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Using the density-matrix renormalization-groUPMRG) technique, we calculate critical exponents for the
one-dimensional Hubbard model with open boundary conditions with and without additional boundary poten-
tials at both ends. A direct comparison with open boundary condition Bethe ansatz calculations provides a
good check for the DMRG calculations on large system sizes. On the other hand, the DMRG calculations
provide an independent check of the predictions of conformal field theory, which are needed to obtain the
critical exponents from the Bethe ansatz. From the Bethe ansatz we predict the behavior bftherddted
mean value of the Friedel oscillatiorifor the density and the magnetizatjoand the characteristic wave
vectors, and show numerically that these conjectures are fulfilled with and without boundary potentials. The
quality of the numerical results allows us to determine the behavior of the coefficients of the Friedel oscilla-
tions as a function of the Hubbard interaction.

[S0163-182698)09839-1

[. INTRODUCTION pected to produce better and more reliable results for more
general systems.

Recent Bethe ansatz studies of the one-dimensional Hub- These considerations motivate our study of the Friedel
bard model with open boundaries subject to boundary chempscillations for the single-particle density and magnetization
cal potentials or magnetic fieli€ have opened new possi- in the open Hubbard chain with boundary chemical poten-
bilities to apply the predictions of boundary conformal field tials, which is described by the Hamiltonian
theory~’ for the asymptotics of correlation functions to

. . . .. L-1 L
guantum impurity problems. As in the case of periodic B +
system$1° the corresponding matrix elements cannot be H__(r’jzzl (Cj,(,cj+1,(,+H.c.)+U;l NN,
computed directly but must be extracted from the scaling
behavior of the low-lying excited states. For generic filling —p(ny;+ny +ng+ng ), (1)

and magnetization these finite-size spectra allow the identi-
fication of the contributions from two massless bosonic secwhere the lattice haks sites CJ + (Cj,») creategdestroys an
tors associated with the spin and charge excitations in &lectron on sitg,n; ,= CJT,UCJ,U, and we have made the hop-
Tomonaga-Luttinger liquid. ping integral dimensionless so that the Coulomb repulkion

A crucial step in these studies of systems with opemand the on-site potentigd are measured in dimensionless
boundary conditions is the correct interpretation of the finite-units.
size spectra obtained from the Bethe ansatz. These spectraNumerical calculations of critical exponents in low-
determine both the bulk correlation functions, which are in-dimensional systems such as magnetic chains or electronic
dependent of the boundary fields, and the nonuniversal desystems have a long history. Due to the need to consider
pendence of boundary phenomena such as the orthogonalisystems of sufficient size, many earlier studies have used
exponent or x-ray edge singularities on the strength of theuantum Monte Carlo methods to treat systems with periodic
scatterer. Hence both in the requirement of conformal invariboundary conditiongPBC).}! More recently, the density-
ance and in the analysis of the finite-size spectra, the conmatrix renormalization groufDMRG) (Refs. 12 and 1Bhas
putation of correlation functions relies on assumptions whichhecome a new and powerful method especially suited to the
need to be verified by a more direct method, most notably bytudy of one-dimensional systems with open boundary con-
numerical calculations. Of course, comparison with exact reditions (OBC).**> However, systems with PBC have also
sults is also of interest for the numerical calculation: predic-been studied with this meth&
tions of critical exponents for microscopic models allow the In the usual approach to the calculation of correlation
algorithms to be improved, which can then, in turn, be ex<functions with DMRG, one considers large systems and av-
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erages over an ensemble of correlation functions located sufn Refs. 2—4 the ground state and the low-lying excitations
ficiently far from the boundaries. In the thermodynamicwere studied for small boundary fields. In Ref. 19 the exis-
limit, this procedure removes the Friedel oscillations due taence of boundary states in the ground stategorl was

the boundary and gives the bulk behavior of the quantity irestablished. Bound states occur as additional complex solu-
guestion. tions for the charge and spin rapidities.

Here we want to make use of the existence of the exact Here we will use the explicit form of the BAE, E¢R), to
solution of Eq.(1) in two ways in order to prepare the way check the energy convergence of the DMRG results for finite
for further extensions of the method. First, we use the quankt. Furthermore, the expectation values of the density at the
tities obtained from the Bethe ansatz to provide checks of thboundaries can be calculated from the derivative of the en-
numerical method at large system sizes. Second, we use tleegy with respect t@ (cf. Sec. Il B allowing another check
information contained in the oscillating behavior to obtainof the numerics. Finally, the value of the magnetization at
more reliable results for the critical exponents. the boundaries for vanishing can be calculated with a

This paper is organized as follows. In Sec. I, we give aslightly modified Bethe ansatz.e., with a magnetic field at
short description of the Bethe ansatz and DMRG methodshe boundary; see Refs. 3 ang 4
citing the relevant results from the Bethe ansatz and confor- Using standard procedures, the BAE for the ground state
mal field theory(CFT) concerning Friedel oscillations. In and low-lying excitations can be rewritten as linear integral
Sec. lll, we study the Friedel oscillations of the densitfx) equations for the densitigg(k) andpg(\) of real quasimo-
and the magnetizatioM (x). Combining the CFT results mentak; and spin rapidities., , respectively:
with those for noninteracting fermions, we obtain conjec-

tures for the explicit form of the Friedel oscillations. After 1 1. K
introducing the fit method used to obtain the exponents and pe(K) e L Pel ) pe(K")
coefficients from the DMRG results, we check the conjec- (%(M) = 1. +K*(Ps(>\')) ©)
tures for two fixed densities and varying on-site interaction Epg()\)
U. In addition, we study the dependence of the exponents
and coefficients on the boundary potenfiaat one density. with the kernelK given by

