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Abstract. With the aim of enhancing the biological activity of ruthenium-nitrosyl complexes, 

new complexes with four equatorially bound indazole ligands, namely trans-

[RuCl(Hind)4(NO)]Cl2·H2O ([3]Cl2·H2O) and trans-[RuOH(Hind)4(NO)]Cl2·H2O 

([4]Cl2·H2O) have been prepared from trans-[Ru(NO2)2(Hind)4] ([2]). When the pH-

dependent solution behavior of [3]Cl2·H2O and [4]Cl2·H2O was studied, two new complexes 

with deprotonated indazole ligands were isolated, namely [RuCl(ind)2(Hind)2(NO)] ([5]) and 

[RuOH(ind)2(Hind)2(NO)] ([6]). All prepared compounds were comprehensively 

characterized by spectroscopic (IR, UV‒vis, 1H NMR) techniques. Compound [2], as well as 

[3]Cl2·2(CH3)2CO, [4]Cl2·2(CH3)2CO and [5]·0.8CH2Cl2, the latter three obtained by re-

crystallization of the first isolated compounds (hydrates or anhydrous species) from acetone 

and dichlorometane, respectively, were studied by X-ray diffraction methods. The release of 

NO in complexes [3]Cl2 and [4]Cl2 triggered by one-electron reduction was investigated by 

cyclic voltammetry and resulting paramagnetic NO species were detected by EPR 

spectroscopy. The release of NO upon irradiation with blue light was investigated by IR, UV-

vis and EPR spectroscopy and kinetics of NO release was discussed. The quantum yields of 

NO release were calculated and found to be low (3-6%), which could be explained by NO 

dissociation and recombination dynamics, assessed by femtosecond pump-probe 

spectroscopy. The geometry and electronic parameters of Ru species formed upon NO release 

were identified by DFT calculations. The complexes [3]Cl2 and [4]Cl2 showed considerable 

antiproliferative activity in human cancer cell lines with IC50 values in low micromolar or 

submicromolar concentration range are suitable for further development as potential 

anticancer drugs. p53-dependence of Ru-NO complexes [3]Cl2 and [4]Cl2 was studied and 

p53-independent mode of action has been confirmed. The effects of NO release on the 

cytotoxicity of the complexes with or without light irradiation were investigated using NO 

scavenger carboxy-PTIO. 
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Introduction 

Nitric oxide (NO) is known both as an air pollutant1 as well as a physiological 

regulator2 essential for neurotransmission, blood pressure control, antioxidant action and 

immunological responses.3 In cells NO is mainly produced by conversion of L-arginine to L-

citrulline in the presence of nitric oxide synthase (NOS). The down-regulation of NO 

synthesis in a variety of normal cells and in tumor cells is mediated by intracellular 

transforming growth factor-1 (TGF-1).4 The control of cellular NO concentration, either by 

inhibiting its production or by targeted delivery can be achieved by using suitable metal 

complexes, and consequently, NO-scavenging and NO-releasing metal complexes are of great 

therapeutic interest.5 NO as a ligand readily binds to transition metals, such as iron or 

ruthenium, forming stable M-NO adducts. Recently, it was reported that the anticancer effects 

of Ru(III)-based clinical lead candidates, KP1019/NKP1339 and NAMI-A, were at least in 

part due to their NO-scavenging properties, stemming from high affinity of ruthenium(III) to 

NO.6,7 Scavenging of endogenous NO produced from NOS depletes its local concentration, 

thereby diminishing subsequent interactions with cellular targets.  

Since the role of NO in tumor development can also be inhibitory, NO-donating 

compounds which release free NO hold great promises as anticancer agents. For example, 

high NO levels (>500 nM) induce apoptosis as a result of p53 activation and therefore, the 

exogenous delivery of cytotoxic levels of NO by NO-releasing drugs might be beneficial for 

the induction of apoptosis via p53 pathway.8 Some NO-releasing compounds display 

spontaneous release of NO, while other compounds require external stimuli, such as 

enzymatic, photo-, thermal activation or redox events.9 Ruthenium-nitrosyl complexes are 

excellent candidates for the delivery of exogenous NO, since the efficacy of NO release can 

be fine-tuned by modifying the structure of Ru complexes. Ruthenium exists in several 

oxidation states, whereas NO acts as a non-innocent ligand either as NO+, NO or NO‒, 

availing a series of alternative oxidation state combinations.10 Furthemore, NO-release in 

ruthenium-nitrosyl complexes is dependent on the redox potential of the complex and trans-

effect of the ligand in trans- position to NO,11 and NO release can be triggered by one-

electron reduction12 or by photolysis.13  

Previously, we have already reported the preparation and biological properties of Ru-

NO complexes with various aminoacids coordinated in bidentate fashion.14 All compounds 

demonstrated only moderate cytotoxicity in a micromolar concentration range against human 

ovarian carcinoma cells (CH1), which was presumably related to their low lipophilicity and 
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insufficient intracellular accumulation. In a different series, aminoacids were replaced by 

more lipophilic azole ligands in trans- and cis-positions to NO ligand, yielding compounds 

with the general formula (cation)[cis-RuCl4(Hazole)(NO)] and (cation)[trans-

RuCl4(Hazole)(NO)].15 The cytotoxicity of the complexes against CH1 cells varied greatly 

from submicromolar to high micromolar range. The differences in the cytotoxicity were 

defined by the azole heterocycle and the most active Ru-NO compounds contained indazole 

ligands. The contribution of NO in the antiproliferative activity of mono-indazole Ru-NO 

complexes was not confirmed. However, no external stimuli was applied; therefore, the 

release of NO in the studied conditions was unlikely.  

Inspired by the elevated cytotoxicity of Ru-NO complexes upon the inclusion of 

indazole ligands into the structure of the complexes, we hypothesized that incorporation of 

several indazole ligands would result in the augmented intracellular accumulation of Ru-NO 

complexes and further increase of antiproliferative activity. Since correlation between the 

number of indazole ligands and the cytotoxicity of the complexes with the general formula 

[RuIIICl(6-n)(indazole)n]
(3-n)- was noticed,16 higher azole-to-chloride ratio could lead to 

stabilization of lower ruthenium oxidation states, improved cellular uptake and enhancement 

of antiproliferative activity.  

Herein we report on the synthesis of compounds trans-[RuII(NO2)2(Hind)4] ([2]), 

trans-[RuCl(Hind)4(NO)]Cl2 ([3]Cl2), trans-[RuOH(Hind)4(NO)]Cl2 ([4]Cl2), (Scheme 1), 

their characterization by spectroscopic methods and single crystal X-ray diffraction. Upon 

characterization of aqueous solution behavior of these complexes, new inner-sphere Ru-NO 

complexes [RuCl(ind)2(Hind)2(NO)] (5) and [RuOH(ind)2(Hind)2(NO)] (6) were isolated and 

characterized. The redox properties were investigated as well and supporting DFT 

calculations were performed to assess the IR, UV‒vis and EPR behavior of [3]Cl2. The ability 

of the target complexes [3]Cl2 and [4]Cl2 to release NO upon one-electron reduction or blue 

light irradiation has been studied by various methods. The contribution of NO to the 

anticancer properties and p53 induction of novel Ru-NO complexes with or without 

irradiation has been evaluated.    
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Scheme 1. Synthesis of complexes. Reagents and conditions: (i) NaNO2, acetone/DCM/H2O reflux, 12 

h; (ii) 12M HCl, MeOH; (iii) 3M HCl, MeOH; (iv) 12M HCl, MeOH; (v) and (vi) pH 6‒9 in 50% 

ethanol/water.  

 

Experimental 

Chemicals and Materials. Solvents and reagents were obtained from commercial sources 

and used as received. [RuIICl2(Hind)4] ([1]) was prepared as reported previously.16 Ultrapure 

water was obtained by using a Milli-Q UV purification system (Sartorius Stedim Biotech SA). 

Gibco Trypsin/EDTA solution and 10% sodium dodecyl sulfate (SDS) solution was 

purchased from Life Technologies. Glycine, HyCloneTM Trypsin Protease 2.5% (10X) 

solution, RPMI 1640, DMEM medium, Fetal bovine serum (FBS), PierceTM Protease, 

Phosphatase Inhibitor Mini Tablets and carboxy-PTIO were purchased from Thermo Fisher 

Scientific. HyCloneTM Dulbecco's Phosphate-Buffered Saline (10 times diluted) was 

purchased from Ge Healthcare Life Sciences. Biorad Protein Assay Dye Reagent Concentrate, 

40% Acrylamide/Bis solution, 10X Tris/glycine buffer, TEMED, Nitrocellulose Membrane 

0.2 and 0.45 μm were purchased from Biorad Laboratories. LuminataTM Classico, Crescendo 

and Forte Western HRP Substrate were purchased from Merck Millipore Corporation. 

Oxaliplatin was purchased from Merlin Chemicals Ltd (Liphook, UK). Clinical-grade 

cisplatin (1 mg/ml) was purchased from Hospira Pty Ltd (Melbourne, Australia). All solvents 

for solution equilibrium studies were of analytical grade and used without further purification. 

KCl, HCl, HNO3, KOH, dimethylsulfoxide (DMSO) and other chemicals used were 

purchased from Sigma-Aldrich in puriss quality. 
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Synthesis of complexes 

trans-[Ru(NO2)2(Hind)4]] ([2]). A solution of NaNO2 (0.2 g, 2.6 mmol) in H2O (8 mL) was 

added to the mixture of [RuCl2(Hind)4] (0.6 g, 0.93 mmol) in acetone/dichloromethane 

(DCM) 1:1 (100 mL). The solution was refluxed under stirring for 12 h, and cooled to room 

temperature. The organic phase was separated in a separatory funnel and washed with water 

(3  30 mL). The volume of the separated organic phase was reduced to ca. 20 ml. After 2 h 

the precipitated yellow crystals were filtered off, washed with acetone (5 mL) and dried in air. 

