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Abstract – Prognostic models for maintenance decisions have 

inherent limitations due to quality & quantity of historical 

data, assumptions made, and time required in validating 

models. In this paper, Preventive Maintenance (PM) 

Intervals, Failure events, cost and maintenance records from 

Computerized Maintenance Management System (CMMS) 

are analyzed for reducing downtimes and Operating 

Expenditure (OPEX). The proposed methodologies for 

maintenance intervals and replacements with acceptable level 

of confidence are articulated to asset maintenance of a City 

Council of Australian Local Government organisation as a 

case of improved decision making under limited information.  
 

Keywords – Decision Support, Preventive Maintenance 

Interval, Weibull Analysis, Risk Ranking, Degradation 

Modeling 

 

 

I. INTRODUCTION 
 

 Asset management decisions have significant 

influence on operating and capital expenditure of any big 

organisation similar to city council. Illustrative example 

from Australian Local Government organisation is 

considered in this study for unstructured and at times 

insufficient field data resulting a risk based informed 

decision making in maintenance and replacement of 

engineering assets for reduced costs and risks along with 

enhanced performance.  

 

Issues and challenges in wastewater treatment plants 

and sewer pressure mains of the city council assets are 

studied and analyzed in this research project. Failure 

modelling, non-destructive wall thickness assessment and 

parametric survival curves are proposed to better estimate 

capital investment needs and more accurate replacement 

timelines. 

 

 

II. METHODOLOGY 
 

 Balancing Risk, Performance and Cost is now a 

globally accepted trend in good practice asset management 

in line with, ISO55000, ISO standard for asset 

management.  This study is performed on two groups of 

assets where decisions are more influenced by cost in one 

set of assets and risks in the other set of assets. 

 

 In the evolution of maintenance strategy, the domain 

of traditional reliability engineering sits between 

Corrective Maintenance (CM) and Preventive 

Maintenance (PM) whereas Prognostics and Health 

Management (PHM) positions between PM and CM[1]. 

Prognostics is the key enabler that permits evaluation of 

system reliability by predicting failures more accurately 

and providing informed risk based decision making in 

maintenance of assets and capital expenditure.  Prognostic 

modelling is able to better predict remaining useful life [2, 

3]. It is able to develop health management roadmap of 

assets through a general path model [4. 5]   

 

 Park, Tin and, Jeong proposed a framework for 

modelling the likelihood of failure of underground pipeline 

assets [6]. Chattopadhyay and Kumar estimated parameter 

for degradation using parametric modelling approach [7]. 

Chattopadhyay discussed issues and challenges of 

balancing cost, performance and risk in life cycle 

management of capital intensive assets [8]. Beebe 

extensively covered predictive maintenance of pumps 

using effective condition monitoring approach [9]. 

Rahman and Chattopadhyay proposed optimal service 

contract policies for outsourcing maintenance services 

[10]. Chattopadhyay and Yun developed 2D models and 

analyzed warranty costs for reducing risks of failures [11].  

 

 Techniques of fault diagnosis for Condition Based 

Maintenance (CBM) are more mature in research for life 

cycle management of industrial products/systems 

compared to that of PHM method, which has been 

significantly growing in recent years. International 

Standard ISO 13381-1 provides a comprehensive 

guidelines for performing failure prognostics of 

engineering systems [12]. Prognostics is defined as an 

estimation of time to failure and associated risks of one or 

more known and potential failure modes. A sound 

methodology is used for generating Weibull parameters of 

failure data and is applied in risk based decision making in 

maintenance. 

 

 Historical data available from City Council’s CMMS 

was used for analysis and illustrative example of this paper.   

 

INSTRUMENT ASSETS 

 

 Instrument assets of various types (asset classes) were 

considered from Waste Water Treatment Plants (WWTP) 

of the city council in Australia. Analysis showed that 

primary impacts of low and/ or non-availability of these 

instruments were increased costs, followed by reduced 

performance. Business risk resulting from failure of these 

assets was not significant. 

 

 Figure 1 shows that 14 out of 73 classes of assets 

contributed significant portion of total maintenance cost. 

Further distribution of cost for Reactive Maintenance 

(RM), Preventive Maintenance (PM) and Total 
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Maintenance was analysed for broad objectives of asset 

management actions and is provided in Table 1.  