Il. METHODS B 0 Coik)azu[sin(k)—k’]> ©

ag[A-sink)]  —ag(A-A) )

A. Bethe ansatz

The one-dimensional Hubbard model with OBC, £y, ~ Here we have introduce, (x) = (/}/277)(3//3/2/4*‘ x?), and
can be solved using the coordinate Bethe ansatz. The syni*9 denotes the convolution/=,dyf(x—y)g(y) with
metrized Bethe ansatz equatiofBAE) determining the bPoundariesA=k, in the charge ané=2\, in the spin sector.

spectrum ofH in the Ng=N; + N -particle sector redd* The values ok, and\ are fixed by the conditions
N . 3 : ko 2[Ng—C.]+1
eki2LB (k)= ﬁ M J’ dkpe=—— L - 0
ST 522, sin(k) =N g—iu’ ~o
| " and
e N, —sin(kj)+iu £ Ng—Agt2iu
Biho) [l —ii—= — 5 A 2[N,—C¢]+1
ST 2N N sin(k) —iu p=In) Ng—Ag—2iu J ° d?\ps,:%’ ®)
B+ a (2) —X\p

where C.(C;) denotes the number of compldX\) solu-
j=—Ne,....Ne, a=—N|,...N|, tions present in the ground stdfeln addition to the bound-
ary terms in Eq(3), the driving terms? and p® depend on
whether or not the complex solutions are occupied or not.
The explicit form can be found in Refs. 2—4 and 19. The
presence of these ll/corrections leads to the shifts

where we have defined=U/4 and identified the solutions
k_j=—kjand\ _,=—\, in order to simplify the BAE. The
boundary terms read

eik_p

B (k)= Zsin(k) +iu 1 (kL
c 1_pelk Sir(k)_iu’ 6p:§ L . dkpc—1+2CC s (9)
_ () °
B()\):m s 1 Moo .
S A—2iu’ =5 L d\ps—1+2C]|, (10)

Since the BAE are already symmetrized and the solutions
=0 and\ =0 have to be excluded, the energy of the corre
sponding eigenstate of E(l) is given by

‘Wwherep, and ps denote the solution of Eq5) without the
1/7r driving term, i.e., the bulk system solution.
Here we will be mainly interested in the exponents of the
Ng Friedel oscillations, given in Table I. The quantity that de-
E=1- D, cogkj). (4)  termines the critical exponents is the dressed charge matrix

i==Ne z:520
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TABLE I. Exponentsy, . andy, s as a function of the elements '
of the dressed charge matrix. 1r .
10 | -
7(1,0 70(,3 ~J ! ‘
= 102} i : i : E
— _ 2 _ 2 Mo
a=| (Zee—Zsd) (Zes—Zs9) 5] : i
= zz Z2 | 107t g i ]
a=1 sc ss As f f
a=n Zze Z¢s AT — ]
5 e
10 .
7= ( Zee ch) _ ( fcc( kO) Esdl ko) ) T (11) 10°¢ . . L]
Zsc Zss Ecs()\o) gss()\o) ’ 0 1 2 3 4 5 6

. . . . . . Iterati
which is defined in terms of the integral equation crations

FIG. 1. The difference between the ground-state energy per site
( Ece(k) fsc(k)) B ( 1 0) T ( &k fsc(k’)> calculated with the DMRGEY , and the exact BA energg:, as
A N \o 1 N NAYA a function of the number of DMRG iterations for a typical system
écs( ) gss( ) gcs( ) gss( )(12 (L=400, ne:0-551 m:o.g5l Uu=10, andp:o).

In Ref. 21 it was shown that the-point correlation functions properties of one-dimensional strongly interacting quantum
of the open boundary system are related to tmep@int  systems. The expectation values of equal-time operators in
functions of the periodic boundary system. Thus the expecthe ground state, such as the local density or magnetization
tation value of the local density in the open systéN(x)),, which interest us here, can be calculated with very good
can be extracted from the two-point correlation functionaccuracy on quite large systenten lattices of up toL
(N(z1)N(z,))p of the periodic systensee also Ref. 22, =400 sites in this papgrAs we will see, access to such
where a spinless fermion model was considgrétle can large system sizes is essential for the real-space fitting
therefore use the results obtained in Refs. 8 and 9 for thenethod used to extract the coefficients and exponents of the
density-density correlation function. As a functionf=x  Friedel oscillations(see Sec. IlIB. In the DMRG, open
+ivct andzg=x+ivt (wherev, andvg denote the Fermi  boundaries are also the most favorable type of boundary con-
velocities of the charge and spin sector, respectjyalye  ditions numerically: for a given number of states kéghich
asymptotic form ofG,,(x,t) =(N(x,t)N(0,0)) is corresponds to the amount of computer time negdgt
accuracy in calculated quantities such as the ground-state

