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Abstract: 
This study is motivated by the emergence of a new class of tunable infrared spectral-imaging 
sensors that offer the ability to dynamically vary the sensor's intrinsic spectral response from frame 
to frame in an electronically controlled fashion. A manifestation of this is when a sequence of 
dissimilar spectral responses is periodically realized, whereby in every period of acquired imagery, 
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each frame is associated with a distinct spectral band. Traditional scene-based global shift 
estimation algorithms are not applicable to such spectrally heterogeneous video sequences, as a 
pixel value may change from frame to frame as a result of both global motion and varying spectral 
response. In this paper, a novel algorithm is proposed and examined to fuse a series of coarse 
global shift estimates between periodically sampled pairs of nonadjacent frames to estimate motion 
between consecutive frames; each pair corresponds to two nonadjacent frames of the same spectral 
band. The proposed algorithm outperforms three alternative methods, with the average error being 
one half of that obtained by using an equal weights version of the proposed algorithm, one-fourth 
of that obtained by using a simple linear interpolation method, and one-twentieth of that obtained 
by using a nai¿ve correlation-based direct method. 

SECTION I. Introduction 
This study is motivated by the emergence of a new class of quantum-dot mid-IR focal-plane arrays 
(FPAs) that offer the ability to dynamically vary the sensor's intrinsic spectral response from frame 
to frame in an electronically controlled fashion. The variation in the spectral response is achieved 
by changing the applied bias voltage on the detectors.1 A manifestation of this is when a sequence 
of dissimilar spectral responses is periodically realized, whereby in every period of acquired 
imagery, each frame is associated with a distinct spectral band. One such operational detector has 
been recently demonstrated.2 

With the new capability of spectral tunability come many algorithmic challenges to exploit the data 
that these sensors provide. Some prior algorithmic work has already been done at a single-pixel 
level; an example is the implementation of an algorithmic spectrometer for target recognition.3 An 
algorithm for algorithmic spectral-matched filtering for the purpose of hyperspectral feature 
selection and classification has also been developed and tested using this type of sensor.4 However, 
there remain many other unexplored areas of algorithm development that use the DWELL sensor; 
one such outstanding area is that of global shift estimation. 

Global shift estimation is used in a variety of applications including electronic stabilization,1 
improving image quality using overlapping motion compensated frames,6 resolution 
enhancement,7–8,9,10,11 and nonuniformity correction in IR FPAs.7,12–13,14 The performance of each of 
these applications heavily relies on the accuracy of estimates of the frame-to-frame motion. This 
motion is typically determined by selecting one frame as the reference frame, and then estimating 
the spatial translation and rotation to the next frame in order to bring it to alignment with the first. 

Most shift estimation algorithms assume no frame-to-frame variation in the detectors' spectral 
response. However, when such variation is present, the motion estimates may become highly 
inaccurate. This is because of loss of correlation between the initial reference image and the newly 
shifted frame that is generated by a detector with a different spectral response. Clearly, when the 
spectral response at the detector changes, what is seen at the detector will also change—even in the 
absence of any motion. Having a strong correlation between sequential images is a key factor in 
many shift estimation algorithms. 

Different from the case when the spectral response of a sensor is stationary in time, in the dynamic 
DWELL sensor described earlier, the scenes from different spectral responses of the sensor will no 
longer be fully correlated to one another. An illustrative (perhaps extreme) example of this is 
shown in Fig. 1, where two images of the same scene have a contrast reversal effect due to 
differences in the reflectance of the materials in the scene as a function of wavelength. The cross 
correlation between these two images is minimal at the point of optimal shift, which is precisely 



when we expect it to be a maximum. Thus, we expect an erroneous shift estimate when using, for 
example, a cross-correlation-based method to compute the shift estimates. 

 

Fig. 1. Two images of a glacier taken from the U.S. Department of Energy's Multispectral Thermal Imager (MTI) satellite. (a) 
Spectral response centered at 2.2 μm. (b) Spectral response centered at 8.6 μm. 