 

 
Fig. 1.  Distribution of Maintenance cost among Instrument asset classes 
 

 

TABLE 1 
MAINTENANCE COST DISTRIBUTION AND OBJECTIVE 

IDENTIFICATION 

Asset Class RM PM 
Total 

Cost 

PM/ 

Total 

RM/ 

Total 

Objecti

ve 

Dissolved 

Oxygen 

Analyser 

3 2 1 52% 45% 
< PM, 

< RM 

Actuator 1 N 2 9% 85% < RM   

Flow Meter 2 7 3 20% 79% 
< RM, 

< PM 

pH Meter 9 1 4 82% 16% 
< PM, 

< RM 

Level Sensing 

Element 
4 N 5 19% 80% < RM 

Level 

Transmitter 
5 N 6 24% 66% < RM 

Turbidity 

Analyser 
6 9 7 28% 68% 

< RM, 

< PM 

Solenoid 

Valve 
7 8 8 42% 57% 

< RM, 

< PM 

UV Intensity 

Sensor 
11 11 9 47% 46% 

< PM, 

< RM 

Pressure 

Transmitter 
8 N 10 35% 65% < RM 

Nutrient 

Analyser 
N 5 11 85% 15% < PM   

Flow Switch N 3 12 87% 13% < PM   

Orthophospha

te Sensor 
N 6 13 92% 8% < PM   

Chlorine 

Residual 

Analyser 

N 12 1 57% 40% < PM   

  

 Analysis is conducted based on relative costs for 

Reactive Maintenance, Preventive Maintenance and Total 

Maintenance Cost. Actions are classified into four 

categories or groups, as shown in Table 2. 
 

TABLE 2 
RANKING OF HIGH MAINTENANCE COST CLASSES 

 
Group Action 

1 Reduce cost of PM 

2 Prioritize PM cost reduction over RM cost 

3 Prioritize RM cost reduction over PM cost 

4 Reduce cost of RM 

  

 For each of the 14 instrument asset classes, Time to 

Failure (days), Frequency of PM and Cost of RM & PM 

were analysed from CMMS data.  

 

 Recommendations from Original Equipment 

Manufacturer (OEM) on maintenance scope used to 

overrule any other considerations during initial years of 

operation of plant. As maintenance management system, 

personnel skills and asset knowledge matured, the asset 

owners looked for feasible opportunities for further 

improving decision making of maintenance schedules 

including capital investments. Key considerations were 

eliminating unnecessary PMs, incorporating lessons learnt 

from performance data and reducing OPEX, wherever 

possible, through rationalisation of PM. 

 

 A failure prediction model was proposed using 

Weibull analysis for asset class behavior. Each valid RM 

Work Order is counted as a failure event in this analysis 

using available data from 01-July-2013 to 27-Feb-2017. 

Time between two consecutive failure events (TBF) in this 

period is extracted for each asset of any particular asset 

class. Assets having identical functions, specification and 

similar failure modes are pooled together in this analysis. 

 

 

III. RESULTS FROM INSTRUMENT ASSETS 

 

 A typical case of a Flow Meter is considered here for 

an illustrative example. As the range of TBF varied  

between 2 to 638 days for 38 failure events of Flow Meter, 

a normalized parameter T* was used. This approach was 

taken due to unavailability of failure data prior to 01-July-

2013. 

 
T ∗ = T + Stdev(∑ TBF)                           (1) 

 

Median Rank =
(f(i)−0.3)

(f(n)+0.4)
                                 (2) 

 

 Weibull curve for Flow Meter was generated by 

plotting ln(T*) against ln (ln (
1

(1−𝑀𝑒𝑑𝑖𝑎𝑛 𝑅𝑎𝑛𝑘)
).  The resulting 

Weibull plot is provided in Figure 2.  

 

 
 

Fig. 2.  Weibull Plot for Flow Meter 
 

 Regression analysis of defect data was carried out to 

obtain shape parameter β. Characteristic life α for the asset 

group was estimated as follows: 
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α = e−β                                             (3)                                              

  

 Probability of Failure (P-F) curve for the asset class 

was developed as shown in Figure 3. From this curve, time 

to reach a target reliability of 95% is extrapolated for 

desired interval for PM. 

 

  
Fig. 3.  P-F Curve for Flow Meter 

 

Table 3 provides findings from analysis of 14 classes 

of assets across four categories. The proposed maintenance 

frequency is decided based on lowest possible cost 

considering a minimum threshold of 95% reliability. 
 

TABLE 3 

PROPOSED PM INTERVALS FOR DIFFERENT GROUPS 

OF ASSET CLASSES 

Group Asset Class 

Estimated 

Threshold 

for 95% 

Reliability 

(days) 

Existing 

Maint. 

Frequency 

Proposed 

Maint. 

Frequency 

1 

Nutr. Analyser 75 1 W 1 M 

Flow Switch 523 1  Y 1 Y 

Orthoph. Sensor 160 1 W 3 M 

Chl Res Anlyser 184 2W, 1 Y 6 M, 1 Y 

2 

Diss O2 Anlyser 214 1 M 6 M 

pH Analyser 205 2 W 3 M 

UV Int Analyser 188 
2 M, 6 M, 

1 Y 
6 M, 1 Y 

3 

Flow Meter 113 1 Y 6 M 

Turb. Analyser 152 1 Y 1 Y 

Solenoid Valve 269 1 Y 1 Y 

Actuator 232 1 Y 9 M 

4 

Level Sensing 

Element 
238 1 Y 1 Y 

Lev Ind. Trans. 185 1 Y 1 Y 

Pr. Transmitter 203 1 Y 1 Y 

 

 Above analysis provided a basis for rationalisation of 

PM. For asset classes in Groups 1 and 2, there is a marked 

reduction in expected maintenance expenditure by 

extending maintenance intervals. 

