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TOWARDS THE SECOND MAIN THEOREM ON
COMPLEMENTS

YU. G. PROKHOROV AND V. V. SHOKUROV

Abstract. We prove the boundedness of complements modulo
two conjectures: Borisov-Alexeev conjecture and effective adjunc-
tion for fibre spaces. We discuss the last conjecture and prove it
in two particular cases.
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1. Introduction

This paper completes our previous work [PS01] modulo two con-
jectures 1.1 and 7.13. The first one relates to Alexeev’s, A. and L.
Borisov’s conjecture:

Conjecture 1.1. Fix a real number ε > 0. Let (X,B =
∑
biBi) be a

d-dimensional log canonical pair with nef −(KX + B), that is, (X,B)
is a log semi-Fano variety (cf. Definition 2.5). Assume also that

(i) K +B is ε-lt ; and

(ii) X is FT that is (X,Θ) is a klt log Fano variety with respect to

some boundary Θ.

The first author was partially supported by grants CRDF-RUM, No. 1-2692-MO-
05 and RFBR, No. 05-01-00353-a, 06-01-72017. The second author was partially
supported by NSF grant DMS-0400832.
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Then X is bounded in the moduli sense, i.e., it belongs to an algebraic

family X (ε, d).

This conjecture was proved in dimension 2 by V. Alexeev [Ale94]
and in toric case by A. Borisov and L. Borisov [BB92] (see also [Nik90],
[Bor96], [Bor01], [McK02]).

Remark 1.2. We hope that Conjecture 1.1 can be generalized by weak-
ening condition (ii). For example, we hope that instead of (ii) one can
assume that

(ii)′ X is rationally connected, cf. [Zha06].

Recall that a log pair (X,B) is said to be ε-log terminal (or simply
ε-lt) if totaldiscr(X,B) > −1 + ε, see Definition 2.2 below.

Theorem 1.3 ([Ale94]). Conjecture 1.1 holds in dimension two.

The second conjecture concerns with Adjunction Formula and will
be discussed in Section 7.

Our main result is the following.

Theorem 1.4. Fix a finite subset R ⊂ [0, 1] ∩ Q. Let (X,B) be a klt

log semi-Fano variety of dimension d such that X is FT and the mul-

tiplicities of B are contained in Φ(R) (see 3.2). Assume the LMMP

in dimension ≤ d. Further, assume that Conjectures 1.1 and 7.13 hold

in dimension ≤ d. Then K + B has bounded complements. More pre-

cisely, there is a positive integer n = n(d,R) divisible by denominators

of all r ∈ R and such that K+B is n-complemented. Moreover, K+B
is nI-complemented for any positive integer I.

In particular,

|−nK − nS − ⌊(n + 1)D⌋| 6= ∅,
where S := ⌊B⌋ and D := B − S. For B = 0, | − nK| 6= ∅, where n
depends only on d.

Note that the last paragraph is an immediate consequence of the
first statemet and the definition of complements.

In the case when K +B is numerically trivial our result is stronger.
For the definition of 0-pairs we refer to 2.5.

Theorem 1.5 (cf. [Bla95], [Ish00]). Fix a finite subset R ⊂ [0, 1] ∩
Q. Let (X,B) be a 0-pair of dimension d such that X is FT and

the multiplicities of B are contained in Φ(R). Assume the LMMP in

dimension ≤ d. Further, assume that Conjectures 1.1 and 7.13 hold in

dimension ≤ d. Then there is a positive integer n = n(d,R) such that

n(KX +B) ∼ 0.
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Addendum 1.6. Our proofs show that we do not need Conjecture 1.1
in dimension d in all generality. We need it only for some special value
εo := εo(d,R) > 0 (cf. Corollary 1.7).

We will prove Conjecture 7.13 in §8 in dimension ≤ 3 under addi-
tional assumption that the total space is projective and FT.

Corollary 1.7. Fix a finite rational subset R ⊂ [0, 1]∩Q and let I be

the least common multiple of denominators of all r ∈ R. Let (X,B) be

a klt log semi-Fano threefold such that X is FT and the multiplicities

of B are contained in Φ(R). Assume that Conjecture 1.1 holds in

dimension 3 for εo as in Addendum 1.6. Then K + B has a bounded

n-complement such that I | n. In particular, there exists a positive

integer number n such that I | n and

|−nK − nS − ⌊(n + 1)D⌋| 6= ∅,
where S := ⌊B⌋ and D := B − S; n depends only on R and εo for

Addendum 1.6. For B = 0, | − nK| 6= ∅, where n depends only on εo.

Proof. Immediate by Addendum 1.6, Theorem 1.4, and Corollary 8.15.
�

Corollary 1.8 (cf. [Sho00]). Fix a finite subset R ⊂ [0, 1] ∩ Q and

let I be the least common multiple of denominators of all r ∈ R. Let

(X,B) be a klt log semi-del Pezzo surface such that X is FT and the

multiplicities of B are contained in Φ(R). Then K +B has a bounded

n-complement such that I | n. In particular, there exists a positive

integer n such that I | n and

|−nK − nS − ⌊(n + 1)D⌋| 6= ∅,
where S := ⌊B⌋ and D := B − S; n depends only on R. For B = 0,
| − nK| 6= ∅, where n is an absolute constant.

Proof. Immediate by Theorems 1.4, 1.3, and 8.1. �

The following corollaries are consequences of our techniques. The
proofs will be given in 9.8, 9.9, and 9.10.

Corollary 1.9 (cf. [Ish00]). Fix a finite rational subset R ⊂ [0, 1]∩Q.

Let (X,D) be a three-dimensional 0-pair such that X is FT and the

multiplicities of B are contained in Φ(R). Assume that (X,D) is not

klt. Then there exists a positive integer n such that n(K+D) ∼ 0; this

n depends only on R.

Corollary 1.10. Fix a finite rational subset R ⊂ [0, 1]∩Q and let I be

the least common multiple of denominators of all r ∈ R. Let (X,B) be

a klt log semi-Fano threefold such that X is FT and the multiplicities
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of B are contained in Φ(R). Then there exists a real number ε̄ such

that K + B has a bounded n-complement with I | n if there are two

divisors E (exceptional or not) with discrepancy a(E,X,B) ≤ −1 + ε̄;
this ε̄ depends only on R.

Corollary 1.11 (cf. [Bla95], [Sho00]). Fix a finite rational subset

R ⊂ [0, 1] ∩ Q. Let (X,D) be a two-dimensional 0-pair such that the

multiplicities of B are contained in Φ(R). Then there exists a positive

integer n such that n(K +D) ∼ 0; this n depends only on R.

We give a sketch of the proof of our main results in Section 4. One
can see that our proof essentially uses reduction to lower-dimensional
global pairs. However it is expected that an improvement of our method
can use reduction to local questions in the same dimension. In fact we
hope that the hypothesis in our main theorem 1.4 should be the exis-
tence of local complements and Conjecture 1.1 for ε-lt Fano varieties
(without a boundary), where ε ≥ εo > 0, εo is a constant depend-
ing only on the dimension (cf. Addendum 1.6 and Corollary 1.7). If
dimX = 2, we can take εo = 1/7. Note also that our main theorem
1.4 is weaker than one can expect. We think that the pair (X,B) can
be taken arbitrary log-semi-Fano (possibly not klt and not FT) and
possible boundary multiplicities can be taken arbitrary real numbers
in [0, 1] (not only in Φ(R)). The only hypothesis we have to assume
is the existence of an R-complement B+ ≥ B (cf. [Sho00]). However
the general case needs actually a finite set of natural numbers for com-
plements, and there are no such universal number for all complements
(cf. [Sho93, Example 5.2.1]).

Acknowledgements. The work was conceived in 2000 when the first
author visited the Johns Hopkins University and finished during his
stay in Max-Planck-Institut für Mathematik, Bonn in 2006. He would
like to thank these institutes for hospitality. Finally both authors are
grateful to the referee whose constructive criticism helped us to revise
the paper very much.

2. Preliminaries

2.1. Notation. All varieties are assumed to be algebraic and defined
over an algebraically closed field k of characteristic zero. Actually,
main results holds for any k of characteristic zero not necessarily alge-
braically closed since they are related to singularities of general mem-
bers of linear systems (see [Sho93, 5.1]). We use standard terminology
and notation of the Log Minimal Model Program (LMMP) [KMM87],
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[Kol92], [Sho93]. For the definition of complements and their proper-
ties we refer to [Sho93], [Sho00], [Pro01] and [PS01]. Recall that a log

pair (or a log variety) is a pair (X,D) consisting of a normal variety
X and a boundary D, i.e., an R-divisor D =

∑
diDi with multiplicities

0 ≤ di ≤ 1. As usual KX denotes the canonical (Weil) divisor of a
variety X. Sometimes we will write K instead of KX if no confusion
is likely. Everywhere below a(E,X,D) denotes the discrepancy of E
with respect to KX +D. Recall the standard notation:

discr(X,D) = infE{a(E,X,D) | codim CenterX(E) ≥ 2},
totaldiscr(X,D) = infE{a(E,X,D) | codim CenterX(E) ≥ 1}.

In the paper we use the following strong version of ε-log terminal and
ε-log canonical property.

Definition 2.2. A log pair (X,B) is said to be ε-log terminal (ε-
log canonical) if totaldiscr(X,B) > −1 + ε (resp., totaldiscr(X,B) ≥
−1 + ε).

2.3. Usually we work with R-divisors. An R-divisor is an R-linear
combination of prime Weil divisors. An R-linear combination D =∑
αiLi, where the Li are integral Cartier divisors is called an R-Cartier

divisor. The pull-back f ∗ of an R-Cartier divisor D =
∑
αiLi under a

morphism f : Y → X is defined as f ∗D :=
∑
αif

∗Li. Two R-divisors
D and D′ are said to be Q- (resp., R-)linearly equivalent if D −D′ is
a Q- (resp., R-)linear combination of principal divisors. For a positive
integer I, two R-divisors D and D′ are said to be I-linearly equivalent

if I(D − D′) is an (integral) principal divisor. The Q-linear (resp.,
R-linear, I-linear) equivalence is denoted by ∼Q (resp., ∼R, ∼I). Let
Φ ⊂ R and let D =

∑
diDi be an R-divisor. We say that D ∈ Φ if

di ∈ Φ for all i.

2.4. Let f : X → Z be a morphism of normal varieties. For any R-
divisor ∆ on Z, define its divisorial pull-back f •∆ as the closure of
the usual pull-back f ∗∆ over Z \ V , where V is a closed subset of
codimension ≥ 2 such that V ⊃ SingZ and f is equidimensional over
Z \ V . Thus each component of f •∆ dominates a component of ∆. It
is easy to see that the divisorial pull-back f •∆ does not depend on the
choice of V . Note however that in general f • does not coincide with
the usual pull-back f ∗ of R-Cartier divisors.

Definition 2.5. Let (X,B) be a log pair of global type (the latter
means that X is projective). Then it is said to be

log Fano variety if K +B is lc and −(K +B) is ample;
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weak log Fano (WLF) variety if K + B is lc and −(K + B) is
nef and big;
log semi-Fano (ls-Fano) variety if K + B is lc and −(K + B)
is nef;
0-log pair if K +B is lc and numerically trivial∗.

In dimension two we usually use the word del Pezzo instead of Fano.

Lemma-Definition 2.6. Let X be a normal projective variety. We

say that X is FT (Fano type) if it satisfies the following equivalent

conditions:

(i) there is a Q-boundary Ξ such that (X,Ξ) is a klt log Fano;

(ii) there is a Q-boundary Ξ such that (X,Ξ) is a klt weak log Fano;

(iii) there is a Q-boundary Θ such that (X,Θ) is a klt 0-pair and

the components of Θ generate N1(X);
(iv) for any divisor Υ there is a Q-boundary Θ such that (X,Θ) is

a klt 0-pair and Supp Υ ⊂ Supp Θ.

Similarly one can define relative FT and 0-varieties X/Z, and the
results below hold for them too.

Proof. Implications (i) =⇒ (iv), (iv) =⇒ (iii), (i) =⇒ (ii) are obvious
and (ii) =⇒ (i) follows by Kodaira’s lemma (see, e.g., [KMM87, Lemma
0-3-3]). We prove (iii) =⇒ (i). Let (X,Θ) be such as in (iii). Take an
ample divisor H such that SuppH ⊂ Supp Θ and put Ξ = Θ− εH , for
0 < ε≪ 1. Clearly, (X,Ξ) is a klt log Fano. �

Recall that for any (not necessarily effective) R-divisorD on a variety
X a D-MMP is a sequence X = X1 99K XN of extremal D-negative
divisorial contractions and D-flips which terminates on a variety XN

where either the proper transform of D is nef or there exists a D-
negative contraction to a lower-dimensional variety (see [Kol92, 2.26]).

Corollary 2.7. Let X be an FT variety. Assume the LMMP in di-

mension dimX. Then the D-MMP works on X with respect to any

R-divisor D.

Proof. Immediate by Lemma 2.6, (iv). Indeed, in the above notation
we may assume that SuppD ⊂ Supp Θ. It remains to note that the
D-LMMP is is nothing but the LMMP with respect to (X,Θ + εD)
some 0 < ε≪ 1. �

Lemma 2.8. (i) Let f : X → Z be a (not necessarily birational)
contraction of normal varieties. If X is FT, then so is Z.

∗Such a log pair can be called also a log Calabi-Yau variety. However the last
notion usually assumes some additional conditions such as π1(X) = 0 or q(X) = 0.
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(ii) The FT property is preserved under birational divisorial con-

tractions and flips.

(iii) Let (X,D) be an ls-Fano variety such that X is FT. Let f : Y →
X be a birational extraction such that a(E,X,D) < 0 for every

f -exceptional divisor E over X. Then Y is also FT.

We need the following result of Ambro [Amb05, Th. 0.2] which is a
variant of Log Canonical Adjunction (cf. 7.13, [Fuj99]).

Theorem 2.9 ([Amb05, Th. 0.2]). Let (X,D) be a projective klt log

pair, let f : X → Z be a contraction, and let L be a Q-Cartier divisor

on Z such that

K +D ∼Q f
∗L.

Then there exists a Q-Weil divisor DZ such that (Z,DZ) is a log variety

with Kawamata log terminal singularities and L∼Q KZ +DZ .

Proof of Lemma 2.8. First note that (ii) and the birational case of (i)
easily follows from from 2.6 (iii). To prove (i) in the general case we
apply Theorem 2.9. Let Θ =

∑
i θiΘi be a Q-boundary on X whose

components generate N1(X) and such that (X,Θ) is a klt 0-pair. Let
A be an ample divisor on Z. By our assumption f ∗A ≡∑i δiΘi. Take
0 < δ ≪ 1 and put Θ′ :=

∑
i(θi−δδi)Θi. Clearly, K+Θ′ ≡ −δf ∗A and

(X,Θ′) is a klt log semi-Fano variety. By the base point free theorem
K + Θ′ ∼Q −δf ∗A. Now by Theorem 2.9 there is a Q-boundary ΘZ

such that (Z,ΘZ) is klt and KZ + ΘZ ∼Q −δA. Hence (Z,ΘZ) is a klt
log Fano variety. This proves (i).