There are many existing shift estimation algorithms for motion estimation between frames 
generated by a static (single band) FPA. Most common are cross-correlation-based techniques.15,16 
Several methods attempt to improve the performance of cross-correlation methods by 
preprocessing the image. Examples of these include gradient-based techniques,17,18 and object,19 or 
point matching.20 All of these methods can perform well in estimating shifts from consecutive 
frames of similar spectral response at the detector, but all of them rely on the presence of strong 
correlation between corresponding images, something that may be lost when the spectral response 
at the detector changes from frame to frame. 

In this paper, a novel algorithm is proposed to fuse a series of coarse global shift estimates between 
periodically sampled pairs of nonadjacent frames that correspond to nonadjacent frames of the 
same spectral band. The coarse global shift estimates are made using a projection-based shift 
estimator (PBSE),16 though they could be made using any existing shift estimator. The overlapping 
coarse estimates are then combined, using a weighted average scheme, to compute an estimate of 
the frame-to-frame motion. The weights are calculated taking into account the band-dependent 
variability in the accuracy of shift estimation for each band. The main contribution in this paper is 
centered in the idea of combining overlapping, coarse motion estimates to determine frame-to-
frame shifts without requiring correlation between consecutive frames. 

The remainder of this paper is organized into four sections. In Section II, we develop a 
mathematical model of an image sequence generated by the spectrally dynamic DWELL quantum-
dot sensor. In Section III, we describe the proposed shift estimation algorithm in detail. 
In Section IV, we compare results obtained using the proposed algorithm with that of two 
simplistic alternative approaches. Finally, our conclusions are summarized in Section V. 

SECTION II. Mathematical Model 
A. DWELL Sensor Image Sequence 
The spectral response of the DWELL quantum-dot sensor is electronically controllable, allowing us 
to periodically capture a sequence of images with dissimilar spectral responses. Therefore, in every 
period of acquired imagery, each frame is associated with a distinct spectral band. We thus have an 
image sequence corresponding to a sensor whose spectral response varies dynamically from frame 
to frame, albeit in a periodic fashion. If we assume that there is negligible variation 
(nonuniformity) in the spectral response across pixels of the same frame, we can then define the 
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spectral response simply in terms of the wavelength 𝜆𝜆 and the discrete time 𝑛𝑛 at which the image 
was acquired. Moreover, since the spectral response repeats itself periodically, say every 𝑁𝑁 frames, 
we have 

𝑆𝑆(𝑛𝑛, 𝜆𝜆) = 𝑆𝑆(𝑛𝑛 + 𝑁𝑁, 𝜆𝜆). (1) 

An image sequence taken from a sensor with this type of varying spectral response will contain a 
periodic sequence of images from 𝑁𝑁 distinct spectral bands. We can define this image sequence I in 
terms of the actual intensity values, 𝐽𝐽, radiating from the scene, and subsequently detected on the 
sensor at each pixel (𝑥𝑥, 𝑦𝑦). Each intensity value is effectively filtered by the spectral response of the 
sensor at the discrete time 𝑛𝑛. This relationship is 
 

𝐈𝐈𝑛𝑛(𝑥𝑥, 𝑦𝑦) = ∫ 𝐽𝐽𝑛𝑛(𝑥𝑥, 𝑦𝑦, 𝜆𝜆)𝑆𝑆(𝑛𝑛 mod 𝑁𝑁, 𝜆𝜆)𝑑𝑑𝜆𝜆𝜆𝜆  (2) 

where 𝐈𝐈𝑛𝑛 and 𝐽𝐽𝑛𝑛 refer to the nth image in the image sequence and 𝑛𝑛th set of intensity values 
incident on the sensor, respectively. Note that each consecutive image is filtered by the periodically 
varying spectral response from frame to frame—leading to consecutive images that may have 
reduced correlation between them because of variation in the spectral response. 