 

 For Groups 3 and 4, analysis showed a need for 

increase in frequency for Flow Meters and Level Sensing 

Elements to provide desired reliability. Although there was 

a marginal increase of PM cost, the reason behind this is 

consideration of risks associated with failures along with 

the fact that more frequent PM picked up early warning 

signs of potential failure of assets and therefore avoiding 

high RM costs.  

 

 It was recommended for a trial of the new maintenance 

intervals for a period of 18-24 months, append CMMS 

data, re-run analysis and fine tune P-F curve to further 

enhance confidence of decision making in risk based asset 

management.  

 

 In the initial attempts to model failures,  obtained 

from analysis was less than 1 for all asset classes, 

apparently indicating infant mortality. However, knowing 

the physical assets have been in service for quite some time 

without drastic failure events and due to absence of good 

CMMS data, the analysis was re-run with standard 

deviation of failure  times (T*).  

 

 Figure 4 shows the actionable defects across the asset 

classes as on date and are: calibration drift, component 

failure, decommissioning, wear and material failures. In 

the subsequent iterations, further analysis on impact of 

defect data needs to be considered for more accurate 

decision making of PM intervals.   

 
Fig. 4.  Distribution of actionable defects 

 

SEWER PRESSURE MAIN 

 

 The Sewer Pressure Main (SPM) consists of 12 pipe 

line assets with diameters ranging from 375mm to 750mm. 

Oldest pipe has clocked 41 years in service, most recent 

sectional replacement was done 6 years ago. Lengths of 

pipe sections vary from 4m to 2.12 km. Material of 

construction are Ductile Iron-Cement Lined (DICL), Cast 

iron (CI), Mild Steel-Cement Lined (MS-CL) and Asbestos 

Cement (AC). There are limited or no maintenance data 

and failure records for the SPM. Due to operational and 

budget constraints and challenges of terrain, it was not 

possible to conduct assessment and gather asset condition 

data with reasonable level of confidence. However, 

primary impact of failure is found as operational and 

business risk followed by costs. The only information 

available or assets was from the run performed using a free-

swimming foam ball with acoustic sensor data, for locating 

leaks, any gas and air pockets.  

 

 During this test, no pipe leaks were identified. There 

were two major types of findings as shown in Figures 5 and 

6. First one was the location and length of localised air, gas 
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pockets and gas slug pockets. The other one was 

information on pipe wall anomalies. In case of the latter, 

the location and the qualitative size of the anomaly was 

identified, however, a differentiation on type of anomaly, 

i.e wall thinning, crack etc. could not be quantified from 

the available data. Therefore, this exercise provided a 

qualitative baseline information of pipeline condition.  

 

 
Fig. 5.  Location of gas / air pockets 

 

 

 
Fig. 6.  Distribution of pipe wall thickness anomalies 

 

 

IV. RESULTS FROM SEWER PRESSURE MAINS 

 

 Table 4 summarizes available limited information on 

these assets as used for degradation modeling and 

replacement decisions. 

 

TABLE 4 

CURRENT CONDITION OF SPM SYSTEM 

 
  

 Each asset is assigned a score using a scale of 

increasing severity from 1 to 5. Variables considered are 

age, transport volume and condition. For condition, the 

scores are derived from the type, length, size and number 

of anomalies recorded. Current degradation factor is 

modelled as follows: 

 

          Current Degr. Factor = exp (−
overall score for asset

Total Overall Score
)         (4) 

 

 Overall score is allocated using the product of three 

individual scores and is presented in Table 5. 

 

 

TABLE 5 

FACTORS USED IN DEGRADATION RANKING OF 

ASSETS IN SPM 

Asset 

Number 

Age 

Score 

Volume 

Score 

Condition 

Score 

Overall 

Score 

Current 

Degrad. 