Now we prove (iii). Let Ξ be a boundary such that (X,Ξ) is a klt log
Fano. Let DY and ΞY be proper transforms of D and Ξ, respectively.
Then (Y,DY ) is an ls-Fano, (Y,ΞY ) is klt and−(KY +ΞY ) is nef and big.
However ΞY is not necessarily a boundary. To improve the situation
we put Ξ′ := (1 − ε)DY + εΞY for small positive ε. Then (Y,Ξ′) is a
klt weak log Fano. �

Definition 2.10. Let X be a normal variety and let D be an R-divisor
on X. Then a Q-complement of KX +D is a log divisor KX +D′ such
that D′ ≥ D, KX + D′ is lc and n(KX + D′) ∼ 0 for some positive
integer n.

Now let D = S+B, where B and S have no common components, S
is an effective integral divisor and ⌊B⌋ ≤ 0. Then we say that KX +D
is n-complemented, if there is a Q-divisor D+ such that

(i) n(KX +D+) ∼ 0 (in particular, nD+ is integral divisor);
(ii) KX +D+ is lc;
(iii) nD+ ≥ nS + ⌊(n+ 1)B⌋.
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In this situation, KX +D+ is called an n-complement of KX +D.

Note that an n-complement is not necessarily a Q-complement (cf.
Lemma 3.3).

Remark 2.11. Under (i) and (ii) of 2.10, the condition (iii) follows
from the inequality D+ ≥ D. Indeed, write D =

∑
diDi and D+ =∑

d+
i Di. We may assume that d+

i < 1. Then we have

nd+
i ≥

⌊
nd+

i

⌋
=
⌊
(n+ 1)d+

i

⌋
≥ ⌊(n+ 1)di⌋ .

Corollary 2.12. Let D+ be an n-complement of D such that D+ ≥ D.

Then D+ is also an nI-complement of D for any positive integer I.

For basic properties of complements we refer to [Sho93, §5] and
[Pro01], see also §3.

2.13. Fix a class of (relative) log pairs (X /Z ∋ o, B), where o is a point
on each Z ∈ Z. We say that this class has bounded complements if there
is a constant Const such that for any log pair (X/Z,B) ∈ (X /Z, B)
the log divisor K+B is n-complemented near the fibre over o for some
n ≤ Const.

2.14. Notation. Let X be a normal d-dimensional variety and let
B =

∑r
i=1Bi be any reduced divisor on X. Recall that Zd−1(X)

usually denotes the group of Weil divisors on X. Consider the vector
space DB of all R-divisors supported in B:

DB :=
{
D ∈ Zd−1(X)⊗ R | SuppD ⊂ B

}
=

r∑

i=1

R · Bi.

As usual, define a norm in DB by

‖B‖ = max(|b1|, . . . , |br|),
where B =

∑r
i=1 biBi ∈ DB. For any R-divisor B =

∑r
i=1 biBi, put

DB := DSuppB.

3. Hyperstandard multiplicities

Recall that standard multiplicities 1−1/m naturally appear as mul-
tiplicities in the divisorial adjunction formula (KX +S)|S = KS+DiffS
(see [Sho93, §3], [Kol92, Ch. 16]). Considering the adjunction formula
for fibre spaces and adjunction for higher codimensional subvarieties
one needs to introduce a bigger class of multiplicities.
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Example 3.1. Let f : X → Z ∋ P be a minimal two-dimensional
elliptic fibration over a one-dimensional germ (X is smooth). We can
write a natural formula KX = f ∗(KZ + Ddiv), where Ddiv = dPP is
an effective divisor (cf. 7.2 below). From Kodaira’s classification of
singular fibres (see [Kod63]) we obtain the following values of dP :

Type mIn II III IV I∗b II∗ III∗ IV∗

dP 1− 1
m

1
6

1
4

1
3

1
2

5
6

3
4

2
3

Thus the multiplicities of Ddiv are not necessarily standard.

3.2. Fix a subset R ⊂ R≥0. Define

Φ(R) :=
{

1− r

m

∣∣∣ m ∈ Z, m > 0 r ∈ R

}⋂[
0, 1

]
.

We say that an R-boundary B has hyperstandard multiplicities with
respect to R if B ∈ Φ(R). For example, if R = {0, 1}, then Φ(R) is
the set of standard multiplicities. The set R is said to be rational if
R ⊂ Q. Usually we will assume that R is rational and finite. In this
case we denote

I(R) := lcm
(
denominators of r ∈ R \ {0}

)
.

(3.2.1) Denote by Nd(R) the set of all m ∈ Z, m > 0 such that there
exists a log semi-Fano variety (X,D) of dimension ≤ d satisfying the
following properties:

(i) X is FT and D ∈ Φ(R);
(ii) either (X,D) is klt or KX +D ≡ 0;
(iii) KX+D is m-complemented, I(R) | m, and m is minimal under

these conditions.

Since any nef divisor is semiample on FT variety, for any log semi-Fano
variety (X,D) satisfying (i) and (ii), there exists some m in (iii). Put

Nd = Nd(R) := sup Nd(R), εd = εd(R) := 1/(Nd + 2).

We expect that Nd(R) is bounded whenever R is finite and rational,
see Theorems 1.4 and 1.5. In particular, Nd < ∞ and εd > 0. For
ε ≥ 0, define also the set of semi-hyperstandard multiplicities

Φ(R, ε) := Φ(R) ∪ [1− ε, 1].

Fix a positive integer n and define the set Pn ⊂ R by

α ∈Pn ⇐⇒ 0 ≤ α ≤ 1 and ⌊(n+ 1)α⌋ ≥ nα.

This set obviously satisfies the following property:
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Lemma 3.3. If D ∈Pn and D+ is an n-complement, then D+ ≥ D.

Taking 2.12 into account we immediately obtain the following im-
portant.

Corollary 3.4. Let D ∈ Pn and let D+ be an n-complement of D.

Then D+ is an nI-complement of D for any positive integer I.

Lemma 3.5 (cf. [Sho00, Lemma 2.7]). If R ⊂ [0, 1] ∩ Q, I(R) | n,
and 0 ≤ ε ≤ 1/(n+ 1), then

Pn ⊃ Φ(R, ε).

Proof. Let 1 ≥ α ∈ Φ(R, ε). If α ≥ 1− ε, then

(n+ 1)α > n+ 1− ε(n+ 1) ≥ n.

Hence, ⌊(n+ 1)α⌋ ≥ n ≥ nα and α ∈ Pn. Thus we may assume that
α ∈ Φ(R). It is sufficient to show that

(3.5.1)
⌊
(n+ 1)

(
1− r

m

)⌋
≥ n

(
1− r

m

)

for all r ∈ R and m ∈ Z, m > 0. We may assume that r > 0. It is
clear that (3.5.1) is equivalent to the following inequality

(3.5.2) (n + 1)
(
1− r

m

)
≥ k ≥ n

(
1− r

m

)
,

for some k ∈ Z (in fact, k =
⌊
(n+ 1)

(
1− r

m

)⌋
). By our conditions,

N := nr ∈ Z, N > 0. Thus (3.5.2) can be rewritten as follows

(3.5.3) mn−N +m− r ≥ mk ≥ mn−N.
Since m− r ≥ m− 1, inequality (3.5.3) has a solution in k ∈ Z. This
proves the statement. �

Proposition 3.6 ([Pro01, Prop. 4.3.2], [PS01, Prop. 6.1]). Let f : Y →
X be a birational contraction and let D be an R-divisor on Y such that

(i) KY +D is nef over X,

(ii) f∗D ∈Pn (in particular, f∗D is a boundary).

Assume that KX + f∗D is n-complemented. Then so is KY +D.

Proposition 3.7 ([Pro01, Prop. 4.4.1], [PS01, Prop. 6.2]). Let (X/Z ∋
o,D = S +B) be a log variety. Set S := ⌊D⌋ and B := {D}. Assume

that

(i) KX +D is plt ;
(ii) −(KX +D) is nef and big over Z;
(iii) S 6= 0 near f−1(o);
(iv) D ∈Pn.
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Further, assume that near f−1(o) ∩ S there exists an n-complement

KS + DiffS(B)+ of KS + DiffS(B). Then near f−1(o) there exists an

n-complement KX + S + B+ of KX + S + B such that DiffS(B)+ =
DiffS(B

+).

Adjunction on divisors (cf. [Sho93, Cor. 3.10, Lemma 4.2]). Fix a
subset R ⊂ R≥0. Define also the new set

R :=

{

r0 −m
s∑

i=1

(1− ri)
∣∣∣∣∣ r0, . . . , rs ∈ R, m ∈ Z, m > 0

}

∩ R≥0.

It is easy to see that R ⊃ R. For example, if R = {0, 1}, then R = R.

Lemma 3.8. (i) If R ⊂ [0, 1], then R ⊂ [0, 1].
(ii) If R is finite and rational, then so is R.

(iii) I(R) = I(R).
(iv) Let G ⊂ Q be an additive subgroup containing 1 and let R =

RG := G ∩ [0, 1]. Then R = R.

(v) If the ascending chain condition (a.c.c.) holds for the set R,

then it holds for R.

Proof. (i)-(iv) are obvious. We prove (v). Indeed, let

q(n) = r
(n)
0 −m(n)

s(n)∑

i=1

(1− r(n)
i ) ∈ R

be an infinite increasing sequence, where r
(n)
i ∈ R and m(n) ∈ Z>0. By

passing to a subsequence, we may assume that m(n)
∑s(n)

i=1 (1−r(n)
i ) > 0,

in particular, s(n) > 0 for all n. There is a constant ε = ε(R) > 0 such

that 1− r(n)
i > ε whenever r

(n)
i 6= 1. Thus, 0 ≤ q(n) ≤ r

(n)
0 −m(n)s(n)ε

and m(n)s(n) ≤ (r
(n)
0 − q(n))/ε. Again by passing to a subsequence, we

may assume that m(n) and s(n) are constants: m(n) = m, s(n) = s.

Since the numbers r
(n)
i satisfy a.c.c., the sequence

q(n) = r
(n)
0 +m

s∑

i=1

r
(n)
i −ms

is not increasing, a contradiction. �

Proposition 3.9. Let R ⊂ [0, 1], 1 ∈ R, ε ∈ [0, 1], and let (X,S+B)
be a plt log pair, where S is a prime divisor, B ≥ 0, and ⌊B⌋ = 0. If

B ∈ Φ(R, ε), then DiffS(B) ∈ Φ(R, ε).

Proof. Write B =
∑
biBi, where the Bi are prime divisors and bi ∈

Φ(R, ε). Let V ⊂ S be a prime divisor. By [Sho93, Cor. 3.10] the
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multiplicity d of DiffS(B) along V is computed using the following
relation:

d = 1− 1

n
+

1

n

s∑

i=0

kibi = 1− β

n
,

where n, ki ∈ Z≥0, and β := 1 −∑ kibi. It is easy to see that d ≥ bi
whenever ki > 0. If bi ≥ 1 − ε, this implies d ≥ 1 − ε. Thus we may
assume that bi ∈ Φ(R) whenever ki > 0. Therefore,

β = 1−
∑

ki

(
1− ri

mi

)
,

where mi ∈ Z>0, ri ∈ R. Since (X,S +B) is plt, d < 1. Hence, β > 0.
If mi = 1 for all i, then

β = 1−
∑

ki(1− ri) ∈ R.

So, d ∈ Φ(R) in this case. Thus we may assume that m0 > 1. Since
1− ri

mi
≥ 1− 1

mi
, we have m1 = · · · = ms = 1 and k0 = 1. Thus,

β =
r0
m0
−

s∑

i=1

ki(1− ri) =
r0 −m0

∑s
i=1 ki(1− ri)
m0

and m0β = r0 − m0

∑s
i=1 ki(1 − ri) ∈ R. Hence, d = 1 − m0β

m0n
∈

Φ(R). �

Proposition 3.10. Let 1 ∈ R ⊂ [0, 1] and let (X,B) be a klt log

semi-Fano of dimension ≤ d such that X is FT. Assume the LMMP in

dimension d. If B ∈ Φ(R, εd), then there is an n-complement K +B+

of K +B for some n ∈ Nd(R). Moreover, B ∈Pn, and so B+ ≥ B.

In the proposition we do not assert that Nd(R) is finite. However
later on we use the proposition in the induction process when the set
of indices is finite (cf. the proof of Lemma 4.3 and see 4.7 – 4.10).

Proof. If εd = 0, then Φ(R, εd) = Φ(R) and there is nothing to prove.
So we assume that εd > 0. If X is not Q-factorial, we replace X with
its small Q-factorial modification. Write B =

∑
biBi. Consider the

new boundary D =
∑
diBi, where

di =

{
bi if bi < 1− εd,
1− εd otherwise.

Clearly, D ∈ Φ(R). Since D ≤ B, there is a klt Q-complement K+D+
Λ of K +D (by definition, Λ ≥ 0). Run −(K +D)-MMP. Since all the
birational transformations are K+D+Λ-crepant, they preserve the klt
property of (X,D + Λ) and (X,D). Each extremal ray is Λ-negative,
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and therefore is birational. At the end we get a model (X̄, D̄) which
is a log semi-Fano variety. By definition, since D̄ ∈ Φ(R) and X is
FT, there is an n-complement D̄+ of KX̄ + D̄ for some n ∈ Nd(R).
Note that I(R) | n, so D̄ ∈ Φ(R) ⊂ Pn. By Proposition 3.6 we can
pull-back this complement to X and this gives us an n-complement of
KX +B. The last assertion follows by Lemmas 3.5 and 3.3. �

4. General reduction

In this section we outline the main reduction step in the proof of
our main results 1.4 and 1.5. First we concentrate on the klt case.
The non-klt case of 1.5 will be treated in 4.13 and 9.5. Note that in
Theorem 1.4 it is sufficient to find only one integer n = n(d,R) divisible
by I(R) and such that K + B is n-complemented. Other statements
immediately follows by Corollary 3.4, Lemma 3.5 and by the definition
of complements.

4.1. Setup. Let (X,B =
∑
biBi) be a klt log semi-Fano variety of

dimension d such that B ∈ Φ(R). In particular, B is a Q-divisor.
Assume that X is FT. By induction we may assume that Theorems
1.4 and 1.5 hold in dimension d− 1. So, by this inductive hypothesis,
εd−1(R) > 0 whenever R ⊂ [0, 1] is finite and rational. Take any
0 < ε′ ≤ εd−1(R). Put also I := I(R).