Yield: 0.28 g, 46.0%. X-ray diffraction quality single crystals were grown in DCM/hexane 

(solvent/vapor diffusion). 1H NMR in DMSO-d6:  13.32 (s, 4NH), 8.09 (s, 4H), 7.73 (d, 4H,  J 

= 8.5 Hz), 7.61 (d, 4H,  J = 8.5 Hz), 7.34 (t, 4H, J = 7.5 Hz), 7.13 (t, 4H , J = 7.5 Hz). Elem. 

Anal. Calcd for C28H24N10O4Ru  (Mr = 665.62), %: C, 50.52; H, 3.63; N, 21.04; O, 9.61. 

Found, %: C, 50.61; H, 3.39; N, 21.12; O, 9.52. ESI-MS in MeOH (negative): m/z 665 

[Ru(NO2)2(Hind)4]
‒, 647, 556 541. IR, ν̃, cm−1: 3303, 3117, 1517, 1469, 1403, 1349, 1257, 

1122, 1046, 1026, 755, 602. UV−vis (DCM), λmax, nm (ε, M−1 cm−1): 231 (18108), 293 

(17513), 325 (21281), 382 (1108). 

trans-[RuCl(Hind)4NO]Cl2∙H2O ([3]Cl2·H2O). To a suspension of [2] (0.17 g, 0.25 mmol) 

in MeOH (20 mL) a 12M HCl (2.5 mL) was added. The mixture was refluxed under argon for 

1 h, and cooled to room temperature. Then the dark-orange solution was filtered and the 

volume was reduced to ca. 3‒5 mL. A small amount of precipitate was removed by filtration 

and washed with about 10 mL of water. The mother liquor was allowed to crystallize in air at 

room temperature. Next day the dark-red crystals were filtered off, washed with diethyl ether 

(10 mL) and dried in vacuo at room temperature (r.t.). Yield: 0.097 g, 52%. Elem. Anal. 

Calcd for C28H24Cl3N9ORu∙4H2O (Mr = 782.04), %: C, 43.00; H, 4.12; N, 16.12. Found, %: 

C, 43.08; H, 3.93; N, 15.91. ESI-MS in MeOH (positive): m/z 638 [RuCl(Hind)4(NO)]+. 1H 

NMR in DMSO-d6: 14.47 (s), 8,48 (s), 7,92 (d), 7,67 (dd); 7,61 (m), 7,34 (t). IR, ν̃, cm−1: 

2658, 1925 (NO), 1629, 1515, 1476, 1439, 1359, 1288, 1239, 1146, 1088, 999, 966, 902, 840, 

783, 737, 614. UV−vis (H2O), λmax, nm (ε, M−1 cm−1): 257 (99175), 365 (53287), 482 

(22994). X-ray diffraction quality single crystals were grown in acetone. The monohydrate 

was obtained by drying the compound in vacuo at room temperature for 8 h.  

trans-[Ru(OH)(Hind)4(NO)]Cl2·H2O ([4]Cl2·H2O). To a suspension of [2] (0.17 g, 0.25 

mmol) in MeOH (20 mL) a 3M HCl (2.5 mL) was added. The mixture was refluxed under 

argon for 40 min, and cooled to room temperature. Then the dark-orange solution was filtered 

and the filtrate concentrated under the reduced pressure to ca. 3 mL. The precipitate was 
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filtered off and washed with water (10 mL). The product was recrystallized from acetone (40 

mL), washed with diethyl ether (10 mL) and dried in vacuo at r.t. Yield: 0.11 g, 62%. Elem. 

Anal. Calcd for C28H25Cl2N9O2Ru·H2O (Mr = 704.53), %: C, 47.40; H, 3.83; N, 17.77; O, 

6.76; Found, %: C, 47.07; H, 3.62; N, 17.57; O, 6.25. ESI-MS in MeOH (positive): m/z 620 

[Ru(NO)(OH)(Hind)4]
+, 484 [Ru(Hind)3]

+, 310 [Ru(NO)(OH)(Hind)4]
2+. 1H NMR in DMSO-

d6: 14.27 (br.s, 4NH), 8.56 (s, 4H), 7.89 (d, 4H, J = 8.5 Hz), 7.66 (d, 4H, J = 8.5 Hz), 7.56 (t, 

4H, J = 7.5 Hz), 7.29 (t, 4H, J = 7.5 Hz). IR, ν̃, cm−1: 3354, 1879 (NO), 1657, 1585, 1512, 

1474, 1441, 1378, 1358, 1334, 1272, 1242, 1151, 1126, 1081, 1003, 964, 830,  784, 746, 656, 

619. UV−vis (H2O), λmax, nm (ε, M−1 cm−1): 257 (99175), 365 (53287), 482 (22994). X-ray 

diffraction quality single crystals were grown in acetone. 

trans,cis,cis-[RuCl(ind)2(Hind)2(NO)] [5] and [RuOH(ind)2(Hind)2(NO)] [6]. To a solution 

of 20 mg of [3]Cl2∙4H2O or [4]Cl2·H2O in 8 mL 50% (v/v) ethanol/water 0.1 M KOH 

solution was added until the measured pH was between 6 and 9. The formed fine-grained 

precipitate was centrifuged and washed with 50% (v/v) ethanol/water (4  4 mL). The product 

was dried in air. Yield: 50 and 52%, respectively. X-ray diffraction quality single crystals of 

[5]·0.8CH2Cl2 were grown in DCM. 1H NMR in CDCl3: [RuCl(ind)2(Hind)2(NO)] [5]: 

8.04(s), 7,84 (d), 7,69 (d); 7,43 (dd), 7,14 (dd). [Ru(OH)(ind)2(Hind)2(NO)] [6]: 7.86(s), 7,78 

(d), 7,64 (d); 7,39 (dd), 7,11 (dd); ESI-MS in MeOH (positive): [RuCl(ind)2(Hind)2(NO)] 

([5]): m/z 638 [M+H]+; [RuOH(ind)2(Hind)2(NO)] ([6]): m/z 620 [M+H]+. IR, ν̃, cm−1 [5]: 

1871, 1722, 1624, 1509, 1448, 1365, 1095, 733; [6]: 1850, 1624, 1583, 1358, 1313, 1075, 

783, 747.  

 

Physical Measurements. Elemental analyses were performed by the Microanalytical Service 

of the Faculty of Chemistry of the University of Vienna with a PerkinElmer 2400 CHN 

Elemental Analyzer. 1H NMR (500.10 MHz) spectra were measured on a Bruker Avance III 

instrument at 25 °C. Chemical shifts for 1H were referenced to residual protons present in 

DMSO-d6. IR spectra were obtained by using an ATR unit with a Perkin-Elmer 370 FTIR 

2000 instrument (4000‒400 cm‒1). Electrospray ionization mass spectrometry was carried out 

with a Bruker Esquire3000 instrument (Bruker Daltonics, Bremen, Germany) by using 

methanol as solvent. Infrared spectroscopy measurements with irradiation were performed 

using a Nicolet 5700 FT-IR spectrometer with a resolution of 2 cm‒1 in the range 350‒4000 

cm‒1. The sample was grinded, mixed with KBr, and pressed into pellets. KBr pellets were 

bonded by silver paste on the cold finger of a closed cycle cryostat (Oxford Optistat V01), and 
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irradiated through KBr windows with light of different wavelengths in the range 365‒660 nm. 

The cryostat allows controlling the temperature in the range of 9‒320 K. 

X-ray crystallography. X-ray diffraction measurements were performed on a Bruker X8 

APEXII CCD and Bruker D8 Venture diffractometers. Single crystals were positioned at 35, 

40 35 and 28 mm from the detector, and 767, 1872, 1904 and 2500 frames were measured, 

each for 30, 2, 7.2 and 48 s over 1, 0.25, 0.4 and 0.5° scan width for [2], [3]Cl2·2(CH3)2CO, 

[4]Cl2·2(CH3)2CO and [5]∙0.8CH2Cl2, respectively. The data were processed using SAINT 

software.47 Crystal data, data collection parameters, and structure refinement details are given 

in Table S1. The structure was solved by direct methods and refined by full-matrix least-

squares techniques. Non-hydrogen atoms were refined with anisotropic displacement 

parameters. Hydrogen atoms were inserted in calculated positions and refined with a riding 

model. The following computer programs and hardware were used: structure solution, 

SHELXS-97 and refinement, SHELXL-97;48 molecular diagrams, ORTEP;49 computer, Intel 

CoreDuo. Disorder observed for the nitro group in [2] and two indazole, NO and OH ligands 

in [3]2+ was resolved by using SADI and EADP restraints and DFIX constraints implemented 

in SHELXL. Crystallographic data for these complexes have been deposited with the 

Cambridge Crystallographic Data Center as supplementary publications no. CCDC-1835290 

([2]), -1835292 ([3]Cl2∙2(CH3)2CO), -1835291 ([4]Cl2∙2(CH3)2CO), and -1835289 

([5]∙0.8CH2Cl2). Copy of the data can be obtained free of charge on application to The 

Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (email: 

deposit@ccdc.cam.ac.uk).  

