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Quantum phases of a chain of strongly interacting anyons
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Quantum gates for the manipulation of topological qubits rely on interactions between non-Abelian anyonic
quasiparticles. We study the collective behavior of systems of anyons arising from such interactions. In particular,
we study the effect of favoring different fusion channels of the screened Majorana spins appearing in the recently
proposed topological Kondo effect. Based on the numerical solution of a chain of SO(5)2 anyons we identify
two critical phases whose low-energy behavior is characterized by conformal field theories with central charges
c = 1 and c = 8/7, respectively. Our results are complemented by exact results for special values of the coupling
constants which provide additional information about the corresponding phase transitions.
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Introduction. Low-dimensional quantum systems hold an
irresistible and enduring fascination because they can support
topological states of matter with exotic quasiparticles, anyons,
exhibiting unusual braiding statistics [1]. While initially a
curiosity, anyons generated considerable excitement when it
was realized that the fractional quantum Hall effect [2]—and
later nanowires [3,4] and the px + ipy superconductor [5]—
support these fractionalized excitations. Further interest was
recently sparked by the remarkable proposal that systems of
non-Abelian anyons could carry out fault-tolerant quantum
computation via braiding [6–12].

An increasing number of scenarios for the realization of
localized anyon modes in electronic materials have been
proposed [13] leading to the recent experimental observation
of signatures of Majorana fermions (or Ising anyons) at
the ends of nanowires coupled to a superconductor [3,4].
However, braiding of Ising anyons alone does not yield a
set of gates sufficient for universal quantum computation:
topological qubits are found by additionally coupling M of
these quasiparticles to form an SO(M) Majorana spin.

When connected to electronic leads via tunnel junctions
Majorana topological spins exhibit the recently proposed
“topological” Kondo effect displaying strong non-Fermi-
liquid correlations [14]. Exploiting a combination of both per-
turbative renormalization group analysis and conformal field
theory methods the corresponding Kondo fixed point has been
identified with an SO(M)2 Wess-Zumino-Novikov-Witten
boundary conformal field theory [14,15]. A proposed scheme
to probe and manipulate these Kondo-screened Majorana
spins [15,16] constitutes a first step towards a realization
of quantum gates. Indeed it was shown that SO(3)2 anyons
[and likely SO(p)2 for prime p � 5] are able to support
universal quantum computation [17]. Thus the study of models
for SO(M)2 anyons has become an intriguing and relevant
possibility and introducing couplings between such objects is
now a natural next step.

Unfortunately systems of anyons are extremely difficult to
study: One must keep track of their entire space-time history
in order to discuss their dynamics. While the noninteracting
case is now becoming well understood (see, e.g., [10]) the
classification of phases for systems of interacting anyons
has progressed much slower. An additional complication is
that the description of the dynamics of a highly entangled
SO(M) Majorana spin in the topological Kondo model, and

the collective behaviour of many such subsystems, involves
dealing with strong correlations. Indeed, only recently have
one-dimensional interacting systems, where the anyon model
may be seen as a deformation of SU (2), been studied in earnest.
Using exact numerical diagonalization, partly complemented
by analytical results known for the related restricted solid
on solid models [18,19], it has been possible to identify
the possible phases realized in these models [20,21]. These
models are not just toys: The study of one-dimensional
systems offers nontrivial insight into the more general case
as they mediate the boundary between different topological
phases [22].

In one dimension we can exploit powerful tensor-network
variational methods falling under the umbrella of the density
matrix renormalization group [23,24]. These methods, with
impetus from the study of quantum entanglement, have
led to unparalleled insights in recent years overcoming
many previously insurmountable roadblocks, including the
simulation of dynamics [25,26] and fermions [27–30] without
sign problems, the determination of spectral information [31],
and higher dimensions by exploiting tensor networks including
the projected entangled-pair states [32] and the multiscale
entanglement renormalization ansatz (MERA) [33,34]. This
progress has been recently extended to the anyonic setting
with the development of anyonic matrix product states (MPS)
and MERA routines to obtain ground-state properties [35,36]
and to simulate the spectrum and dynamics of interacting
anyons [37–40], providing an attractive complement to other
methods such as exact diagonalization [22,41–43] and Monte
Carlo [44].

The purpose of this Rapid Communication is to exploit
both analytical and numerical tools to carry out a compre-
hensive study of a nontrivial system of anyons relevant to
the topological Kondo effect. Specifically, as an effective
model, we consider the fundamental quasiparticles in an
SO(5)2 Chern-Simons theory [45]. Using two complementary
techniques, one based on the Bethe ansatz and the other
on cutting-edge tangent-plane tensor network methods, we
investigate the ground-state and low-lying excitations of a
one-dimensional condensate of these non-Abelian anyons and
characterize and classify their critical phases and integrable
points.