Note that (2) is describing one of a myriad ways that one could possibly generate an image 
sequence from a sensor that allows for controlled spectral variation from frame to frame. Other 
applications may lend themselves to different types of image sequences, but the one here is chosen 
for its generality. Next, let us compare this new type of spectrally periodic image sequence to a 
collection of image sequences from multiple sensors with fixed (static) spectral responses. 

The image sequence I can be thought of as an interleaved collection of image sequences from 
multiple sensors with nonvariable spectral responses. If we take every 𝑁𝑁th frame of I, we note that 
the spectral response becomes a function of wavelength only and is no longer dependent on the 
discrete index 𝑛𝑛, as in (2). By varying the starting value of 𝑛𝑛 from 0 to 𝑁𝑁 − 1, we obtain a collection 
of 𝑁𝑁 image subsequences, each subsequence corresponding to a distinct, fixed spectral response. 
 
As the spectral response in each of these 𝑁𝑁 subsequences is fixed, it is possible to employ any one 
of the existing shift estimators to estimate the frame-to-frame shift in each of these 𝑁𝑁 image 
subsequences. We reiterate that frame-to-frame shift in a subsequence corresponds to a shift 
in 𝑁𝑁 frames in the original spectrally dynamic sequence. We also remind the reader that the totality 
of these motion estimates, one for each subsequence, yield a collection of 𝑁𝑁 overlapping and coarse 
motion estimates in the original image sequence I. 
 
B. Problem Definition: Determine the Frame-to-Frame Motion Estimates from 
Overlapping Coarse Motion Estimates 
Clearly, knowledge of the motion between frames in the image sequence I in one period allows us 
to calculate the coarse motion estimate between two consecutive frames in the first subsequence; it 
is simply the vector sum of all intermediate frame-to-frame motion estimates. Let us use this 
simple relationship to model a corresponding inverse problem. 
 
Let us define �⃑�𝑥𝑛𝑛 as the 2-D global translational vector (hereafter, termed global motion) between 
frames 𝑛𝑛 and 𝑛𝑛 + 1 in the image sequence I. Let us define �⃑�𝑦𝑛𝑛 as the global motion between 
frames 𝑛𝑛 and 𝑛𝑛 + 𝑁𝑁 of the image sequence I. In other words, this is the coarse motion between the 
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frames 𝐈𝐈𝑛𝑛 and 𝐈𝐈𝑛𝑛+𝑁𝑁. We can now relate �⃑�𝑦𝑛𝑛 (the motion between frames in a subsequence) in terms 
of �⃑�𝑥𝑛𝑛 (the motion between consecutive frames in the original sequence) as follows: 
 

𝑦𝑦
⇀
𝑛𝑛 = � 𝑥𝑥

⇀
𝑖𝑖

𝑛𝑛+(𝑁𝑁−1)

𝑖𝑖=𝑛𝑛
. (3) 

By using this relationship (also see Fig. 2 for visual representation), we can now describe the 
problem in the form of an ill-posed inverse mathematical problem. Let us begin by considering a 
special case. 

 

Fig. 2. Visual representation of sample frame to frame motion vectors (
𝑥𝑥
→ 𝑛𝑛′𝑠𝑠) and their relationship to 

the overlapping coarse motion estimates (𝑦𝑦
⇀
𝑛𝑛′𝑠𝑠) given (3). 

