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RADON TRANSFORM ON SPACES

OF CONSTANT CURVATURE

CARLOS A. BERENSTEIN, ENRICO CASADIO TARABUSI, AND ÁRPÁD KURUSA

Abstract. A correspondence among the totally geodesic Radon transforms—
as well as among their duals—on the constant curvature spaces is established,

and is used here to obtain various range characterizations.

1. Introduction

The totally geodesic Radon transform on spaces of constant curvature has been
widely studied (see [Hg1], [Hg2], [BC1], [Ku1], to quote only a few). Yet many of
the known results, in spite of their similarities, were obtained on each such space
independently. The idea of relating these transforms by projecting each space
to the Euclidean one appeared independently in [BC2] (for negative curvature)
and [Ku4] (for curvature of any sign), and was used to obtain, respectively, range
characterizations of the Radon transform on the hyperbolic space and support
theorems on all constant curvature spaces.

In this paper we extend and exploit further this correspondence, establishing an
explicit formula relating the dual Radon transforms on the different constant cur-
vature spaces, and proving various range characterizations for the Radon transform
and its dual on the Euclidean and elliptic space.
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2. Preliminaries

Let Mn
κ be an n-dimensional simply connected complete Riemannian manifold

of constant curvature κ. Normalizing the metric so that κ equals −1, 0, or +1, we
get, respectively, the hyperbolic space Hn, the Euclidean space Rn, and the sphere

Date: August 8, 1995.

1991 Mathematics Subject Classification. Primary 44A12; Secondary 53C65, 51M10.
Key words and phrases. Radon transform, spaces of constant curvature, totally geodesic sub-

manifolds, spherical harmonics, moment conditions.
The first author was partially supported by NSF grants DMS9225043 and EEC9402384.
This research was in part accomplished during the second author’s stay at the University of

Maryland, whose hospitality is hereby acknowledged.
The third author was partially supported by the Hungarian NSF grants T4427, F016226,

W075452, and T020066.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by SZTE Publicatio Repozitórium - SZTE - Repository of Publications

https://core.ac.uk/display/223023519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1090/S0002-9939-97-03570-3


Proc. of AMS, 125(1997), 455–461. c© C. A. Berenstein, E. Casadio Tarabusi, and Á. Kurusa
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Sn—or its two-to-one quotient, the projective space Pn. (The subscripts +1, −1
will henceforth be replaced by +, −, respectively.)

For a fixed k, with 1 ≤ k < n, let ξ be an arbitrary k-dimensional totally geodesic
submanifold of Mn

κ. The k-dimensional Radon transform Rκf (the indication of
n, k will be omitted) of a function f on Mn

κ which is integrable on each ξ is given
by

Rκf(ξ) =

∫
ξ

f(x) dx,

where dx is the volume element on ξ induced by the metric of Mn
κ. In Sn, whenever

x ∈ ξ then also−x ∈ ξ, so thatR+ cannot separate antipodal points, i.e., it vanishes
on odd functions: for this reason we will only consider even functions on Sn, or,
equivalently (except for a factor 2 in the integrals), will take Mn

+ to be Pn.

Let Γn,kκ be the set of all k-dimensional totally geodesic submanifolds of Mn
κ,

equipped with the natural differentiable structure: if κ = 0 it is the usual affine
Grassmannian Gn,k of k-planes. The k-dimensional dual Radon transform R∗κφ of,
say, a continuous function φ on Γn,kκ is defined as

R∗κφ(x) =

∫
ξ3x

φ(ξ) dξ,

where x ∈ Mn
κ and dξ is the measure on the subset {ξ ∈ Γn,kκ : ξ 3 x} induced

by the isotropy group of x in the automorphism group of Mn
κ, normalized as

in [Hg1].
The Riemannian metric of Mn

κ is determined by the size function νκ, defined on
[0, π/2) for κ = +1, and on [0,+∞) for κ = −1, 0, that gives the radius νκ(r) of
the Euclidean sphere isometric to the geodesic sphere of radius r in Mn

κ. Taking
geodesic polar coordinates in Mn

κ with respect to a fixed reference point o, the
function

µκ = νκ/(dνκ/dr)

generates the map pκ : Mn
κ → Rn given by

pκ(Expo rω) = µκ(r)ω,

where ω is a unit vector in the tangent space ToM
n
κ, identified with Rn. (Actually

p+ is defined on the complement in Pn of the projective hyperplane, henceforth
called the distinguished equator eo, orthogonal to o. The Sn version of p+ is of
course the composition with the canonical quotient map.) The following table
gives νκ, µκ explicitly.

