
Dynamical Systems Approach to

Fatigue Damage Identification

David Chelidze∗ and Ming Liu

Department of Mechanical Engineering & Applied Mechanics

University of Rhode Island

Submitted to to the Journal of Sound & Vibration, July 22, 2003

Accepted subject to revisions, December 22, 2003.

Submitted with revisions, January 28, 2004

Abstract

In this paper, we present a dynamical systems approach to material damage identification. This

methodology does not depend on knowledge of the particular damage physics of material fatigue. Instead,

it provides experimental means to determine what are practically observable and observed facts of damage

accumulation, thus making it possible to develop or experimentally verify appropriate damage evolution

laws. A concept of phase space warping is used to develop new damage tracking feature vectors from mea-

sured time series through phase space reconstruction. These feature vectors provide critical information

about the dimensionality of a damage process that was missing from an old scalar metric described in pre-

vious work. Damage identification is achieved by applying either proper orthogonal decomposition (POD)

or smooth orthogonal decomposition (SOD) to these vectors. The method is experimentally validated us-

ing an elasto-magnetic system, in which a harmonically forced cantilever beam in a nonlinear magnetic

field accumulates fatigue damage. Both damage identification methods yield a single active damage mode

that shows power-law type monotonic trends, which is also consistent with a result obtained using the old

scalar metric. These results are shown to be in good agreement with the Paris fatigue crack growth model

during the time-period of macroscopic crack growth. Using this simple model, accurate time to failure

predictions are shown well ahead of actual beam fracture. In addition, this identification scheme provides

much needed insight into the dimensionality of incipient or early fatigue damage accumulation process,

which is shown to be describable by only one scalar damage variable for this specific experiment.
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1 Introduction

Scientific and engineering literature abounds with material damage models based on physical insights or

empirical observation. These models are usually focused on mechanics of fatigue damage accumulation [1–

5]. Despite the variety of approaches to model the mechanics of fatigue, there is a clear lack of practical

methods for tracking incipient fatigue damage in operating machinery. There are several reasons for this

discrepancy. First, although physics-based damage models are relatively easy to verify in simple experimental

systems using beams or plates subjected to constant amplitude cyclic loading, they are usually unable to

provide valid models of fatigue damage accumulation in complex forcing environments. Furthermore, most

of these models ignore basic observability of their damage states (i.e., crack length) in practical, real-life

situations (e.g., when the direct measurement of a crack size is impossible or impractical). Secondly, almost

all statistical (cycle counting) damage models gloss over the role that the initial damage state has on the

true life cycle of structures [6].

The dynamical systems approach to damage evolution [7] brings new insights to traditional damage physics.

It provides a consistent, robust and abstract mathematical framework for exploring damage evolution dy-

namics. In addition, it enables one to relate experimental measurements to theoretical or empirical damage

evolution laws. Damage in machinery or structural systems is a complex phenomenon that can manifest itself

in many different modes. In this paper, we make no attempt to theorize about the “hidden” physical nature

of damage. Instead, we aim to develop appropriate concepts and procedures for identifying phenomenological

(empirical) regularities from analysis of measured time series. These developments do not rely on a physical

description of damage, but we demonstrate that they are consistent with such physics-based models.

The approach proposed here is to determine experimentally the observable and observed facts about particu-

lar damage in a simple experiment with the aim of formulating phenomenological regularities. Consequently,

experimental links can be established between the data-based metrics and complex, “hidden” damage phe-

nomena. As a result, one acquires the ability to develop practical empirical (phenomenological) damage

evolution laws and to experimentally validate available first-principles damage models. Damage laws that

are developed or validated in this way will have the proper physical characteristics and appropriate time and

spatial scales for practical damage diagnosis and prognosis applications.

In the next section, a brief overview of related literature is used to frame our approach to damage diagnosis.

