~16!

In the limit L→` andx!L the density is given by

N~x!5n↑2
n↑2

1
2

L
2

sinX2pxS n↑2
n↑2 1/2

L D C
2px

5n↑2
u0

c

L
2

sinX2pxS n↑2
u0

c

L D C
2px

, ~17!

with u0
c defined in Eq.~9!. The densityN(x) can also be

calculated explicitly when the boundary fieldp51. It then
has the same structure as Eq.~17!.

If one assumes that the Friedel oscillations in the intera
ing system have an analogous structure to those in the
interacting system, one can combine Eqs.~14! and ~17! to
obtain the following conjectures for the finite-size shifts

e

e

FIG. 4. The expectation value of^N1& for different values of the
interactionU and boundary fieldsp on anL5100 lattice withne

50.55 andn↑50.35. The solid lines represent the exact solutio
in the thermodynamic limit, while the symbols are DMRG resul
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the average density, average magnetization, and the ch
teristic wave vectors in theinteractingsystem:

n̄5ne2
un

L
, m̄5m2

um

L
, ~18!

kF,↓5pS n↓2
u↓
L D , kF,↑5pS n↑2

u↑
L D , ~19!

with u↓5u p
s , u↑5u p

c2up
s , un5u p

c , andum5up
c22u p

s .

B. Fit procedure

Previously, several methods have been used to ob
asymptotic exponents of correlation functions using num
cal data.11,16,28All of these methods use theL dependence o
the Fourier-transformed correlation functions near the
evant peakska(a5↑,↓,n) in Fourier space to extract th
exponents. Due to the fact that only systems with perio
boundary conditions were considered, theka were all inde-
pendent ofL. This L independence seems to be crucial
these methods to work; we were not able to extract a rea
able exponent with any of these methods on a system
open boundary conditions.

Therefore, we fit the DMRG results forN(x) andM (x) to
the real-space test function

f ~x!5H n̄

m̄
J 1 (

aP$↑,↓,n%

Aasin~2ka x1wa!

xga

1
Aa sin„2ka~L112x!1wa…

~L112x!ga
, ~20!

which explicitly includes the momenta as fit paramete
Here the second term is included due to symmetry. There
a total of 13 fit parameters in this function, a prohibitive
large number to do a simultaneous fit of all paramete
However, if we only consider systems in which the thr
peaks in the Fourier spectrum are well separated, there
effective fit of four parameters to every peak. As we will se
the peak atkn is suppressed for smallU, reducing the num-
ber of fit parameters to nine for only two peaks. The amp
tudesAa will be assumed to be positive, with any sign give
by the phasewa . We fit to the magnetizationM (x) and the
densityN(x) independently.

The right side of Eq.~17! is only valid for x!L. In ad-
dition, the CFT results are valid only asymptotically for lar
distances. As a consequence and compromise, we do no
the density information on the first five and last five latti
points.

We perform the least-squares fit in two stages. In the fi
stage, the start parameters of the subsequent fit are d
mined using simulated annealing. The final fit is perform
using a combined Gauss-Newton and modified Newton a
rithm ~using the NAG routine E04FCF!. To estimate the fit
error, ten fits are performed for each system with 10% of
points randomly excluded from each fit.

C. Results

Before discussing the results for the Friedel oscillations
detail, we make some general comments on the nume
ac-
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results. As described in Sec. III B, we calculate the quanti
for the density and magnetization oscillations by applying
13-parameter fit. Fitting to this many parameters requires
use of large system sizes. While the numerical expense
the DMRG procedure grows linearly with the system size
a fixed number of states kept, the accuracy in the energy
in the local density and magnetization decreases with
system size, especially in the Luttinger-liquid regime.24 We
have compared the accuracy of the DMRG results with
accuracy and convergence of the fitting procedure for diff
ent lattice sizes fromL5300 to L5500 and have decided
thatL5400 yields optimal results for the amount of compu
ing power available. However, results within this range
system sizes are in agreement to within DMRG and fitt
errors.

Another important issue is the influence of the bound
potentials on the fitting method and on the Friedel osci
tions ~discussed in Sec. III C 3!. As the boundary potentialp
is increased, bound states will develop at site 1 and siteL.19

In order to avoid these bound states in the fitting procedu
one has to enlarge the range in which the local densityN(x)
is disregarded from 5~i.e., x,L2x21<5! at p50 to about
20 atp59.9.

The discussion of the next three sections will focus
comparing the BA/CFT predictions for the different fit p
rameters with the DMRG results, especially on checking
conjectures from Eqs.~18! and ~19!. We also compare the
numerical results to the different exactly known values
different limits such as the limit of noninteracting fermion
U→0.