Solution equilibrium studies. Aqueous stability and proton dissociation processes of 

complexes [3]Cl2 and [4]Cl2 were investigated in detail. Due to the photosensibility of the 

complexes their solutions were kept in dark. A Hewlett Packard 8452A diode array 

spectrophotometer was used to record the UV‒vis spectra in the interval 200–800 nm. The 

path length was 0.2, 0.5, 1 or 4 cm. Spectrophotometric measurements were performed in 

water, 50% (v/v) ethanol/water or 30% (v/v) DMSO/water solvent mixtures at 25.0±0.1 °C 

and the concentration of the complexes was 4‒5 or 100 M. The ionic strength was 0.1 M 

(KCl). Measurements in chloride ion free media were carried out as well in the presence of 

HNO3 (pH ~ 3) without additional background electrolyte. pH dependent titrations were 

performed between pH 2.0 and 11.5 and an Orion710A pH-meter equipped with a Metrohm 

combined electrode (type 6.0234.100) was used for the titrations. The electrode system was 

calibrated in aqueous solution to the pH = –log[H+] scale according to the method suggested 
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by Irving et al.17 1H NMR studies were carried out on a Bruker Ultrashield 500 Plus 

instrument. 1H NMR spectra of samples containing water were recorded with the 

WATERGATE water suppression pulse scheme using 4,4-dimethyl-4-silapentane-1-sulfonic 

acid (DSS) internal standard. Complexes were dissolved in 50% (v/v) CD3OD/H2O mixture to 

yield a concentration of 0.5 mM and were titrated at 25 °C, in the absence of KCl in the pH 

range 2.0 to 11.1. 1H NMR spectra were recorded on samples containing [4]Cl2 (0.5 mM) and 

increasing amount of KCl (0.0, 0.44, 0.68 M) after 2 h of incubation. Fluorescence spectra 

were recorded on a Hitachi-F4500 fluorometer in 1 cm quartz cell at λEX = 290 nm, λEM = 

300‒500 nm and at 25.0 ± 0.1 °C. Solutions were prepared in pure water at 5 M complex 

concentration. Ionic strength was 0.1 M (KCl), and samples were titrated between pH 2.0 and 

11.5. 

Electrochemistry and Spectroelectrochemistry. The cyclic voltammetric studies were 

performed using a platinum wire as working and auxiliary electrodes, and silver wire as 

pseudoreference electrode with a Heka PG310USB (Lambrecht, Germany) potentiostat. 

Ferrocene served as the internal potential standard. In situ spectroelectrochemical 

measurements were performed on Avantes, Model AvaSpec-2048x14-USB2 spectrometer 

under an argon atmosphere with the Pt-microstructured honeycomb working electrode, 

purchased from Pine Research Instrumentation (spectroelectrochemical cell kit AKSTCKIT3). 

IR spectroelectrochemistry was performed in the optically transparent thin layer 

electrochemical (OTTLE) cell (UF-SEC, LabOmak, Italy) with CaF2 windows and Pt mesh 

working electrode. Spectra were recorded at room temperature in the 400–4000 cm–1 with 4 

cm–1 resolution using Nicolet NEXUS 470 FT-IR  spectrometer. Further details are provided 

in the SI. 

EPR spectroscopy. X-band (9.4 GHz) and Q-band (34 GHz) EPR spectra were recorded with 

the EMX line EPR spectrometers (Bruker, Germany) equipped with the ER 4102ST and ER 

5106 QT resonators, respectively and with the ER 4141 VT variable temperature unit. The 

simulated spectra were calculated with EasySpin, the Matlab toolbox 18
. Further details are 

provided in the SI. 

Solution photochemistry in minutes time scale. NO scavenging EPR experiments were 

performed with 33 M solution of [3]Cl2 and an equimolar concentration of carboxy-2-

phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (cPTIO) nitronyl nitroxide in Ar 

saturated MeCN. The solution was filled in an EPR flat cell and irradiated in situ in the 

resonator of the EPR spectrometer described above at room temperature with a vis light 
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source (lmax = 400 nm; Bluepoint LED, Hönle UV Technology). The photolysis of 30–35 M 

stirred complex solutions was additionally followed by UV–vis spectroscopy in situ in the 

LED photoreactor equipped with two lmax = 365 or 405 nm LED arrays (KEVA Brno, Czech 

Republic), in a perpendicular arrangement using 1 cm×1 cm quartz cuvette (1 cm optical 

irradiation path). The UV‒vis Avantes spectrometer described above was used to record the 

spectra. The light intensity provided by the LED arrays (irradiance value) was determined 

using ferrioxalate actinometry under identical conditions (yielding 7.81×10–4 einstein s–1 dm–3 

and 1.18×10–4 einstein s–1 dm–3 at 365 nm and 405 nm, respectively).19 The spectra were 

corrected for the irradiation light artefacts, by subtracting a record obtained with the pure 

solvent. The molar absorption coefficient of the photo generated products and the 

photochemical quantum yields were determined by kinetic modeling. The Global Analysis of 

the spectral series recorded in the photolysis experiment was performed using the Ultrafast 

Spectroscopy Modelling Toolbox,20 by employing a first order kinetic model. The rate 

constants and concentration profiles obtained were then used to evaluate the quantum yield as 

described in the text. 

Femtosecond Pump-Probe Spectroscopy. The experimental details for the femtosecond 

transient absorption measurements have already been described elsewhere.21 Briefly it is a 

Ti:Sapphire laser (Mai Tai HP, Spectra Physics, USA) centered at 800 nm having pulse width 

of  < 110 fs with 80 MHz repetition rate. The amplified laser was split into two beams in the 

ratio of 75:25%. The high energy beam was used to convert to the required wavelength (470 

nm) for exciting the sample by using TOPAZ (Prime, Light Conversion). The white light 

continuum (340‒1000 nm) was generated by focusing the part of amplified beam (200 mW) 

on a 1 mm thick CaF2 plate which split into two beams (sample and reference probe beams). 

The sample cell (0.4 mm path length) was refreshed by rotating in a constant speed. Finally, 

the white light continuum was focused into a 100 μm optical fiber coupled to imaging 

spectrometer after passing through the sample cell. The pump probe spectrophotometer 

(ExciPro) setup was purchased from CDP Systems Corp, Russia. Normally transient 

absorption spectra were obtained by averaging about 2000 excitation pulses for each spectral 

delay. All the measurements were carried out at the magic angle (54.7°). The time resolution 

of the pump-probe spectrometer is found to be about  120 fs. 

Computational details. Geometry optimizations of all studied species of  [3]2+ (i.e 

[RuCl(Hind)4(NO)]2+, its reduced form ,2[RuCl(Hind)4]
2+ form after NO release, etc.) have 

been performed at the B3LYP22,23,24,25 level of theory employing SVP and/or TZVP basis 
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sets26 with SDD pseudopotential for the Ru atom.27 The energy-based criterion of the SCF 

convergence was set to 10–8 Hartree in all systems. Vibrational analysis was employed to 

confirm that the optimal geometries correspond to energy minima (no imaginary frequencies). 

Time-dependent density functional theory (TD DFT) has been utilized for calculations of 

electron excitation energies and oscillator strengths at the same levels of theory as mentioned 

above. Herein, the forty lowest electron excitations have been taken into account. All these 

calculations were carried out in Gaussian09 program package.28 The single point calculations 

of EPR parameters of the optimized structures were performed at the B3LYP22,23,24,25/UDZ29 

level of theory in ORCA 3.0.2 program package,30,31,32 where UDZ stands for uncontracted 

double zeta basis set. The EPR calculations employed a scalar quasirelativistic Douglas-Kroll-

Hess Hamiltonian30,33,34,35,36 with the unrestricted Kohn-Sham formalism and using the point 

charge nucleus model. Picture change error37 correction of the g-tensor and hyperfine 

coupling constant of N3 atom was accounted for as implemented in the ORCA 3.0.2 program 

package. Visualization of the optimal structures and molecular orbitals as well as spin 

densities was performed in Molekel38 software suite. 

Cell lines and culture conditions. Human colorectal carcinoma HCT116 and HCT116 p53-/- 

cell lines were gifts from Professor Shen Han-ming (NUS). Human ovarian carcinoma cells 

A2780 and human embryonic kidney cells HEK293 were obtained from ATCC. A2780 cells 

were cultured in RPMI 1640 medium containing 10% fetal bovine serum (FBS). HCT116 and 

HEK293 were cultured in DMEM medium containing 10% FBS. Adherent cells were grown 

in tissue culture 25 cm2 flasks (BD Biosciences, Singapore). All cell lines were grown at 37 

°C in a humidified atmosphere of 95% air and 5% CO2. Experiments were performed on cells 

within 30 passages. All drug stock solutions were prepared in DMSO and the final 

concentration of DMSO in medium did not exceed 1% (v/v) at which cell viability was not 

inhibited. The amount of actual Ru concentration in the stock solutions was determined by 

ICP-OES. 

Inhibition of cell viability assay. The cytotoxicity of the compounds was determined by 

colorimetric microculture assay (MTT assay). The cells were harvested from culture flasks by 

trypsinization and seeded into Cellstar 96-well microculture plates (Greiner Bio-One) at the 

seeding density of 6×103 cells per well. After the cells were allowed to resume exponential 

growth for 24 h, they were exposed to drugs at different concentrations in media for 72 h. The 

drugs were diluted in complete medium at the desired concentration and 100 μL of the drug 

solution was added to each well and serially diluted to other wells. After exposure for 72 h, 
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drug solutions were replaced with 100 μL of MTT in media (5 mg mL−1) and incubated for 

additional 45 min. Subsequently, the medium was aspirated and the purple formazan crystals 

formed in viable cells were dissolved in 100 μL of DMSO per well. Optical densities were 

measured at 570 nm with a microplate reader. For cell viability assays involving inhibitors, 

the cells were pre-incubated with pifithrin-α (10 μM) or carboxy-PTIO (2.5 or 10 μM) for 30 

min and then co-incubated with drugs for 72 h. Cell viability in the absence and presence of 

inhibitor was normalized against untreated control. For the irradiation experiments, drug stock 

solutions were prepared in MeCN and their concentrations were independently verified by 

ICP-OES. The concentration of MeCN in medium did not exceed 1% (v/v) at which cell 

viability was not inhibited. Drug stock solutions were irradiated by 18 W blue LED strips 

(maximum emission at around 470 nm) for 5 min and quickly diluted in complete medium at 

the desired concentration and MTT assay was carried out as described. The irradiation of drug 

solutions was characterized by the appearance of blue color. The quantity of viable cells was 

expressed in terms of treated/control (T/C) values by comparison to untreated control cells, 

and 50% inhibitory concentrations (IC50) were calculated from concentration-effect curves by 

interpolation. Evaluation was based on means from at least three independent experiments, 

each comprising six replicates per concentration level. 