A brief description of our previously presented damage tracking procedure is given in the following section,

with new improvements and additions. We also demonstrate the application of the described techniques to an

experimental magneto-elastic system with accumulating fatigue damage. Finally, the results of experimental

damage identification, failure prediction and their implications are discussed, followed by conclusions.
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2 Background

Fatigue damage accumulation spans multiple length scales of micro- and macromechanics of fracture. Solid-

state physics and material science study the subject of dislocations and submicrocracks. These phenomena

describe the damage initiation in materials characterized by 10−9 . . . 10−7 m length scales. However, the

solid-state theories describing the physics at these length scales are not appropriate for prediction of mate-

rial properties due to the large number of discrete damage levels. In continuum damage mechanics (CDM)

[4, 8, 9], the state space of incipient damage is very high dimensional, but nonetheless the explicit evolu-

tion equations are available. This theory deals with the subject of micro- and small macrocracks that are

distributed in the material characterized by 10−6 . . . 10−2 m length scales. Finally, large macroscopic cracks

are the subject of mechanics of solids and structures, i.e. macromechanics of fracture. In fracture mechanics

[10–13] the damage state space is quite low dimensional, however, these evolution equations as well as CDM

are difficult to relate to online measurements.

In machinery and structural health monitoring (MSHM) systems, we are faced with the problem of relating

numerous system measurements back to the appropriate damage state. Therefore, the important and natural

questions that need to be answered are (a) what are the appropriate damage states that can be tracked with

available measurements? (b) how can this tracking be accomplished? and (c) what is the appropriate damage

evolution law that can be used for predicting imminent failures?

The approach presented here builds upon previous papers [14, 15] which described a novel method for tracking

hidden variable drifts in a hierarchical dynamical system.1 This technique was developed in a dynamical

systems framework for studying damage evolution [7]. The work focused on an electromechanical system, in

which mechanical vibration measurements were used to track a drifting voltage of a supply battery. It was

demonstrated both experimentally and analytically that the tracked quantity was in a one-to-one relationship

with the actual battery voltage (measured independently). In fact, under circumstances to be expected in

many cases, it was not only in one-to-one, but also in linear correspondence. In our previous work we have

already alluded to the application of these methods to material damage problems; here we present the first

results in this direction.

In this paper, we show that the presented techniques can be used to develop a damage tracker. This tracker

provides practical information about what the observable facts of fatigue damage evolution are. Therefore,

it can be used to verify applicability of available physics-based damage laws in MSHM. In addition, the

obtained data can be used to guide the development of empirical damage evolution laws that would possess

all appropriate length and time scales for applications in MSHM.

1 For the merits of this technique as compared to other damage detection/diagnosis methods the interested reader is referred

to [14, 15], where its is discussed in great detail.
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3 Dynamical Systems Approach to Damage Evolution

In the dynamical systems approach [7], damage is viewed as a point evolving in an extended phase space of

a hierarchical dynamical system. In this system, slow-time damage evolution causes parameter drifts in a

subsystem describing dynamics of directly observable fast-time variables:

ẋ = f (x, µ(φ), t) , (1a)

φ̇ = ǫg (φ, x) , (1b)

where: x ∈ R
n is a directly observable, fast-time variable; φ ∈ R

m is a hidden fatigue damage, slow-time

variable; µ ∈ R
s is a function of φ representing the material parameters in Eq. (1a); a rate constant 0 < ǫ ≪ 1

defines a time scale separation between fast and slow-time dynamics; and overdots denote differentiation with

respect to time t. We assume that fast-time dynamics takes place in a region of the extended fast-time phase

space that is a compact subset of R
n × R

1.

This formulation is appropriate for systems with early or incipient fatigue damage accumulation [5]. This

type of damage accumulation can be characterized by a time scale that is several orders of magnitude larger

than a time scale associated with the dynamic response of the corresponding structure. In what follows, we

summarize the main ideas behind our damage tracking strategy, noting any improvements to the already

published procedure.

3.1 Damage Tracking Function

In an experimental context we usually do not have access to the analytical form of governing differential

equations (1). However, we do have access to measurements from the fast-time system (1a). These measure-

ments are usually sampled at uniform time intervals ts, and the dynamics (i.e., the equivalent topological

structure of the extended phase space) of Eq. (1a) can be reconstructed using a delay coordinate embedding

[16, 17]. In this procedure, the measured scalar time series {x(r)}M
r=1 is converted to a series of vectors

yT (r) = [x(r), x(r + τ), . . . , x(r + (d − 1)τ) ] ∈ R
d, where τ (multiple of ts) is a suitable delay time, and d

is the appropriate embedding dimension. Embedding parameters, τ and d, are usually determined using the

first minimum of the average mutual information [18] and method of false nearest neighbors [19], respectively.