The fusion rules for SO(5)2, the truncation of the category
of irreducible representations of the quantum group Uq[so(5)],
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TABLE I. Fusion rules for the SO(5)2 anyons.

⊗ ψ1 ψ2 ψ3 ψ4 ψ5 ψ6

ψ1 ψ1 ψ2 ψ3 ψ4 ψ5 ψ6

ψ2 ψ2 ψ1 ⊕ ψ5 ⊕ ψ6 ψ3 ⊕ ψ4 ψ3 ⊕ ψ4 ψ2 ⊕ ψ5 ψ2

ψ3 ψ3 ψ3 ⊕ ψ4 ψ1 ⊕ ψ2 ⊕ ψ5 ψ2 ⊕ ψ5 ⊕ ψ6 ψ3 ⊕ ψ4 ψ4

ψ4 ψ4 ψ3 ⊕ ψ4 ψ2 ⊕ ψ5 ⊕ ψ6 ψ1 ⊕ ψ2 ⊕ ψ5 ψ3 ⊕ ψ4 ψ3

ψ5 ψ5 ψ2 ⊕ ψ5 ψ3 ⊕ ψ4 ψ3 ⊕ ψ4 ψ1 ⊕ ψ2 ⊕ ψ6 ψ5

ψ6 ψ6 ψ2 ψ4 ψ3 ψ5 ψ1

with q = e2iπ/5 [46], are given in Table I. They are diagonal-
ized by the modular S matrix

S = 1
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,

(1)
where φ = 1+√

5
2 . Specifically, we consider fusion paths of

length L for ψ3 anyons, represented diagrammatically as

ψa0 . . . ψaL

ψ3 ψ3 ψ3 ψ3 ψ3

ψa1 ψa2 ψa3 ψaL−1

where fusing occurs from top left to bottom right. Below these
paths are identified with basis vectors of an anyonic Hilbert
space, i.e., |a0a1 . . . aL〉, where neighboring labels must be
related through fusion with ψ3. This is equivalent to labels ai

and ai+1 being adjacent on following graph:

1

2

3 4

5

6 .

Ordering of the fusion can be changed by means of F moves
(i.e., generalized 6-j symbols),

ψai−1 ψai+1

ψ3 ψ3

ψai

= ai
(F

ai−133
ai+1 )ai

aiψai−1 .ψai+1

ψ3 ψ3

ψai

For the SO(5)2 fusion rules there exist four known sets
of inequivalent unitary F moves, each of which corresponds
to a different S matrix [46]. Hence our choice (1) of the S

matrix determines the F moves which can be used to construct
two-site projection operators,

p
(b)
i =

∑
ai−1,ai ,a

′
i ,ai+1

[(
Fai−1jj

ai+1

)a′
i

b

]∗(
Fai−1jj

ai+1

)ai

b

× | . . . ai−1a
′
iai+1 . . .〉〈. . . ai−1aiai+1 . . . |. (2)

We can couple pairs of SO(5)2 anyons via these projection
operators leading to a chain of SO(5)2 anyons with nearest-
neighbor interactions subject to periodic boundary conditions

a0 ≡ aL:

Hθ =
L∑

i=1

[
cos

(
π

4
+ θ

)
p

(2)
i + sin

(
π

4
+ θ

)
p

(5)
i

]
. (3)

From the fusion rules we see that there exists an automorphism
exchanging ψ2 and ψ5 which allows one to construct a nonlocal
unitary transformation mapping Hθ ↔ H−θ .

An important property of anyonic models of this type is the
presence of topological charges that commute with each other
and the global Hamiltonian:

〈a′
1 . . . a′

L|Y� |a1 . . . aL〉 =
L∏

i=1

(
F

�a′
i3

ai+1

)ai

a′
i+1

. (4)

The action of these operators corresponds to the insertion of
an auxiliary anyon ψ�, which is then moved around the ring
by application of F moves, and finally removed again [9,21].
The eigenvalues of Y� are given in terms of the elements of the
S matrix (1) as Sj�

S1�
[9].

To study the model (3) we have employed a combination of
numerical and analytical techniques. We exploit the symmetry
under exchange of ψ2 and ψ5 mentioned above as an additional
check for our numerical results.

Numerical analysis. We simulated the ψ3 anyon chain
numerically using the EVOMPS software package [47] via the
time-dependent variational principle (TDVP) in imaginary
time to calculate an approximate matrix product state represen-
tation of the ground state [48,49]. The TDVP approximately
solves the Schrödinger equation for an infinitesimal time step,
providing flow equations for the MPS variational parameters
[26]. In imaginary time the convergence of these flow equa-
tions can be enhanced via the nonlinear conjugate gradient
method [50].