If we make the oversimplifying assumption that the motion has a constant velocity (i.e., no 
acceleration), then the solution is trivial: divide any of the coarse motion estimates overlapping the 
frame-to-frame motion of interest by the number of frame-to-frame transitions contained within 
the coarse motion estimate (𝑁𝑁), i.e., 
 

𝑥𝑥
⇀
𝑛𝑛 = 𝑦𝑦

⇀
𝑖𝑖
𝑁𝑁

, 𝑖𝑖 = 𝑛𝑛 − (𝑁𝑁 − 1), … ,𝑛𝑛. (4) 

Note that this will give N different solutions for each individual �⃑�𝑥𝑛𝑛. If indeed the motion had 
constant velocity, and all of the coarse motion estimates calculated were perfectly accurate, then we 
would end up with the same solution each time. In actuality, however, the motion estimates will 
not be perfect every time; thus, we will need to intelligently combine the different solutions in an 
attempt to get the best possible solution for each �⃑�𝑥𝑛𝑛. 
 
As will be shown later, using this simplifying assumption of constant velocity, as well as using a 
novel approach to combine each of the 𝑁𝑁 solutions provides an accurate solution to the problem of 
determining frame-to-frame motion estimates, given only periodic overlapping coarse motion 
estimates between every 𝑁𝑁 frames. 
 

SECTION III. Algorithm 
The rationale of the proposed algorithm is to use coarse and overlapping motion estimates between 
each pair of frames in every subsequence to calculate frame-to-frame motion estimates by using a 
weighted average scheme. An enabling idea is that the weights are chosen inversely proportional to 
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the “error” measured for each coarse motion estimate so as to give a higher emphasis on coarse 
motion estimates with small error. The detailed description of the algorithm, which we term the 
spectrally dynamic shift estimator (SDSE), is described shortly. 

A. Coarse Motion Estimates 
Coarse motion estimates between each pair of frames from each subsequence of images from the 
same band are computed using any traditional shift estimation algorithm. For this study, we used a 
PBSE for all coarse motion estimates.16 This gives us a set of coarse motion estimates, which are 
represented in our math model as the 𝑦𝑦

⇀
𝑛𝑛's. 

 
B. Error for Coarse Motion Estimates 
In order to usefully combine the overlapping coarse motion estimates, it is important to be able to 
quantify how “good” each estimate is. The quality of each coarse motion estimate is related directly 
to how well the motion compensated image matches the original. For a perfect estimate—assuming 
no temporal noise—if you take the frame 𝐈𝐈𝑛𝑛 and shift it by the vector �⃑�𝑦𝑛𝑛, you should end up with an 
exact copy of the frame 𝐈𝐈𝑛𝑛 in the overlapping regions of the two images. To calculate the rms error 
related to each coarse motion estimate, we will simply subtract each pixel in the overlapping region 
(call this region O) of the shifted version of the source frame with that of the destination frame. We 
will then square these differences, sum them up, and then take the square root of that sum. This 
gives us the rms error 𝑒𝑒𝑛𝑛 associated with each motion estimate �⃑�𝑦𝑛𝑛 
 

𝑒𝑒𝑛𝑛 = �� (𝐈𝐈𝑛𝑛(𝑥𝑥 + (𝑦𝑦
⇀
𝑛𝑛)𝑥𝑥 ,𝑦𝑦 + (𝑦𝑦

⇀
𝑛𝑛)𝑦𝑦) − 𝐈𝐈𝑛𝑛+𝑁𝑁(𝑥𝑥,𝑦𝑦))2

𝑥𝑥,𝑦𝑦∈𝑂𝑂
 (5) 

where (𝑦𝑦
⇀
𝑛𝑛)𝑥𝑥 refers to the shift in the 𝑥𝑥-direction of the motion estimate �⃑�𝑦𝑛𝑛 and (𝑦𝑦

⇀
𝑛𝑛)𝑦𝑦 refers to the 

shift in the 𝑦𝑦-direction of the motion estimate �⃑�𝑦𝑛𝑛. 

There is still an issue with the way we are calculating the rms error in (5). If we want to compare 
rms errors from different overlapping coarse motion estimates, we would like to compare errors 
that are related to one another in some normalized fashion. As such, we need to normalize the rms 
error such that regardless of the intensities of the input images, and regardless of the size of the 
overlapping region O, that the rms errors all approach some minimum value when the motion 
estimate is most accurate and increase proportionally larger as the accuracy drops. 