Western blot analysis. A2780 cells were seeded into Cellstar 6-well plates (Greiner Bio-

One) at a density of 6×105 cells per well. After the cells were allowed to resume exponential 

growth for 24 h, they were exposed to [1], [3]Cl2, [4]Cl2, cisplatin and oxaliplatin at different 

concentrations for 24 h. The cells were washed twice with 1 mL of PBS and lysed with lysis 

buffer [100 μL, 1% IGEPAL CA-630, 150 mM NaCl, 50 mM Tris-HCl (pH 8.0), protease 

inhibitor] for 5–10 min at 4 °C. The cell lysates were scraped from the wells and transferred 

to separate 1.5 mL microtubes. The supernatant was then collected after centrifugation (13000 

rpm, 4 °C for 15 min) and total protein content of each sample was quantified via Bradford’s 

assay. Equal quantities of protein (50 μg) were reconstituted in loading buffer [5% DDT, 5× 

Laemmli Buffer] and heated at 105 °C for 10 min. Subsequently, the protein mixtures were 

resolved on a 10% SDS-PAGE gel by electrophoresis (90 V for 30 min followed by 120 V for 

60 min) and transferred onto a nitrocellulose membrane (200 mA for 2 h). The protein bands 

were visualized with Ponceau S stain solution and the nitrocellulose membranes were cut into 

strips based on the protein ladder. The membranes were washed with a wash buffer (0.1% 

Tween-20 in 1× DPBS) three times for 5 min. Subsequently, they were blocked in 5% (w/v) 

non-fat milk in wash buffer (actin and p53 antibodies) or 5% BSA (w/v) in wash buffer (p21 
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antibody) for 1 h and subsequently incubated with the appropriate primary antibodies in 2% 

(w/v) non-fat milk in wash buffer (actin and p53 antibodies) or 5% BSA (w/v) in wash buffer 

(p21 antibody) at 4 °C overnight. The membranes were washed with a wash buffer 3 times for 

7 min. After incubation with horseradish peroxidase-conjugated secondary antibodies (r.t., 1.5 

h), the membranes were washed with a wash buffer 4 times for 5 min. Immune complexes 

were detected with Luminata HRP substrates and analyzed using enhanced 

chemiluminescence imaging (PXi, Syngene). Actin was used as a loading control. The 

following antibodies were used: p53 (FL-393) (sc-6243) and p21 (F-5) (sc-6246) from Santa 

Cruz Biotechnologies, β-Actin (ab75186) from Abcam, ECL. 

 

Results and Discussion 

Synthesis of complexes. The complexes trans-[RuCl(Hind)4(NO)]Cl2·H2O ([3]Cl2·H2O), 

trans-[RuOH(Hind)4(NO)]Cl2·H2O ([4]Cl2·H2O), [RuCl(ind)2(Hind)2(NO)] ([5]) and 

[RuOH(ind)2(Hind)2(NO)] ([6]) were synthesized as shown in Scheme 1. Metathesis reaction 

of trans-[RuCl2(Hind)4] ([1]) with a 50% molar excess of NaNO2 afforded the complex trans-

[Ru(NO2)2(Hind)4] ([2]) in 46% yield. Treatment of the latter with 12M and 3M HCl in 

methanol resulted in formation of [3]Cl2·H2O and [4]Cl2·H2O in 52 and 62%, respectively. 

These two compounds were found to deprotonate at pH 6‒9 (vide infra) with formation of [5] 

and [6], in ca 50% yield. By reacting [4]Cl2 with 12M HCl a conversion into [3]Cl2 was 

observed, even though it was not complete. The composition and structure proposed for all 

new compounds reported in this work have been proposed from elemental analyses, 1H NMR, 

IR and UV‒vis spectra, ESI mass spectrometry (see Experimental Section) and confirmed by 

single crystal X-ray diffraction measurements (vide infra). It should, however, be noted that 

the compounds used in all investigations described below are anhydrous or hydrated 

compounds (see Experimental section), while those characterized by single crystal X-ray 

diffraction are either anhydrous or contain co-crystallized solvent used for crystal growth.  

X-ray Crystallography. The results of X-ray diffraction studies of complexes [2], 

[3]Cl2·2(CH3)2CO), [4]Cl2·2(CH3)2CO) and 5∙0.8CH2Cl2 are shown in Figure S1 and Figure 

1, details of data collection and refinement are given in Table S1, while selected bond lengths 

(Å) and angles (deg) are quoted in the legends to Figures S1 and 1. Complex [2] crystallized 

in the tetragonal space group I41/a, while the other three compounds in monoclinic space 

group P21/n (or P21/c) (Table S1). All four complexes adopt a distorted octahedral 

coordination geometry with four indazole ligands coordinated to ruthenium in equatorial 
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plane and two nitrito groups ([2]), NO and chlorido ([3]Cl2) and [5] or NO and hydroxido 

([4]Cl2) as axial ligands. Interestingly, in [5] two adjacent indazole ligands are deprotonated 

at N6 and N8 acting as proton acceptors in intramolecular hydrogen bonds N4‒H···N6 

[N4···N6 2.800(2) Å, N4‒H···N6 170°] and N2‒H···N8 [N2···N8 2.800(2) Å, N2‒H···N8 

170°] (Figure 1C).  

 

Figure 1. A) ORTEP view of the cation [RuCl(NO)(Hind)4]
2+ in the crystal structure of  

[3]Cl2·2(CH3)2CO) with atom labeling scheme and thermal ellipsoids at 50% probability level; 

only the major components of the disordered over two positions Cl‒ and NO are shown. 

Counterions and solvent molecules in the crystal structure are omitted for clarity. Selected 

bond distances (Å) and angles (deg): Ru‒N1 2.080(6), Ru‒N4 2.085(7), Ru‒Cl1i 2.214(7), 

Ru‒N3 1.806(19), N3‒O1 1.174(19), Ru‒N3‒O1 168.9(17), Cl1i‒Ru‒N3 174.5(6); B) 

ORTEP view of the cation [Ru(OH)(NO)(Hind)4]
2+ in the crystal structure of  

[4]Cl2·2(CH3)2CO) with atom labeling scheme and thermal ellipsoids at 50% probability level; 

only the major components of the disordered over two positions OH‒, NO and two indazole 

ligands are shown. Counterions and solvent molecules in the crystal structure are omitted for 

clarity. Selected bond distances (Å) and angles (deg): Ru‒N1 2.078(3), Ru‒N4 2.078(3), 

Ru‒O2i 1.996(9), Ru‒N3 1.702(11), Ru‒N3‒O1 171.0(9), N3‒Ru‒O2i 178.1(6); C) ORTEP 

view of the neutral complex [RuCl(ind)2(Hind)2(NO)] [5] with atom labeling scheme and 

thermal ellipsoids at 50% probability level. Co-crystallized solvent is omitted for clarity. 

Selected bond distances (Å) and angles (deg): Ru‒N1 2.090(4), Ru‒N3 2.094(4), Ru‒N5 

2.081(4), Ru‒N7 2.073(4), Ru‒Cl1 2.2959(13), Ru‒N9 1.774(5), N9‒O1 1.127(6), 

Ru‒N9‒O1 168.7(5), N9‒Ru‒Cl1 174.68(15). 

 

Note that X-ray diffraction structures of complexes with deprotonated indazole are rare in the 

literature. Two examples can be mentioned, namely the platinum complex [PtCl(N-

indazolato)(PPh3)2]
39 and the osmium-arene complex [(6-p-cymene)Os(oxine)(ind)].40 The 

Ru‒NO moiety is almost linear with the corresponding angle varying from 168.7(5)° to 

171.0(9)°. In addition to X-ray diffraction data the linear geometry of Ru‒NO unit in [3]Cl2, 
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[4]Cl2, [5] and [6] was also obvious from IR spectra, where strong absorption bands with NO 

at 1925, 1879, 1871 and 1850 cm‒1 were measured. Therefore, the photoreactivity of this 

moiety in the solid state was first investigated. 

 

Solid state photochemistry. In metal nitrosyl complexes sometimes a competition between 

NO release and the generation of photoinduced NO linkage isomers (PLI) exists. These PLI 

were first discovered in Na2[Fe(CN)5(NO)],41,42 and termed long-lived metastable states (MS). 

Since then a number of ruthenium complexes have been prepared with similar photophysical 

behavior.43,44,45,46,47 In order to evaluate the ability of the reported herein complexes to form 

PLI and/or release NO we performed a systematic analysis by infrared spectroscopy as a 

function of temperature, which are detailed in Supporting Information material (Figures 

S2‒S4). In summary, upon light irradiation solid [3]Cl2·H2O did not exhibit significant 

metastable isomer population, but considerable NO release at room temperature. In contrast, 

for [4]Cl2·H2O and [5] we observed both phenomena NO release at room temperature and 

linkage isomerism at low temperature, which in case of [5] is reversible. 

 

Solution chemistry of complexes [3]Cl2 and [4]Cl2 in aqueous media. Structural and 

spectroscopic characterization of compounds is usually performed in the solid state or in 

organic solvents. However, for the drug development it is important to collect the information 

about the stability and reactivity of the drug candidates in aqueous media, especially at 

physiological pH. It is known that pH in solid tumors is usually lower than in normal tissues 

and acidosis in cancer cells is mediated by glycolysis, induced by limited oxygen supply.48 

Typical extracellular pH ranges are 6.5‒6.9 in tumors and 7.0‒7.5 in normal tissues; however, 

in some tumors pH values of 6.0 or even lower were detected.49 Therefore, the behavior of 

drug candidates should also be assessed at acidic conditions. Complexes [3]Cl2 and [4]Cl2 

may participate in several interactions in aqueous media. Besides the (partial) decomposition 

of the complexes (i.e. loss of NO or Hind ligands, Cl–/OH– exchange), protonation of the 

coordinated OH– in [4]Cl2 or stepwise deprotonation of Hind ligands in both complexes 

[3]Cl2 and [4]Cl2 may take place in aqueous solution by varying the pH as it is shown in 

Scheme 2 for [4]2+.  
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Scheme 2. Possible transformation processes of [Ru(OH)(Hind)4(NO)]2+ ([4]2+) including 

interconversion to [RuCl(Hind)4(NO)]2+ ([3]2+) and aquation of the latter as well. The same 

protonation and dissociation equilibria are valid for [3]2+. 