1. Density ne50.55

We first examine the Fourier transform of the local ele
tron densityN(x), defined as

N~k,U !5 (
x51

L

cosXkS x2
1

2D CN~x,U ! ~21!

with k5 2p j /L and j 50,...,L/221. @Due to symmetry
N(k,U) vanishes for odd multiples ofp/L.# The quantity
N(k,U) is displayed in a three-dimensional plot in Fig. 5~a!.
Distinct peaks at the three wave vectors,k↑ , k↓ , andkn , can
clearly be seen. Note that we have chosenne andn↑ so that
these three peaks are well-separated. However, the peakkn
becomes very lightly weighted and therefore ill-defined
U,1. In fact, we have found that it is not possible to loca
the third momentumkn for U,1 using the 13-parameter fi
procedure described in Sec. III B. Therefore, we fitN(x)
using only nine parameters forU50.1 andU50.5. We dis-
play the Fourier-transformed magnetizationM (k,U), de-
fined analogously, in Fig. 5~b!. Here thekn peak is even
more poorly defined, and, in fact, is at best barely disce
ible, even at largeU. Therefore, it is only possible to fit to
two peaks using nine parameters in the entire region fr
U50 to U510. For these fit procedures, we have found t
the mean-squared deviations25(x@N(x)2 f (x)#2 is be-
tween O(1027) and O(1026) for the density and betwee
O(1026) andO(1025) for the magnetization for allU val-
ues. These limits will apply to all the fit results shown in th
paper.
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FIG. 5. Fourier transformation of~a! the densityN(x) and ~b! the magnetizationM (x) for several values ofU at the densityne

50.55 andn↑50.35. ~The k50 values are excluded.!
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In Fig. 6 we show the 1/L corrections of the mean value
n̄ and m̄ calculated with the DMRG and from Bethe ansa
using the conjectures in Eq.~18!. One can see that there
quite good agreement between the two calculations for alU.

The comparison of the exact asymptotic exponents at
different momenta with the numerical results is one of
most interesting and important features of this work beca
similar methods will then be able to be used to calcul
properties not directly predictable with CFT/BA, and to tre
systems that are not Bethe ansatz solvable.

The exponents atk↓ andk↑ , extracted from the density a
well as from the magnetization data, are shown in Fig. 7. T
difference between the fit exponents and the CFT predic
is less than 2% for the fits to the density and less than 3%
the fits to the magnetization. As mentioned above, we
obtain an exponent for the peak atkn from the density fit for

FIG. 6. Differenceua5(a2ā)L for the density (a5n) and the
magnetization (a5m) as a function ofU for ne50.55. The solid
lines are the Bethe ansatz conjecturesua .
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FIG. 7. Exponents for the three peaks as a function ofU fitted
for ~a! the particle density and~b! the two peaks of the magnetiza
tion for ne50.55. The solid lines denote the CFT predictions fro
the Bethe ansatz solution.
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U>1 only, due to its small weight especially for smallU. At
U51 the large error bars reflect a poor fit. Here we ha
only consideredU<10, for which gn.g↑ . A further in-
crease inU would lead to a region wheregn,g↑ . A cross-
over between these two regions will be seen for thene
50.70 in the next section, for which it occurs at a somew
lower U.

Due to the fact that we obtain only three independ
exponents from the fitting procedures, it is not possible
determine all of the elements of the dressed charge matriZ.
In fact, only the following combinations are relevant for th
three exponents extracted:Zcc

2 1Zcs
2 , Zss

2 1Zsc
2 , and ZccZsc

1ZcsZss.28 It would be possible to uniquely determine all
the independent elements of the dressed charge matrix
additional information from, for example, any susceptibilit8

or from another correlation function with a different set
critical exponents. Relationships between the elements o
dressed charge matrixZ and the parameters of th
Tomonaga-Luttinger model are given in Ref. 29.

Within the framework of CFT, the amplitudesAa are
completely undetermined. However, the form-fac
approach30 may lead to explicit results for the amplitudes
the future. For example, a conjecture of Lukyanov a
Zamolodchikov31 concerning the amplitude of the spin-sp
correlation functions of theXXZ chain was recently con
firmed by a fit to DMRG results.14

At this point, however, the fit results can only be com
pared to noninteracting fermions (U50), for which A↓
5A↑51/2p. As can be seen in Fig. 8, this value is in rel
tively good agreement~4% deviation! with the fit results. In
addition,An50 for U50, in agreement with theU50 ex-
trapolated value in Fig. 8~a!. The large error bars inAn at
U51 are due to the difficulty in fitting thekn peak for small
U. Since the fitting procedure seems to work well for t
exponents, and the amplitudes yield the correctU50 limit,
we feel that the calculation of the amplitudes is under go
control. This is therefore the first determination of the qua
tative as well as quantitative behavior of these amplitude