First, in order to normalize the size of the overlapping region rather than taking the entire region, 
we will simply define the region O to be the center of the target frame 𝐈𝐈𝑛𝑛+𝑁𝑁 with the outer edges 
stripped off. The amount of the outer edges stripped off can be variable, but only needs to be as 
large as the largest motion estimate that we expect to see. Thus, region O is a subset of the 
overlapping region between each pair of frames. By stripping off the outer edges, we are comparing 
the same number of overlapping pixels when determining the rms error for each of the coarse 
motion estimates. 
 
Next, we will normalize the rms error to be independent of the intensity values of each frame. For 
example, if we have one band with very large intensity values, then a higher rms error value will 
occur for small motion estimate errors, compared with a band with very small intensity values and 
the same motion estimate error. To normalize, we simply divide the intensity values by the average 
of the 𝐿𝐿2-norms (or Euclidean vector norms) of the source and destination frames before working 

https://ieeexplore.ieee.org/document/#deqn5


with them, i.e., we normalize the images before computing the motion estimates. The rms error 
equation given in (5) still holds if we first assume that 𝐈𝐈𝑛𝑛 and 𝐈𝐈𝑛𝑛+𝑁𝑁 have both been normalized in 

this manner prior to being used to calculate the rms error. Let us designate 𝐈𝐈
^
𝑛𝑛 and 𝐈𝐈𝑛𝑛+1 the 

normalized versions of 𝐈𝐈𝑛𝑛 and 𝐈𝐈𝑛𝑛+𝑁𝑁, respectively. Thus, our final normalized rms 

error 𝑒𝑒
^
𝑛𝑛associated with each motion estimate �⃑�𝑦𝑛𝑛 is 

 

𝑒𝑒
^
𝑛𝑛 = �� (𝐈𝐈

^
𝑛𝑛(𝑥𝑥 + (𝑦𝑦

⇀
𝑛𝑛)𝑥𝑥 ,𝑦𝑦 + (𝑦𝑦

⇀
𝑛𝑛)𝑦𝑦) − 𝐈𝐈

^
𝑛𝑛+𝑁𝑁(𝑥𝑥, 𝑦𝑦))2

𝑥𝑥,𝑦𝑦∈𝑂𝑂

. (6) 

C. Frame-to-Frame Motion Estimates Using Weighted Averages 
Now that we have all of the overlapping coarse motion estimates, along with their corresponding 
rms errors, we can estimate each of the frame-to-frame motion estimates as described in (4). We 
will then have 𝑁𝑁 different estimates for each frame-to-frame estimate (the �⃑�𝑥𝑛𝑛 's). 
 
We can improve the final shift estimate if we use an intelligent weighted average scheme. One such 
set of weights we can use is the normalized set of the inverses of the rms errors associated with 
each coarse motion estimate. This gives us the benefit of giving a higher bias to those coarse motion 
estimates that are accurate and a small bias to those that are not. Thus, our final estimate for 
each �⃑�𝑥𝑛𝑛 is given by 

𝑥𝑥
⇀
~

𝑛𝑛 = 1
𝑁𝑁
� 𝑤𝑤𝑖𝑖

𝑦𝑦
⇀
𝑖𝑖
𝑁𝑁

𝑛𝑛

𝑖𝑖=𝑛𝑛−(𝑁𝑁−1)

 (7) 

where 𝑥𝑥
⇀
~

𝑛𝑛 is the weighted average of all the solutions for �⃑�𝑥𝑛𝑛 and 𝑤𝑤𝑖𝑖 is the normalized weight 
associated with each coarse estimate's rms error 

𝑤𝑤𝑖𝑖 = 𝑎𝑎

𝑒𝑒
^
𝑖𝑖
. (8) 

The term a is the normalization term used to ensure that the sum of all the weights sum to 1, i.e., 

∑ 𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=𝑛𝑛−(𝑁𝑁−1) = 1. (9) 

Solving for 𝑎𝑎, we obtain 

𝑎𝑎 = 1

� 1

𝑒𝑒
^
𝑖𝑖

𝑛𝑛

𝑖𝑖=𝑛𝑛=(𝑁𝑁−1)

.
 (10) 

This completes the description of the SDSE algorithm. 