The reconstructed state vectors are governed by an as yet unknown map of the form

y(r + 1) = P (y(r);φ) . (2)

The concept of Phase space warping refers to the small distortions in the fast-time system’s vector field caused

by slowly drifting parameters (i.e., damage evolution). Based on this concept, in [14, 15] the following damage
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tracking function

Ek(φ;y(r)) = Pk (y(r);φ) − Pk (y(r);φ0) (3)

was proposed. In Eq. (3) Pk is the k-th iterate of the map defined by Eq. (2), φ is current damage state,

and φ0 is the reference or healthy damage state.

In [14, 15], a suitably averaged Ek(φ;y(r)) was successfully used to track a scalar battery voltage variable.

It was demonstrated that the relationship between the tracking function and the damage variable can be

well approximated by an affine map, under certain linear observability conditions.

To actually calculate the tracking function Ek(φ;y(r)) for any given initial condition y(r), we need to know

how the fast subsystem evolves over the time interval k ts for the current value of φ, as well as how this

subsystem would have evolved for the reference value of φ0. Since the system’s fast-time behavior for the

current value of φ is directly measurable (i.e., we can reconstruct the fast-time trajectory using a sensor

measurement from the fast subsystem),the strategy is to compare it to the predictions of a reference model

describing the fast system’s behavior for φ = φ0+O(ǫkts). Here, local linear models are used as the simplest

form of a globally nonlinear reference model

y(r + k) = Aky(r) + ak , (4)

where Ak is a d × d matrix and ak is a d × 1 vector. Eq. (4) approximates Eq. (2) for a particular

point y(r) in the reference system’s reconstructed phase space. Note that, in practical applications, other

modeling solutions such as neural nets (e.g., [20]) or auto regressive moving averages (e.g., [21]) may be more

appropriate. The parameters of local linear models are determined by calculating the best linear fit between

N nearest neighbors of y(r) and their future states. Then the tracking function (Eq. 3) for the initial point

y(r) can be written as

Ek(φ;y(r)) = y(r + k) − Aky(r) − ak + EM
k (y(r))

= Ek(φ;y(r)) + EM
k (y(r)) ,

(5)

where EM
k (y(r)) represents the local linear model error, and

Ek(φ;y(r)) = y(r + k) − Aky(r) − ak (6)

is the estimated tracking function that can be determined experimentally. The use of Ek(φ;y(r)) in place

of Ek(φ;y(r)) is justified, if EM
k is small compared to Ek.

3.2 Damage Tracking Feature Vector

In previous work [14, 15, 22], a suitable norm of the averaged value of the estimated tracking function over

one data record 〈‖Ek‖〉 provided a good tracking metric for scalar damage variables. However, as discussed
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in detail in [14], there generally will be superfluous fluctuations in the tracking results caused by: (a) the

change in the population of points from data record to data record; and (b) the changes in the map of Eq.

(2) and model error EM
k from point to point.

The population changes are caused by the evolution of φ that acts as a bifurcation parameter for Eq. (1a).

As parameters of Eq. (1a) traverse their range due to the accumulating damage, the system will undergo

changes in its steady state behavior. These changes will be abrupt and can not be used to track φ, which

evolves smoothly. This will also cause change in population of points from record to record. The old tracking

metric could only deal with minor changes in population of points that extended the original coverage of the

reference population.

Two main sources of superfluous fluctuations, which are not related to changes in φ are: (i) changes in the

model fit error EM
k from point to point, caused by a nonuniform coverage of reference phase space by the

points on a reconstructed trajectory; and (ii) changes in the actual nonlinear mapping of Eq. (2), also from

point to point. In the old metric the fluctuations due to the variability of modeling error where compensated

for by a suitable weighted average of ‖Ek‖ over one data record, while the fluctuations caused by the change

in the mapping of Eq. (2) were not alleviated.