Chlorido ligand often behaves as a leaving group, especially in the case of platinum-group 

metal complexes.50,51,52 Correct interpretation of the actual form of a compound at 

physiological conditions requires detailed investigations under variation of different 

parameters (pH, ionic strength etc.) in aqueous media.  

The aqueous solubility of complexes [3]Cl2 and [4]Cl2 at pH 7.4 was extremely poor 

and precipitate formation was observed even at 5 µM complex concentration, thereby 

hindering their detailed investigation in neat water at this pH due to the concentration 

requirements of the chosen experimental methods. The aqueous solubility increased under 

acidic conditions (pH 2‒4) but was still limited (~100 µM). Due to the low solubility of 

[3]Cl2 and [4]Cl2 in water, their solution chemistry was investigated in 30% (v/v) 

DMSO/water or 50% (v/v) ethanol/water solvent mixtures. First, the interconversion between 

the two complexes was investigated. UV‒vis spectra recorded in 50% (v/v) ethanol/water or 

30% (v/v) DMSO/water mixture showed different spectral shapes at pH 2.3 (Figure S5) and 

spectra remained unaltered over 1 h. 1H NMR spectra measured for [4]Cl2 at various KCl 

concentrations (0‒0.68 M) in 50% (v/v) CD3OD/water at pH = 4.9 provide further evidence 

that no Cl–/H2O or Cl–/OH– exchange occurred after incubation for 2 h (Figure S6). The same 

conclusion can be drawn from ESI-MS measurements: mass spectra of [3]Cl2 and [4]Cl2 

showed the exclusive presence of the original complexes in the samples even after 8 days 

incubation in diluted nitric acid (pH ~ 3), accordingly no aquation of [3]Cl2, no 

interconversion and no decomposition of the complexes occur in aqueous media. Next, we 

studied the behavior of complexes [3]Cl2 and [4]Cl2 upon pH increase from 2 to 11 in 50% 

ethanol/water by UV‒vis. As shown in Figure 2A considerable changes in charge transfer 

bands occur in UV‒vis spectra of [4]Cl2 at pH 2.2‒5.3, while practically no measurable 

changes were observed for the chlorido complex [3]Cl2 in this pH range (see Figure S7). This 
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may be explained by the protonation of OH‒ in [4]Cl2 at more acidic conditions resulting in 

the formation of the aqua complex [Ru(H2O)(Hind)4(NO)]3+. 
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Figure 2. Visible (A) and UV (B) spectra of [4]Cl2 recorded at various pH values in 
50% (v/v) ethanol/water. Dashed spectra indicate precipitate formation, pH values are 
indicated in the figure. {ccomplex = 102 M (A), 5.1 M (B); l = 4 cm, I = 0.1 M KCl} 

At pH above 5.3 intraligand bands of [4]Cl2 in Figure 2B show significant spectral changes 

indicating the involvement of Hind ligands into a pH dependent process. To assess if the 

incubation of complexes [3]Cl2 and [4]Cl2 at different pH was associated with the release of 

indazole ligands, 1H NMR spectra at different pH in 50% CD3OD/water were recorded. [4]Cl2 

demonstrated high field shifts of proton signals at pH above 5 in Figure 3, but no free 

indazole could be detected at any pH ruling out the release of indazole from the complex.  
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Figure 3. 1H NMR spectra of [4]Cl2 recorded at various pH values (A) and chemical shift 
values (δ) of [3]Cl2 (empty symbols) and [4]Cl2 (full symbols) plotted against the pH. {ccomplex 
= 0.5 mM; 50% (v/v) CD3OD/water} #: magnified spectral intensities. 
 

This assumption was supported by spectrofluorimetric experiments, which indicated high 

stability of Ru-Hind bond (Figure S8). The proton shifts of coordinated indazole signals in 1H 

NMR upon pH changes were associated with indazole deprotonation. Increase of pH above 

6.5 was accompanied by precipitation of both complexes with partial redissolution at pH  11. 

Complexes [3]Cl2 and [4]Cl2 were found to deprotonate with the formation of 

[RuCl(ind)2(Hind)2(NO)] ([5]) and [RuOH(ind)2(Hind)2(NO)] ([6]), respectively. The solid-

state structure of [5] was confirmed by X-ray diffraction analysis (Figure 1C, vide supra). To 

conclude, solution studies revealed the high aqueous stability (or kinetic inertness) of both 

complexes. Thus, Hind ligands underwent stepwise deprotonation in [3]Cl2 and [4]Cl2 

resulting in the charge neutral complexes [5] and [6], respectively at physiological pH. 

However, the low solubility of these species at physiological pH hindered further 

investigation of their aqueous behavior and biological activity. 

 

Electrochemical and spectroscopic studies. Redox properties of the ruthenium nitrosyl 

complexes have been characterized in organic solvents since, these media provide a 

considerably larger potential windows for electrochemical investigations, compared to 

aqueous environment. The first reduction step for trans-[RuCl(Hind)4(NO)]2+ ([3]2+) in a 

0.2 M nBu4NPF6/MeCN is electrochemically reversible with E1/2 = –0.11 V vs Fc+/Fc (Figure 

S9A) and is followed by the less reversible one at E1/2 = –0.80 V vs Fc+/Fc. Notably, a very 

similar behavior was reported for a number of other ruthenium nitrosyl complexes suggesting 

that redox events mainly involve the NO ligand, namely the reduction of formal RuII-NO+ to 

RuII-NO• in the first step and the RuII-NO• transformation to the RuII-NO– in the next step.53 

Cyclic voltammogram of trans-[Ru(OH)(Hind)4(NO)]2+ ([4]2+) in a 0.2 M nBu4NPF6/MeCN 

shows the first reduction peak at Epc = –0.47 V vs Fc+/Fc at scan rate of 100 mV s–1 and a 

strongly shifted reoxidation peak at Epa = –0.08 V vs Fc+/Fc. The second electron transfer 

occurs at Epc = –0.8 V vs Fc+/Fc (Figure S9B). Similar redox behavior for [4]2+ was observed 

also in dichloromethane (DCM) and ethanol solutions (Figure S10). The one-electron 

reduction for [3]2+ was confirmed by coulometric measurements and is in line with the 

reduction of either trans-[RuIIICl(Hind)4(NO0)]2+ or trans-[RuIICl(Hind)4(NO+)]2+ to the 

corresponding monocation, which can be formulated as trans-[RuIICl(Hind)4(NO0)]+ ([3]+). 
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The latter is a paramagnetic species of {Ru(NO)}7  type according to the Enemark-Feltham 

notation.54 The formation of paramagnetic {Ru(NO)}7 species upon one-electron reduction 

was also confirmed for deprotonated analogues [5] and [6] by EPR spectroscopy, even though 

the first cathodic step is less electrochemically reversible (Figure S11).  

 The parent [3]Cl2 and [4]Cl2, were found to be EPR silent both in the solid state, as 

well as in the frozen solutions at 100 K. For both electrochemically generated [3]+ and [4]+ 

cations a characteristic {Ru(NO)}7 EPR signal, featuring a rhombic g tensor (g1 > 2, g2 ≈ 2.0, 

g3 < 2) and a well-resolved nitrogen hyperfine splitting in the g2 range (A2 ≈ 92 MHz or 3.3 

mT), was observed (Figure S12A).55,56 Annealing of the [4]+ sample up to 220 K resulted in a 

progressive line broadening, and collapse of the resolved features into a single broad singlet 

(Figure S12B). These results are in line with the formulation of a closed shell {Ru(NO)}6 state 

containing RuII (S = 0) bonded to NO+ (S = 0) for the parent complexes [3]2+ or [4]2+. The 

reduction of the complexes then results in {Ru(NO)}7 (S = ½) species, which bears an 

unpaired electron and shows EPR activity.57 The rather positive value of the first reduction 

potential of [3]2+ offers an alternative method for convenient generation of the paramagnetic 

one-electron reduced species [3]+ by using decamethyl ferrocene (Fc*) as reductant. The X- 

and Q-band EPR spectra of  frozen solutions of [3]+, prepared in this manner, are shown in 

Figure S13A,B, respectively. The EPR spectra obtained by chemical reduction in  

MeCN/nBu4NPF6 solutions (black lines in Figure S13A,B) perfectly matched the records of 

electro-generated [3]+. The X-band EPR signal of [3]+ resembles well the spectra of several 

{Ru(NO)}7 systems known from the literature, e.g., the extensively studied porphyrin 

complexes [Ru(OEP)(NO)(THF)],58 [Ru(OEP)(NO)(py)]59 or [(TPP)Ru(NO)(py)].60 The 

reduction with Fc* was also successfully used to generate the one electron reduced 

{Ru(NO)}7 species from [4]2+, [5]0 and [6]0. Their EPR spectra are summarized in Figures 

S13‒S20 and the estimated Spin Hamiltonian parameters are listed in Table S2. By simulation 

of the corresponding EPR spectra two components were taken into account (see discussion in 

SI, Figures S15‒S17 and Table S2). The major component can be clearly assigned to the 

authentic species [3]+ and [4]+. Detailed analysis of the minor component is beyond the scope 

of this paper and further detailed experimental and theoretical studies are currently underway 

in one of our laboratories. 