(4.1.1) First assume that the pair (X,B) is ε′-lt. Then the multi-
plicities of B are contained in the finite set Φ(R) ∩ [0, 1 − ε′]. By
Conjecture 1.1 the pair (X,B) is bounded. Hence (X, SuppB) belongs
to an algebraic family and we may assume that the multiplicities of B
are fixed. Let m := nI. The condition that K +B is m-complemented
is equivalent to the following

∃B ∈ |−K − ⌊(m+ 1)B⌋| such that

(
X,

1

m

(
⌊(m+ 1)B⌋+ B̄

))
is lc

(see 2.10, [Sho93, 5.1]). Obviously, the last condition is open in the
deformation space of (X, SuppB). By Proposition 5.4 below and Noe-
therian induction the log divisor K+B has a bounded nI-complement
for some n ≤ C(d,R). From now on we assume that (X,B) is not ε′-lt.

4.2. We replace (X,B) with log crepant Q-factorial blowup of all di-
visors E of discrepancy a(E,X,B) ≤ −1+ ε′, see [Kol92, 21.6.1]. Con-
dition B ∈ Φ(R) will be replaced with B ∈ Φ(R, ε′) ∩ Q. Note that
our new X is again FT by Lemma 2.8. From now on we assume that
X is Q-factorial and

(4.2.1) discr(X,B) > −1 + ε′.
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(4.2.2) For some n0 ≫ 0, the divisor n0B is integral and the linear
system | − n0(K + B)| is base point free. Let B ∈ | − n0(K + B)|
be a general member. Put Θ := B + 1

n0
B. By Bertini’s theorem

discr(X,Θ) = discr(X,B). Thus we have the following

• KX + Θ is a klt Q-complement of KX +B,
• discr(X,Θ) ≥ 1 + ε′, and
• Θ− B is supported in a movable (possibly trivial) divisor.

Define a new boundary D with SuppD = SuppB:

(4.2.3) D :=
∑

diBi, where di =

{
1 if bi ≥ 1− ε′,
bi otherwise.

Here the Bi are components of B. Clearly, D ∈ Φ(R), D > B, and by
(4.2.1) we have ⌊D⌋ 6= 0.

Lemma 4.3 (the simplest case of the global-to-local statement). Fix

a finite set R ⊂ [0, 1]∩Q. Let (X ∋ o,D) be the germ of a Q-factorial

klt d-dimensional singularity, where D ∈ Φ(R, εd−1(R)). Then there is

an n-complement of KX +D with n ∈ Nd−1(R).

Recall that according to our inductive hypothesis, Nd−1(R) is finite.

Proof. Consider a plt blowup f : X̃ → X of (X,D) (see [PS01, Prop.
3.6]). By definition the exceptional locus of f is an irreducible divi-

sor E, the pair (X̃, D̃ + E) is plt, and −(KX̃ + D̃ + E) is f -ample,

where D̃ is the proper transform of D. We can take f so that f(E) =

o, i.e., E is projective. By Adjunction −(KE + DiffE(D̃)) is ample
and (E,DiffE(D̃)) is klt. By Proposition 3.9 we have DiffE(D̃) ∈
Φ(R, εd−1(R)). Hence there is an n-complement of KE + DiffE(D̃)
with n ∈ Nd−1(R), see Proposition 3.10. This complement can be
extended to X̃ by Proposition 3.7. �

Claim 4.4. The pair (X,D) is lc.

Proof. By Lemma 4.3 near each point P ∈ X there is an n-complement
K + B+ of K + B with n ∈ Nd−1(R). By Lemma 3.5, we have Pn ⊃
Φ(R, ε). Hence, by Lemma 3.3, B+ ≥ B. On the other hand, nB+

is integral and for any component of D − B, its multiplicity in B is
≥ ε′ > 1/(n+ 1). Hence, B+ ≥ D and so (X,D) is lc near P . �

4.5. Run −(K+D)-MMP (anti-MMP). If X is FT, this is possible by
Corollary 2.7. Otherwise K + B ≡ 0 and −(K + D)-MMP coincides
with K +B − δ(D −B)-MMP for some small positive δ.

It is clear that property B ∈ Φ(R, ε′) is preserved on each step. All
birational transformations are (K + Θ)-crepant. Therefore K + Θ is
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klt on each step. Since B ≤ Θ, K + B is also klt. By Claim 4.4 the
log canonical property of (X,D) is also preserved and X is FT on each
step by 2.8.

Claim 4.5.1. None of components of ⌊D⌋ is contracted.

Proof. Let ϕ : X → X̄ be a K + D-positive extremal contraction and
let E be the corresponding exceptional divisor. Assume that E ⊂ ⌊D⌋.
Put D̄ := ϕ∗D. Since KX +D is ϕ-ample, we can write

KX +D = ϕ∗(KX̄ + D̄)− αE, α > 0.

On the other hand, since (X̄, D̄) is lc, we have

−1 ≤ a(E, X̄, D̄) = a(E,X,D)− α = −1− α < −1,

a contradiction. �

Corollary 4.6. Condition (4.2.1) holds on each step of our MMP.

Proof. Note that all our birational transformations are (K+Θ)-crepant.
Hence by (4.2.2), it is sufficient to show that none of the components
of Θ of multiplicity ≥ 1− ε′ is contracted. Assume that on some step
we contract a component Bi of multiplicity bi ≥ 1−ε′. Then by (4.2.3)
Bi is a component of ⌊D⌋. This contradicts Claim 4.5.1. �

4.7. Reduction. After a number of divisorial contractions and flips

(4.7.1) X 99K X1 99K · · · 99K XN = Y,

we get a Q-factorial model Y such that either

(4.7.2) there is a non-birational KY +DY -positive extremal contrac-
tion ϕ : Y → Z to a lower-dimensional variety Z, or

(4.7.3) −(KY +DY ) is nef.
Here �Y denotes the proper transform of � on Y .

Claim 4.8. In case (4.7.2), Z is a point, i.e., ρ(Y ) = 1 and −(KY +
BY ) is nef.

Proof. Let F = ϕ−1(o) be a general fibre. Since ρ(Y/Z) = 1 and
−(K + B) ≡ Θ − B ≥ 0, the restriction −(K + B)|F is nef. It is
clear that B|F ∈ Φ(R, ε′). Assume that Z is of positive dimension.
Then dimF < dimX. By our inductive hypothesis and Proposition
3.10 there is a bounded n-complement KF + B|+F of KF + B|F for
some n ∈ Nd−1(R) ⊂ Nd−1(R). By Lemmas 3.3 and 3.5, we have
B|+F ≥ D|F ≥ B|F . On the other hand, (KX + D)|F is ϕ-ample, a
contradiction. �
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4.9. Therefore we have a Q-factorial FT variety Y and two boundaries
BY =

∑
biBi and DY =

∑
diBi such that discr(Y,BY ) > −1 + ε′,

BY ∈ Φ(R, ε′), DY ∈ Φ(R), DY ≥ BY , and di > bi if and only if di = 1
and bi ≥ −1 + ε′. Moreover, one of the following two cases holds:

(4.9.1) ρ(Y ) = 1, KY + DY is ample, and (Y,BY ) is a klt log semi-
Fano variety, or

(4.9.2) (Y,DY ) is a log semi-Fano variety with ⌊DY ⌋ 6= 0. Since
D > B, this case does not occur if K +B ≡ 0.

These two cases will be treated in sections 6 and 9, respectively.

4.10. Outline of the proof of Theorem 1.4. Now we sketch the
basic idea in the proof of boundedness in case (4.9.1). By (4.1.1) we
may assume that (X,B) is not ε′-lt. Apply constructions of 4.2, 4.5
and 4.7. Recall that on each step of (4.7.1) we contract an extremal
ray which is (K +D)-positive. By Proposition 3.6 we can pull-back n-
complements with n ∈ Nd(R) of KY +DY to our original X. However
it can happen in case ρ(Y ) = 1 that KY +DY has no any complements.
In this case we will show in Section 6 below that the multiplicities of
BY are bounded from the above: bi < 1 − c, where c > 0. By Claim
4.5.1 divisorial contractions in (4.7.1) do not contracts components ofB
with multiplicities bi ≥ 1−ε′. Therefore the multiplicities of B also are
bounded from the above. Combining this with discr(X,B) > −1 + ε′

and Conjecture 1.1 we get that (X, SuppB) belong to an algebraic
family. By Noetherian induction (cf. (4.1.1)) we may assume that
(X, SuppB) is fixed. Finally, by Proposition 5.4 we have that (X,B)
has bounded complements.

Case (4.9.2) will be treated in Sect. 9. In fact in this case we study
the contraction f : Y → Z given by −(K + D). When Z is a lower-
dimensional variety, f is a fibration onto varieties with trivial log canon-
ical divisor. The existence of desired complements can be established
inductively, by using an analog of Kodaira’s canonical bundle formula
(see Conjecture 7.13).

The proof of Theorem 1.5 in case when (X,B) is not klt is based on
the following

Lemma 4.11. Let (X,B =
∑
biBi) be a 0-pair of dimension d such

that B ∈ Φ(R, ε′), where ε′ := εd−1(R). Assume the LMMP in dimen-

sion d. Further, assume either

(i) (X,B) is not klt and Theorems 1.4-1.5 hold in dimension d−1,
or

(ii) Theorem 1.5 holds in dimension d.
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Then there exists λ := λ(d,R) > 0 such that either bi = 1 or bi ≤ 1−λ
for all bi.

Proof. The proof is by induction on d. Case d = 1 is well-known; see,
e.g., Corollary 5.7. If B = 0, there is nothing to prove. So we assume
that B > 0. Assume that, for some component Bi = B0, we have
1− λ < b0 < 1.

First consider the case when (X,B) is not klt. Replace (X,B) with
its Q-factorial dlt modification so that ⌊B⌋ 6= 0. If B0 ∩ ⌊B⌋ = ∅, we

run K + B − b0B0-MMP. After several steps we get a 0-pair (X̂, B̂)

such that ˆ⌊B⌋ 6= 0, B̂0 6= 0 and one of the following holds:

(a) B̂0 ∩ ˆ⌊B⌋ 6= ∅, or

(b) there is an extremal contraction f̂ : X̂ → Ẑ to a lower-dimensional

variety such that both ˆ⌊B⌋ and B̂0 are f̂ -ample, and B̂0∩ ˆ⌊B⌋ =

∅. (In particular, Ẑ is not a point.)

In the second case we can apply induction hypothesis restricting B̂ to
a general fibre of f̂ . In the first case, replacing our original (X,B) with

a dlt modification of (X̂, B̂), we may assume that B0 ∩ ⌊B⌋ 6= ∅. Let
B1 ⊂ ⌊B⌋ be a component meeting B0. Then (B1,DiffB1(B − B1))
is a 0-pair with DiffB1(B − B1) ∈ Φ(R, ε′) (see Lemma 3.5). Write
DiffB1(B−B1) =

∑
δi∆i and let ∆0 be a component of B0∩B1. Then

the multiplicity δ0 of ∆0 in DiffB1(B − B1) is computed as follows:
δ0 = 1− 1/r+

∑
l klbl/r, where r and kl are non-negative integers and

r, k0 > 0 (see [Sho93, Corollary 3.10]). Since b0 > 1 − ε′ > 1/2, we
have k0 = 1 and kl = 0 for l 6= 0. Hence, δ0 = 1 − 1/r + b0/r. By
induction we may assume either δ0 = 1 or δ0 ≤ 1− λ(d − 1, R). Thus
we have either b0 = 1 or

b0 ≤ 1− rλ(d− 1, R) ≤ 1− λ(d− 1, R)

and we can put λ(d,R) = λ(d− 1, R) in this case.
Now consider the case when (X,B) is klt. Replace (X,B) with its

Q-factorialization and again run K + B − b0B0-MMP: (X,B) 99K

(X ′, B′). Clearly at the end we get a B′
0-positive extremal contraction

ϕ : (X ′, B′) → W to a lower-dimensional variety W . If W is not a
point, we can apply induction restricting B′ to a general fibre. Thus
replacing (X,B) with (X ′, B′) we may assume that X is Q-factorial,
ρ(X) = 1 and (X,B − b0B0) is a klt log Fano variety. In particular,
X is FT. By Theorem 1.5 and Proposition 3.10 the log divisor K +B
is n-complemented for some n ∈ Nd(R). For this complement B+,
we have B+ ≥ B. Since KX + B ≡ 0, B+ = B. In particular, nB
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is integral. Thus we can put λ := 1/ lcm(Nd−1(R)). This proves the
statement in case (ii). �

Corollary 4.12. Notation and assumptions as in Lemma 4.11. Let E
be any divisor (exceptional or not) over X. Then either a(E,X,B) = 1
or a(E,X,B) ≤ 1− λ.
Proof. We can take λ < ε′. If 1− λ < a(E,X,B) < 1, replace (X,B)
with a crepant blowup of E, see [Kol92, 21.6.1] and apply Lemma
4.11. �

4.13. Proof of Theorem 1.5 in the case when (X,B) is not
klt. Let (X,B) be a 0-pair such that X is FT and B ∈ Φ(R). We
assume that (X,B) is not klt. Replace (X,B) with its Q-factorial dlt
modification. Then in particular, X is klt. Moreover, ⌊B⌋ 6= 0 (and
B ∈ Φ(R)). Let λ(d,R) be as in Lemma 4.11 and let 0 < λ < λ(d,R).
If X is not λ-lt, then for each exceptional divisor E of discrepancy
a(E,X, 0) < −1 + λ by Corollary 4.12 we have a(E,X,B) = 1. Hence
as in 4.2 replacing (X,B) with blowup of all such divisors E, see [Kol92,
21.6.1], we get that X is λ-lt and (X,B) is a 0-pair with B ∈ Φ(R)
and ⌊B⌋ 6= 0. Run K-MMP: X 99K X ′ and let B′ be the birational
transform of B. Since B 6= 0, X ′ admits a K-negative Fano fibration
X ′ → Z ′ over a lower-dimensional variety Z ′. By our construction X ′

is λ-lt and (X ′, B′) is a non-klt 0-pair with B′ ∈ Φ(R). By Proposition
3.6 we can pull-back n-complements from X ′ to X if I(R) | n. If Z ′ is a
point, then ρ(X ′) = 1 and X ′ is a klt Fano variety. In this case, arguing
as in 4.1.1 we get that (X ′, SuppB′) belong to an algebraic family. By
Proposition 5.4 and Noetherian induction the log divisor K +B has a
bounded nI-complement for some n ≤ C(d,R). Finally, if dimZ ′ > 0,
then we apply Proposition 9.4 below. This will be explained in 9.5.
Theorem 1.5 in the non-klt case is proved.