Here, we compensate for all sources of of Eq. (2) fluctuation by using a new tracking feature vector. This

new approach evaluates the average value of the estimated tracking function in Ns disjoint regions Bi

(i = 1, . . . , Ns) of the reconstructed phase space

ek
i = ‖Bi‖

−1
∑

y(r)∈Bi

‖Ek(φ;y(r))‖ , (7)

and combines them in one damage tracking feature vector:

Sk =
[

ek
1 , ek

2 , . . . , ek
Ns

]T
, (8)

where each data record will have a total of Ns (Sk ∈ R
Ns) statistics.

The choice of parameter k depends on the data sampling rate and effect of noise on the sensitivity of the

tracking function. The parameter k also affects the sectioning of the phase space into the disjoint regions,

which should be done in such a way as to alleviate the sources of unrelated fluctuations with regards to

the previous method. In particular, the estimated tracking function Eq. (6) for the points within the same

region Bi should have approximately the same sensitivity with respect to damage variable. This would

reduce fluctuations due to the change in the mapping Eq. (2), as well as the variation in the linear fit error

EM
k within one region. With the sectioning of phase space we are also more likely to have several regions

that have approximately constant population of points from record to record. Thus, the effect of changes in

steady state behavior on the feature vector statistics is also reduced.

6



It is conjectured based on previous work [14, 15, 22] that there is an affine projection Vφ : R
Ns → R

m that

maps the proposed feature vector Sk onto the damage state φ ∈ R
m:

φ = HSk + h , (9)

where φ is an estimate of actual damage state, H is an m × Ns matrix, and h is an m × 1 vector.

3.3 Damage Identification

In many practical situations we do not have the direct measurement of damage state or means to estimate

the affine projection parameters of Eq. (9). Therefore, the damage tracking feature vectors Sk have to be

used directly to determine the observable facts about the hidden damage state. Here, we focus on a fatigue

damage identification and consider two different approaches to this problem.

3.3.1 Smooth Orthogonal Decomposition

The SOD is a generalization of the optimal tracking method [25] that relies on the existence of underlying

deterministic behavior of the damage accumulation process but does not require its model. This method is

based on maximizing smoothness and overall variation in the feature vector, found by solving an eigenvalue

problem. For completeness we give a brief description of the procedure in the following paragraphs.

The feature vector Sk, Eq. (8), is estimated for Nr data records. These vectors are arranged in a Nr × Ns

damage matrix, called Y. Each column of this matrix is normalized by subtracting its mean and scaling it

to unit norm. Next, we identify the SOD-based tracking metric by a linear projection of the matrix Y

ϕs := Yc, (10)

that varies smoothly. This can be accomplished by defining (Nr − 1) × Nr derivative matrix

D :=



















1 −1 0 . . . 0

0 1 −1 . . . 0

...
. . .

. . .
. . .

...

0 . . . 0 1 −1



















(11)

and minimizing the following ratio with respect to c

g(ϕot) :=
‖Dϕs‖

2

‖ϕs‖
2 . (12)

In minimizing g we maximize the smoothness and overall variation of ϕs. The minimum of g is the smallest

generalized eigenvalue λ of the following eigenvalue problem

[(DY)T DY]c = λ[YT Y]c . (13)
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The eigenvectors corresponding to the smallest eigenvalues give the optimal c and, hence, ϕs.

3.3.2 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD), Singular Value Decomposition (SVD) or Karhunen-Loève Decom-

position has been widely used to estimate the number of active states in nonlinear dynamical systems [23, 24]

and, in general, for obtaining a low-dimensional approximations of high-dimensional processes. Proper or-

thogonal modes (POMs) have also been instrumental in studying linear and nonlinear mode interactions

in systems [26]. Damage evolution even in linear materials (linear elastic fracture mechanics), is a highly

nonlinear process. The dimensionality of this process cannot be investigated using linear statistics. However,

the POD of the damage matrix Y should identify the active damage states (i.e., the POMs with highest

energy content or modes corresponding to the largest singular values of Y).