The exact positions of the momentak↑ andk↓ are further
fit parameters. The 1/L corrections to thethermodynamic
valueare plotted in Fig. 9. The fit values agree well with t
Bethe ansatz conjectures, except for the correction tok↑,m ,
which deviates from the Bethe ansatz value forU,4. These
deviations are probably due to problems with the fit. No
also that the Bethe ansatz results forua are correct only up to
O(1/L). The momentumkn , which is not shown, is anothe
independent fit parameter. The fit error inkn extracted from
the fit to the densityN(x) is rather large forU,4. This is
due to the fact that the peak atkn is not well-defined enough
in this region to obtain the 1/L corrections to this momen
tum. Nevertheless, the agreement between the fit values
the Bethe ansatz conjectures is very good forU.4.

2. Density ne50.70

In this section, we examine the same quantities as in
preceding section at a density ofne50.70. A treatment of
this density is interesting for a number of reasons. Since
use the same numerical parameters for both densities, we
examine the density dependence of the error in truncating
Hilbert space using the DMRG. This density is also intere
e

t
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ing because the BA/CFT calculations predict that the cro
over between thegn andg↑ exponents will take place within
the range of interaction treated here,U50, . . . ,10.

The Fourier transforms of the local densityN(x) and the
magnetizationM (x) are shown in Fig. 10. Note that the mo
mentumkn ~wrapped back to the range 0 top! is now lo-
cated betweenk↓ andk↑ . As can be seen in Fig. 10~a!, the

FIG. 8. AmplitudesAa fitted to ~a! the density and~b! the mag-
netization as a function ofU for ne50.55. The solid lines are
guides to the eye. The arrow denotes the value for the noninte
ing fermions (51/2p). Note that the amplitudes are, in genera
different for the density and the magnetization.

FIG. 9. Differenceua,b5(na2 ka,b /p)L for a5↓,↑ as a func-
tion of U for the densityn and magnetizationm for ne50.55. The
solid lines denote the Bethe ansatz conjecturesua @see Eq.~19!#.
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FIG. 10. Fourier transformation of~a! the densityN(x) and ~b! the magnetizationM (x) for several values ofU for the densityne

50.70 withn↑50.55 ~k50 values excluded!. Note that the momentumkn is located betweenk↓ andk↑ .
fi

n
e
e

h

,
a

n.
peak inN(x) at kn is not well-defined forU,1, so theU
50.1 andU50.5 data are fitted using nine parameters to
two peaks. However, thekn peak inM (x) is now more well-
defined than forne50.55, as can be seen in Fig. 10~b!, and it
is now possible to fit to all three momenta forU>2. For
smaller values ofU ~U50.1, U50.5, andU51!, a nine-
parameter fit is again made to two peaks.

The 1/L corrections to the mean values of the density a
the magnetization, shown in Fig. 11, are in very good agr
ment with the BA conjectures, thereby providing a furth
confirmation of the predictions of Eqs.~18! and ~19!. The
exponents extracted from the fit are shown in Fig. 12. T
expected crossing of the two largest exponents atU'7 can
clearly be seen. Forg↓ andg↑ obtained from the density fit
Fig. 12~a!, the deviation from the CFT results is about 5%

FIG. 11. Differenceua5(a2ā)L for density (a5n) and mag-
netization (a5m) as a function ofU for ne50.7. The solid lines
are the Bethe ansatz conjecturesua .
t

d
e-
r

e

t

FIG. 12. Exponents for the three peaks of~a! the particle density
and~b! the magnetization as a function ofU for ne50.7. The solid
lines denote the CFT predictions from the Bethe ansatz solutio
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most, with the largest errors occurring forU.6, especially
in g↑ . As can be seen in Fig. 10~a!, the peak atk↑ in N(k,U)
gets weaker for largerU, leading to a less effective fit. Th
agreement of the fitted exponentsgn with the CFT predic-
tions is much better, with a deviation from the BA/CFT va
ues of less than 1% forU.1. The exponents obtained from
fits to the magnetization, Fig. 12~b!, show deviations of up to
about 6% from the BA/CFT results. ForU59 andU510,
the deviation is largest and the exponents coincidentally t
on the same value. Again, this is probably due to larger
rors in the fit because the peak atk↑ becomes weaker a
largerU. One can see that the peaks atk↑ andkn are much
less heavily weighted than the peak atk↓ at largeU.