5. Approximation and complements

The following Lemma 5.2 shows that the existence of n-complements
is an open condition in the space of all boundaries B with fixed SuppB.

5.1. Notation. Let B be a finite set of prime divisors Bi. Recall that
DB denotes the R-vector space all R-Weil divisors B with SuppB =∑

Bi∈B
Bi, where the Bi are prime divisors. Let

IB :=
{∑

βiBi ∈ DB | 0 ≤ βi ≤ 1, ∀i
}

be the unit cube in DB.
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Lemma 5.2. Let (X,B) be a log pair where B is an R-boundary.

Assume that K + B is n-complemented. Then there is a constant

ε = ε(X,B, n) > 0 such that K + B′ is also n-complemented for any

R-boundary B′ ∈ DB with ‖B − B′‖ < ε.

Proof. Let B+ = B♯ + Λ be an n-complement, where Λ and B have no
common components and B♯ ∈ DB. Write B =

∑
biBi, B

′ =
∑
b′iBi,

B♯ =
∑
b+i Bi. Take ε so that

0 < (n + 1)ε < min(1− {(n+ 1)bi} | 1 ≤ i ≤ r, bi < 1).

We claim that B+ is also an n-complement of B′ whenever ‖B−B′‖ <
ε. If bi = 1, then obviously b+i = 1. So, it is sufficient to verify the
inequalities nb+i ≥ ⌊(n + 1)b′i⌋ whenever b+i < 1 and bi < 1. Indeed, in
this case,

⌊(n+ 1)b′i⌋ ≤ ⌊(n+ 1)bi + (n+ 1)(b′i − bi)⌋ = ⌊(n+ 1)bi⌋ ≤ nb+i .

(because (n + 1)(b′i − bi) < (n + 1)ε < min(1 − {(n+ 1)bi})). This
proves the assertion. �

Corollary 5.3. For any D ∈ Zd−1(X), the subset

U
n
D := {B ∈ ID | K +B is n-complemented}

is open in ID.

Proposition 5.4. Fix a positive integer I. Let X be an FT variety

such that KX is Q-Cartier and let B1, . . . , Br are Q-Cartier divisors

on X. Let B :=
∑r

i=1Bi. Then for any boundary B ∈ IB such that

K +B is lc and −(K +B) is nef, there is an n-complement of K +B
for some n ≤ Const (X,B) and I | n.
Lemma 5.5. In notation of Proposition 5.4 the following holds.

(5.5.1) (Effective base point freeness) There is a positive integer N
such that for any integral nef Weil Q-Cartier divisor of the form mK+∑
miBi the linear system |N(mK +

∑
miBi)| is base point free.

Proof. Indeed, we have Pic(X) ≃ Zρ (see, e.g., [IP99, Prop. 2.1.2]). In
the space Pic(X)⊗R ≃ Rρ we have a closed convex cone NEF(X), the
cone of nef divisors. This cone is dual to the Mori cone NE(X), so it
is rational polyhedral and generated by a finite number of semiample
Cartier divisors M1, . . . ,Ms. Take a positive integer N ′ so that all the
linear systems |N ′Mi| are base point free, and N ′K, N ′B1, . . . , N

′Br

are Cartier. Write

N ′K ∼Q

s∑

i=1

αi,0Mi, N ′Bj ∼Q

s∑

i=1

αi,jMi, αi,j ∈ Q, αi,j ≥ 0.
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Let N ′′ be the common multiple of denominators of the αi,j. Then

N ′2N ′′

(
mK +

r∑

j=1

mjBj

)
∼ N ′N ′′m

(
s∑

i=1

αi,0Mi

)
+

r∑

j=1

N ′N ′′mj

(
s∑

i=1

αi,jMi

)
=

s∑

i=1

(
mN ′′αi,0 +

r∑

j=1

N ′′mjαi,j

)
N ′Mi

The last (integral) divisor generates a base point free linear system, so
we can take N = N ′2N ′′. �

In the proof of Proposition 5.4 we follow arguments of [Sho00, Ex-
ample 1.11], see also [Sho93, 5.2].

Proof of Proposition 5.4. Define the set
(5.5.2)

M = MB := {B ∈ IB̄ | K +B is lc and − (K +B) is nef}
Then M is a closed compact convex polyhedron in IB. It is sufficient
to show the existence of some n-complement for any B ∈M . Indeed,
then M ⊂ ⋃

n∈Z>0

Un
B

. By taking a finite subcovering M ⊂ ⋃
n∈S

Un
B

we

get a finite number of such n.
Assume that there is a boundary Bo =

∑r
i=1 b

o
iBi ∈M which has no

any complements. By [Cas57, Ch. 1, Th. VII] there is infinite many
rational points (m1/q, . . . ,mr/q) such that

max

(∣∣∣∣
m1

q
− bo1

∣∣∣∣ , . . . ,
∣∣∣∣
mr

q
− bor

∣∣∣∣

)
<

r

(r + 1)q1+1/r
<

1

q1+1/r
.

Denote bi := mi/q and B :=
∑
biBi. Thus, ‖B − Bo‖ < 1/q1+1/r.

Then our proposition is an easy consequence of the following

Claim 5.6. For q ≫ 0 one has

(5.6.1) ⌊(qN + 1)boi ⌋ ≤ qNbi whenever bi < 1;

(5.6.2) B ≡ Bo and −(K +B) is nef ; and

(5.6.3) K +B is lc.

Indeed, by (5.5.1) the linear system | − qN(K + B)| is base point
free. Let F ∈ |−qN(K+B)| be a general member. Then K+B+ 1

qN
F

is an qN -complement of K +Bo, a contradiction. �

Proof of Claim. By the construction

⌊(qN + 1)boi ⌋ = miN + ⌊boi + qN(boi − bi)⌋
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Put c := max
boi<1
{bo1, . . . bor}. Then for bi < 1 we have boi < c < 1 and for

q ≫ 0,

boi + qN(boi − bi) < c +
qN

q1+1/r
< 1.

This proves (5.6.1).
Further, let L1, . . . , Lr be a finite set of curves generating N1(X).

We have

|Lj · (B − Bo)| =
∣∣∣∣∣
∑

i

mi

q
(Lj · Bi)−

∑

i

boi (Lj · Bi)

∣∣∣∣∣

<
1

q1+1/r

∑

i

(Lj · Bi).

If q ≫ 0, then the right hand side is ≪ 1/q while the left hand side is
from the discrete set ±Lj · (K +Bo) + 1

qN
Z (because qB is an integral

divisor and by our assumption (5.5.1)). Hence the left hand side is zero
and B ≡ Bo. This proves (5.6.2).

Finally, we have to show that K +B is lc. Assume the converse. By
(5.5.1) the divisor qN (K +B) is Cartier. So there is a divisor E of the
field k(X) such that a(E,X,B) ≤ −1− 1/qN and a(E,X,Bo) ≥ −1.
On the other hand, a(E,X,

∑
βiBi) is an affine linear function in βi:

1

qN
≤ a(E,X,Bo)− a(E,X,B) =

∑
ci(b

o
i − bi) <

Const

q1+1/r

which is a contradiction. �

The following is the first induction step to prove Theorem 1.4.

Corollary 5.7 (One-dimensional case). Fix a finite set R ⊂ [0, 1]∩Q

and a positive integer I. Then the set N1(R) is finite.

Proof. Let (X,B) be a one-dimensional log pair satisfying conditions
of (3.2.1). Since X is FT, X ≃ P1. Since B ∈ Φ(R) and R is finite,
we can write B =

∑r
i=1 biBi, where bi ≥ δ for some fixed δ > 0. Thus

we may assume that r is fixed and B1, . . . , Br are fixed distinct points.
Then by Proposition 5.4 we have a desired complements. �

Example 5.8. Let X ≃ P1. If R = {0, 1}, then I(R) = 1 and Φ(R)
is the set of standard multiplicities. In this case, it is easy to compute
that N1(R) = {1, 2, 3, 4, 6} [Sho93, 5.2]. Consider more complicated
case when R = {0, 1

2
, 2

3
, 3

4
, 5

6
, 1}. Then I = 12 and one can compute

that

N1(R) = 12 · {1, 2, 3, 4, 5, 7, 8, 9, 11}.
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Indeed, assume that (X,D) has no any 12n-complements for n ∈ {1,
2, 3, 4, 5, 7, 8, 9, 11}. Write D =

∑r
i=1 diDi, where Di 6= Dj for i 6= j.

It is clear that the statement about the existence of an n-complement
D+ such that D+ ≥ D is equivalent to the following inequality

(5.8.1)
∑

i

⌈ndi⌉ ≤ 2n.

Since di = 1−ri/mi, where ri ∈ R, mi ∈ Z>0, we have di ≥ 1/6 for all i.
We claim that at least one denominator of di does not divide 24. Indeed,
otherwise 24D is an integral divisor andD+ := D+ 1

24

∑k
j=1Dj is an 24-

complement, where Dj ∈ X are general points and k = 24(2− degD).
Thus we may assume that the denominator of d1 does not divide 24.
Since d1 = 1− r1/m1, where r1 ∈ R, we have m1 ≥ 3 and the equality
holds only if r1 = 2/3 or 5/6. In either case, d1 ≥ 13/18.

Recall that a log pair (X,D) of global type is said to be exceptional

if at has at least one Q-complement and any Q-complement is klt. If
(X,D) is not exceptional, we can increase d1 by putting d1 = 1. Then
as above 13/18 ≤ d2 ≤ 5/6, so r = 3 and d3 ≤ 5/18. Now there are
only a few possibilities for d2 and d3:

d2
13
18

3
4

7
9

19
24

4
5

13
16

5
6

d3 ≤ 5
18
≤ 1

4
≤ 2

9
≤ 5

24
≤ 1

5
≤ 3

16
≤ 1

6

In all cases K +D has a 12n complement for some n ∈ {1, 2, 3, 4, 5}.
In the exceptional case, there is a finite number of possibilities for
(d1, . . . , dr). However the computations are much longer. We omit
them.

6. The main theorem: Case ρ = 1

6.1. Now we begin to consider case (4.9.1). Thus we assume that
(X,B) is klt but not ε′-lt, where we take ε′ so that ε′N = 1 for some
integer N ≥ Nd−1(R) + 2. Then obviously, εd−1(R) ≥ ε′ > 0. Further,
assume that applying the general reduction from Section 4 we get a
pair (Y,BY ), where Y is FT and Q-factorial, ρ(Y ) = 1, the Q-divisor
−(KY +BY ) is nef, and

discr(Y,BY ) > −1 + ε′.

Moreover, KY +DY is ample and ⌊DY ⌋ 6= 0, where DY is a boundary
satisfying (4.2.3). In particular, BY 6= 0.
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6.2. Assume that the statement of Theorems 1.4 and 1.5 is false in
this case. Then there is a sequence of klt log pairs (X(m), B(m)) as in
6.1 and such that complements of KX(m) +B(m) are unbounded. More
precisely, for each KX(m) +B(m), let nm be the minimal positive integer
such that I(R) | nm andKX(m)+B(m) is nm-complemented. We assume
that the sequence nm is unbounded. We will derive a contradiction.

6.3. By Corollary 5.7 we have dimX(m) ≥ 2. By our hypothesis we
have a sequence of birational maps X(m)

99K Y (m), where Y (m), X(m),
B(m) and D(m) are as above for all m. Recall that by Corollary 4.6
(6.3.1)

discr(Y (m)) ≥ discr(Y (m), B
(m)
Y ) ≥ discr(X(m), B(m)) > −1 + ε′,

where 0 < ε′ ≤ εd−1(R). Note that −(KY (m) + B(m)) is nef, so by
Conjecture 1.1 the sequence of varieties Y (m) is bounded. By Noether-
ian induction (cf. (4.1.1)), we may assume that Y (m) is fixed, that is,
Y (m) = Y .

Let Y →֒ PN be an embedding and let H be a hyperplane section

of Y . Note that the multiplicities of B
(m)
Y =

∑
b
(m)
i B

(m)
i are bounded

from below: b
(m)
i ≥ δ0 > 0, where δ0 := min Φ(R) \ {0}. Then, for each

B
(m)
i ,

δ0H
d−1 · B(m)

i ≤ Hd−1 · B(m)
Y ≤ −Hd−1 ·KY .

This shows that the degree of B
(m)
i is bounded and B

(m)
i belongs to

an algebraic family. Therefore we may assume that SuppB
(m)
Y is also

fixed: B
(m)
i = Bi.

6.4. Assume that the multiplicities of B
(m)
Y are bounded from 1, i.e.,

b
(m)
i ≤ 1 − c, where c > 0. Then we argue as in 4.10. By Claim

4.5.1 divisorial contractions in (4.7.1) do not contract components of

B(m) with multiplicities b
(m)
i ≥ 1 − ε′. Therefore the multiplicities

of B(m) on X(m) are also bounded from the 1. Combining this with
discr(X,B) > −1 + ε′ and Conjecture 1.1 we get that (X, SuppB)
belong to an algebraic family. By Noetherian induction (cf. (4.1.1))
we may assume that (X, SuppB) is fixed. Finally, by Proposition 5.4
we have that (X,B) has a bounded n-complement such that I(R) | n.

Thus by our construction the only possibility is the case below.

6.5. From now on we consider the remaining case when some multi-

plicity of B
(m)
Y is accumulated to 1 and we will derive a contradiction.

Since SuppB
(m)
Y does not depend on m, by passing to a subsequence

we may assume that the limit B∞
Y := lim

m→∞
B

(m)
Y exists and ⌊B∞

Y ⌋ 6= 0.
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As above, write B∞
Y =

∑
b∞i Bi. Up to permutations of components

we may assume that b∞1 = 1. It is clear that −(KY + B∞
Y ) is nef and

discr(Y,B∞
Y ) ≥ −1 + ε′. In particular, (Y,B∞

Y ) is plt.

Claim 6.6. Under the above hypothesis, we have b∞j ≤ 1 − ε′ for all

1 < j ≤ r. Moreover, by passing to a subsequence we may assume the

following :

(i) If b∞j = 1, then j = 1 and b
(m)
1 is strictly increasing.

(ii) If b∞j < 1− ε′, then b
(m)
j = b∞j is a constant.

(iii) If b∞j = 1−ε′, then b
(m)
j is either a constant or strictly decreas-

ing.

In particular, B∞
Y ∈ Φ(R), B∞

Y is a Q-boundary, and D
(m)
Y ≥ B∞

Y for

m≫ 0.

Proof. Since ρ(Y ) = 1 and Y is Q-factorial, the intersection B1 ∩ Bj

on Y is of codimension two and non-empty. For a general hyperplane
section Y ∩H , by (6.3.1) we have the inequality

discr(Y ∩H,B∞ ∩H) ≥ −1 + ε′.