Here we give a brief description of the discrete version of the POD, which is the SVD. Using the SVD, the

matrix Y can be written in the form

Y = UΛVT , (14)

where U (Nr × Nr) and V (Ns × Ns) are unitary matrices, and Λ is a diagonal matrix of size Nr × Ns

containing Ns singular values, which are arranged in decreasing order. The POD-based tracking metric, ϕp,

will be given by the columns of U or the POMs corresponding to the largest singular values of Y.

The POD analysis will also test our hypothesis that the damage state of the considered experimental system

is a scalar variable. In other words, our hypothesis will be confirmed if only one dominant POM is identified.

4 Damage Accumulation in a Magneto-Elastic Oscillator

The experimental system is a version of a well known, two-well magneto-elastic oscillator [27] obtained after

modifying the apparatus used in [14]. The system is a clamped-free beam restricted to a single degree-of-

freedom by stiffeners. Two permanent rare-earth magnets near the beam’s free end providing a two-well

potential (see Fig. 1). The beam displacement is measured by a strain gauge mounted close to the clamped

end. A shallow notch is machined in the beam below the strain gauge and just above the stiffeners. The

system is mounted on a shaker and is forced at 8 Hz. The forcing amplitude is set to obtain chaotic

output.2 The damage in the beam slowly accumulates for approximately 3.17 hours of operation, until the

beam suffers complete fracture at the notch. Strain gauge output is sampled at 160 Hz sampling frequency

(ts = 0.625 × 10−2 sec), digitized (16 bit A/D), and stored on a computer.

2Note that the chaotic response is used in this case merely to simplify data acquisition: a more general method, such as

stochastic interrogation [28] could be used for nonchaotic systems.
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The experiment was stopped after every 10 minutes of data acquisition to take a digital image of the beam

profile near the notch. During the image acquisition, the beam was always positioned in the same potential

well, so that the surface of the notch was in tension. Subsequent to taking the image, forcing was restarted

and data collection resumed after letting initial transients die out. Since the pulling force from the magnets

was constant, the change in the beam configuration was due to the decrease in the beam stiffness at the

notch caused by the fatigue damage accumulation as the experiment progressed. This change is determined

by estimating the difference in the slope of the beam across the notch using the acquired digital images.3

This change in the slope was used as an independent measurement of the beam damage shown in Fig. 2. In

the inset we sample images taken during the experiment at (from left to right) 0, 3 and 3.2 hours.

Delay time and embedding dimension were estimated to be 6ts and 5, respectively. The first 214 data points

were used for the reference data set, and N = 16 nearest neighbors were used for the local linear model

parameter estimation. Throughout the experiment the system underwent many bifurcations that caused

repeated periodic/chaotic transitions (see Fig. 3). Thus, loading on the crack was irregular and primarily

chaotic.

In [27] the Duffing’s two-well equation was shown to be a suitable model for this experimental system. Using

this model we have investigated how the sensitivity of the tracking function Eq. (3) changes from point to

point in its phase space. The model parameters were chosen so that it exhibited a chaotic response and

the effect of the notch was modeled by a decreasing stiffness coefficient. It was found that for small k the

sensitivity was mainly a function of initial position and initial velocity had a negligible effect on it. For

larger k the largest sensitivities were observed to cluster close to the unstable manifold of the system. The

presence of noise in the experimental data also limits the range of possible k values. Thus, even though the

sensitivity was higher for large k values, the estimation of the tracking metric and sectioning of the phase

space into the regions of approximately similar sensitivities is much easier for smaller k values. Therefore,

for this study we set k = 1 and sectioned the phase space using equally spaced hyperplanes perpendicular

to the position coordinate.

Upon completing the embedding and modeling process, we split the data into 456 non-overlapping records of

tD = 4 × 103 ts size. The feature vector S1 was estimated by calculating the short-time prediction error E1

of the reference model for each record. The reconstructed phase space was partitioned into Ns = 16 disjoint

regions. Partitioning was done using regular grid divisions along the third coordinate of y. This formed the

matrix Y of size 456 × 16. From each row of Y we subtracted the mean and scaled it to unit norm. Thus,

each row of Y can be treated as a feature vector, and each column represents time history of one particular

3MATLAB image processing toolbox was used to determine the tangents to the sections of the beam edge before and after

the notch.
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feature. The results of these calculations are shown in Fig. 4.