For this work we used uniform MPS to represent
translation-invariant states of the chain in the thermodynamic
limit. (Note that here a “site” in the chain corresponds to a label
in the fusion path, not a site where a ψ3 anyon sits.) Since the
system is invariant under translations of two sites, we blocked
adjacent labels into a virtual site. We also exploit a symmetry
which allows us to only consider states with labels 1,2,5,6
on odd sites and labels 3,4 on even sites. This simplification
results in a local dimension of 6 for the virtual sites.

A state constructed in this way is still not generally a
state of the anyon chain, because it is only guaranteed to be
compatible with the fusion rules within a single virtual site:
We added penalty terms to the Hamiltonian to suppress states
not corresponding to a valid fusion path.
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FIG. 1. (Color online) Energies of excited states for the chain
in the thermodynamic limit: Between momentum zero and π , two
distinct regions can be observed. The symmetry around zero is
apparent, as well as a periodicity for the high |θ | regions, which
indicates a breakdown of translation invariance.

Tangent-plane methods allow for the easy calculation of
the energies of low-lying excited states via an MPS ansatz for
excited states [31]. The resulting lowest energies are visualized
in Fig. 1.

Conformal invariance allows one to characterize the collec-
tive behavior of the anyons for parameters where the model
supports massless excitations in terms of the central charge
c of the underlying Virasoro algebra. From our numerical
data it may be extracted from the finite-entanglement scaling
behavior (which fulfills a role comparable to that of finite-size
scaling) of the entanglement entropy S as a function of the
correlation length ξ . Although both quantities diverge for the
exact ground state of a critical system, they remain finite for a
uniform MPS approximation at finite bond dimension, which
enforces exponential decay of correlations. Their scaling has
been shown to be determined by the central charge [51,52] and
is described by [53]

S(ξ ) ∝ c

6
log ξ, (5)

where S and ξ are functions of D that are easily obtained from
the MPS representation. An exemplary result for this scaling
behavior is shown in Fig. 2(a). We use this relation to estimate
central charges for the model [Fig. 2(b)].

Using the central charge and dispersion relations we
obtained a phase portrait (Fig. 3), from which we see that there
exist two large regions, π

3 � |θ | < π , with central charge c =
1 and two small intervals near θ ≈ ±0.033π where the central
charge of the model is found to be c = 8/7. These results
agree with the analytic results at two of the integrable points
discussed below. Beyond these regions we got spurious results,
possibly due to local energy minima, or due to especially
strong corrections to the asymptotic relation (5), and it was
not possible to determine a consistent central charge. Between
the c = 1 sectors at θ = π the spectrum shows level crossings
with large degeneracies, indicating a first order transition. This
is consistent with a fixed point of the ψ2 ↔ ψ5 automorphism.
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FIG. 2. (Color online) (a) shows an exemplary entropy curve for
θ = 3.08 which lies within the c = 1 region. It also includes a fit with
c = 1.0035 ± 0.012. (b) shows fitted values for the central charge.
The error bars included in the figure represent only the standard
deviation based on the fit and do not include errors in the state,
for example due to reaching a local minimum within the variational
approach. The horizontal lines mark allowed central charges c < 1
for the unitary minimal models.

Finally, near θ = 0, our analytical approach predicts a small
gapped region (see below).

Integrable points. The numerical investigation can be
complemented by analytical results for special values of the
coupling parameter for which the model becomes integrable.
The identification of integrable points and associated R

matrices solving the Yang-Baxter equation (YBE) is achieved
though the realization that the projection operators (2) form

c = 1

X

Y

c = 8
7

θ = 0
ηπ−η

π
π+η −η

FIG. 3. (Color online) Phase diagram for the SO(5)2 ψ3 chain
derived from numerical (MPS) results and including integrable points
at |θ | = 0,η,π−η,π . We do not have consistent results for region X ,
where the central charge appears to be less than 1. Bethe ansatz results
indicate that region Y is gapped.
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a representation of the Birman-Murakami-Wenzl (BMW)
algebra [54]. In particular, choosing θ = 0,π , the Hamiltonian
can be written as

H0,π = ∓1√
10

L∑
i=1

ui + const ,

where the ui = √
5 p

(1)
i generate a representation of a sub-

algebra of the BMW algebra isomorphic to the periodic
Temperley-Lieb algebra [55]. This model can be derived from
an R matrix

R(u) = w1(u)p(1) + w2(u)p(2) + w5(u)p(5), (6)

with weights w1(u) = sinh(γ − u) and w2(u) = sinh(γ +
u) = w5(u), where cosh γ =

√
5

2 . The global Hamiltonian (3)
can be obtained as the logarithmic derivative of a commuting
transfer matrix built from this R matrix.