The reversibility and redox mechanism in the region of the first reduction peak for 

[3]2+ and [4]2+ were investigated by the in situ spectroelectrochemical UV‒vis cyclic 

voltammetric experiments in MeCN/nBu4NPF6. Upon the in situ reduction of [3]2+ at a scan 
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rate of 10 mV s–1, in the region from +0.15 to –0.51 V vs Fc+/Fc, the UV‒vis absorption 

bands at 260 nm (strong absorption) and 460 (weak absorption) decreased, and, 

simultaneously, a new optical band at 360 nm emerged (Figure 4A). Fully reversible 

spectroelectrochemical behavior confirmed the high stability of cathodically generated 

monocation [3]+ (see response for the two consecutive CV scans in Figure 4B). Difference 

optical spectra (taking the initial sample solution spectrum as the reference) are shown for 

clarity since the transformations of the low intensity bands are easier to follow in this case 

(absolute spectra are shown in Figure S21). Similar spectroelectrochemical response was 

observed for [4]2+ (Figure S22). The potential dependence of UV–vis spectra measured for the 

two consecutive cyclic voltammetric scans in thin layer cell is shown in Figure S22B. Upon 

the in situ reduction of [4]2+ in MeCN at a scan rate of 10 mV s–1 in the region from +0.3 to –

0.6 V vs Fc+/Fc, the UV‒vis absorption band at 264 nm decreased, while a new optical bands 

at 284 and ca. 360 nm via an isosbestic point at 272 nm appeared (Figure S22C). The 

isosbestic points in the forward and the reverse voltammetric scans (Figure S22C,D) indicate 

the chemical reversibility of the first reduction step and the stability of the paramagnetic 

reduced species [4]+. 

The IR spectra recorded upon the one electron reduction of [3]2+ showed a decrease of 

the N‒O stretching band of the parent complex at 1920 cm–1 accompanied by an increase of 

the monocation [3]+ NO band at 1630 cm–1 (Figure 4C). The N–O vibrational frequency of 

[3]2+ falls well within the range considered for NO+ state of the ligand, thus implying a 2+ 

oxidation state of ruthenium.55,61 On the other hand, a marked 290 cm–1 drop of the ῦNO upon 

reduction agrees well with the transformation of the linear RuII-NO+ {Ru(NO)}6 moiety in 

[3]2+ to the bent RuII-NO• {Ru(NO)}7 unit in [3]+, supporting the redox mechanism proposed 

above.62 A prolonged reduction of the sample, still in the range of the first electron transfer, 

resulted in a slow evolution of an additional band at about 1890 cm–1. It is unlikely that this 

band would correspond to the double reduced RuII-NO–, {Ru(NO)}8 type, [3]0 species. A 

similar behavior was recently reported for a porphyrin complex [Ru(OEP)(NO)Cl].58   
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Figure 4. In situ UV‒vis spectroelectrochemistry for [3]2+ in 0.2 M nBuN4PF6/MeCN (scan 
rate 10 mV s−1): (A) Difference UV‒vis spectra observed upon reduction of [3]2+ going to the 
first reduction peak. Inset: the corresponding cyclic voltammogram (two consecutive scans) 
with selected potentials marked with colored circles corresponding to the identically colored 
optical spectra; (B) Difference UV‒vis spectra detected simultaneously upon the reduction of 
[3]2+ in the region of the first cathodic peak (from +0.15 to –0.51 V vs Fc+/Fc) upon two 
consecutive cyclic voltammetric scans; (C) In situ IR spectroelectrochemistry of [3]2+ in 
0.2 M nBuN4PF6/MeCN performed in an OTTLE cell; difference spectra recorded before (red 
line), upon (dotted lines) and after 30 s reduction at constant potential of –0.5 V vs Fc+/Fc 
(blue line). The N‒O stretching band of the generated [3]+ at 1630 cm–1 overlaps with the 
scissor vibration band of H2O in MeCN, thus producing an artifact apparent splitting.  
 

Femtosecond Pump-Probe Spectroscopy. In order to understand the excited state relaxation 

and NO liberation and recombination dynamics of [3]Cl2 and [4]Cl2 complexes in solution, 
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the femtosecond time-resolved transient absorption spectra were measured by exciting at 470 

nm in acetonitrile at room temperature. The transient absorption spectra of [3]Cl2 at various 

time delays are shown in Figure 5. At early time scale of 250 fs, a broad transient absorption 

maximum at around 650 nm is observed. The intensity of the absorption is decreased with 

increase of delay time and attaining to equilibrium within 30 ps. Similarly transient absorption 

of [4]Cl2 in MeCN were measured (the data is not shown) and signal intensity is weak due to 

the poor solubility. In order to compare the effect of the trans ligand in the excited state 

dynamics of the compounds, the kinetic decays of [3]Cl2 and [4]Cl2 at probing wavelength of 

612 nm obtained by exciting at 470 nm are shown in Figure S23. It is observed that the kinetic 

profiles of both the complexes are similar. The analysis of the femtosecond transient 

absorption spectra consisting of a three-dimensional data set (wavelength, time, and change in 

absorbance) was performed with the global analysis program GLOTARAN).63 Three 

exponential components, 120 ± 20 fs (1), 570 ± 50 fs (2) and 6.21 ± 0.05 ps (3) were 

optimally obtained to fully describe the relaxation dynamics of complexes in MeCN.  

 

The excitation of the MLCT band in the ground state absorption spectra using 470 nm 

generate the highest singlet charge transfer state by transferring the charge from the metal to 

the  ligand and followed by the internal conversion leading to the lowest vibrational state of 

first singlet state 1MLCT. This leads to the formation of 3MLCT by intersystem crossing. The 

time constant of these processes could be around or less than the 1 which is within the 

instrumentation limit. The decay of the triplet state (3MLCT) is attributed to the time 

constants of 2. Here it is to be noted that though 3MLCT of [Ru(bpy)3]2+ in MeCN solution 

formed within 100 fs with conversion efficiency of  nearly 100% having lifetime of ~ 1 s,64 

few Ru complexes with short lived or absence of triplet state have been already reported.65 It 

is observed that the lifetime of triplet state depends on the Ru‒N distance and strength of 

ligand field.65a In addition the contribution of 3LMCT transitions from the unreduced ligand to 

formerly oxidized Ru(III) center cannot be ruled out.66 Based on the theoretical studies,67 it is 

proposed that the Ru-NO dissociates in the triplet state and the dynamics of NO rebinding 

occurring with the time constant of 3.   



23 

 

550 600 650 700
0

5

10

15 lexctn = 470 nm
    [3]Cl

2

 Acetonitrile 

 


A

b
so

rb
an

ce
, 

m
O

D

Wavelength, nm

250fs

71 ps

 

Figure 5. Femtosecond time-resolved transient absorption spectra of [3]Cl2 in MeCN upon 
excitation at 470 nm measured at different time delays.  

 

Solution photochemistry in minutes time range. The photochemical behavior of [3]2+, 

[4]2+, [5]0 and [6]0 was additionally probed in solution in seconds to minutes time regime. The 

photo-induced reactivity of a number of {Ru(NO)}6 systems at minutes time scale has been 

previously reviewed,55 and the typical reaction encountered upon excitation with UV or vis 

light, is the photo-release of NO• with successive formation of a RuIII-(solv.) complex 

(equation 1).  

6 III

solv.
{Ru(NO)} Ru (solv.) + NO h    (1) 

We have utilized the specific reaction of NO• with carboxy-2-phenyl-4,4,5,5-tetramethyl-

imidazoline-1-oxyl-3-oxide (carboxy-PTIO or cPTIO) nitronyl nitroxide (NN•),68 to follow its 

expected release upon photolysis of [3]2+. After the reaction with NO•, the NN• transforms to 

an iminonitroxide (IN•), both exhibiting distinct EPR spectra. The solution of [3]2+ with 

equimolar amount of cPTIO NN• radical was irradiated in the cavity of the EPR spectrometer 

with 400 nm LED and the obtained spectra are shown in Figure 6A. The typical quintet signal 

of the of cPTIO NN• radical (AN1 = AN3 = 0.76 mT, red line in Figure 6A), gradually 

transformed to the septet signal of the corresponding IN• (AN1 = 0.93 mT, AN3 = 0.43 mT, blue 

line in Figure 6A), confirming thus the NO• photo-release.   

 

The quantification of the NO• photo-release was performed based on the analysis of the 

UV‒vis spectra. The solution of [3]2+ in MeCN was irradiated with 405 nm light in a LED 

photoreactor and the in situ recorded UV‒vis spectra are shown Figure 6B. The irradiation 
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conditions as well as the sample concentration closely resembled the previous EPR 

experiment, and since the time scales of the spectral changes observed by both methods 

correlate, an identical reaction of NO• photo-cleavage was monitored in both cases. The  

isosbestic points observed in the series of UV‒vis spectra (243 nm, 272 nm, Figure 6A) 

indicate on a clean 1:1 conversion. This was confirmed by the Global Analysis of the obtained 

data. The first order reaction model according to equation 1, with the rate constant of 6.94  

10–3 s–1 matches well with the spectral changes observed under given experimental conditions. 

The spectral contribution of the reactant and the product, extracted by the fitting of the kinetic 

model, are shown in Figure 6C, together with their concentration profiles. Analogously were 

treated the data from the photolysis experiment in DCM Figure S24C. An axial coordination 

of a solvent molecule in the photo–generated RuIII(solv) is suggested by eq. 1. Accordingly, 

the spectrum of the photo-product in DCM shows a different distribution of the intensities of 

the vis bands, when compared to the photo-product in MeCN. Similar results were also 

obtained for [4]2+, [5]0 and [6]0 and the spectra are presented in Figures S25‒S27.  