Factor 

470146 3 5 3 45 0.72 

469751 4 2 4 32 0.79 

470145 3 1 3 9 0.94 

470144 3 1 3 9 0.94 

469199 3 1 3 9 0.94 

469477 3 1 3 9 0.94 

470150 3 1 2 6 0.96 

469980 1 2 3 6 0.96 

469891 3 1 1 3 0.98 

469344 2 1 1 2 0.99 

470048 2 1 1 2 0.99 

470252 1 2 1 2 0.99 

 

 Relative performance of each asset compared to 

parametric curve from its current state of degradation till 

end of expected service life (60 years) is calculated using 

the relation developed by Park H et. Al [6] 

   

                 S(t) = exp (−exp (−3.6095) t3.6095             (5) 

 

 Failures are modelled for  = 5.0647  

 

 
Fig. 7.  Relative survival probability of SPM assets 

 

 From current condition ranking and relative survival 

probability using parametric curve (Figure 7), two assets, 

i.e. 470146 and 469751 were allocated top priority for 

replacements in a 10 year planning window. The asset 

replacement cost is estimated accordingly and is provided 

in Table 6. 
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TABLE 6 

REPLACEMENT PRIORITY OF SPM ASSETS  

Asset 

Number 

Current 

Deg. 

Factor 
Priority 

Unit Rate of 

replacement 

($/m) 

Asset 

Replacement 

Cost ($, FY 

2016-17) 

470146 0.72 1 1,200 2,544,461 

469751 0.79 2 420 139,852 

 

 

V. CONCLUSIONS 

 

 In the absence of good quality maintenance data, 

consideration by the council in the recent past was to rely 

on OEM recommendations and executive judgements 

based on experience of maintenance team for maintenance 

decisions including planning and budgeting. This research 

has developed risk-based decision models and used pool 

data to deal with limitations of failure and maintenance 

history. Through rationalization of PM intervals, primary 

objective of reducing maintenance costs was achieved. 

This has significant potential for further enhancing asset 

performance and utilization of engineering assets. Findings 

from this pilot study along with information more accurate 

asset condition, further enhanced risk analysis and 

improved option engineering helped in enabling informed 

maintenance decisions including preventive maintenance 

intervals and level of interventions. Implementation of 

research findings resulted in reducing asset capability gaps 

through timely investments of required capital. Further 

analysis with new and better quality data over a period of 

time is recommended for calibration of these models in two 

to three years’ time.  

 

 

ACKNOWLEDGMENT 

 

 The authors would like to acknowledge and thank the 

Asset Management Unit of Townsville City Council, 

Australia for providing the opportunity for this research, 

maintenance data and tacit knowledge. This work was 

completed as part of the Master in Maintenance and 

Reliability Engineering Programme at Federation 

University.   

 

 

REFERENCES 

 
[1] NH Kim, D. An., JH Choi, “Introduction. In: Prognostics and 

Health Management of Engineering Systems”. Springer, 2017, pp 

1- 24. 

[2] JS Zikorska, M. Hodkiewics, and L. Ma, “Prognostic 

modelling options for remaining useful life estimation by 

industry”. Mechanical Systems and Signal Processing, vol 25, no 

5, pp 1803-1836, 2011. 

[3] T. Salunke, NI Jamadar, SB Kivade, Prediction of 

Remaining Useful Life of Mechanical Components – A review, 

IJESIT, vol 3, no 6, 2014, pp 125-135. 

[4] M. Pecht and R. Jaai, A prognostics and health management 

roadmap for information and electronics-rich systems, 
Microelectronics Reliability, vol 50, pp 317–323, 2010 

[5] J Coble, JW Hines, Applying the general path model to 

estimation of remaining useful life, IJPHM, vol 2, no 7, pp  1-13, 

2011.  

[6] H Park, SH Tin and, HD Jeong, Procedural framework for 

modelling the likelihood of failure of underground pipeline 

assets, Journal  of Pipeline Systems Engineering Practice, vol 

7, no 2, 2016. 

[7] Chattopadhyay G, Kumar S, ‘Parameter Estimation for Rail 

Degradation Model’, International Journal of Performability 

Engineering, Vol. 5, No. 2, 2009, 119 – 130.  

[8] Chattopadhyay G, Issues and Challenges of Balancing Cost, 

Performance and Risk in Heavy-Haul Rail Asset Management, 

IEEE International Conference on Industrial Engineering and 

Engineering Management (IEEM), 2016, 4 to 7 December 2016, 

Bali, 521–525. 
[9] Beebe R, Predictive Maintenance of Pumps Using   Condition 

Monitoring, ISBN: 9780080514642, Elsevier Science, 2004. 

[10] Rahman A, Chattopadhyay G., Optimal service contract 

policies for outsourcing maintenance service of assets to the 

service providers, International Journal of Reliability and 

Applications 8 (2), 183-197, 2007.  

[11] Chattopadhyay G., Yun WY, Modeling and analysis of 

warranty cost for 2D-policies associated with sale of second-hand 

products, International Journal of Reliability and Applications 7 

(1), 71-77. 

[12] International Standards Organisation, ISO 13381-1, 

Condition monitoring and diagnostics of machines -- Prognostics 

- Part 1: General guidelines, 2015. 

 
 


	Accepted1A
	FedUni ResearchOnline
	https://researchonline.federation.edu.au


	Accepted1