5 Results and Discussion

In the current experiment, we have independent damage state measurement obtained from digital images

(see Fig. 2). However, its resolution and sampling makes it inadequate for estimating the affine projection

parameters of Eq. (9). In most practical situations, we do not have the direct measurement of damage state,

and so are forced to infer information about a hidden damage state from available measured statistics. Thus,

we turn to the analysis of the damage tracking feature vectors.

5.1 Fatigue Damage Identification

The components of the damage tracking feature vectors (see Fig. 4) clearly show power-law type monoton-

ically increasing trends. However, some of the components seem to have better signal-to-noise ratios. For

damage identification purposes, we have calculated generalized eigenvalues of Eq. (13) and singular values

of matrix Y. The results are shown in Fig. 5. From this picture, it is clear that the smallest eigenvalue is at

least one order of magnitude smaller than the next smallest; similarly, the largest singular value is at least

one order higher than the next largest. This clearly demonstrates that our feature vectors capture some

scalar damage process occurring in the system.

The tracking metrics ϕp and ϕs corresponding to the largest singular value and smallest eigenvalue are

plotted in Fig. 6, respectively. For comparison purposes we scale both metrics so that they vary from zero to

one. The trend, which was apparent in the feature vector statistics Fig. 4, is clearly present in enhanced form

in both tracking metrics. The two trackers are virtually indistinguishable. Thus, both damage identification

methods yield practically equivalent damage state trackers and, in this particular experiment, the damage

accumulation process seems to be described by a scalar state variable.

These results are in good agreement with the tracking obtained using the old scalar tracking metric [14], as

shown by a dotted curve in Fig. 6 (this metric was also scaled for comparison purposes). These curve closely

follows the identified scalar damage modes, only slightly deviating from them for a short period of time at 2.5

hour mark. The observed consistency in the tracking methods is attributed the absence of major deviations

in data records from the population of points in the reference data set. The fact that in this particular

experiment only scalar damage was identified, was also favorable for the old tracking metric. However, the

new tracking metrics have the ability to also deal with higher dimensional damage variables.
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5.2 Validation of Damage Identification

The static angular deflection across the notch calculated from digital images (see Fig. 2) is seen to increase

in a way that is qualitatively similar to the tracking metrics. It was stated that generally we expect to find,

linear one-to-one relationship between the tracking metrics and the independent measurement of damage.

Fig. 7 presents a plot of the angular deflection data vs. the local average values of the tracking metrics. The

average was taken around the time when the digital images were acquired. We clearly see the approximately

linear, one-to-one relationship, consistent with the theory (refer to Eq. (9)).

The damage variable in Eq. (1b) is not tied to any particular physics of damage. For example, φ is not

necessarily the length of the crack in this fracturing vibrating beam experiment. This simple experiment

clearly demonstrates that even when the load on the crack tip is complex (i.e., a combination of periodic

and chaotic forcing, see Fig. 3), and well before any visible cracks are present (i.e., during the initial damage

accumulation and crack initiation stages), the observable damage evolution obeys a simple scalar power-law

type behavior. Therefore, we speculate the existence of a suitable internal scalar variable, which need not

be the crack length (in fact, during a small crack accumulation stage the crack growth rate is not a smooth

function of crack length [29, 30]), that evolves monotonically and smoothly.

Currently there is no acceptable macroscopic damage evolution model for the initial damage accumulation

process (when the damage occurs at the scale of microstructure). However, there are well developed models

that govern the growth of macroscopic cracks. The most notable is the Paris equation which relates the per

cycle derivative of a crack length, da/dN , to a range of stress intensity factor, ∆K = F∆s(πa)1/2 (where

a is a crack length, N is a cycle count, ∆s is a stress range, and value of F depends on the geometry and

relative crack length), using a simple power law

da/dN = c(∆K)m, (15)

where c is a small constant. Since the forcing of our system was stationary and harmonic the per cycle

derivative will be proportional to the time derivative of a crack length ȧ = da/dt ∼ da/dN . Also, for a

majority of metallic materials, the exponent m takes values from m = 2 to m = 6. For carbon steel, as is

the case for our experiment, the magnitude of m = 4 is often recommended.