Mn
κ κ νκ µκ

Hn −1 sinh r tanh r
Rn 0 r r

Sn or Pn +1 sin r tan r
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The map pκ has the property of taking geodesic segments to geodesic segments,
although not preserving their arc length: the map Γn,kκ → Gn,k thus induced will
also be denoted by pκ. (If κ = +1 this is only defined on a Zariski dense open

subset of Γn,k+ .)
The distance of ξ from o in Mn

κ will be denoted by |ξ|; if k = n − 1 we shall
parametrize ξ as |ξ|ω, where ω ∈ ToMn

κ is the unit direction of the closest point of
ξ to o.

3. Correspondence among Radon transforms
and among their duals

The following is proved in [Ku4] and, for the hyperbolic case, in [BC2].

Theorem 3.1. Let f ∈ L1(Rn).

(1) If g is the even function on Sn (but not defined on eo) given by g(p−1
+ (x)) =

(1 + |x|2)(k+1)/2 f(x) for all x ∈ Rn, then

R0f(ξ) = (1 + |ξ|2)−1/2R+g(p−1
+ (ξ)) for every k-plane ξ in Rn.

(2) Assume that f has support in the unit ball Bn of Rn: if g is the function

on Hn given by g(p−1
− (x)) = (1− |x|2)(k+1)/2 f(x) for all x ∈ Rn, then

R0f(ξ) = (1− |ξ|2)−1/2R−g(p−1
− (ξ)) for every k-plane ξ in Rn.

(These multiplication operators and the Radon transforms are all positive op-
erators, and only integrability along k-planes, or totally geodesic submanifolds, is
actually required, so f can be taken to belong to a larger function space than L1.)

Similar relations hold for the dual Radon transform: it was proved in [BC2] for
the hyperbolic case, but the same method can be used in general, as we now show.

Theorem 3.2. Let φ ∈ C(Gn,k).

(1) If ψ is the function on Γn,k+ (not defined on the totally geodesic submanifolds

contained in eo) given by ψ(p−1
+ (ξ)) = (1 + |ξ|2)n/2 φ(ξ) for every k-plane

ξ in Rn, then

R∗0φ(x) = (1 + |x|2)(k−n)/2R∗+ψ(p−1
+ (x)) for every x ∈ Rn.

(2) If ψ is the function on Γn,k− given by ψ(p−1
− (ξ)) = (1 − |ξ|2)n/2 φ(ξ) for

every k-plane ξ in Rn, then

R∗0φ(x) = (1− |x|2)(k−n)/2R∗−ψ(p−1
− (x)) for every x ∈ Bn.

Proof. (1) For κ = +1 consider the functions

ρ(p−1
κ (x)) = (1 + κ |x|2)(−k−1)/2, ρ′(p−1

κ (x)) = (1 + κ |x|2)(k−n)/2,

σ(p−1
κ (ξ)) = (1 + κ |ξ|2)−1/2, σ′(p−1

κ (ξ)) = (1 + κ |ξ|2)−n/2,
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and the maps Φκ, Φ′κ, Ψκ, Ψ′κ given by

Φκ(f ◦ pκ) = (ρ ◦ p−1
κ ) f, Φ′κ(f ◦ pκ) = (ρ′ ◦ p−1

κ ) f,

Ψκ(φ ◦ pκ) = (σ ◦ p−1
κ )φ, Ψ′κ(φ ◦ pκ) = (σ′ ◦ p−1

κ )φ,

for f ∈ D(Rn) and φ ∈ C(Gn,k). The Jacobian determinant of pκ is easily seen to
be Jpκ = (dνκ/dr)

−n−1 (cf. [Ku4, Figure 1]). Therefore, if f ′ is also in D(Rn) and
if g = f ◦ pκ and g′ = f ′ ◦ pκ, then

〈Φκg,Φ′κg′〉Rn =

∫
Rn

(ρgρ′g′) ◦ p−1
κ =

∫
Mn
κ

ρρ′gg′ Jpκ =

∫
Mn
κ

gg′ = 〈g, g′〉Mn
κ
,

because 1+κ |pκ|2 = (dνκ/dr)
−2, hence ρρ′ Jpκ = (dνκ/dr)

(k+1)+(n−k)+(−n−1) = 1.
Since Φκ is a topological isomorphism of D(Sn, eo), the space of even functions on
Sn vanishing on a neighborhood of eo, with D(Rn), it follows that the identity
〈Φκg,Φ′κg′〉Rn = 〈g, g′〉Mn

κ
implies Φ′κ = (Φ∗κ)−1. Similarly we get Ψ′κ = (Ψ∗κ)−1.