B cog2kg | x+6)) Bicog2kg X+ 6;) energy is, in general, orders of magnitude better for open

AR AR [2|?71¢| 24?715 boundary conditions than for periodic boundary
conditions®24

In this work thefinite-systenDMRG method is used: af-
ter the system is built up to a given size using a variation of
) . ) the infinite-systenmethod, a number of finite-system itera-
with ke, =7n; | . The exponents are displayed in Table I. tions are performed in which the overall size of the system
Equation(13) shows the c_JscHIatlng terms W_hlch are the_ mo_st(i_e_, the superblodkis kept fixed, but part of the systefthe
relevant ones asymptotlcal_ly. _For vanishing magnetlz.atlorgystem blockis built up. Optimal convergence is attained by
the momentg | andke; coincide, and one has to consider jncreasing the number of states kept on each iteration, and
logarithmic corrections ix (see Ref. 2B—this case will not e convergence of the exact diagonalization step is im-

Gpn(X,t)=nZ+

Bncog 2(Ke ; + K, )X+ 3]
|ZC|27n,c|ZS|27n,s

: 13

be considered belo¥v. ) ,  Proved by keeping track of the basis transformations and
Following Cardy! one has to replaclszc_l —X and[zs| using them to construct a good initial guess for the wave
—X to obtain(N(x)), from Eq.(13). The final result is vector?® For all calculations shown in this paper, we have

performed five iterations with a maximum of=600 states
cos ke, X+ ¢)) LA oS 2ke, 1 X+ ¢1) kept. The resulting discarded weight of the density matrix
X7et s b xet s wasO(10™7) and below.

We illustrate the convergence of the algorithm explicitly

A, Coiz(kF'ﬁfF'l)XﬂP”]_ (14)  in Figs. 1-3. One finds that for all the parameters which are
X7net s used in this paper the ground-state energy per site is accurate

The correlation functiorG2,~(M (x,t)M(0,0)) with mag- to O(_10‘6) or I_ess, I_:ig. 1, while the _expectation value (_)f the
netization M =N, —N, has the same critical behavior as density at the first sitéor at the last site, due to symmelig

te taD(107°), as can be seen in Fig. 2.
Gnn(x,t). Therefore{M(x)) has the same form gd(x)}), accura oo . .
but with different coefficients, The magnetization shows an analogous behavior but with

results correct up t®(10 %), Fig. 3. It is also interesting to

note that forU <10 there is no stronyy dependence of the

accuracy of either the density or the magnetization expecta-
The density-matrix renormalization-group  method tion values.

(DMRG) (Refs. 12 and 18has become one of the most We now want to examine the effect of switching on the

powerful numerical methods for calculating the low-energyboundary fields simultaneously at the first and last sites on

<N(X)>: ne+A1

B. Density-matrix renormalization group
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FIG. 2. The difference between the expectation value of the p

density at site 1 calculated with DMR®IY , and with BA,N?, for

- . X FIG. 4. The expectation value 0N,) for different values of the
the fillings ng=0.55 andn,= 0.70 without boundary fields.

interactionU and boundary fieldp on anL =100 lattice withn,
=0.55 andn;=0.35. The solid lines represent the exact solutions

the quality of the DMRG results. In order to do this, we ;4 thermodynamic limit, while the symbols are DMRG results.

compare the mean densit),(p)) from DMRG calculations

with Bethe ansatz results calculated in the thermodynamigere the exponent depends on the interaction. In addition
limit. Within the Bethe ansatz, the mean density is calculateqy nymerical studies of these oscillations for spinless

from the derivative of(}) with respect to the boundary fermiond” and Kondo systerm$ several theoretical attempts
field p. _ o have been made to clarify the role of interaction. Using

~ The numerical results, shown in Fig. 4 onlar 100 lat-  posonization it is possible to obtain the asymptotic exponents
tice for electron densityn=0.55, n;=0.35, and for two 55 3 function of the interaction parameters and corrections to
values of the interactiot), are again in very good agree- the power-law behavior of Eq15).2%%” CFT results were
ment with the values for the thermodynamic limit. The dif- ysed to calculate the interaction dependence of the exponent
ferenceN? —NZ is now O(10 %). While this seems to be  for interacting spinless fermiorfiHere we start with non-
worse than thep=0 case, we have neglected finite-size cor-interacting fermions to obtain some conjectures for the con-
rections to(N;) since we have compared to thermodynamicnection between the explicit form of the Friedel oscillations
limit Bethe ansatz calculations. If we explicitly take th&.1/ and Bethe ansatz results. These conjectures will then be
corrections to the Bethe ansatz values into account, we finghecked using the DMRG resullts.

agreement td0(10 °). This value is already smaller than
the 1L2 corrections so that finally we state tha,) is ac-

A. Noninteracting fermions
curate toO(10 4).

By considering only spirj- electrons without any bound-
lIl. FRIEDEL OSCILLATIONS ary potential, one cz.;\n easily obtain the expectation value of
the electron density:

In general, the presence of an impurity or boundary in a

one-dimensional fermion system leads to Friedel oscillations ) sin( 2.x N;+1/2
in the density, which have the general form N+ 3 1 L+1
N(x)= - (16)
L+1 2(L+1) [ mx
coq 2kex+ @) sinf ——
Op(X)~ — (195 L+1
In the limit L—o andx<<L the density is given by
4 - . nT_ 1/2
L T 4 —
10 et n—1 sin{27x| n, 3
o o . N(X)=n;— . X
Eﬁ l”/ - /0/' . I "
Ql—‘ 5 ..' ././0’ . 08
= 100} . 6C sin{27x| n;— T
0
=055 —o— =m-_T- ’ (17)
H/// :z=0.70 . L 27X
. with 65 defined in Eq.(9). The densityN(x) can also be
10

0 1 2 3 4 5 6 7 8 9 10 calculated explicitly when the boundary fief= 1. It then
has the same structure as Eg7).
If one assumes that the Friedel oscillations in the interact-
FIG. 3. The difference between the expectation value of thdng system have an analogous structure to those in the non-
magnetization at site 1 calculated with DMRR?, and with BA,  interacting system, one can combine E¢s)) and (17) to
M¥, for ng=0.55 andn.=0.70, without boundary fields. obtain the following conjectures for the finite-size shifts of
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the average density, average magnetization, and the charaesults. As described in Sec. 1l B, we calculate the quantities
teristic wave vectors in thmteracting system: for the density and magnetization oscillations by applying a
13-parameter fit. Fitting to this many parameters requires the
use of large system sizes. While the numerical expense for

the DMRG procedure grows linearly with the system size for
a fixed number of states kept, the accuracy in the energy and
6, in the local density and magnetization decreases with the

n,— f): (19 system size, especially in the Luttinger-liquid regiffiave

have compared the accuracy of the DMRG results with the

with 0, =0, 6,=0,— 05, 6,=0,, andf,=6;—26. accuracy and convergence of the fitting procedure for differ-

ent lattice sizes fromL. =300 toL=500 and have decided
B. Fit procedure thatL =400 yields optimal results for the amount of comput-

ing power available. However, results within this range of

Previously, several methods have been used to obtaigyqtem sizes are in agreement to within DMRG and fitting

asymptotic exponents of correlation functions using numeriz.o.«
1,16,28 '
cal data. All of these methods use tedependence of Another important issue is the influence of the boundary

the Fourier-transformed correlation functions near the rel'potentials on the fitting method and on the Friedel oscilla-

evant peakk,(a=1,|,n) in Fourier space to extract the ,ns (discussed in Sec. Il C)3As the boundary potentia
exponents. Due to the fact that only systems with periodiGs jncreased, bound states will develop at site 1 andLsit®
boundary conditions were considered, tiewere all inde- |, grder to avoid these bound states in the fitting procedure,
pendent ofL. This L independence seems to be crucial for 5a has to enlarge the range in which the local den{x)
these methods to work; we were not able to extract a reasons disregarded from i.e., x,L —x—1<5) atp=0 to about
able exponent with any of these methods on a system with, atp=9.9.
open boundary conditions.

Therefore, we fit the DMRG results fdd(x) andM (x) to

n=ng—-—, M=m—-— (18

I _
kFyl_ﬂ- nl r y kF,T_W

The discussion of the next three sections will focus on
comparing the BA/CFT predictions for the different fit pa-

the real-space test function rameters with the DMRG results, especially on checking the
— ) conjectures from Eq918) and (19). We also compare the
f(x):[E] N AdSIN(2K, X+ ¢4) numerical results to the different exactly known values for
m)  aeiT,ln} XYa different limits such as the limit of noninteracting fermions,
U—0.

A, sin2k (L+1—-x)+¢,) 20
(L+1=x)7 ’ 1. Density n.=0.55
which explicitly includes the momenta as fit parameters. We first examine the Fourier transform of the local elec-
Here the second term is included due to symmetry. There argon densityN(x), defined as

a total of 13 fit parameters in this function, a prohibitively
large number to do a simultaneous fit of all parameters. L S(
k

However, if we only consider systems in which the three N(k,U)= 21 co
=

X— %))N(X,U) (21

peaks in the Fourier spectrum are well separated, there is an
effective fit of four parameters to every peak. As we will see,
the peak ak, is suppressed for smdll, reducing the num-
ber of fit parameters to nine for only two peaks. The ampli-
tudesA , will be assumed to be positive, with any sign given
by the phasep,. We fit to the magnetizatioM (x) and the
densityN(x) independently.

with k= 27j/L and j=0,...,L/2—1. [Due to symmetry
N(k,U) vanishes for odd multiples ofr/L.] The quantity
N(k,U) is displayed in a three-dimensional plot in Figap
Distinct peaks at the three wave vectdes, k|, andk,, can
clearly be seen. Note that we have chosgrandn; so that
these three peaks are well-separated. However, the p&ak at

. _The right side of Eq(17) IS only valid forx§L. In ad- becomes very lightly weighted and therefore ill-defined for
dition, the CFT results are valid only asymptotically for large o .