Thus by Lemma 6.7 below, we have b∞1 +b∞j ≤ 2−ε′, i.e., b∞j ≤ 1−ε′ for
all 1 < j ≤ r. The rest follows from the fact that the set Φ(R)∩[0, 1−ε′]
is finite. �

Lemma 6.7 (cf. [Sho00, Prop. 5.2], [Pro01, §9]). Let (S ∋ o,Λ =∑
λiΛi) be a log surface germ. Assume that discr(S,Λ) ≥ −1 + ε at o

for some positive ε. Then
∑
λi ≤ 2− ε.

Proof. Locally near o there is an étale outside of o Galois cover π : S ′ →
S such that S ′ is smooth. Let Λ′ := π∗Λ and o′ := π−1(o). Then
discr(S ′,Λ′) ≥ discr(S,Λ) ≥ −1 + ε at o (see, e.g., [Kol92, Proposition
20.3]). Consider the blow up of o′ ∈ S ′. We get an exceptional divisor
E of discrepancy

−1 + ε ≤ a(E, S ′,Λ′) = 1−
∑

λi.

This gives us the desired inequality. �

Corollary 6.8. b∞j = 1− ε′ for some j.

Proof. Indeed, otherwise D
(m)
Y = B∞

Y for m≫ 0 and −(KY +D
(m)
Y ) is

nef, a contradiction. �

We claim that the log divisorKY +B∞
Y is n-complemented, where n ∈

Nd−1(R). Recall that b∞1 = 1. Put B′ := B∞ − B1. By the last corol-
lary B′ 6= 0. By Proposition 3.9 we have DiffB1(B

′) ∈ Φ(R). Recall
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that −(KY +B∞) is nef. Since (Y,B∞
Y ) is plt, the pair (B1,DiffB1(B

′))
is klt. Further, −(KB1 + DiffB1(0)) is ample (because ρ(Y ) = 1), so
B1 is FT. Thus by the inductive hypothesis there is an n-complement
KB1 + DiffB1(B

′)+ of KB1 + DiffB1(B
′) for some n ∈ Nd−1(R). By

Lemma 3.5 B′ ∈ Pn. Take a sufficiently small positive δ and let j be
such that b∞j = 1−ε′. We claim that B′−δBj ∈Pn. Indeed, otherwise
(n+ 1)b∞j is an integer. On the other hand,

n + 1 > (n+ 1)b∞j = (n+ 1)(1− ε′) ≥ n + 1− (n+ 1)/N.

where N ≥ Nd−1(R) + 2 ≥ n + 2. This is impossible. Thus, B′ −
δBj ∈ Pn. Since −(KY + B∞ − δBj) is ample, by Proposition 3.7
the n-complement KB1 +DiffB1(B

′)+ of KB1 +DiffB1(B
′− δBj) can be

extended to Y . So there is an n-complement KY +B+ ofKY +B∞−δBj.
Write B+ =

∑
b+i Bi. Since B − δBj ∈Pn, we have B+ ≥ B∞ − δBj.

Moreover, since nb+j is an integer and 1 ≫ δ > 0, we have b+j ≥ b∞j .
Hence B+ ≥ B∞

Y and B+ is also an n-complement of KY + B∞ (see
Remark 2.11). By Lemma 5.2 KY + B+ is also an n-complement of
KY +B(m) for m≫ 0.

By Lemmas 3.3 and 3.5 we have B+ ≥ B(m) for m ≫ 0. More
precisely,

b+i

{
= 1 if b∞i ≥ 1− ε′,
≥ b

(m)
i = b∞i if b∞i < 1− ε′.

By the construction of D we have D(m) ≤ B+. Hence −(KY + D(m))
is nef, a contradiction. This completes the proof of Theorems 1.4 and
1.5 in case (4.9.1).

7. Effective adjunction

In this section we discuss the adjunction conjecture for fibre spaces.
This conjecture can be considered as a generalization of the classical
Kodaira canonical bundle formula for canonical bundle, see [Kod63],
[Fuj86], [Kaw97], [Kaw98], [Amb99], [Fuj99], [FM00], [Fuj03], [Amb04],
[Amb05].

7.1. The set-up. Let f : X → Z be a surjective morphism of normal
varieties and let D =

∑
diDi be an R-divisor on X such that (X,D) is

lc near the generic fibre of f and K +D is R-Cartier over the generic
point of any prime divisor W ⊂ Z. In particular, di ≤ 1 whenever
f(Di) = Z. Let d := dimX and d′ := dimZ.
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For any divisor F =
∑
αiFi on X, we decompose F as F = F h +F v,

where

F h :=
∑

f(Fi)=Z

αiFi, F v :=
∑

f(Fi)6=Z

αiFi.

These divisors F h and F v are called the horizontal and vertical parts
of F , respectively.

7.2. Construction. For a prime divisor W ⊂ Z, define a real number
cW as the log canonical threshold over the generic point of W :
(7.2.1)
cW := sup {c | (X,D + cf •W ) is lc over the generic point of W} .

It is clear that cW ∈ Q whenever D is a Q-divisor. Put dW := 1− cW .
Then the R-divisor

Ddiv :=
∑

W

dWW

is called the divisorial part of adjunction (or discriminant of f) for
KX +D. It is easy to see that Ddiv is a divisor, i.e., dW is zero except
for a finite number of prime divisors.

Remark 7.3. (i) Note that the definition of the discriminantDdiv

is a codimension one construction, so computing Ddiv we can
systematically remove codimension two subvarieties in Z and
pass to general hyperplane sections fH : X ∩f−1(H)→ Z ∩H .

(ii) Let h : X ′ → X be a birational contraction and let D′ be the
crepant pull-back of D:

KX′ +D′ = h∗(KX +D), h∗D
′ = D.

Then D′
div = Ddiv, i.e., the discriminant Ddiv does not depend

on the choice of crepant birational model of (X,D) over Z.

The following lemma is an immediate consequence of the definition.

Lemma 7.4. Notation as in 7.1.

(i) (effectivity, cf. [Sho93, 3.2]) If D is boundary over the generic

point of any prime divisor W ⊂ Z, then Ddiv effective.

(ii) (semiadditivity, cf. [Sho93, 3.2]) Let ∆ be an R-divisor on Z
and let D′ := D + f •∆. Then D′

div = Ddiv + ∆.

(iii) (X,D) is klt (resp., lc) over the generic point of W if and only

if dW < 1 (resp., dW ≤ 1).
(iv) If (X,D) is lc and D is an R- (resp., Q-)boundary, then Ddiv

is an R- (resp., Q-)boundary.
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7.5. Construction. From now on assume that f is a contraction,
KX +D is R-Cartier, and K +D∼R f

∗L for some R-Cartier divisor L
on Z. Recall that the latter means that there are real numbers αj and
rational functions ϕj ∈ k(X) such that

(7.5.1) K +D − f ∗L =
∑

αj (ϕj).

Define the moduli part Dmod of KX +D by

(7.5.2) Dmod := L−KZ −Ddiv.

Then we have

(7.5.3) KX +D = f ∗(KZ +Ddiv +Dmod) +
∑

αj (ϕj).

In particular,

KX +D ∼R f
∗(KZ +Ddiv +Dmod).

Clearly, Dmod depends on the choice of representatives of KX and KZ ,
and also on the choice of αj and ϕj in (7.5.1). Any change of KX and
KZ and change of αj and ϕj gives a new Dmod which differs from the
original one modulo R-linear equivalence.

If K + D is Q-Cartier, the definition of the moduli part is more
explicit. By our assumption (7.5.1) there is a positive integer I0 such
that I0(K + D) is linearly trivial on the generic fibre. Then for some
rational function ψ ∈ k(X), the divisor M := I0(K+D)+(ψ) is vertical
(and Q-linearly trivial over Z). Thus,

M − I0f ∗L = (ψ) +
∑

I0αj (ϕj), αj ∈ Q.

Rewrite it in a more compact form: M − I0f
∗L = α (ϕ), α ∈ Q,

ϕ ∈ k(X). The function ϕ vanishes on the generic fibre, hence it is a
pull-back of some function υ ∈ k(Z). Replacing L with L + α

I0
(υ) we

get M = I0f
∗L and

(7.5.4) KX +D − f ∗L =
1

I0
(ψ), ψ ∈ k(X).

In other words, K + D ∼I0
f ∗L. Here L is Q-Cartier. Then again we

define the moduli part Dmod of KX + D by (7.5.2), where L is taken
to satisfy (7.5.4). In this case, Dmod is Q-Cartier and we have

(7.5.5) KX +D = f ∗(KZ +Ddiv +Dmod) +
1

I0
(ψ).

In particular,

KX +D ∼I0
f ∗(KZ +Ddiv +Dmod).



28 YU. G. PROKHOROV AND V. V. SHOKUROV

As above, Dmod depends on the choice of representatives of KX and
KZ , and also on the choice of I0 and ψ in (7.5.4). Note that I0 depends
only on f and the horizontal part ofD. Once these are fixed, we usually
will assume that I0 is a constant. Then any change of KX , KZ , and ψ
gives a new Dmod which differs from the original one modulo I0-linear
equivalence.

Remark 7.5.1. By Lemma 7.4 (D+f •∆)mod = Dmod. Roughly speak-
ing this means that “the moduli part depends only on the horizontal
part of D”.

For convenience of the reader we recall definition of b-divisors and
related notions, see [Isk03] for details.

Definition 7.6. Let X be a normal variety. Consider an infinite linear
combination D :=

∑
P dPP , where dP ∈ R and P runs through all

discrete valuations P of the function field. For any birational model
Y of X define the trace of D on Y as follows DY :=

∑
codimY P=1

dPP .

A b-divisor is a linear combination D =
∑

P dPP such that the trace
DY on each birational model Y of X is an R-divisor, i.e., only a finite
number of multiplicities of DY are non-zero. In other words, a b-divisor
is an element of lim←−DivR(Y ), where Y in the inverse limit runs through

all normal birational models f : Y → X, DivR(Y ) is the group of R-
divisors of Y , and the map DivR(Y ) → DivR(X) is the push-forward.
Let D be a R-Cartier divisor on X. The Cartier closure of D is a
b-divisor D whose trace on every birational model f : Y → X is f ∗D.
A b-divisor D is said to be b-Cartier if there is a model X ′ and a R-
Cartier divisor D′ on X ′ such that D = D′. A b-divisor D is said to be
b-nef (resp. b-semiample, b-free) if it is b-Cartier and there is a model
X ′ and a R-Cartier divisor D′ on X ′ such that D = D′ and D′ is nef
(resp. semiample, integral and free).

Q- and Z-versions of b-divisors are defined similarly.

Remark 7.7. Let g : Z ′ → Z be a birational contraction. Consider
the following diagram

(7.7.1)

X ′ h−−−→ X

f ′

y f

y

Z ′ g−−−→ Z
where X ′ is a resolution of the dominant component of X ×Z Z ′. Let
D′ be the crepant pull-back of D that is KX′ +D′ = h∗(KX +D) and
h∗D

′ = D. By Remark 7.3 we have g∗D
′
div = Ddiv. Therefore, the

discriminant defines a b-divisor Ddiv.
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For a suitable choice of K ′
X , we can write

h∗(KX +D) = KX′ +D′,

Now we fix the choice of K, αj and ϕj in (7.5.1) (resp. K and ψ
in (7.5.4)) and induce them naturally to X ′. Then Dmod and D′

mod

are uniquely determined and g∗D
′
mod = Dmod. This defines a b-divisor

Dmod.
We can write

KZ′ +D′
div +D′ = g∗(KZ +Ddiv +Dmod) + E,

where E is g-exceptional. Since

h∗f ∗(KZ +Ddiv +Dmod) ≡ KX′ +D′ ≡ f ′∗(KZ′ +D′
div +D′

mod),

we have E = 0 (see [Sho93, 1.1]), i.e., g is (KZ +Ddiv +Dmod)-crepant:

(7.7.2) KZ′ +D′
div +D′

mod = g∗(KZ +Ddiv +Dmod).

Let us consider some examples.

Example 7.8. Assume that the contraction f is birational. Then by
the ramification formula [Sho93, §2], [Kol92, Prop. 20.3] and negativity
lemma [Sho93, 1.1] we have Ddiv = f∗D, K +D = f ∗(KZ +Ddiv), and
Dmod = 0.

Example 7.9. Let X = Z × P1 and let f be the natural projection
to the first factor. Take very ample divisors H1, . . . , H4 on Z. Let
C be a section and let Di be a general member of the linear system
|f ∗Hi +C|. Put D := 1

2

∑
Di. Then KX +D is Q-linearly trivial over

Z. By Bertini’s theorem D + f ∗P is lc for any point P ∈ Z. Hence
Ddiv = 0. On the other hand,

KX +D = f ∗KZ − 2C +
1

2
f ∗
∑

Hi + 2C = f ∗

(
KZ +

1

2

∑
Hi

)
.

This gives us that Dmod ∼Q

1
2

∑
Hi.

Example 7.10. Let X be a hyperelliptic surface. Recall that it is
constructed as the quotient X = (E × C)/G of the product of two
elliptic curves by a finite group G acting on E and C so that the action
of G on E is fixed point free and the action on C has fixed points. Let

f : X = (E × C)/G→ P1 = C/G

be the projection. It is clear that degenerate fibres of f can be only
of type mI0. Using the classification of such possible actions (see, e.g.,
[BPVdV84, Ch. V, Sect. 5]) we obtain the following cases:



30 YU. G. PROKHOROV AND V. V. SHOKUROV

Type singular fibres Ddiv

a) (2KX ∼ 0) 2I0, 2I0, 2I0, 2I0
1
2
P1 + 1

2
P2 + 1

2
P3 +

1
2
P4

b) (3KX ∼ 0) 3I0, 3I0, 3I0
2
3
P1 + 2

3
P2 + 2

3
P3

c) (4KX ∼ 0) 2I0, 4I0, 4I0
1
2
P1 + 3

4
P2 + 3

4
P3

d) (6KX ∼ 0) 2I0, 3I0, 6I0
1
2
P1 + 2

3
P2 + 5

6
P3

In all cases the moduli part Dmod is trivial.

Assumption 7.11. Under the notation of 7.1 and 7.5 assume addi-
tionally that D is a Q-divisor and there is a Q-divisor Θ on X such
that KX + Θ is Q-linearly trivial over Z and (F, (1− t)D|F + tΘ|F ) is
a klt log pair for any 0 < t ≤ 1, where F is the generic fibre of f . In
particular, Θ and D are Q-boundaries near the generic fibre. In this
case, both Ddiv and Dmod are Q-divisors.

The following result is very important.

Theorem 7.12 ([Amb04]). Notation and assumptions as in 7.1 and

7.5. Assume additionally that D is a Q-divisor, D is effective near the

generic fibre, and (X,D) is klt near the generic fibre. Then we have.

(i) The b-divisor K + Ddiv is b-Cartier.