The amplitudesA↓ and A↑ extracted from the fit to the
density, shown in Fig. 13~a!, decrease monotonically with
increasing U. The U50 values agree with the exactl
known value of 1/2p to within about 4%. The amplitudeAn ,
on the other hand, increases with increasingU. Its U→0
extrapolation agrees well with the value zero of the non
teracting fermions if theU51 point, which cannot be very
accurately determined, is excluded. The behavior and e
the quantitative values of all three coefficients are quite si
lar to thene50.55 case shown previously in Fig. 8~a!. The
amplitudes obtained from the fit to the magnetizationM (x)
are shown in Fig. 13~b!. The amplitudeA↓ behaves similarly
to thene50.55 case@Fig. 8~b!# in that it increases with in-

FIG. 13. AmplitudesAa fitted to ~a! the density and~b! the
magnetization as a function ofU for ne50.7. The solid lines are a
guide to the eye. The arrow denotes the value 1/2p of the noninter-
acting fermions. Note that the amplitudes are, in general, diffe
for the density and the magnetization.
e
r-

-

en
i-

creasing U, but A↑ shows different behavior in that i
reaches a maximum atU'1 and then decreases. Both
amplitudes yield theU50 value of 1/2p to within 6%. The
amplitudeAn for the summed momenta, which could not b
determined forne50.55, increases monotonically withU,
and its U→0 extrapolation agrees well with the value fo
noninteracting fermions,An50.

The 1/L corrections to the momentak↓ fitted for the den-
sity and the magnetization, shown in Fig. 14, are in go
agreement with the Bethe ansatz conjecture. The agreem
is also fairly good foru↑,n , although the error of the fit is
rather large for smallU. However, theu↑,m fit results do not
match well with the conjecture. As we have seen in F
10~b!, thekn andk↓ peaks inM (x) have much lower ampli-
tudes than thek↑ peak, leading to lower accuracy in th
fitting procedure. The fit results for the exponents, Fig. 12~b!,
also had a rather large deviation from the CFT results in
regime. Thus it is not possible to confirm or deny the co
jecture concerning the shift ofk↑ for M (x).

For kn the situation is even worse. Both density and ma
netization fits lead to large fit errors forU,4. The deviation
from the Bethe ansatz conjectures is about 0.08 in both
outside the range of the 1/L correction toun .

In summary, forne50.70 the DMRG results for the mea
density ~magnetization, respectively! and the exponents ar
in good agreement with exact results from BA/CFT, furth
confirming conformal field theory.

A detailed examination of the convergence of the DMR
shows that the numerical accuracy is actually slightly wo
than thene50.55 case, but this could be improved by i
creasing the number of states kept in the DMRG. We the
fore expect to be able to apply these techniques reliably
obtain the boundary exponents and coefficients of other, n
Bethe-ansatz solvable one-dimensional models.

3. Effect of boundary potentials

We now examine the effect of the boundary potentiap
on the Bethe ansatz predictions. We setne50.55, n↑
50.35, andU58 and consider sixp values, for which four
qualitatively different Bethe ansatz solutions exist. Forp5
20.5,0,0.5, no bound state is present in the Bethe an

nt

FIG. 14. Differenceua,b5(na2 ka,b /p)L for a5↓,↑ as a
function of U for the densityn and magnetizationm for ne50.7.
The solid lines denote the Bethe ansatz conjecturesua @see Eq.
~19!#.



ld

c
th

e

a

n
e

e
e
tia
o
2

f
th

.

n
d

ry

n
-

th
tri

nal
ith
. A
the
al-

rge

cil-
u-
y
nts
med

all
the
urs

en-
us

-
po-

a-
of

for

1/
and
is
ined

nce
ot
ve

als
l
be-

ent
nct
the

em

on-
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ground state; we examine both repulsive and attractive fie
The valuesp52.6 andp56 are in a region in which the
Bethe ansatz has two complexk solutions, one for each
boundary potential at sitex51 andx5L. Thep56 ground-
state configuration contains, in addition, two complexl so-
lutions. Finally, forp59.9 there are four complexk and two
complexl solutions, corresponding to a bound pair of ele
trons at each end of the chain. Details of the structure of
ground state as a function ofp are given in Ref. 19.

The p dependence ofN(k,p) andM (k,p) at U58 is not
as strong as theU dependence ofN(k,U) and M (k,U)
found previously. Since we have chosen a fairly largeU, the
peaks in the densityN(x) have enough weight to fit all thre
momenta. As was the case forp50, the peak atkn in the
magnetization is not pronounced enough to be fitted
any p.