: ) U<1. In fact, we have found that it is not possible to locate
distances. As a consequence and compromise, we do not u % third momentunk. for U<1 using the 13-parameter fit
the density information on the first five and last five lattice oo 9 P i
points. pr(_)cedure d.escrlbed in Sec. IlIB. Therefore, WeNl(oQ

We perform the least-squares fit in two stages. In the firsPS'ngtﬁnlyane pa;ram?ters fgr_o'l a?dUtBn(‘).i.UWe g's'
stage, the start parameters of the subsequent fit are det ?lyd € | our|e|r- r?”SF‘?fm; magn::-hlzekll ( k .)’ €
mined using simulated annealing. The final fit is performedIne analogously, n 'g'(. ). ere thek, peax 1S even
using a combined Gauss-Newton and modified Newton algo_r_nore poorly defined, and, in fac_t,_ls at best b_arely d|_scern-
rithm (using the NAG routine EO4FQFTo estimate the fit ible, even at largéJ. Therefore, it is only possible to fit to

error, ten fits are performed for each system with 10% of th wo peaks using nine parameters in the entire region from
points randomly excluded from each fit. =0 toU=10. For these fit procedures, we have found that

the mean-squared deviatiom®=3,[N(x)—f(x)]? is be-
tweenO(10™ /) and O(10 ®) for the density and between
0O(10 %) andO(10 °) for the magnetization for alU val-

Before discussing the results for the Friedel oscillations inues. These limits will apply to all the fit results shown in this
detail, we make some general comments on the numericalaper.

C. Results
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(b)

//////// ;//?////"/////////// @% //
/ /// /// ﬁ // //////////
///////////// /// ///// | ///////// // /// ////////////////W////
1 . // //// :
z /////////%% '7/////////’ %7
4 /////////////////////////////// //////%////MW 2
/U //////////////j' 4
4 ////////////////
WL\
2k, 8 0 '

FIG. 5. Fourier transformation ofa) the densityN(x) and (b) the magnetizatiorM (x) for several values ofJ at the densityn,
=0.55 andn;=0.35. (The k=0 values are excluded.

In Fig. 6 we show the 1/ corrections of the mean values

n andm calculated with the DMRG and from Bethe ansatz
using the conjectures in E¢18). One can see that there is
quite good agreement between the two calculations fdy all

The comparison of the exact asymptotic exponents at the
different momenta with the numerical results is one of the &
most interesting and important features of this work becauses
similar methods will then be able to be used to calculate &,
properties not directly predictable with CFT/BA, and to treat &
systems that are not Bethe ansatz solvable.

The exponents &, andk; , extracted from the density as 1.0 A A A A & & &
well as from the magnetization data, are shown in Fig. 7. The
difference between the fit exponents and the CFT predictior s s s s s R s .
is less than 2% for the fits to the density and less than 3% foi o 1 2 3 4 5 6 7 8 9 10
the fits to the magnetization. As mentioned above, we car
obtain an exponent for the peakigtfrom the density fit for

0.50 T T T T T T T T T v, v
20 r (b) v A
025 ¢ . .
g
g 1.5 ¢
8 0.00 | E
-0.25 1.0 A A
N4

N FIG. 7. Exponents for the three peaks as a functiok dftted
FIG. 6. Differencef,= (a— a)L for the density ¢=n) and the  for (&) the particle density antb) the two peaks of the magnetiza-
magnetization ¢=m) as a function olU for n,=0.55. The solid tion for n,=0.55. The solid lines denote the CFT predictions from
lines are the Bethe ansatz conjectuées the Bethe ansatz solution.
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U=1 only, due to its small weight especially for smell At ~ud T IA T T T T
U=1 the large error bars reflect a poor fit. Here we have 0.15 A* 7 @ |
only consideredU=<10, for which y,>v,. A further in- A,

crease irJ would lead to a region wherg, <y, . A cross-
over between these two regions will be seen for the

ts

g 010t 1
=0.70 in the next section, for which it occurs at a somewhat,2
lower U. g
Due to the fact that we obtain only three independent® 0.05 | |

exponents from the fitting procedures, it is not possible to
determine all of the elements of the dressed charge matrix
In fact, only the following combinations are relevant for the S
three exponents extracteﬂsc+ Zz,, Zéﬁ Z2, and ZoZse 0.00 o 1 2 3 4 5 6 7 8 9 10
+Z.Zss.“° It would be possible to uniquely determine all of

the independent elements of the dressed charge matrix witl

additional information from, for example, any susceptibflity

or from another correlation function with a different set of 0.30 S
critical exponents. Relationships between the elements of th 0.25 v
dressed charge matriZ and the parameters of the
Tomonaga-Luttinger model are given in Ref. 29. w 020

Within the framework of CFT, the amplitudes, are E
completely undetermined. However, the form-factor &  0.15
approacf’ may lead to explicit results for the amplitudes in I
the future. For example, a conjecture of Lukyanov and®  0.10 f 4, v ]
Zamolodchikov* concerning the amplitude of the spin-spin A4 b
correlation functions of thé&XXZ chain was recently con- 0.05 r 1
firmed by a fit to DMRG result$?