In summary, we have computed a frame-to-frame motion estimate using weighted averages of 
overlapping coarse estimates. In the next section, we will analyze by comparison how well this 
algorithm performs versus other more trivial alternatives. 
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SECTION IV. Algorithm's Performance Analysis 
The algorithm described before, the SDSE algorithm, will be compared to three other algorithms, 
namely the direct method, the simple interpolation method, and the equal weights method, all of 
which are described in detail later. Multiple datasets will be used, exhibiting both linear and 
accelerated motion, as well as giving a variety of spectral scene signatures. All of the raw data used 
comes from preprocessed datasets from the multispectral thermal imager (MTI).21 

A. Multispectral Thermal Imager (MTI) 
MTI is a Department of Energy (DOE) satellite imaging system designed to collect radiometrically 
calibrated, medium resolution imagery in 15 spectral bands ranging form 0.45–10.70 μm.21 MTI 
itself is not a dynamic sensor with frame-to-frame variation in its spectral response, but is rather a 
push-broom sensor acquiring all 15 bands simultaneously as the sensor is swept across a scene. 
Scene imagery from MTI is used as a realistic source of radiometric data for use in testing our 
algorithm. Four bands from eight different scenes were used as the base data. 
 
In order to simulate a dynamic sensor with frame-to-frame variation in its spectral response, a 
256×256 viewpoint was swept across each of the four bands in an MTI scene using simulated 
motion vectors. Frames from each of the four chosen bands were then interleaved to create 
periodic image sequences. The same motion vectors were then applied to each subsequent scene, 
and then each of the algorithms were applied to the resultant image sequences. 

Using simulated motion provides us the ability to have truth data for which we can compare our 
motion estimates to. This truth data are not used in any of the calculations of our motion estimates, 
i.e., they can run without any knowledge of sensor and/or scene movement, but are only as used a 
comparison tool after the fact to determine absolute error in the frame-to-frame motion estimates 
calculated by each method. The error reported next is the sum of the average pixel error in the 
horizontal direction across all motion estimates in one scene and that of the average pixel error in 
the vertical direction in one scene. The maximum, minimum, and average errors across the eight 
scenes are reported. 

B. Simulated Motion 
Three shift estimation methods were applied to three different simulated motions across all eight 
MTI scenes. 

The first simulated motion was constant linear motion in both the horizontal and vertical 
directions. A total of 30 frames were generated with a constant motion of two pixels in both the 
horizontal and vertical directions between each pair of consecutive frames. This motion will be 
referred to as linear motion without jitter. 

The second simulated motion was generated by taking the constant linear motion and adding a 
random jitter on top of that motion. The jitter was either 1 or 0 in the vertical direction, and was 0, 
1, or 2 in the horizontal direction. This allowed for a motion of 2–4 pixels in the horizontal 
direction between frames, and between 2 and 3 pixels in the vertical direction between frames. The 
jitter was generated randomly one time, and then that same jitter was reused across each of the 
shift estimation methods to allow for better comparison. This motion will be referred to as linear 
motion with jitter. 



The third and final simulated motion was that of constant acceleration in both the horizontal and 
vertical directions, with a complete reverse in acceleration after frame the fifteenth frame (again 30 
total frames were generated). Motion started at 1 pixel per frame in both the horizontal and vertical 
directions, increased to eight pixels per frame, and then decreased back to one pixel per frame. This 
motion will be referred to as accelerated motion. 