(ii) The b-divisor Dmod is b-nef.

According (ii) of Theorem 7.12 the b-divisor Dmod is b-nef for D ≥
0 and (X,D) is klt near the generic fibre (see also [Kaw98, Th. 2],
[Fuj99]). We expect more.

Conjecture 7.13. Let notation and assumptions be as in 7.1 and 7.11.
We have

(7.13.1) (Log Canonical Adjunction) Dmod is b-semiample.

(7.13.2) (Particular Case of Effective Log Abundance Conjecture) Let

Xη be the generic fibre of f . Then I0(KXη +Dη) ∼ 0, where I0 depends

only on dimXη and the multiplicities of Dh.

(7.13.3) (Effective Adjunction) Dmod is effectively b-semiample, that

is, there exists a positive integer I depending only on the dimension

of X and the horizontal multiplicities of D (a finite set of rational

numbers) such that IDmod is very b-semiample, that is, IDmod = M ,

where M is a base point free divisor on some model Z ′/Z.

Note that by (7.5.5) we may assume that

(7.13.4) K +D ∼I f
∗(KZ +Ddiv +Dmod).



THE SECOND THEOREM ON COMPLEMENTS 31

Remark 7.14. We expect that hypothesis in 7.13 can be weakened as
follows.

(7.13.1) It is sufficient to assume that K + D is lc near the generic
fibre, the horizontal part Dh of D is an R-boundary, K +D is
R-Cartier, and K +D ≡ f ∗L.

(7.13.2) Dh is a Q-boundary and K +D ≡ 0 near the generic fibre.
(7.13.3) Dh is a Q-boundary, K +D is R-Cartier, and K +D ≡ f ∗L.

This however is not needed for the proof of the main theorem.

Remark 7.15. In the notation of (7.13.2) we have KXη + Dη ∼Q 0,
where Xη is the generic fibre of f . Assume that

(i) X is FT, and
(ii) LMMP and conjectures 1.1 and 7.13 hold in dimensions ≤

dimX − dimZ.

Then the pair (Xη, Dη) satisfies the assumptions of Theorem 1.5 with R

depending only on horizontal multiplicities ofD. Hence I0(KXη+Dη) ∼
0, where I0 depends only on dimXη and horizontal multiplicities of D.
Thus (7.13.2) holds automatically under additional assumptions (i)-(ii).

Example 7.16 (Kodaira formula [Kod63], [Fuj86]). Let f : X → Z be
a fibration satisfying 7.5 whose generic fibre is an elliptic curve. Then
Dh = 0, D = Dv, and I0 = 1. Thus we can write KX + D = f ∗L.
The j-invariant defines a rational map J : Z 99K C. By blowing up
Z and X we may assume that both X and Z are smooth and J is a
morphism: J : Z → P1. Let P be a divisor of degree 1 on P1. Take a
positive integer n such that 12n is divisible by the multiplicities of all
the degenerate fibres of f . In this situation, there is a generalization
of the classical Kodaira formula [Fuj86]:

12n(KX +D) = f ∗ (12nKZ + 12nDdiv + nJ∗P ) ,

We can rewrite it as follows

(7.16.1) KX +D = f ∗

(
KZ +Ddiv +

1

12
J∗P

)
.

Here Dmod = 1
12
J∗P is semiample and the multiplicities of Ddiv are

taken from the table in Example 3.1 if D = 0 over such divisors in Z
or D is minimal as in Lemma 8.9. (Otherwise to compute Ddiv we can
use semiadditivity Lemma 7.4, (ii).)

Example 7.17. Fix a positive integer m. Let (E, 0) be an elliptic
curve with fixed group low and let em ∈ E be an m-torsion. Define the
action of µm :=

{
m
√

1
}

on E × P1 by

ε(e, z) = (e+ em, εz), e ∈ E, z ∈ P1,
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where ε ∈ µm is a primitive m-root. The quotient map

X := (E × P1)/µm −→ P1/µm ≃ P1

is an elliptic fibration having exactly two fibres of types mI0 over points
0 and ∞ ∈ P1. Using the Kodaira formula one can show that

KX = f ∗KZ + (m− 1)F0 + (m− 1)F∞,

where F0 := f−1(0)red and F∞ := f−1(∞)red. Hence, in (7.5.4) we have
I0 = 1 and

L = KZ +

(
1− 1

m

)
· 0 +

(
1− 1

m

)
· ∞.

Clearly,

Ddiv =

(
1− 1

m

)
· 0 +

(
1− 1

m

)
· ∞.

Hence Dmod = 0, I = I0 = 1, and KX = f ∗(KZ +Ddiv).

Corollary 7.18 (cf. [Amb04, Th. 3.1]). Let notation and assumptions

be as in 7.1, 7.5, and 7.11 (cf. 7.14).

(i) If (Z,Ddiv +Dmod) is lc and Dmod is effective, then (X,D) is

lc.

(ii) Assume that (7.13.1) holds. If (X,D) is lc, then so is (Z,Ddiv+
Dmod) for a suitable choice of Dmod in the class of Q-linear

equivalence (respectively I-linear equivalence under (7.13.2)).
Moreover, if (X,D) is lc and any lc centre of (X,D) dominates

Z, then (Z,Ddiv +Dmod) is klt.

Proof. For a log resolution g : Z ′ → Z of the pair (Z,Ddiv), consider
base change (7.7.1). Thus SuppD′

div is a simple normal crossing divisor
on Z ′.

(i) Put Dt := (1 − t)D + tΘ (see 7.11). Assume that (X,D) is
not lc. Then (X,Dt) is also not lc for some 0 < t ≪ 1. Let F be
a divisor of discrepancy a(F,X,Dt) < −1. Since (X,Dt) is klt near
the generic fibre, the centre of F on Z is a proper subvariety. By
Theorem 7.12 we can take g so that K + (Dt)div = KZ′ + (D′

t)div and

(Dt)mod = (D′
t)mod. Moreover, by [Kol96, Ch. VI, Th. 1.3] we can also

take g so that the centre of F on Z ′ is a prime divisor, say W . Put
(Dt)Z := (Dt)div + (Dt)mod. By (7.7.2) we have

−1 ≤ a(W,Z, (Dt)Z) = a(W,Z ′, (D′
t)div + (D′

t)mod) ≤ a(W,Z ′, (D′
t)div).

Therefore (X ′, D′
t) is lc over the generic point of W (see (7.2.1)). In

particular, a(F,X ′, D′
t) = a(F,X,Dt) ≥ −1, a contradiction.
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(ii) By our assumption (7.13.1) Dmod is b-Cartier, so we can take g so
that Dmod = D′

mod and K + Ddiv = KZ′ +D′
div. Moreover by (7.13.1)

(respectively by (7.13.2)) we can take g so that D′
mod (respectively

ID′
mod) is semiample (respectively linearly free). By (7.7.2) g is (K +

Ddiv+Dmod)-crepant. If (Z ′, D′
div) is lc (resp. klt), then replacing D′

mod

with an effective general representative of the corresponding class of Q-
linear equivalence we obtain

discr(Z,Ddiv +Dmod) = discr(Z ′, D′
div +D′

mod) = discr(Z ′, D′
div) ≥ −1.

(resp. > −1). We can suppose also that ⌊Dmod⌋ = 0. Hence (Z,Ddiv +
Dmod) is lc (resp. klt) in this case. Thus we assume that (Z ′, D′

div)
is not lc (resp. not klt). Let E be a divisor over Z of discrepancy
a(E,Z ′, D′

div) ≤ −1. Clearly, we may assume that CenterZ′ E 6⊂
SuppD′

mod. Then a(E,Z ′, D′
div + D′

mod) = a(E,Z ′, D′
div) ≤ −1. Re-

placing Z ′ with its blowup we may assume that E is a prime divisor
on Z ′ (and again CenterZ′ E 6⊂ SuppD′

mod). Since (X ′, D′) is lc and
by (7.2.1), cE = 0, dE = 1, and a(E,Z ′, D′

div) = −1. Then (Z ′, D′
div) is

lc. Furthermore, by (7.2.1) the pair (X ′, D′ + cf ′•E) is not lc for any
c > 0. This means that f−1(CenterZ(E)) contains an lc centre. �

The following example shows that the condition Dmod ≥ 0 in (i) of
Corollary 7.18 cannot be omitted.

Example 7.19. Let f : X → Z = C2 be a standard conic bundle given
by x2 + uy2 + vz2 in P2

x,y,z × C2
u,v. The linear system | − nKX | is base

point free for n ≥ 1. Let H ∈ | − 2KX | be a general member. Now
let Γ(t) := Γ1 + tΓ2, where Γ1 := {u = 0} and Γ2 := {v = 0}. Put
D(t) := 1

2
H + f ∗Γ(t). Then 2(K + D) = 2f ∗Γ(t) and D(t)div = Γ(t).

Since KZ = 0, we have Dmod = 0.
For t = 1, the log divisorKZ+Γ(t) is lc but K+D(t) = f ∗(KZ+Γ(t))

is not. Indeed, in the chart z 6= 0 there is an isomorphism

(7.19.1) (X, f ∗Γ) ≃ (C3
x,y,u, {u(x2 + uy2) = 0}).

The explanation of this fact is that the b-divisor Dmod is non-trivial.
To show this we consider the following diagram [Sar80, §2]:

X ′
χ

//___

f ′

��

X̃
h

��
@@

@@
@@

@

X

f

��

Z ′
g

// Z
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where h is the blowup the central fibre f−1(0)red, χ is the simplest flop,
g is the blowup of 0, and f ′ is again a standard conic bundle. Put
t = 1/2 and let D̃ and D′ be the crepant pull-backs of D := D(t)

on X̃ and X ′, respectively. The h-exceptional divisor F appears in
D̃ with multiplicity 1/2. Let F ′ be the proper transform of F on
X ′. Then F ′ = f ′∗E, where E is the g-exceptional divisor. It is
easy to see from (7.19.1) that the pair (X,D) is lc but not klt at the

generic point of f−1(0)red. So is (X̃, D̃) at the generic point of the
flopping curve. This implies that (X ′, D′) is lc but not klt over the
generic point of E. Therefore, D′

div = E + Γ′, where Γ′ is the proper
transform of Γ. On Z ′, we have KZ′ = E and K + D′ = f ′∗g∗Γ, so
D′

mod = g∗Γ− E −D′
div = −1

2
E. Thus D′

mod ≤ 0 and 2D′
mod is free.

8. Two important particular cases of Effective

Adjunction

Using a construction and a result of [Kaw97] we prove the following.

Theorem 8.1. Conjectures 7.13 hold if dimX = dimZ + 1.

Remark 8.2. We expect that in this case one can take I = 12q, where
q is a positive integer such that qDh is an integral divisor.

Proof of Theorem 8.1. We may assume that a general fibre of f is a
rational curve (see Example 7.16). Thus the horizontal part Dh of
D is non-trivial. First we reduce the problem to the case when all
components of Dh are generically sections. Write D =

∑
diDi and

take
δ := min{di | Di is horizontal and di > 0}.

(we allow components with di = 0). Let Di be a horizontal component

and let Di → Ẑ
g−→ Z be the Stein factorization of the restriction f |Di

.
Let ni := deg g. Let l be a general fibre of f . Since diDi · l ≤ D · l =
−K · l = 2, we have

(8.2.1) ni = Di · l ≤ 2/di ≤ 2/δ.

Assume that ni > 1. Consider the base change

X̂
h−−−→ X

f̂

y f

y

Ẑ
g−−−→ Z

where X̂ is the normalization of the dominant component of X ×Z Ẑ.
Define D̂ on X̂ by

(8.2.2) KX̂ + D̂ = h∗(KX +D).
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More precisely, D̂ =
∑

i,j d̂i,jD̂i,j, where h(D̂i,j) = Di, 1− d̂i,j = ri,j(1−
di), and ri,j is the ramification index along D̂i,j. By construction, the

ramification locus Λ of h is f̂ -exceptional, that is f̂(Λ) 6= Ẑ. Therefore,

D̂ is a boundary near the generic fibre. Similarly, we define Θ̂ as
the crepant pull-back of Θ from 7.11. Thus the pair (X̂, D̂) satisfies
assumptions of 7.1 and 7.11. It follows from (8.2.2) that

KX̂ + D̂ = f̂ ∗g∗(KZ +Ddiv +Dmod).

According to [Amb99, Th. 3.2] for the discriminant D̂div of f̂ we have

KẐ + D̂div = g∗(KZ +Ddiv).

For a suitable choice of D̂mod in the class of ni-linear equivalence, we
can write

KẐ + D̂div + D̂mod = g∗(KZ +Ddiv +Dmod).

Therefore, D̂mod = g∗Dmod. If ÎD̂mod is free for some positive integer
Î, then so is niÎDmod. Thus we have proved the following.

Claim 8.3. Assume that Conjecture 7.13 holds for f̂ : X̂ → Ẑ with

constant Î. Then this conjecture holds for f : X → Z with I := niÎ.

Note that the restriction f̂ |h−1(Di) : h
−1(Di)→ Ẑ is generically finite

of degree ni. Moreover, h−1(Di) has a component which is a section
over the generic point. Applying Claim 8.3 several times and taking
(8.2.1) into account we obtain the desired reduction to the case when
all the horizontal Di’s with di > 0 are generically sections.

8.4. Further by making a birational base change and by blowing up X
we can get the situation when

(i) Z and X are smooth,
(ii) the Di’s are regular disjointed sections,
(iii) the morphism f is smooth outside of a simple normal crossing

divisor Ξ ⊂ Z,
(iv) f−1(Ξ) ∪ SuppD is also a simple normal crossing divisor.

Let n be the number of horizontal components of D. Note that we
allow sections with multiplicities di = 0 on this step.

LetMn be the moduli space of n-pointed stable rational curves, let
fn : Un →Mn be the corresponding universal family, and let P1, . . . ,Pn
be sections of fn which correspond to the marked points (see [Knu83]).
It is known that both Mn and Un are smooth and projective. Take
di ∈ [0, 1] so that

∑
di = 2 and put D :=

∑
diPi. Then KUn + D is
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trivial on the general fibre. However, KUn +D is not numerically trivial
everywhere over Mn, moreover, it is not nef everywhere over Mn:

Theorem 8.5 (see [Kee92], [Kaw97]). (i) There exist a smooth pro-

jective variety Ūn, a P1-bundle f̄n : Ūn →Mn, and a sequence

of blowups (blowdowns) with smooth centres

σ : Un = U1 → U2 → · · · → Un−2 = Ūn.
(ii) For D̄ := σ∗D, the (discrepancy) divisor

F := KUn +D − σ∗(KŪn
+ D̄)

is effective and essentially exceptional on Mn.

(iii) There exists a semiample Q-divisor L on Mn such that

KŪn
+ D̄ = f̄ ∗

n(KMn + L).