 

For the whole series of the ruthenium nitrosyl tetrazole complexes the quantum yields of NO• 

release obtained for vis irradiation at 405 nm vary between 3–6% and tend to be slightly 

lower in DCM as compared to the MeCN solutions. These numbers place the investigated 

compounds into the medium to lower–performing category, among the NO photo-delivering 

{Ru(NO)}6 systems.55 Similar •) was achieved with UVA light, as briefly explored for 

the [3]2+ (Table 2). The NO liberation efficiency of studied ruthenium nitrosyl tetrazoles is 

likely limited by the rapid NO rebinding suggested from the investigation of the compound by 

femtosecond pump-probe spectroscopy. Regarding the influence of the trans ligands on the 

NO photo release efficiency, no apparent correlation is evident at first glance, and a further 

discussion of the trans effect seems to be redundant.    
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Figure 6. (A) EPR spectra detected upon photolysis (400 nm LED) of 33 M [3]2+ in the 

presence of equimolar cP in Ar saturated MeCN. The quintet of cPTIO NN• radical (AN1 = 

AN3= 2.7 MHz or 0.76 mT, red line) transforms to a septet of the corresponding IN• (AN1 = 3.3 

MHz or 0.93 mT AN3= 1.5 MHz or 0.43 mT, blue line) yielding ~ 60% conversion after 300 s 

illumination; (B) UV‒vis spectra detected in situ during photolysis of 33 M [3]2+
 MeCN 

solution with 405 nm light in a LED photoreactor; (C) The spectra of the [3]2+ (red line) and 

the photo-product [3']2+(MeCN) (blue) obtained by the Global Analysis of the spectral series 

from (B). Inset shows the corresponding concentration-time profiles. * marks an artefact 

signal.   
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Table 2. Quantum yields of NO• release. 

Complex Solvent Φ(NO•) at 
365 nm 

Φ(NO•) at 
405 nm 

[3]2+ MeCN 0.038±0.006 0.045±0.005 
 DCM – 0.033±0.006 
[4]2+ MeCN – 0.040±0.005 
 DCM – 0.034±0.006 
[5]0 MeCN – 0.038±0.003 
 DCM – 0.032±0.004 
[6]0 MeCN – 0.062±0.005 
 DCM – 0.032±0.004 
 

DFT Calculations. The optimized geometries of the initial [3]2+, [4]2+ and [5]0 (singlet states) 

complexes agree well with the found crystal structures (see Table S3). The additional modes 

of NO binding to Ru, documented in the literature (T-shape and {Ru-ON})43,44,45,46,47,69,70 are 

energetically not favored (see Table S4). Nevertheless, the calculated NO vibration of T-

shape geometry [3]2+(T) (νNO = 1743 cm–1) and the experimentally obtained band found at 

1630 cm‒1 (Figure 4C) are in a qualitative agreement. The situation is the same for the other 

relevant structures (see Table S4). 

The reduced system [3]+ (doublet state) has a bent structure71 (with Ru‒N3‒O1 angle 

around 140°) due to the antibonding Ru-(NO) π*-character of closely degenerate 

LUMO/LUMO+1 (see Figure S29). In addition, this geometry of the [3]+ is further stabilized 

by O1∙∙∙H‒Nind hydrogen bond. Most of the spin density of [3]+ (ca. 77 %) is localized on the 

NO group, while ca. 17% of spin is on the Ru atom, see Figure 7A.  

After the release of NO radical (NO•) from [3]2+, the unpaired electron of the 

2[RuCl(Hind)4]
2+ residue (from hereafter labeled as [3']2+) is with ca. 74% of spin density 

localized on Ru (in the non-bonding 4dxy orbital), see Figure 7B. This holds also for the 

[3']2+(MeCN) species (where the released NO• is replaced by MeCN solvent molecule), see 

Figure S30B. The formal electronic structure of RuIII atom in [3']2+is [Kr54]4dxz
24dyz

24dxy
1. 

The formal single reference electron configuration of {Ru-NO}6 moiety when taking into 

account the 5d electrons of RuIII and the unpaired electron of NO in [3]2+ is 

[Kr54]4πx
24πy

24dxy
2. The d-populations (physical electronic configuration/structure) of Ru in 

[3]+, [3]2+ and [3']2+ are [Kr54]4dxz
1.754dyz

1.524dxy
1.89, [Kr54]4dxz

1.454dyz
1.454dxy

1.94 and 

[Kr54]4dxz
1.914dyz

1.914dxy
1.27, respectively. Hence, one can see the significant change of the 

electronic configuration of Ru upon the NO• release. 



27 

 

TD-DFT level of theory was used to qualitatively interpret the experimental vis absorption 

spectrum of [3]2+. One can assign the most prominent excitations to transitions from the 

frontier orbitals of Hind character (HOMO–3 - HOMO) into the unoccupied π* (LUMO and 

LUMO+1, see Figure S29) and * (LUMO+2, see Figure S29) Ru‒NO antibonding orbitals, 

where the π* transitions have been previously identified in a similar {Ru(NO)}6 system.67 The 

transitions into π* Ru‒NO antibonding orbital are red shifted (500‒650 nm), whereas the 

transitions to * Ru‒NO antibonding orbitals are blue shifted (400 nm). (The visualization of 

the difference densities and relaxed densities is shown in Figure S31.) The π* and * Ru‒NO 

excitations are the initial channels of the Ru‒NO dissociation pathway upon photolysis. 

  
(A) (B) 

Figure 7. B3LYP/SVP(SDD) spin densities of [3]+(1) lower in energy (A) and of [3']2+ (B), 

isovalue ±0.005.  

The collective 1H NMR, ESI MS and UV‒vis solution equilibrium studies revealed that 

[3]Cl2 and [4]Cl2 are compatible with aqueous media. There were no major changes of the 

UV‒vis spectra of [3]Cl2 upon pH variation from 2 to ca 11 in 50% ethanol/water solution 

attesting that there was no conversion to other species (e.g., via aquation, decomposition, 

etc.). For [4]Cl2 protonation of OH‒ at more acidic conditions is envisaged, and the 

involvement of Hind ligands into a pH dependent process, namely, deprotonation, without 

liberation of indazole proligands, as evidenced by 1H NMR and spectrofluorimetric 

measurements. These investigations along with the ability of the compounds to release NO in 

solution upon excitation encouraged us to further investigate their biological potential. 

The collective 1H NMR, ESI MS and UV‒vis solution equilibrium studies revealed 

that [3]Cl2 and [4]Cl2 are compatible with aqueous media. There were no major changes of 

the UV‒vis spectra of [3]Cl2 upon pH variation from 2 to ca 11 in 50% ethanol/water solution 

attesting that there was no conversion to other species (no ligand-exchange took place). For 

[4]Cl2 protonation of OH‒ at more acidic conditions is envisaged, and the involvement of 
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Hind ligands into a pH dependent process, namely, deprotonation, without liberation of 

indazole proligands, as evidenced by 1H NMR and spectrofluorimetric measurements. These 

investigations along with the ability of the compounds to release NO in solution upon 

excitation encouraged us to further investigate their biological potential. 

Antiproliferative activity in cancer cell lines. The antiproliferative effects of complexes 1, 

[3]Cl2, and [4]Cl2 in comparison with cisplatin were determined by colorimetric cell viability 

assay (MTT assay) against a panel of cancer cell lines. The IC50 values are quoted in Table 4 

and the concentration-effect curves are shown in Figure S32. 

 

Table 4. Cytotoxicities of complexes [1], [3]Cl2, [4]Cl2, cisplatin and KP1019  

 

 

 

 

 

 

 

 

 

 

a 50% inhibitory concentrations in human colorectal carcinoma cells HCT116, human ovarian 
carcinoma cell lines A2780 and non-cancerous HEK293 cells, determined by MTT assay. 
Values are means plus/minus standard deviations obtained from at least three independent 
experiments with exposure times of 72h. Selectivity Factor (SF) is determined as IC50 

(HEK293)/IC50 (A2780).  
 
In general, all tested complexes demonstrated high antiproliferative activity in sub-

micromolar or low micromolar concentration range in cancerous cell lines and no significant 

differences between the cytotoxicity of complexes [1], [3]Cl2 and [4]Cl2 were observed. The 

antiproliferative activity of complex [1] in CH1 and SW480 after 96 h exposure has been 

previously reported16 and the IC50 values were comparable to those obtained in the present 

work. Mono-indazole ruthenium-nitrosyl complexes, which bear some structural resemblance 

to complexes [3]Cl2 and [4]Cl2, were tested in CH1/PA-1, SW480 and A549 cells after 96 h 

exposure and also demonstrated antiproliferative activity in a micromolar concentration 

range.15 Importantly, the complexes displayed higher activity than KP1019 and cisplatin in all 

tested cell lines. Next, we tested the selectivity of complexes [1], [3]Cl2 and [4]Cl2 towards 

cancer cells vs healthy cells. Based on our results, all complexes showed some degree of 

selectivity towards embryonic kidney cells HEK293 cells over A2780 cells, but lower than 

Compound 
IC50 

a [M] 

HCT116  A2780 HEK293 SF 

[1] 1.1 ± 0.2 0.25 ± 0.04 0.53 ± 0.03 2.1 

[3]Cl2 0.65 ± 0.19 0.33 ± 0.02 0.61 ± 0.10 1.8 

[4]Cl2 1.1 ± 0.5 0.23 ± 0.03 1.2 ± 0.2 5.2 

Cisplatin 0.86 ± 0.16 0.60 ± 0.05 3.8 ± 1.3 6.3 

KP1019 31 ± 8 16 ± 2 29 ± 5 1.8 



29 

 

that of cisplatin. Surprised by these results, we additionally determined the selectivity factor 

for KP1019, which is known to demonstrate uniquely low toxicity in cancer patients in 

comparison with highly toxic cisplatin.72,73,74 As can be seen from Table 5, the selectivity of 

KP1019 towards cancer cells over healthy cells was lower than that of cisplatin. Therefore, 

even though HEK293 cells are very commonly used for the assessment of toxicity in non-

cancerous cell lines, the results should be treated with caution. 