At this point, however, the fit results can only be com- 0.00 0 1 2 3 ;‘ 5 é 7 é é 10
pared to noninteracting fermionsUJ&0), for which A U

=A,=1/2m. As can be seen in Fig. 8, this value is in rela-
tively good agreemen#% deviation with the fit results. In FIG. 8. AmplitudesA,, fitted to (a) the density andb) the mag-
addition,A,=0 for U=0, in agreement with th&)=0 ex-  netization as a function ob) for n,=0.55. The solid lines are
trapolated value in Fig.(@). The large error bars i, at  guides to the eye. The arrow denotes the value for the noninteract-
U=1 are due to the difficulty in fitting thke, peak for small ing fermions (= 1/27). Note that the amplitudes are, in general,
U. Since the fitting procedure seems to work well for thedifferent for the density and the magnetization.
exponents, and the amplitudes yield the cortgetO limit,
we feel that the calculation of the amplitudes is under goodng because the BA/CFT calculations predict that the cross-
control. This is therefore the first determination of the quali-over between the,, and y; exponents will take place within
tative as well as quantitative behavior of these amplitudes. the range of interaction treated heté=0, . . ., 10.

The exact positions of the momerka andk, are further The Fourier transforms of the local densiyfx) and the
fit parameters. The I/ corrections to thethermodynamic  magnetizatiorM (x) are shown in Fig. 10. Note that the mo-
valueare plotted in Flg 9. The fit values agree well with the mentumkn (Wrapped back to the range 0 to) is now lo-

Bethe ansatz conjectures, except for the correctiok; tQ, cated betweetk, andk;. As can be seen in Fig. {8, the
which deviates from the Bethe ansatz valuelWor 4. These

deviations are probably due to problems with the fit. Note .
also that the Bethe ansatz results éigrare correct only up to o
O(1L). The momentunk,,, which is not shown, is another ej’n‘i
independent fit parameter. The fit errorkip extracted from 0; ,
the fit to the densityN(x) is rather large folU<4. This is 01 m
due to the fact that the peaklgt is not well-defined enough
in this region to obtain the IL/ corrections to this momen- _& 0.0 1
tum. Nevertheless, the agreement between the fit values an
the Bethe ansatz conjectures is very goodUor 4.

0.5

>r<

2. Density n,.=0.70

0.5 I I L I L I L I L

In this section, we examine the same quantities as in the
preceding section at a density nf=0.70. A treatment of
this density is interesting for a number of reasons. Since we
use the same numerical parameters for both densities, we can FIG. 9. Differenced,, s=(n,— k, g/m)L for a=|,] as a func-
examine the density dependence of the error in truncating thgon of U for the densityn and magnetizatiom for n,=0.55. The
Hilbert space using the DMRG. This density is also interestsolid lines denote the Bethe ansatz conject#tggsee Eq(19)].
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FIG. 10. Fourier transformation dg) the densityN(x) and (b) the magnetizatioM (x) for several values ol for the densityn,
=0.70 withn,;=0.55(k=0 values excluded Note that the momenturk, is located betweek; andk; .

peak inN(x) at k, is not well-defined folU<1, so theU
=0.1 andU =0.5 data are fitted using nine parameters to fit
two peaks. However, thie, peak inM(x) is now more well-
defined than fon,=0.55, as can be seen in Fig.(hd) and it

is now possible to fit to all three momenta for=2. For
smaller values olJ (U=0.1, U=0.5, andU=1), a nine-
parameter fit is again made to two peaks.

nents

The 1L corrections to the mean values of the density and &,
the magnetization, shown in Fig. 11, are in very good agree+
ment with the BA conjectures, thereby providing a further
confirmation of the predictions of Eq$18) and (19). The
exponents extracted from the fit are shown in Fig. 12. The
expected crossing of the two largest exponentd at7 can
clearly be seen. Foy, andy; obtained from the density fit,

Fig. 12a), the deviation from the CFT results is about 5% at

0.8

0
Exponents

0 1 2 3 4 5 6 7 8 9 10 0o 1 2 3 4 5 6 7 8 9 10
u U
FIG. 11. Differenceﬂa:(a—Z)L for density (@=n) and mag- FIG. 12. Exponents for the three peakg@fthe particle density

netization @=m) as a function olU for n,=0.7. The solid lines and(b) the magnetization as a function 0ffor n,=0.7. The solid
are the Bethe ansatz conjectuis. lines denote the CFT predictions from the Bethe ansatz solution.
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T T T T T T T T T 0.5 T T T T T T T T T =4
\ A¢ v @ 4
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All
g o010} -
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O
0.05 + ; 1
A
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0.00 1 1 1 1 1 1 1 1 1

o 1 2 3 4 5 6 7 8 9 10

FIG. 14. Differenced, s=(n,— K, g/mL for a=|,T as a
function of U for the densityn and magnetizatiom for n,=0.7.
The solid lines denote the Bethe ansatz conject@ge$see Eq.