As a consequence of the underlying Temperley-Lieb alge-
bra the spectrum of the model at θ = 0,π can be related to that
of the XXZ spin-1/2 chain with anisotropy ±
 = cosh γ =√

5
2 [55,56]. This implies that the eigenstates of the model can

be parametrized by solutions {uj }nj=1 to the Bethe equations
associated with the XXZ model for suitably twisted boundary
conditions[

sinh
(
uj − γ

2

)
sinh

(
uj + γ

2

)
]L

= −ζ−2
n∏

k=1

sinh(uj − uk − γ )

sinh(uj − uk + γ )
.

The twist ζ appearing in the Bethe equations depends on the
sector n: for n = L

2 it can take values ±i,e±2iπ/3,e±γ while
ζL−(n/2) = 1 otherwise. This is similar to other higher spin
Temperley-Lieb chains [57]. The bulk properties of the quan-
tum chain can be obtained from the equivalence to the XXZ

chain: θ = 0 corresponds to the antiferromagnetic spin chain
which has a tiny energy gap of 
 = π exp(− π2

2γ
)/(γ

√
10) �

2.9 × 10−4 [58]. This gap is too small to be resolved in our
numerical results but based on continuity arguments we expect
that there is an extended massive region in the phase diagram
of the anyon chain around θ = 0. As a consequence of the
multiple twists in the anyon chain the thermodynamic ground
state of this model is tenfold degenerate.

At θ = π the Temperley-Lieb equivalence is to the massive
ferromagnetic XXZ chain. The ground states have energy
E = − 1√

2
L and all possible momenta. We also find that there

is a large range of excitations lying above the gap which
are characterized by the parameters l,k ∈ Z. The energy and
momentum of these states are given by


E = 1√
2

− 2√
10

cos

(
2kπ

L − 4lπ

L(L − 2)

)
,

P = 2π

L (k + l) .

As observed in the numerical analysis the spectrum of the
anyon chain shows degeneracies growing with the system size
indicating a first order transition at θ = π .

We have identified two additional pairs of coupling con-
stants where the anyon model becomes integrable: for θ =
η,π + η with η = −π

4 + atan( 1+√
5

4 ) the Hamiltonian (3) can

be obtained from an R matrix associated with the full BMW
algebra which is given by (6) with weights

w1(u) = sinh

(
u + iπ

10

)
sinh

(
u + 3iπ

10

)
= w2(−u),

w5(u) = sinh

(
u + 9iπ

10

)
sinh

(
u + 3iπ

10

)
. (7)

A third solution to the YBE is related to (7) by the transfor-
mation mapping θ ↔ −θ mentioned above.

For both of these solutions we can construct a set of
six commuting transfer matrices t (�)(u), � = 1, . . . ,6, whose
asymptotics as u → ±∞ is given by the topological charges
(4) up to a scalar function. This implies that the charges Y� are
elements of the algebra of commuting integrals of the anyon
chain. By diagonalizing the transfer matrix t (3)(u) we find that
the spectrum of the anyon chain at these integrable points can
be obtained from[

i
sinh

(
uj + iπ

20

)
sinh

(
uj − iπ

20

)
]L

= −ζ

n∏
k=1

sinh
(
uj − uk + 2iπ

5

)
sinh

(
uj − uk − 2iπ

5

) , (8)

where the ζ = ±1 is the eigenvalue of Y6. Note that these
Bethe equations are (up to a twist) those of the Z5 Fateev-
Zamolodchikov (FZ) model, sometimes also referred to as the
five-state self-dual chiral Potts model [59,60]. This can be
understood as a consequence that the R matrices with (7) cor-
respond to descendants of the zero-field six-vertex model [61].

Solving the Bethe equations (8) we have analyzed the
ground-state and low-lying excitations of the anyon chain
in the thermodynamic limit and found that these integrable
points are described by effective conformal field theories with
central charges c = 8

7 for θ = ±η and c = 1 for π ± η, just
as the ferro- (antiferro-)magnetic Z5 FZ model [60]. Based on
the S matrix (1) and the operator content of the anyon chain
as identified from our finite-size analysis of the spectrum we
conjecture, however, that the low-energy theories are unitary
rational models invariant under extensions of the Virasoro
algebra, i.e., the WB2 (WD5) algebra for θ = ±η (π ± η). An
extended and more formal treatment of the integrable points
will be presented in a separate publication [62].

Conclusion. We introduced a lattice model of the anyons
expected to be relevant for the low-energy physics of the
M = 5 topological Kondo effect. The degeneracy of the anyon
zero modes is lifted by local interactions consistent by the
SO(5)2 fusion rules. We have been able to characterize the
collective states of the resulting strongly interacting anyon
model by a combination of numerical simulation and analytic
results. We found multiple extended critical regions with
central charges c = 1 and c = 8/7, which were calculated
from finite-entanglement scaling. In addition we were able to
identify the low-energy effective field theory for special values
of the coupling from the Bethe ansatz solution.
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