The 1/L corrections to the mean values of the density a
magnetization, Fig. 15, are again in very good agreem
with the Bethe ansatz conjectures, showing that Eqs.~18!
and ~19! are valid even in the different physical regions d
scribed above. Within the BA/CFT calculations, the valu
of the exponents are independent of the boundary poten
p. This agrees with the DMRG results, which we do n
show here: the range of the exponents varies by at most
from the exact values forp50 ~after a larger number o
lattice points are discarded from the fits in order to avoid
bound states at the ends!.

The amplitudes also have no significantp dependence
The density fit yieldsA↓'A↑'0.045 andAn'0.12, while
the magnetization fit yieldsA↓'0.28 andA↑'0.21. The ab-
sence ofp dependence atU58 suggests that the interactio
dependence of the coefficients should be that of Fig. 8, in
pendent of the boundary fieldsp.

The effect of the boundary potentialp on the shift of the
positions of the peaks is much larger than the effect of va
ing U ~compare Fig. 16 with Fig. 9!. Since the fit results for
all threek values agree very well with the Bethe ansatz co
jectures, the confirmation of Eq.~19! is even more compel
ling than it was for theU dependence.

IV. SUMMARY AND CONCLUSIONS

We have carried out a detailed comparison between
exact Bethe ansatz solution and density-ma

FIG. 15. Differenceua5(a2ā)L for density (a5n) and mag-
netization (a5m) as a function ofp for U58, ne50.55, andn↑
50.35. The solid lines are the Bethe ansatz conjectures forua .
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renormalization-group calculations for the one-dimensio
Hubbard model with open boundary conditions both w
and without an additional chemical potential at both ends
direct comparison of the ground-state energies as well as
density and magnetization at the ends of the chain has
lowed us to estimate the accuracy of the DMRG on the la
system sizes used in this work.

We have then compared the behavior of the Friedel os
lations in the local density and local magnetization calc
lated directly using the DMRG with conformal field theor
predictions for the asymptotic forms for which the expone
can be calculated using the Bethe ansatz. We have perfor
this check for two different fillings,ne50.55 andne50.70,
for the case without boundary potentials,p50. We have
obtained results consistent with the CFT predictions in
cases except those in which it is clear that the accuracy of
fitting procedure breaks down. Such a breakdown occ
when a particular peak in the Fourier transform of the d
sity or magnetization becomes lightly weighted and th
poorly defined. This occurs principally for thekn5(kF,↑
1kF,↓) peak, especially at smallU values. The good agree
ment between the CFT forms and BA values of the ex
nents and the DMRG calculations provides both a confirm
tion of the CFT predictions and a way to test the accuracy
the DMRG and of the effectiveness of fitting procedures
the Friedel oscillations.

In addition, we have proposed a relation between theL
corrected mean values in the density and magnetization
the 1/L corrections occurring in the BAE. This conjecture
supported by good agreement between mean values obta
from the fit to the DMRG data and the BAE results.

We have been able to extract the interaction depende
of the amplitudes for the Friedel oscillations, a property n
possible to calculate in the framework of the CFT, and ha
found the correct behavior in theU→0 limit.

Finally, we have turned on boundary chemical potenti
at ne50.55 and examined thep dependence of the critica
exponents, the amplitudes, and our conjectures for the
havior of the mean density and magnetization. The differ
p regimes that we have considered yield qualitatively disti
Bethe ansatz solutions that are physically connected with
formation of different types of bound states at the syst

FIG. 16. Differenceua,b5(na2 ka,b /p)L for a5↓,↑,n as a
function of p for the densityn and magnetizationm for U58, ne

50.55, andn↑50.35. The solid lines denote the Bethe ansatz c
jecturesua @see Eq.~19!#.
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boundaries. In agreement with BA/CFT predictions, we ha
found that the critical exponents are independent ofp and
that the influence ofp on the amplitudes is very weak. W
have also found that our conjectures for the 1/L corrected
mean values of the density, magnetization, and the w
vector hold in all of the physically differentp regimes.

The combination of analytical and numerical metho
presented here has yielded new insights into both. The
cess of the numerical techniques will now allow the exam
nation of more complicated systems that are not exactly s
able. Through comparison with the DMRG calculations,
have also been able to show that more information is c
tained in the BAE than is obtained from a direct interpre
tion via conformal field theory.
n
ite

ys
e

e

s
c-
-
v-

-
-

Note added in proof. We thank H. Asakawa for informing
us about his analytical calculation of the expectation va
^N(x)& for p50 in the limit U→`, which is in good agree-
ment with our results extrapolated to this limit.
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