(19].

creasingU, but A, shows different behavior in that it
reaches a maximum ai~1 and then decreases. Both fit
amplitudes yield théJ =0 value of 1/2r to within 6%. The
amplitudeA,, for the summed momenta, which could not be
determined form,=0.55, increases monotonically witl,

Coefficients

005 and itsU—0 extrapolation agrees well with the value for
0.00 S S S S noninteracting fermionsi,=0.
0O 1 2 3 4 5 6 7 8 9 10 The 1L corrections to the momenta fitted for the den-
U sity and the magnetization, shown in Fig. 14, are in good

_ ) _ agreement with the Bethe ansatz conjecture. The agreement

FIG. 13. AmplitudesA, fitted to (a) the density andb) the g also fairly good ford, ,, although the error of the fit is
magnetization as a function &f for n,=0.7. The solid lines are a zther large for smalU. However. thed. . fit results do not
guide to the eye. The arrow denotes the valuerldfthe noninter- o1y well with the Conjecture’ As \TNrg have seen in Fig
acting fermions. Note that the amplitudes are, in general, differenio(b) thek, andk, peaks inM(x). have much lower ampli- '

) oo , n
for the density and the magnetization. tudes than thek; peak, leading to lower accuracy in the
most, with the largest errors occurring for>6, especially fitting procedure. The fit res.ult.s for the exponents, Figb}_LZ .
in 'VT,' As can be seen in Fig. 4, the peak akT,in N(k,U) alsq had a ratr_\e'r large dewatlon from the CFT results in this
gets weaker for larged, leading to a less effective fit. The jr:cgtllzr::.czzlgrlr:igsg qg; F)szsifstll@i:fe ftgr (ﬁ?)f(')r m or deny the con-
. . o f )
filgrziei?(rar?lj C%f l:t)r(]a(tat J'rttiﬁtﬁ );pgg\?igﬁo\;]v?rh ortr? ?thB;/pCrE?'I?/ al- For k, the situation is even worse. Both density and mag-
ues of less than 1%’ fdg>1. The exponents obtained from netization fits lead to large fit errors fok<<4. The deviation
fits to the magnetization, Fig. 13, show deviations of up to ggtn;iégethBeeigﬁga:anf)?ttigolir}]ciﬁgrc?iso rlls tggom 0.08 in both fits,
% from the BA/CFT results. Fat= =1 n-

about 6% from the BA/CFT results. Fer=9 andU=10, In summary, fom,=0.70 the DMRG results for the mean

the deviation is largest and the exponents coincidentally takgensity(magnetization respectivéhand the exponents are

(r)onrsthi?] Stﬁ??itvﬁlgféuigam’et?:; &Ogggéﬁiievbcé;ige;terfn good agreement with exact results from BA/CFT, further

confirming conformal field theory.
largerU. One can see that the peakskatandky are much A detailed examination of the convergence of the DMRG

less heavily weighted than the peakkatat largeU. ) : :

. ' shows that the numerical accuracy is actually slightly worse
Th_e amplltudc_esAl_ and Ay extracted from the_ﬁt to the than then,=0.55 case, but this could be improved by in-
.densny,. shown in Fig. 18), decrease monptomcally with creasing the number of states kept in the DMRG. We there-
[‘nc(;\?vis\'/g?u%o: 1?1/; ?o:vv(i)th\i/r?gjt?c?utaf‘;eeﬂg tgmthlﬁuxactly fore expect to be able to apply these techniques reliably to
) R P n obtain the boundary exponents and coefficients of other, non-

on the other hand, increases with increastiglts U—0 Bethe-ansatz solvable one-dimensional models

extrapolation agrees well with the value zero of the nonin- '

teracting fermions if theJ =1 point, which cannot be very

accurately determined, is excluded. The behavior and even

the quantitative values of all three coefficients are quite simi- We now examine the effect of the boundary potengial

lar to then,=0.55 case shown previously in Figta8 The on the Bethe ansatz predictions. We sg{=0.55, n,

amplitudes obtained from the fit to the magnetizathd(x) =0.35, andU =8 and consider sip values, for which four

are shown in Fig. 1(). The amplitudeA| behaves similarly qualitatively different Bethe ansatz solutions exist. per

to then,=0.55 casdFig. 8b)] in that it increases with in- —0.5,0,0.5, no bound state is present in the Bethe ansatz

3. Effect of boundary potentials



10 234 G. BEDURFTIG, B. BRENDEL, H. FRAHM, AND R. M. NOACK PRB 58

25 T T T T T T T T T T 25
.
] | 8, v
20 4 e 2.0 oS v
m O 0, 4
15| . 15 6, A
e - Opn ®
& L0} 1 L 10f
05 go . 1 0.5
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FIG. 15. Difference,, = (a— )L for density @=n) and mag- FIG. 16. Differenced,, g=(n.— Kq,g/m)L for a=|,1,n as a
netization @¢=m) as a function ofp for U=8, n,=0.55, andn, function of p for the densnyn_an_d magnetizatiom for U=8, n,
=0.35. The solid lines are the Bethe ansatz conjectures jor =0.55, andnh; =0.35. The solid lines denote the Bethe ansatz con-

. ) } ~ jecturesé, [see Eq(19)].
ground state; we examine both repulsive and attractive fields.