With this notation Theorem 3.1 reads R0 = ΨκRκΦ−1
κ ; taking adjoints we obtain

R∗0 = (Φ−1
κ )∗R∗κΨ∗κ = Φ′κRκ(Ψ′κ)−1.

(2) The argument for κ = −1 is verbatim the same, except that f, f ′ must have
support in Bn (the expression of Jp− was found in [BC2]), and Φ− is a topological
isomorphism of D(Hn) with its image, which is strictly contained in D(Rn). �

Observe that Φ+ is also a topological isomorphism of S(Sn, eo), the space of
even functions on Sn vanishing on eo to infinite order, with S(Rn).

4. Consequences

Let us provide some applications of the results of the preceding section. Sup-
port theorems on the various constant curvature spaces were previously obtained
in [Ku4], while range characterizations in the hyperbolic space were proved in [BC2].
We first state for general k a result known for k = n − 1 (cf. [Gu], [Gr], [St]): by
C∞even we shall denote the space of smooth even functions.

Theorem 4.1 ([St, Lemma 4.3]). The Radon transform R+ : C∞even(Sn) →
C∞(Γn,k+ ) is an injection for general k, and is onto when k = n− 1.

Proof. The spherical harmonics expansion of f ∈ C∞even(Sn) is
∑
m,j fm,jYm,j ,

where Ym,j has even degree m, and fm,j tends to zero of infinite order as m→∞.
It is known that the spherical harmonics ‘diagonalize’ the Radon transform: using
the notation of [St], we have the expansion R+f =

∑
m,j cmfm,jZm,0,...,0;j (with

min{k + 1, n− k} subscripts before the semicolon), where R+Ym,j = cmZm,0,...,0;j

for all m, j, and

cm = (−1)m
Γ(m+ 1/2) Γ((k + 1)/2)√

π Γ(m+ (k + 1)/2)

by [St, Lemma 4.1]—the space Γn,k+ is identified with O(n+1)/O(k+1)×O(n−k).

The asymptotic behavior of cm is that of m−k/2, hence also the sequence cmfm,j



Proc. of AMS, 125(1997), 455–461. c© C. A. Berenstein, E. Casadio Tarabusi, and Á. Kurusa
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tends to zero of infinite order, and we conclude that R+f ∈ C∞(Γn,k+ ). Note that
Ym,j , Zm,0,...,0;j are not normalized, but both their norms behave asymptotically

like m−1/4, so normalizing would not change the behavior of cm.
Since multiplication by the sequence c−1

m also preserves infinitesimal sequences
of infinite order, the converse is analogous. �

To extend [So, Theorem 7.7] we need to introduce moment conditions different
from the usual ones.

Definition 4.2. We say that φ ∈ C(Gn,k) satisfies the m-th refined moment con-
dition if for every ξ′ ∈ Gn,k+1 containing 0 there exists a degree m homogeneous
polynomial Pξ′ on ξ′ such that for every unit vector ω ∈ ξ′ the function

t 7→ tmφ(tω + ω⊥ ∩ ξ′)
is integrable on (−∞,+∞) uniformly in ξ′, ω and the integral equals Pξ′(ω).

Define

An` = {f ∈ C∞(Rn) :

f(x) = O(|x|−`), lim
t→∞

(d/dt)j(t`[f(x0 + tx)− f(x0 − tx)]) = 0

for all x0, x ∈ Rn and j ≥ 0},

Bn,k` = {φ ∈ C∞(Gn,k) :

φ(ξ) = O(|ξ|−`), lim
t→∞

(d/dt)j(t`[φ(ξ0 + tx)− φ(ξ0 − tx)]) = 0

for all ξ0 ∈ Gn,k, x ∈ Rn, and j ≥ 0}.

(Note that An` = Bn,0` , if we identify Rn with Gn,0.) The extension of Solmon’s
result is as follows.

Theorem 4.3. For 1 ≤ k ≤ n − 1 the k-dimensional Radon transform R0 is an

injection of Ank+1 into Bn,k1 , and a bijection if k = n− 1.
If f ∈ Ank+1, then φ = R0f satisfies the m-th refined moment condition if and

only if f = O(|x|−k−m−2
) for |x| → ∞.

Proof. The first statement is obtained by pulling back Theorem 4.1 via Theo-
rem 3.1: we omit the details.

Integrating in polar coordinates around the closest point of a k-plane ξ, one

easily verifies that, in general, if f(x) = O(|x|−k−α) then R0f(ξ) = O(|ξ|−α) for
α > 0: the “if” part follows from this and the classical Helgason moment conditions,
applied to the restriction of f , φ to each (k + 1)-plane ξ′ through 0.