Therefore,

KUn +D −F = f ∗
n(KMn + L).

Recall that for any contraction ϕ : Y → Y ′, a divisor G on Y is said
to be essentially exceptional over Y ′ if for any prime divisor P on Y ′,
the support of the divisorial pull-back ϕ•P is not contained in SuppG.

Corollary 8.6. In the above notation we have

(D −F)div = 0, (D −F)mod = L.
Moreover, the proof of Theorem 8.1 implies that the b-divisor G,

the b-divisor of the moduli part of D − F , stabilizes on Mn, that is,
G = (D −F)mod.

Proof. See Example 8.10 below. �

Since the horizontal components of D are sections, (X/Z,Dh) is
generically an n-pointed stable curve [Knu83]. Hence we have the in-
duced rational maps

X
β

//___

f

��

Un
fn

��

Z
φ

//___ Mn

so that fn ◦ β = φ ◦ f and β(Di) ⊂ Pi. Let Ξ ⊂ Z as above (see
8.4, (iii)). Thus f is a smooth morphism over Z \ Ξ. Replacing X
and Z with its birational models and D with its crepant pull-back we
may assume additionally to 8.4 that β and φ are regular morphisms.
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Now take the D =
∑
diPi so that it corresponds to the horizontal part

Dh =
∑

f(Di)=Z
diDi. Consider the following commutative diagram

X
µ

//

β

$$

f

��
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/ X̂

ψ
//

f̂

��

Un

fn

��

σ

��

Ūn

f̄nzz

Z
φ

//Mn

where X̂ := Z ×Mn Un.
8.7. Since the fibres of fn are stable curves, near every point u ∈ Un the
morphism fn is either smooth or in a suitable local analytic coordinates
is given by

(u1, u2, . . . , un−2) 7−→ (u1u2, u2, . . . , un−2).

Then easy local computations show that X̂ is normal and has only
canonical singularities [Kaw97]. Moreover, the pair (X̂, D̂h = ψ∗D) is
canonical because fn is a smooth morphism near SuppD.

We have
KX +D = f ∗(KZ +Ddiv +Dmod).

Put D̂ := µ∗D. Then KX +D = µ∗(KX̂ + D̂), so

D̂div = Ddiv, D̂mod = Dmod,

KX̂ + D̂ = f̂ ∗(KZ +Ddiv +Dmod).

8.8. Let ϕ : Y → Y ′ be any contraction, where dimY ′ ≥ 1. We in-
troduce G⊥ = G − ϕ•G¬, where G¬ is taken so that the vertical part
(G⊥)v of G⊥ is essentially exceptional and G¬ is maximal with this
property. In particular, (G⊥)v ≤ 0 over an open subset U ′ ⊂ Y ′ such
that codim(Y ′ \ U ′) ≥ 2. Note that our construction of G¬ and G⊥ is
in codimension one over Y ′, i.e., to find G¬ and G⊥ we may replace Y ′

with Y ′ \W , where W is a closed subset of codimension ≥ 2.

Lemma 8.9. Let ϕ : Y → Y ′ be a contraction and let G be an R-

divisor on Y . Assume that dimY ′ ≥ 1. Assume that (Y/Y ′, G) satisfies

conditions 7.1. The following are equivalent:

(i) Gv − ϕ•Gdiv is essentially exceptional,

(ii) Gdiv = G¬,
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(iii) (G⊥)div = 0.

Proof. Implications (ii) ⇐⇒ (iii) =⇒ (i) follows by definition of Gdiv

and semiadditivity (Lemma 7.4). Let us prove (i) =⇒ (ii). Assume that
Gv − ϕ•Gdiv is essentially exceptional. Then by definition Gdiv ≤ G¬.
On the other hand, for any prime divisor P ⊂ Y ′, the multiplicity
of G⊥ along some component of ϕ•P is equal to 0. Hence the log
canonical threshold of (K + G⊥, ϕ•P ) over the generic point of P is
≤ 1. So by definition of the divisorial part and Lemma 7.4 we have
0 ≤ (G⊥)div = Gdiv −G¬. �

Example 8.10. Clearly, for fn : Un → Mn, the discrepancy divisor
F is essentially exceptional. Hence, (D − F)div ≥ 0. On the other
hand, by construction every fibre of fn is reduced. Hence, for every
prime divisor W ⊂ Z, the divisorial pull-back f •

nW is reduced and
Supp(f •

nW + D) is a simple normal crossing divisor over the generic
point of W . This implies that cW ≥ 1 and so (D −F)div = 0.

Proof of Theorem 8.1 (continued). It is sufficient to show that Dmod =
φ∗L = φ∗(D−F)mod (we replace Z with its blowup if necessary). Then
the b-divisor Dmod automatically stabilizes on Z, i.e., Dmod = Dmod. In
this situation Dmod is effectively semiample because NL is an integral
base point free divisor for some N which depends only on n. Since and
φ is a regular morphism, to show Dmod = φ∗L we will freely replace Z
with an open subset U ⊂ Z such that codim(Z \ U) ≥ 2. Thus all the
statements below are valid over codimension one over Z. In particular,
we may assume that Dmod = (D⊥)mod. Replacing D with D⊥ we may
assume that D¬ = 0 (we replace Z with U as above). Thus Dv ≤ 0
and Dv is essentially exceptional. In particular, Ddiv ≥ 0.

On the other hand, by construction the fibres (f̂ ∗(z), D̂h = ψ∗D),
z ∈ Z are stable (reduced) curves. In particular, they are slc (semi log
canonical [KSB88, §4], [Kol92, Ch. 12]). By the inversion of adjunction
[Sho93, §3], [Kol92, Ch. 16-17] for every prime divisor W ⊂ Z and

generic hyperplane sections H1, . . . , HdimZ−1 the pair (X̂, D̂h + f̂ •W +

f̂ •H1+· · ·+f̂ •HdimZ−1) is lc. Since D̂v ≤ 0, so is the pair (X̂, D̂+f̂ •W ).

This implies that cW ≥ 1 and so Ddiv = D̂div = 0.
We claim that D̂v = µ∗D

v is essentially exceptional. Indeed, other-
wise D̂v is strictly negative over the generic point of some prime divisor
W ⊂ Z, i.e., µ contracts all the components Ei of f •W of multiplicity
0. By 8.7 the pair (X̂, D̂+εf̂ •W ) is canonical over the generic point of
W for some small positive ε. On the other hand, for the discrepancy
of Ei we have a(Ei, X̂, D̂ + εf̂ •W ) = a(Ei, X,D + εf •W ) = −ε. The
contradiction proves our claim.
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For relative canonical divisors we have

KX̂/Z = ψ∗KUn/Mn

(see, e.g., [Har77, Ch. II, Prop. 8.10]). Taking D̂h = ψ∗D into account
we obtain

KX̂/Z + D̂h − ψ∗F = ψ∗(KUn/Mn +D − F) = ψ∗f ∗
nL = f̂ ∗φ∗L.

Hence,

−D̂v − ψ∗F ∼R KX̂ + D̂h − ψ∗F ∼R f̂
∗φ∗L+ f̂ ∗KZ

over Z, i.e., D̂v + ψ∗F is R-linearly trivial over Z.
Since ψ∗F is also essentially exceptional over Z, by Lemma 8.11

below we have D̂v = −ψ∗F and

f̂ ∗Dmod = f̂ ∗(Dmod +Ddiv) = KX̂/Z + D̂ = f̂ ∗φ∗L.
This gives us Dmod = φ∗L = φ∗(D − F)mod. Therefore Dmod is effec-
tively semiample. This proves Theorem 8.1. �

Lemma 8.11 (cf. [Pro03, Lemma 1.6]). Let ϕ : Y → Y ′ be a contrac-

tion with dimY ′ ≥ 1 and let A, B be essentially exceptional over Y ′

divisors on Y such that A ≡ B over Y ′ and A, B ≤ 0 (both conditions

are over codimension one over Y ′). Then A = B over codimension one

over Y ′.

Proof. The statement is well-known in the birational case (see [Sho93,
§1.1]), so we assume that dimY ′ < dimY . As in [Pro03, Lemma 1.6],
replacing Y ′ with its general hyperplane section H ′ ⊂ Y ′ and Y with
ϕ−1(H ′) we may assume that dimϕ(SuppA) = 0 and dimϕ(SuppB) ≥
0. The essential exceptionality of A and B is preserved.

We may also assume that Y ′ is a sufficiently small affine neighbour-
hood of some fixed point o ∈ Y ′ (and ϕ(SuppA) = o). Further, all the
conditions of lemma are preserved if we replace Y with its general hy-
perplane section H . If dim Y ′ > 1, then we can reduce our situation to
the case dimY = dimY ′. Then the statement of the lemma follows by
[Sho93, §1.1] and from the existence of the Stein factorization. Finally,
consider the case dim Y ′ = 1 (here we may assume that dimY = 2 and
ϕ has connected fibres). By the Zariski lemma A = B + aϕ∗o for some
a ∈ Q. Since A and B are essentially exceptional and ≤ 0, a = 0. �

�

Example 8.12. Assume that all the components D1, . . . , Dr of Dh are
sections. If r = 3, then since M3 is a point, we have Dmod = 0. For
r = 4 the situation is more complicated: M4 ≃ P1, U4 is a del Pezzo
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surface of degree 5, and f4 : U4 →M4 = P1 is a conic bundle with three
degenerate fibres. Each component of degenerate fibre meets exactly
two components of D. Hence D̄ is a normal crossing divisor. It is easy
to see that σ contracts a component of a degenerate fibre which meets
Di and Dj with di+dj ≤ 1. Clearly, Ū4 ≃ Fe is a rational ruled surface,
e = 0 or 1. We can write D̄i ∼ Σ+aiF , where Σ is the minimal section
and F is a fibre of Ū4 = Fe → P1. Up to permutation we may assume
that D̄i 6= Σ for i = 2, 3, 4. Taking

∑
di = 2 into account we get

KŪ4
+D̄ ∼ −2Σ−(2+e)F+

∑
di(Σ+aiF ) =

(∑
diai − e

)
F+f̄ ∗

nKM4.

Therefore,

degL =
∑

diai − e ≥ e
∑

di − ed1 − e ≥ 0.

8.13. Now we consider the case when the base variety Z is a curve.

Proposition 8.14. Assume Conjectures 1.1 and 7.13 in dimensions

≤ d − 1 and LMMP in dimension ≤ d. If X is FT (and projective)
variety of dimension d, then Conjecture 7.13 holds in dimension d.

Corollary 8.15. Conjecture 7.13 holds true in the following cases:

(i) dimX = dimZ + 1,
(ii) dimX = 3 and X is FT.

Proof. Immediate by Theorem 8.1 and Proposition 8.14. �

The rest of this section is devoted to the proof of Proposition 8.14.
Thus from now on and through the end of this section we assume that
the base variety Z is a curve. First we note that Z ≃ P1 because X is
FT.

Lemma 8.16. Fix a positive integer N . Let f : X → Z ∋ o be a

contraction to a curve germ and let D be an R-divisor on X. Let Dh

be the horizontal part of D. Assume that

(i) dimX ≤ d and X is FT over Z,

(ii) Dh is a Q-boundary and NDh is integral,

(iii) KX +D is lc and numerically trivial over Z.

Assume LMMP in dimension ≤ d. Further assume that the state-

ment of Theorem 1.4 holds in dimensions ≤ d − 1. Then there is

an n-complement K + D+ of K + D near f−1(o) such that N | n,
n ≤ Const(N, dimX), and a(E,X,D+) = −1 for some divisor E with

CenterZ E = o.

Proof. Take a finite set R ⊂ [0, 1] ∩ Q and a positive integer I so
that Dh ∈ R, I(R) | I, and N | I. Replacing D with D + αf ∗o
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we may assume that (X,D) is maximally lc. Next replacing (X,D)
with its suitable blowup we may assume that X is Q-factorial and
the fibre f−1(o) has a component, say F , of multiplicity 1 in D. Run
−F -MMP over Z. This preserves the Q-factoriality and lc property of
K + D. Clearly, F is not contracted. On each step, the contraction
is birational. So at the end we get a model with irreducible central
fibre: f−1(o)red = F . Then D ∈ Φ(R). Applying Dh-MMP over Z,
we may assume that Dh is nef over Z. We will show that K + D is
n-complemented for some n ∈ Nd−1(R). Then by Proposition 3.6 we
can pull-back complements to our original X. Note that the f -vertical
part of D coincides with F , so it is numerically trivial over Z. Since
X is FT over Z, −KX is big over Z. Therefore D ≡ Dh is nef and big
over Z. Now apply construction of [PS01, §3] to (X,D) over Z. There
are two cases:

(I) (X,F ) is plt,
(II) (X,F ) is lc but not plt (recall that F ≤ D).

Consider, for example, the second case (the first case is much easier and
can be treated in a similar way). First we define an auxiliary boundary
to localise a suitable divisor of discrepancy −1. By Kodaira’s lemma,
for some effective D℧, the divisor D − D℧ is ample. Put Dε,α :=
(1 − ε)D + αD℧. Then KX + Dε,α ≡ −εD + αD℧. So (X,Dε,α) is a
klt log Fano over Z for 0 < α ≪ ε ≪ 1. Take β = β(ε, α) so that
(X,Dε,α + βF ) is maximally lc and put Gε,α := Dε,α + βF . Thus
(X,Gε,α) is a lc (but not klt) log Fano over Z.

Let g : X̂ → X be an inductive blowup of (X,Gε,α) [PS01, Proposi-

tion 3.6]. By definition X̂ is Q-factorial, ρ(X̂/X) = 1, the g-exceptional
locus is a prime divisor E of discrepancy a(E,X,Gε,α) = −1, the pair

(X̂, E) is plt, and −(K bX + E) is ample over X. Since (X,Gε,α − γF )
is klt for γ > 0, CenterZ(E) = o. Note that, by construction, E is not
exceptional on some fixed log resolution of (X, SuppGε,α). Hence we
may assume that E and g do not depend on ε and α if 0 < ε≪ 1. In
particular, a(E,X,D) = −1.

By (iii) of Lemma 2.8 X̂ is FT over Z. Let D̂ and Ĝε,α be proper

transforms on X̂ of D and Gε,α, respectively. Then

0 ≡ g∗(KX +D) = K bX + D̂ + E,

g∗(KX +Gε,α) = K bX + Ĝε,α + E,
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where −(KX +Gε,α) is ample over Z. Run −(K bX +E)-MMP starting

from X̂ over Z:

X̂
g

����
��

��
��

��
?

?
?

?

X
f

  
@@

@@
@@

@@
X

f̄

��~~
~~

~~
~

Z

Since −(K bX +E) ≡ D̂, we can contract only components of D̂. At the

end we get a model (X,D + E) such that −(KX + E) is nef and big
over Z, KX + E +D ≡ 0, and (X,E +D) is lc.