 

The role of NO ligand in the anticancer activity. In order to determine the effects of NO 

ligand on the cytotoxicity of Ru nitrosyl complexes, we assessed the antiproliferative activity 

of complexes [3]Cl2 and [4]Cl2 in presence of cPTIO as NO scavenger (vide supra).68 cPTIO 

is also used to determine if NO  plays a role in various biological processes, such as DNA 

fragmentation,75,Hiba! A könyvjelző nem létezik. platelet aggregation,76 endotoxin shock77 and 

cytotoxic effects.78 In order to choose the appropriate concentration of cPTIO for subsequent 

experiments with Ru-NO complexes, its cytotoxicity was determined by MTT assay in A2780 

cells with exposure time of 72 h. Subsequently, complexes [3]Cl2 and [4]Cl2 were co-

incubated with 2.5 and 10 M of carboxy-PTIO for 72 h and their cytotoxicity was 

determined by MTT assay. Based on the results of MTT (Figure S32), the cytotoxicity of 

complexes [3]Cl2 and [4]Cl2 was not inhibited in the presence of cPTIO. Subsequently, 

complexes [3]Cl2 and [4]Cl2 were irradiated by blue LED light (max emission at around 470 

nm) for 5 min and their cytotoxicity was compared to the activity of these complexes without 

irradiation. To mimic the conditions of NO photo-release experiments, [3]Cl2 and [4]Cl2 were 

dissolved in MeCN and it was ensured that the cell viability was not affected by the presence 

of organic solvent. As can be seen in Figure S33, the cytotoxicity of complexes [3]Cl2 and 

[4]Cl2 upon irradiation increased by ca. 30%. Subsequently, the activity of the complexes 

upon irradiation was evaluated in the presence of carboxy-PTIO and no changes in 

cytotoxicity were detected. Therefore, based on the results of the MTT experiments, the role 

of NO ligand in the cytotoxicity of [3]Cl2 and [4]Cl2 was not confirmed. 

 

p53 Dependence. The majority of clinically used anticancer compounds exhibit their mode of 

action by activating p53 pathway in cancer cells. p53 protein plays the key role in determining 

cell fate and in case if the damage is too excessive, p53 triggers cell death.79,80 However, most 

of cancer cells are able to cause p53 mutations leading to the loss of its protective function 

and resistance to common chemotherapies. Hence, the very design of the traditional 
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anticancer treatment is often defeated by cancer cells properties and the identification of p53-

independent compounds is highly desirable. In order to assess the role of p53 protein in the 

antiproliferative activity of ruthenium complexes, we determined the cytotoxicity of 

compounds in HCT116 colorectal cancer cell line and its resistant analogue HCT116 p53 -/-, 

where p53 gene was knocked out (Table 5).  

 

Table 5. Cytotoxicities of complexes 1, [3]Cl2, [4]Cl2, cisplatin and oxaliplatin  

a 50% inhibitory concentrations in colorectal carcinoma cells HCT116wt (wild type) and 
HCT116 p53-/- determined by MTT assay. Values are means plus/minus standard deviations 
obtained from at least three independent experiments with exposure times of 72h.  

The results were compared to cisplatin and oxaliplatin, which are known to be p53-dependent. 

As expected, both cisplatin and oxaliplatin demonstrated strong dependence on p53 and their 

activity in p53-null cell line was 2‒5 times lower than in the parental HCT116 cell line. On 

the contrary, all ruthenium complexes were equally potent in both HCT116 cell lines, 

indicating their independence from p53. To further confirm the observed effects, the 

cytotoxicity of compounds was tested in the presence of p53 inhibitor, pifithrin α. Pifithrin α 

is known to inhibit both p53-mediated apoptosis and p53-mediated gene transcription such as 

cyclin G1 and p21/waf1 expression.81,82 In agreement with the results of MTT assay in 

isogenic HCT116 cell lines, the activity of cisplatin and oxaliplatin was suppressed by p53 

inhibition albeit to a lesser extent than by p53 gene knock out, whereas ruthenium complexes 

were not affected by pifithrin α. Additionally, the effects of metal complexes on p53 protein 

expression were evaluated by Western Blot in A2780 cells (Figure 17). As expected, cisplatin 

and oxaliplatin caused significant overexpression of p53, whereas ruthenium complexes did 

not have any effect on p53 expression. Therefore, it can be concluded that p53-independent 

mode of action of ruthenium complexes is retained in various cell lines. It should be noted 

Compound 

IC50 
a [M] 

HCT116 wt HCT116 wt  

+ pifithrin α 

Ratio IC50 

with/without 

inhibition 

HCT116  

p53-/- 

Ratio IC50 

 p53-/- /wt 

[1] 1.1 ± 0.2 1.1 ± 0.3 1.0 1.5 ± 0.2 1.5 

 [3]Cl2 0.65 ± 0.19 0.52 ± 0.11 0.8 0.66 ± 0.15 1.0 

[4]Cl2 1.1 ± 0.5 1.4 ± 0.3 1.3 0.9 ± 0.2 0.8 

Cisplatin 5.2 ± 1.3 9.0 ± 1.2 1.7 12 ± 2 2.3 

Oxaliplatin 0.86 ± 0.16 1.9 ± 0.4 2.2 4.1 ± 0.9 4.8 
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that other ruthenium compounds were also shown to be independent from p53 cellular 

status.71,83,84  

 
 
Figure 17. Western blot analysis of p53 and p21 proteins. A2780 cells were collected after 
incubation with compounds of interest at indicated concentrations for 24 h. Total lysates were 
isolated and examined by western blot. Actin was used as a loading control.  
 

When the cell’s DNA is damaged, various cell mechanisms are activated in order to repair the 

damage or trigger the cell to systematically kill itself. As it was mentioned previously, the key 

role in determining cell fate is played by p53 protein; however, the decision whether cells live 

or die is also dependent on p53 downstream effector p21. The cyclin-dependent kinase (cdk) 

inhibitor p21 plays an important role in genomic stability, apoptosis, senescence and DNA 

repair.85 It is also known that it can be activated in a p53-dependent and independent manner. 

To understand if the observed antiproliferative effects of ruthenium complexes [1], [3]Cl2 and 

[4]Cl2 were related to the induction of overexpression of p21, we performed western blot 

analysis of p21 marker. Incubation of cells with complexes of interest at various 

concentrations for 24 h caused a dose-dependent increase in the magnitude of induction of 

p21 protein. The regulation of p21 might be the cause of antiproliferative action of novel 

ruthenium complexes.  

 

Conclusions 

By reaction of trans-[Ru(NO2)2(Hind)4] ([2]) with 12M and 3M hydrochloric acid in 

methanol new complexes trans-[RuCl(Hind)4(NO)]Cl2·H2O ([3]Cl2·H2O) and trans-

[RuOH(Hind)4(NO)]Cl2·H2O ([4]Cl2·H2O), respectively, were synthesized in good yields. 

Deprotonation at pH 6‒9 led to isolation of two other compounds, namely 

[RuCl(ind)2(Hind)2(NO)] ([5]) and [RuOH(ind)2(Hind)2(NO)] ([6]), respectively. These 

results might also shed light on the nature of the green species generated from KP1019 at 

physiological pH, which posed a problem upon intravenous administration in cancer patients. 
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Upon light irradiation solid [3]Cl2·H2O did not exhibit significant metastable isomer 

population, but considerable NO release at room temperature. In contrast, for [4]Cl2·H2O and 

[5] we observed both phenomena NO release at room temperature and reversible linkage 

isomerism at low temperature. 

[3]Cl2 was found to be redox active in MeCN undergoing one reversible one-electron 

reduction confirmed by coulometric measurements at E1/2 = ‒0.11 V followed by a second 

quasireversible one-electron reduction at E1/2 = ‒0.80 V vs Fc+/Fc. Both reductions are 

predominantly NO centered as was also confirmed by IR-spectroelectrochemistry, X- and Q-

band EPR spectroscopy and DFT calculations. In particular, the first reduction step is 

accompanied by a decrease of NO stretching band at 1920 cm‒1 and appearance and increase 

of a new NO band at 1630 cm‒1. This drop of ῦNO is due to bending of linear RuII-NO+ moiety 

into RuII-NO• (calcd Ru‒N‒O 141.29°).  

The photo-induced release of NO upon irradiation of [3]Cl2 and [4]Cl2 in solution 

with 400 nm LED has been confirmed by EPR spectroscopy by monitoring the specific 

reaction of NO• with nitronyl nitroxide (NN•) to give iminonitroxide (IN•). The quantification 

of the NO release performed by analysis of the UV‒vis spectra indicates 3‒6% based on 

calculated quantum yields at 405 nm (Table 3). These numbers are quite reasonable given the 

low excitation coefficients at 405 nm (ca. 500 M‒1cm‒1) and are in accord with femtosecond 

pump probe spectroscopy data, which indicated almost cyclic liberation and rebinding of NO 

to ruthenium upon excitation. To increase the biological utility of this type of compounds we 

are going to explore one of the strategies proposed previously for photosensitizing the Ru‒NO 

bond to visible light,55 namely by modifying the azole heterocycles in order to increase their 

electron donating ability. In particular, replacement of 1H-indazole ligands by 3,5-dimethyl-

1H-pyrazole is envisaged.  

The complexes [3]Cl2·H2O and [4]Cl2·H2O show high antiproliferative activity, 

which is p53 independent. However, the compounds caused overexpression of p21 and the 

regulation of its status might be the reason of activity at the molecular level. Release of NO, if 

any, does not contribute significantly to antiproliferative activity. 
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Our findings suggest that ruthenium-nitrosyl complexes with equatorial 1H-indazole ligands 

and chlorido or hydroxido ligand in trans-position to NO+ are very effective antiproliferative 

agents. The indazole ligands in parent complexes undergo deprotonation at physiological pH 

with formation of electroneutral inner sphere complexes. The photo-induced release of NO 

upon irradiation has been confirmed both in the solid state by IR spectroscopy and in solution 

by EPR spectroscopy.  

 