C. Direct Method 
The direct method is a naïve method used to calculate frame-to-frame motion estimates in a sensor 
with frame-to-frame variation in its spectral response. This method simply takes an existing 
algorithm, in our case, the PBSE algorithm, and applies it directly to two consecutive frames, 
ignoring the fact that their spectral response has changed. 

For linear motion without jitter, the maximum error obtained using this method was 20.4 pixels. 
The minimum error was 16.5 pixels. The overall average was 18.2 pixels. 

For the linear motion with jitter, the maximum error was 21.2 pixels, the minimum error was 13.9 
pixels, and the overall average error was 18.5 pixels. For accelerated motion, the maximum error 
was 23.4 pixels, the minimum error was 17.3 pixels, and the overall average error was 19.8 pixels. 

The errors remain fairly consistent across each of the three simulated motions. In fact, the motion 
estimate error for this method is directly correlated to the size of overlapping images used in the 
PBSE algorithm. The results for each of the earlier reported estimates all used a 10 pixel buffer area 
around the images being correlated. When doubling this buffer area to 20 pixels, the errors also 
doubled, with the mean motion error becoming 37.3 pixels for the linear motion with jitter case, for 
example. As expected, the PBSE algorithm is completely ineffective at estimating motion between 
two consecutive frames of different spectral content as shown by these high errors. 

D. Interpolation Method 
The interpolation method uses a single coarse estimate to determine the frame-to-frame motion 
estimates. In other words, the weights for all, but one overlapping motion estimate are set to 0, 
while the weight of a single arbitrary band is set to 1. This is the same as taking a single result 
from (4) and discarding all the others. This method requires less computation than the direct 
method, as a single coarse estimate is used to calculate multiple frame-to-frame motion estimates. 
For example, if four bands were used, this would be four times faster than the direct method. 

For linear motion without jitter, the maximum average error was 9.9 pixels. The minimum average 
error was 0 pixels. The overall average error was 2.8 pixels. The interpolation method works just 
fine in some cases (perfect even for one), but it has no way to dampen the effect of bad estimates—
as shown by the maximum error of nearly 10 pixels in one case. 

For linear motion with jitter, the maximum average error was 7.8 pixels, the minimum average 
error was 0.9 pixels, and the overall average error was 2.0 pixels. The maximum average error for 
this case was an anomaly among the eight datasets used—taking that one sample out, the overall 
average error is reduced to 1.1 pixels. 

For accelerated motion, the maximum average error was 8.4 pixels, the minimum average error 
was 1.0 pixel, and the overall average error was 4.1 pixels. 

https://ieeexplore.ieee.org/document/#deqn4


The interpolation method outperforms the direct method on all accounts, as expected. Still, the 
overall average errors are all still fairly large. 

E. Equal Weights Method 
The equal weights method ignores the error estimates generated by using (6), and assigns equal 
weights in (7). In this case, all four weights are assigned the value 0.25. If our coarse motion 
estimates were without any error, then this method would be identical to the proposed method. 
This method is computationally equivalent to the direct method (i.e., slower than the interpolation 
method), as it requires the same number of motion estimates to be calculated as the direct method. 

For linear motion without jitter, the maximum error was 3.1 pixels. The minimum error was 0 
pixels. The overall average was 1.5 pixels. For linear motion with jitter, the maximum error was 2.7 
pixels, the minimum error was 0.8 pixels, and the overall average error was 1.8 pixels. For 
accelerated motion, the maximum error was 4.0 pixels, the minimum error was 0.9 pixels, and the 
overall average error was 2.3 pixels. It can be concluded that there is a great improvement across 
the board when equal weights are used, as compared to the interpolation method. The overall 
average errors were nearly cut in half across the board. Using each of the coarse motion estimates 
equally instead of just one substantially improves the results. 