Also for the “only if” part we shall consider one ξ′ at a time, proving the required
decay of f on it, and then concluding on the whole of Hn by uniformity. Therefore
we can assume that n = k + 1: we have to prove that if t 7→ tmR0f(tω + ω⊥)

is integrable on (−∞,+∞) uniformly in ω ∈ Sn−1, then f = O(|x|−n−m−1
).
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If g is the function on Sn obtained pulling back f via Theorem 3.1, namely
g(rω) = f(tan r ω)/ cosn r, then we have g ∈ C∞(Sn), and R+g ∈ C∞(Γn,n−1

+ ); so
R+g(rω) sinm r cos−m−1 r is integrable on [0, π/2] uniformly in ω. Since R+g(rω)
is smooth at r = π/2, from its Taylor expansion we deduce that it vanishes there
of order (at least) m + 1 uniformly in ω. Therefore so does each spherical har-
monic expansion coefficient (R+g)i,`(r) (in Sn−1) uniformly in i, `. By [Ku2,
Theorem 2.5(rni′)] the coefficients of g are

gi,`(t) = ci,`D

∫ π/2

t

(R+g)i,`(r)

· Cn/2−1
i,`

(
tan r

tan t

)(
tan2 r

tan2 t
− 1

)(n−3)/2
sinn−2 t

sin r
cotn−2 r dr

where

D =


d

dt

n/2−1∏
j=1

(
d2

dt2
+ (2j)2

)
if n is even,

(n−1)/2∏
j=1

(
d2

dt2
+ (2j − 1)2

)
if n is odd,

and C
n/2−1
i,` is the Gegenbauer polynomial. The change of variable s = tan r / tan t

and an elementary computation show that gi,`(r) vanishes at r = π/2 of order (at
least) m+1 uniformly in i, `; therefore so does g(rω) uniformly in ω. The result now
follows from translating these vanishing conditions into the corresponding decay
conditions for f . �

Theorem 4.3 is similar to the so-called support theorems for the k-plane trans-
form, and in the case k = n − 1 it provides a less technical proof of the Schwartz
theorem for the Radon transform (see [Hg1], [So]).

Corollary 4.4. If the k-plane transform φ = R0f of f ∈ Ank+1 satisfies the m-th
refined moment condition for all m, then f ∈ S(Rn).

The (n − 1)-plane transform is a bijection of S(Rn) with the space of φ ∈
S(Gn,n−1) that satisfy the m-th refined moment condition for all m.

A more accurate estimate of the coefficients of the spherical harmonics expansion
in the proof of Theorem 4.1 can be used to replace C∞-smoothness with finite order
differentiability in Theorem 4.3, thereby generalizing the main theorem of [MS].

It is known (see, e.g., [Gr]) that, in the sphere case and for k = n−1, the Radon
transform R+ can be identified with its dual R∗+ by identifying great spheres with
their polar point(s). In view of Theorem 4.1 we can thus state the following result,
related to Hertle’s [Ht].

Theorem 4.5. For k = n−1, the dual Radon transform R∗0 is a bijection of Bn,n−1
n

with An1 .
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A function φ ∈ Bn,n−1
n satisfies the moment conditions∫ ∞
−∞

tjφ(tω) dt = Pj(ω) for all j = 0, . . . ,m

(where Pj is a homogeneous polynomial of degree j on Sn−1) if and only if f =

R0φ ∈ An1 and f = O(|x|−2−m
).

Proof. The argument is for the most part analogous to that of Theorem 4.3, hence
we limit ourselves to pointing out the main remarks. Since Bn,n−1

n ⊆ Bn,n−1
1 , the

moment condition simplifies to

t 7→ tjφ(tω + ω⊥) is integrable on (−∞,+∞) for all j = 0, . . . ,m.

Pulling back to the sphere by means of Theorem 3.2, this is equivalent to the
boundedness of rm+2φ(rω + ω⊥) (because the function pulled back is C∞ on Sn).

But this is clearly equivalent to the boundedness of R∗0φ(x) |x|m+2
. �

Theorem 4.5 yields immediately the following noteworthy generalization of [So,
Theorem 8.1] (here Λ = (−∆)1/2).

Theorem 4.6. For k = n − 1, let φ ∈ Bn,n−1
n and assume that φ satisfies the

moment conditions of degree j = 0, . . . , n− 2. Then

2−nπ1−nR0ΛR∗0φ = φ.

Let us finally point out that the unusual differentiability conditions appearing

in the definitions of the function spaces Ank+1, Bn,k1 , An1 , Bn,n−1
n are automatically

satisfied if we restrict our attention to the Schwartz spaces of functions of fast
decay.
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