Now we hypothesize that for a macroscopic crack propagation stage our observed damage variable φ is related

to the actual crack length. To verify this hypothesis, we rewrite the Paris equation replacing a with φ as

φ̇ = c (F∆s(πφ)1/2)4 = ǫφ2 , (16)

where ǫ = c π2(F∆s)4 is some small constant. Integrating this equation in time gives

φ−1 = −ǫt + β, (17)
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for some integration constant β. Thus, Eq. (17) gives a linear relationship between 1/φ and time t. Our

hypothesis is confirmed by plotting the reciprocal of our damage tracking metrics versus time. Fig. 8 depicts

that the reciprocal of ϕ is a linear function of time for time interval from t = 2.9 to t = 3.17, just before the

complete fracture.

For comparison purposes, a reciprocal of the old scalar metric is also plotted in Fig. 8. While it still shows

a linear behavior right at the end of the experiment, the time interval of this agreement, t ∈ (2.45, 3.17), is

approximately twice shorter than for the new metrics, t ∈ (1.9, 3.17). This is due to the deviations observed

in Fig. 6. Therefore, the new identification schemes provide more consistent damage tracking data that is in

good agreement with the simple power law model, Eq. (16), for macroscopic crack growth.

5.3 Failure Prediction

Based on the global damage tracking information, described above, it is possible to predict when this

particular system will reach some predetermined failure state. For example, we can define a failure surface

by 1/ϕ = 3 (see the horizontal line in Fig. 8). Then, by fitting a straight line to the 1/ϕ versus time data

and finding its intersection with the failure surface one can estimate the remaining time to failure.

Figure 9 shows the results of the remaining useful life estimation based on the SOD-based tracking metric

data from Fig. 8. Here, a linear fit to the first 128 points from Fig. 8 was used for the first time to failure

estimate. For the consequent estimates this 128-point window was moved repeatedly by one point. The solid

straight line in Fig. 9 shows the true remaining time to failure drawn a posteriori. The black dots represent

the estimates of remaining time to failure based on the 128-point linear fits. The shaded background shows

the uncertainty in the estimate based on the linear fit error.

The graph in Fig. 9 is a result of very simple calculation and it gives accurate estimates of time to failure when

about the third of useful life is still remaining. These results can be improved dramatically by employing

a model-based recursive estimation technique discussed in [22], which is out of scope of this paper and will

not be considered here.

6 Conclusions

In this paper we have presented a dynamical systems approach to material damage identification. This

methodology does not depend on knowledge of particular damage physics of material fatigue. Instead, it

provides experimental means to determine practically observable and observed facts of damage accumulation,

thus making it possible to develop or experimentally verify appropriate damage evolution laws.
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A detailed description of the damage identification algorithm was given. Experimental procedures for esti-

mating the tracking functions in a reconstructed phase space, the calculation of the damage tracking feature

vector, and the appropriate damage tracking metrics were given before describing an experimental appli-

cation. The algorithm was applied to a magneto-elastic oscillator with fatigue damage accumulation in a

beam. As the damage grew, the system underwent many bifurcations that caused repeated periodic/chaotic

transitions. This resulted in a very complicated strain time series.

The recorded strain time series was used for damage tracking. Two different methods of damage identifi-

cation smoothly and monotonically followed the accumulating damage and provided practically equivalent

damage trackers. They both showed that only one scalar variable is sufficient to describe the fatigue damage

accumulation in the beam. Despite the absence of an established physical damage state, the new metrics

show that only one scalar variable is needed to describe the dynamics of both incipient and macroscopic

damage accumulation. These results were also consistent with data obtained using the old scalar tracking

metric, described in previous work [14]. The first visible crack in the beam occurred after 3 hour mark, but

the tracking has shown monotonically increasing power-law type trends well ahead of that point, indicating

the sensitivity of the tracking method.