The valuesp=2.6 andp=6 are in a region in which the renormalization-group calculations for the one-dimensional
Bethe ansatz has two compldx solutions, one for each Hubbard model with open boundary conditions both with
boundary potential at site=1 andx=L. Thep=6 ground-  and without an additional chemical potential at both ends. A
state configuration contains, in addition, two complego-  direct comparison of the ground-state energies as well as the
lutions. Finally, forp=9.9 there are four compleéxand two  density and magnetization at the ends of the chain has al-
complex solutions, corresponding to a bound pair of elec-jowed us to estimate the accuracy of the DMRG on the large
trons at each end of the chain. Details of the structure of thgystem sizes used in this work.
ground state as a function pfare given in Ref. 19. We have then compared the behavior of the Friedel oscil-
The p dependence df(k,p) andM(k,p) atU=8 is not  |ations in the local density and local magnetization calcu-
as strong as theJ dependence oN(k,U) and M(k,U) |ateq directly using the DMRG with conformal field theory
found previously. Since we have chosen a fairly lalgethe e gictions for the asymptotic forms for which the exponents
peaks in the densitd(x) have enough weight to fit fr"” three  ;an be calculated using the Bethe ansatz. We have performed
momenta. As was the case fpr=0, the peak ak, in Fhe his check for two different fillingsp.=0.55 andn.=0.70,
magnetization is not pronounced enough to be fitted or the case without boundary potentiajs=0. We have
an)‘ll'ﬁé 1L corrections to the mean values of the density anaobtained results consistent Wi.th the CFT predictions in all
ases except those in which it is clear that the accuracy of the

magnetization, Fig. 15, are again in very good agreement
with the Bethe ansatz conjectures, showing that E#8) ltting procedure breakg down. Suph a breakdown occurs
when a particular peak in the Fourier transform of the den-

and (19) are valid even in the different physical regions de- . N . :
scribed above. Within the BA/CFT calculations, the values>Y O magnetization becomes. Ilghtly weighted and thus
; oorly defined. This occurs principally for thig,= (kg ;

of the exponents are independent of the boundary potential ke.,) peak, especially at smal values. The good agree-

p. This agrees with the DMRG results, which we do not

show here: the range of the exponents varies by at most 2(%1ent hetween the CFT forms_ and BA_ values of the eXpo-

from the exact values fop=0 (after a larger number of nents and the DMRG calculations provides both a confirma-
P 9 tion of the CFT predictions and a way to test the accuracy of

lattice points are discarded from the fits in order to avoid th . "
bound states at the ends e[he DMRG and_ of _the effectiveness of fitting procedures for
the Friedel oscillations.

The amplitudes also have no significgmtdependence. o .
The density fit yieldsA,~A, ~0.045 andA,~0.12, while In addition, we hlave _proEosed a.relat|on betwegn t_Ihe 1/
the magnetization fit yield&, ~0.28 andA, ~0.21. The ab- corrected mean values m_t e density and magnet_lzatlon _and
Lo 1o the 1L corrections occurring in the BAE. This conjecture is

sence ofp dependence al =8 suggests that the interaction ;
dependence of the coefficients should be that of Fig. 8, inde?}grrf?;ts?itb% %ﬁZdDﬁéegnézg gigﬁingfs ?e\s/s%lll:ses obtained
peQiinéﬁéé?ﬁfﬁﬁznggﬁégds otentialon the shift of the We have been able to extract the interaction dependence

i, . yp R of the amplitudes for the Friedel oscillations, a property not
positions of the peaks is much larger than the effect of Vary'possible to calculate in the framework of the CFT, and have
ing U (compare Fig. 16 with Fig.)9 Since the fit results for ’

all threek values agree very well with the Bethe ansatz con-found the correct behavior in thd—0 limit.
9 y Finally, we have turned on boundary chemical potentials

jectures, the confirmation of EqL9) is even more compel- at ne=0.55 and examined the dependence of the critical

ling than it was for theU dependence. exponents, the amplitudes, and our conjectures for the be-
havior of the mean density and magnetization. The different
p regimes that we have considered yield qualitatively distinct

We have carried out a detailed comparison between thBethe ansatz solutions that are physically connected with the
exact Bethe ansatz solution and density-matrixformation of different types of bound states at the system

IV. SUMMARY AND CONCLUSIONS
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boundaries. In agreement with BA/CFT predictions, we have Note added in proofWe thank H. Asakawa for informing
found that the critical exponents are independenpaind  us about his analytical calculation of the expectation value
that the influence op on the amplitudes is very weak. We (N(x)) for p=0 in the limitU—c°, which is in good agree-
have also found that our conjectures for thé Torrected ment with our results extrapolated to this limit.

mean values of the density, magnetization, and the wave
vector hold in all of the physically differerm regimes.

The combination of analytical and numerical methods
presented here has yielded new insights into both. The suc-
cess of the numerical techniques will now allow the exami- We would like to thank J. Voit for helpful discussions.
nation of more complicated systems that are not exactly solvFhis work has been supported by the Deutsche Forschungs-
able. Through comparison with the DMRG calculations, wegemeinschaft under Grant No. Fr 737/2@.B. and H.F.
have also been able to show that more information is conand by the Deutsche Forschungsgemeinschaft under Grant
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