F. SDSE Method 
The SDSE method has been described in detail before in Section III. The same simulated motion 
was also used to test the performance of the SDSE method. The region O used in calculating the 
error estimates of (6) was picked to range from 1 to 100 for both 𝑥𝑥 and 𝑦𝑦. This method is 
computationally slower than the equal weights method because of the extra error calculation 
involved for each motion estimate calculated. 
 
For linear motion without jitter, the maximum error was 2.5 pixels. The minimum error was 0 
pixels. The overall average was 0.6 pixels. For linear motion with jitter, the maximum error was 2.0 
pixels, the minimum error 0.8 pixels, and the overall average error was 1.2 pixels. For accelerated 
motion, the maximum error was 1.6 pixels, the minimum error was 0.5 pixels, and the overall 
average error was 0.9 pixels. 

It is seen that there is an obvious improvement in using the proposed method over any of the prior 
methods. An inherent benefit of using this method is its ability to ignore highly erroneous coarse 
motion estimates. This is very apparent when comparing the maximum errors of the prior methods 
with that of the proposed method. On average, there is approximately a two times improvement 
over the equal weights method, and a four times improvement over the interpolation method when 
using the SDSE method. In the special case with one or more highly erroneous coarse motion 
estimates, the SDSE method was observed to perform more than ten times better than the equal 
weights method, an order of magnitude improvement. These results are summarized 
in Table I and Fig. 3. 

Table I Error Comparison Between Motion Estimation Methods 

 Direct Method Interpolated Method Equal Weights Method Proposed Method 
  Linear Motion without 

Jitter 
  

Minimum Error 16.5 pixels 0 pixels 0 pixels 0 pixels 
Maximum Error 20.4 pixels 9.9 pixels 3.1 pixels 2.5 pixels 
Average Error 18.2 pixels 2.8 pixels 1.5 pixels 0.6 pixels 
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  Linear Motion with 

Jitter 
  

Minimum Error 13.9 pixels 0.9 pixels 0.8 pixels 0.8 pixels 
Maximum Error 21.2 pixels 7.8 pixels 2.7 pixels 2.0 pixels 
Average Error 18.5 pixels 2.0 pixels 1.8 pixels 1.2 pixels 
     
  Accelerated Motion   
Minimum Error 17.3 pixels 1.0 pixels 0.9 pixels 0.5 pixels 
Maximum Error 23.4 pixels 8.4 pixels 4.0 pixels 1.6 pixels 
Average Error 19.8 pixels 4.1 pixels 2.3 pixels 0.9 pixels 

The Proposed method performs well in all cases, much better than any of the more naïve methods it is compared 
against. 

 

Fig. 3. Graph of the normalized errors for the direct, interpolated, equal weights, and SDSE, respectively. Errors 
have been normalized to the largest error. Error bars show the range from the minimum average error to the 
maximum average error, with the overall average error for each simulated motion and motion estimation method 
marked. 

SECTION V. Conclusion 
With the advent of new sensing technologies able to provide new types of multispectral data, we 
must begin to address the algorithmic needs to effectively process these data. For dynamic sensors 
with frame-to-frame variation in their spectral response, an effective technique has been 
demonstrated to compute the frame-to-frame motion estimates accurately. This technique 
effectively applies any existing shift estimation algorithm to a new type of image sequence with 
accurate results. 

There are several direct paths forward to extend and enhance the work that has been presented in 
this study. First, the SDSE algorithm needs to be applied to images acquired from a dynamic 
DWELL FPA. There are differences between the MTI data used to validate this algorithm and that 
coming from an actual DWELL sensor. These differences could affect the effectiveness of the SDSE 
algorithm. Next, different regularization methods could be used to solve the inverse problem, 
instead of assuming linear motion in between each coarse motion estimate. There may be other 
regularization methods that would improve the SDSE algorithm. Lastly, the DWELL sensor model 
given within this paper does not take into account noise (e.g., dark current). Modeling the noise 
and thus taking a statistical approach at solving this problem should help improve the effectiveness 
of this algorithm applied to data from dynamic DWELL sensors. 
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