Static change in the slope of the beam across the notch was used as an independent measurement of damage.

It is seen to increase in a qualitatively similar way to the tracking metrics. In fact, this measurement

was shown to be in approximately linear, one-to-one relationship with the identified tracking metrics. This

confirmed our conjecture that the feature vector can be projected onto the actual damage state.

The tracking output was validated by verifying that the data corresponding to the macroscopic crack evo-

lution fits well Paris fatigue crack growth model. Thus, we conclude that these methods can be used in

direct experimental studies to provide much needed insight and feedback on the appropriate damage states

and theories. Based on Fig. 8 we can assert that the optimal damage observer captures the correct damage

evolution characteristics at least for the macroscopic crack propagation.

A very simple failure prediction scheme based on the damage tracking data and Paris model based power

law was shown to accurately estimate the remaining time to failure well in advance of actual fracture. For

the given experiment that ran about 3.17 hours, and advanced warning of 1 hour is shown to be possible

even when using a simple empirical model of damage.
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Figure Captions

Figure 1. Schematic diagram of the experimental apparatus of the two-well magneto-mechanical oscillator.

Figure 2. Plot of angular deflection across the notch during experiment, calculated from digital image. Inset

shows photos on the notch taken at 0, 3 and 3.2 hours, also showing the first visible crack after 3 hours.

Figure 3. Passage through a periodic window occurring during the experimental run.

Figure 4. Columns of matrix Y composed of individual components of the feature vector S1.

Figure 5. Damage identification: singular values of matrix Y , •, and eigenvalues of Eq. (13), △.

Figure 6. Tracking results: SOD-based metric ϕs, ——, POD-based metric ϕp, – – –, and the old scalar

metric 〈‖E1‖〉, · · · · · · .

Figure 7. Plot of the damage tracking metrics vs. angular deflection:
〈

ϕ−1
s

〉

, ◦, and
〈

ϕ−1
p

〉

, △. The

approximately linear, 1–1 relationship is consistent with the linear observability assumption (linear fits to:

〈ϕs〉, ——, and
〈

ϕp

〉

, – – –).

Figure 8. Plot of the reciprocals of the tracking metrics vs. time: ϕ−1
s , ——, ϕ−1

p , – – –, corresponding

linear fits, – · –, and reciprocal of the old scalar tracking metric, · · · · · · . The data on the time interval from

t = 1.9 to t = 3.17 is used for linear fits.

Figure 9. Remaining time to failure estimates based on a simple power law model, · · · · · · , actual time to

failure known a posteriori, ——. Shaded background shows the uncertainty in the estimate.
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Figure 1: Schematic diagram of the experimental apparatus of the two-well magneto-mechanical oscillator.
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Figure 2: Plot of angular deflection across the notch during experiment, calculated from digital image. Inset

shows photos on the notch taken at 0, 3 and 3.2 hours, also showing the first visible crack after 3 hours.
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Figure 3: Passage through a periodic window occurring during the experimental run.
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Figure 4: Columns of matrix Y composed of individual components of the feature vector S1.
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Figure 5: Damage identification: singular values of matrix Y , •, and eigenvalues of Eq. (13), △.
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Figure 6: Tracking results: SOD-based metric ϕs, ——, POD-based metric ϕp, – – –, and the old scalar
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Figure 7: Plot of the damage tracking metrics vs. angular deflection:
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〈

ϕp

〉

, – – –).

24



0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

time (hours)

re
c
ip

ro
c
a

l 
o

f 
tr

a
c
k
in

g
 m

e
tr

ic

failure surface

Figure 8: Plot of the reciprocals of the tracking metrics vs. time: ϕ−1
s , ——, ϕ−1

p , – – –, corresponding

linear fits, – · –, and reciprocal of the old scalar tracking metric, · · · · · · . The data on the time interval from

t = 1.9 to t = 3.17 is used for linear fits.
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Figure 9: Remaining time to failure estimates based on a simple power law model, · · · · · · , actual time to

failure known a posteriori, ——. Shaded background shows the uncertainty in the estimate.
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