We claim that the plt property of K bX + E is preserved under this

LMMP. Indeed, for 0 < t≪ 1, the log divisor K bX +(1− t)Ĝε,α+E is a

convex linear combination of log divisors K bX + Ĝε,α +E and K bX +E.
The first divisor is anti-nef and is trivial only on one extremal ray R, the
ray generated by fibres of g. The second one is strictly negative on R.
Since X̂ is FT over Z, the Mori cone NE(X̂/Z) is polyhedral. Therefore

K bX + (1 − t)Ĝε,α + E is anti-ample (and plt) for 0 < t ≪ 1. By the

base point free theorem there is a boundary M ≥ (1− t)Ĝε,α +E such

that (X̂,M) is a plt 0-pair. Since E is not contracted, this property
is preserved under our LMMP. Hence (X,M) is plt and so is (X,E).
This proves our claim. In particular, E is normal and FT.

Take δ := 1/m, m ∈ Z, m ≫ 0. For any such δ, the pair (X, (1 −
δ)D+E) is plt and −(KX+(1−δ)D+E) is nef and big over Z. By our
inductive hypothesis there is an n-complement KE+DiffE(D)+ of KE+
DiffE(D) with n ∈ Nd−1(R). Clearly, this is also an n-complement
of KE + DiffE((1 − δ)D). Note that nD is integral. We claim that
(1 − δ)D ∈ Pn. Indeed, the vertical multiplicities of (1 − δ)D are
contained in Φ(R). Let di be the multiplicity of a horizontal component
of D. Then ndi ∈ Z. If di = 1, then obviously (1− δ)di ∈ Pn. So we
assume that di < 1. Then ⌊(n+ 1)di⌋ = ndi and ⌊(n+ 1)(di − δ)⌋ =
ndi ≥ n(di − δ) for δ ≪ 1. This proves our claim. Now the same
arguments as in [PS01, §3] shows thatKX+(1−δ)D is n-complemented
near f−1(o). Since D ∈ Pn, there is an n-complement KX + D+ of
KX +D near f−1(o) and moreover, a(E,X,D+) = −1. �

Corollary 8.17. Notation as in Proposition 8.14. The multiplicities

of Dmod are contained in a finite set.
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Proof. Consider a local n-complement D+ of K+D near f−1(o). Then
n(KZ +D+

div +D+
mod) is integral at o. By construction, (X,D+) has a

centre of log canonical singularities contained in f−1(o). Hence D+
div =

0. By semiadditivity (see Lemma 7.4) we have D+
mod = Dmod. Thus

nDmod is integral at o. �

Proof of Proposition 8.14. The statement of (7.13.1) follows by The-
orem 7.12 (cf. [Kaw98]). Indeed, for any 0 < t < 1 we put Dt :=
(1 − t)D + tΘ, where Θ is such as in 7.11. Then by Theorem 7.12
(Dt)mod is semiample. Hence so is Dmod.

Assertion (7.13.2) follows by Theorem 1.5 (in lower dimension).
Finally for (7.13.3) we note that by Corollary 8.17 IDmod is integral

and base point free for a bounded I because Z ≃ P1. �

Remark 8.18. It is possible that Proposition 8.14 can be proved by
using results of [FM00], [Fuj03]. In fact, in these papers the authors
write down the canonical bundle formula (for arbitrary dimZ) in the
following form (we change notation a little):

b(K +D) = f ∗(bKZ + Llog,ssX/Z ) +
∑

P

sDP f
∗P +BD.

Here Ddiv = 1
b

∑
P s

D
P P , Dmod = 1

b
Llog,ssX/Z , and codim f(BD) ≥ 2, so

the term BD is zero in our situation. Under the additional assumption
that D is a boundary it is proved that the denominators of Dmod are
bounded (and Dmod is semiample because it is nef on Z = P1), see
[FM00, Theorem 4.5], [Fuj03, Theorem 5.11]. This should imply our
Proposition 8.14. We however do not know how to avoid the effectivity
condition of D.

9. The main theorem: Case −(K +D) is nef

In this section we prove Theorem 1.4 in case (4.9.2) and Theorem
1.5 in the case when (X,B) is not klt. Thus we apply reduction from
§4 and replace (X,B) with (Y,BY ) and put D := DY . The idea of
the proof is to consider the contraction f : X → Z given by −(K +D)
and use Effective Adjunction to pull-back complements from Z. In
practice, there are several technical issues which do not allow us to
weaken the last assumption in Theorem 1.4, that is, we cannot omit
the klt condition when K + B 6≡ 0. Roughly speaking the inductive
step work if the following two conditions hold:

(i) 0 < dimZ < dimX, and
(ii) the pair (Z,Ddiv +Dmod) satisfies assumptions of Theorem 1.4.
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The main technical step of the proof is Proposition 9.4. The proof is
given in 9.5 and 9.6.

9.1. Setup. Let (X,D) be an lc log pair and let f : X → Z be a
contraction such that K +D∼Q f

∗L for some L and X is FT. Further,
assume the LMMP in dimension d := dimX. Our proof uses induction
by d. So we also assume that Theorems 1.4 and 1.5 hold true for all X
of dimension < d.

By Lemma 4.11 we have the following.

Corollary 9.2. In notation of 9.1 assume that dimZ > 0. Fix a finite

rational set R ⊂ [0, 1] and let D ∈ Φ(R). Then the multiplicities of

horizontal components of D are contained into a finite subset M ⊂
Φ(R), where M depends only on dimX and R.

Proof. Restrict D to a general fibre and apply Lemma 4.11. �

Now we verify that under certain assumptions and conjectures the
hyperstand multiplicities transforms to hyperstandard ones after ad-
junction.

For a subset R ⊂ [0, 1], denote

R(n) :=

(
R +

1

n
Z

)
∩ [0, 1], R

′ :=
⋃

n∈Nd−1(R)

R(n) ⊂ [0, 1].

These sets are rational and finite whenever so is R.

Proposition 9.3. In notation of 9.1, fix a finite rational set R ⊂ [0, 1].

(i) If D ∈ Φ(R), then Ddiv ∈ Φ(R′).
(ii) If D ∈ Φ(R, εd−1), then Ddiv ∈ Φ(R′, εd−1) ⊂ Φ(R′, εd−2).

Proof. By taking general hyperplane sections we may assume that Z
is a curve. Furthermore, we may assume that X is Q-factorial. Fix a
point o ∈ Z. Let do be the multiplicity of o in Ddiv. Then do = 1− co,
where co is computed by (7.2.1). It is sufficient to show that do ∈
Φ(R(n)) ∪ [1 − εd−1, 1] for any point o ∈ Z and some n ∈ Nd−1(R).
Clearly, we can consider X and Z small neighbourhoods of f−1(o)
and o, respectively. We also may assume that co > 0, so f−1(o) does
not contain any centres of log canonical singularities of (X,D). By
our assumptions in 9.1 and Lemma 8.16 there is an n-complement
KX + D+ of KX + D near f−1(o) with n ∈ Nd−1(R) and moreover,
a(E,X,D+) = −1.

Now we show that do ∈ Φ(R(n)) ∪ [1 − εd−1, 1]. By Lemma 3.5
D ∈ Pn. Hence, D+ ≥ D, i.e., D+ = D + D′, where D′ ≥ 0. Let
F ⊂ f−1(o) be a reduced irreducible component. Since KX + D is
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R-linearly trivial over Z, D′ is vertical and D′ = cof
∗P . Let dF and

µ be multiplicities of F in D and f ∗o, respectively (µ is a positive
integer). Since (X,D+D′) is lc and n(D+D′) is an integral divisor, the
multiplicity of F in D+D′ has the form k/n, where k ∈ Z, 1 ≤ k ≤ n.
Then k/n = dF + coµ and

co =
1

µ

(
k

n
− dF

)
, do = 1− 1

µ

(
k

n
− dF

)
.

Consider two cases.
a) dF ∈ Φ(R), so dF = 1 − r/m (r ∈ R, m ∈ Z, m > 0). Then we

can write

do = 1− km+ rn− nm
nmµ

= 1− r′

mµ
< 1,

where

0 ≤ r′ = r +
km

n
−m =

km+ rn− nm
n

≤ nm+ rn− nm
n

≤ 1.

Therefore, do ∈ Φ(R(n)), where 0 ≤ r′ = r+ km
n
−m ≤ 1. This proves,

in particular, (i).
b) dF > 1− εd−1. In this case,

1 > do = 1− 1

µ

(
k

n
− dF

)
> 1− 1

µ

(
k

n
− 1 + εd−1

)
> 1− εd−1.

This finishes the proof of (ii). �

Proposition 9.4. Fix a finite rational subset R ⊂ [0, 1] and a positive

integer I divisible by I(R). Let (X,D) be a log semi-Fano variety of

dimension d such that X is Q-factorial FT and D ∈ Φ(R). Assume

that there is a (K+D)-trivial contraction f : X → Z with 0 < dimZ <
d. Fix the choice of I0 and ψ in 7.5 so that Dmod is effective. We take

I so that I0 divides I. Assume the LMMP in dimension d. Further,

assume that Conjectures 1.1 and 7.13 hold in dimension d − 1 and

d, respectively. If KZ + Ddiv + Dmod is Im-complemented, then so is

KX +D.

Proof. Put DZ := Ddiv +Dmod. Apply (i) of Conjecture 7.13 to (X,D).
We obtain

K +D = f ∗(KZ +DZ),

and (Z,DZ) is lc, where Ddiv ∈ Φ(R′). By (7.13.3) I ′′Dmod is integral
for some bounded I ′′. Thus replacing R

′ with R
′∪{1/I ′′, 2/I ′′, . . . , (I ′′−

1)/I ′′} we may also assume that Dmod ∈ Φ(R′). Then DZ ∈ Φ(R′).
Furthermore, by Lemma 2.8 Z is FT and by the construction, −(KZ +
DZ) is nef. By our inductive hypothesis KZ + DZ has bounded com-
plements.
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Let KZ + D+
Z be an n-complement of KZ + DZ such that I | n.

Then D+
Z ≥ DZ (see Lemmas 3.3 and 3.5). Put HZ := D+

Z − DZ and
D+ := D + f ∗HZ . Write D+ =

∑
d+
i Di. By the above, d+

i ≥ di.
We claim that K + D+ is an n-complement of K + D. Indeed, since
K +D ∼I f

∗(KZ +DZ), we have

n(K +D+) =n(K +D + f ∗HZ) =

(n/I)I(K +D) + (n/I)If ∗HZ ∼
(n/I)f ∗I(KZ +DZ) + (n/I)f ∗IHZ =

(n/I)f ∗I(KZ +D+
Z ) = f ∗n(KZ +D+

Z ) ∼ f ∗0 = 0.

Thus, n(K+D+) ∼ 0. Further, since nd+
i is a nonnegative integer and

d+
i ≥ di, the inequality

nd+
i =

⌊
(n+ 1)d+

i

⌋
≥ ⌊(n + 1)di⌋

holds for every i such that 0 ≤ di < 1. Finally, by Corollary 7.18 the log
divisor K +D+ = f ∗(KZ +DZ) is lc. This proves our proposition. �

9.5. Proof of Theorem 1.5 in the case when (X,B) is not klt
(continued). To finish the proof Theorem 1.5 in the non-klt case we
have to consider the following situation (see 4.13). (X ′, B′) is a non-
klt 0-pair such that B′ ∈ Φ(R), X ′ is λ-lt and X ′ is FT, where λ
depends only on R and the dimension of X ′. Moreover, there is a Fano
fibration X ′ → Z ′ with 0 < dimZ ′ < dimX ′. The disired bounded
nI(R)-complements exist by Proposition 9.4 and inductive hypothesis.

9.6. Proof of Theorem 1.4 in Case (4.9.2). To finish our proof of
the main theorem we have to consider the case when (X,B) is klt and
general reduction from Section 4 leads to case (4.9.2), i.e., −(KY +DY )
is nef. Replace (X,B) with (Y,BY ) and put D := DY . Recall that in
this situation X is FT and B ∈ Φ(R, ε′), where 0 < ε′ ≤ εd−1(R). By
(4.2.2) there is a boundary Θ ≥ B such that (X,Θ) is a klt 0-pair.
For the boundary D defined by (4.2.3) we also have D ∈ Φ(R) and
⌊D⌋ 6= 0 by (4.2.1). All these properties are preserved under birational
transformations in 4.5. By our assumption at the end we have case
(4.9.2), i.e., −(K+D) is nef (and semiample). Therefore it is sufficient
to prove the following.

Proposition 9.7. Fix a finite rational subset R ⊂ [0, 1]. Let (X,D =∑
diDi) is a d-dimensional log semi-Fano variety such that

(i) D ∈ Φ(R), (X,D) is not klt and X is FT,

(ii) there is boundary B =
∑
biDi ≤ D such that either bi = di <

1− ε′ or bi ≥ 1− ε′ and di = 1, where 0 < ε′ ≤ εd−1(R),
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(iii) (X,Θ) is a klt 0-pair for some Θ ≥ B.

Assume the LMMP in dimension d. Further, assume that Conjec-

tures 1.1 and 7.13 hold in dimension d. Then K + D has a bounded

n-complement such that I(R) | n.
The idea of the proof is to reduce the problem to Proposition 9.4 by

considering the contraction f : X → Z given by −(K + D). But here
two technical difficulties arise. First it may happen that the divisor
−(K + D) is big and then f is birational. In this case one can try to
extend complements from ⌊D⌋ but the pair (X,D) is not necessarily
plt and the inductive step (Proposition 3.7) does not work. We have
to make some perturbations and birational transformations. Second
to apply inductive hypothesis to (Z,Ddiv + Dmod) we have to check if
this pair satisfies conditions of Theorem 1.4. In particular, we have to
check the klt property of (Z,Ddiv+Dmod). By Corollary 7.18 this holds
if any lc centre of (X,D) dominates Z. Otherwise we again need some
additional work.

Proof. Note that we may replace B with Bt := tB + (1 − t)D for
0 < t < 1. This preserves all our conditions (i)-(iii). Indeed, (i) and
(ii) are obvious. For (iii), we note that (X,D♦) is a 0-pair for some
D♦ ≥ D (because −(K +D) is semiample). Hence one can replace Θ
with Θt := tΘ + (1− t)D♦.

Let µ : (X̃, D̃) → (X,D) be a dlt modification of (X,D). By def-

inition, µ is a K + D-crepant birational extraction such that X̃ is
Q-factorial, the pair (X̃, D̃) is dlt, and each µ-exceptional divisor E
has discrepancy a(E,X,D) = −1 (see, e.g., [Kol92, 21.6.1], [Pro01,
3.1.3]). In particular, D̃ ∈ Φ(R) and X̃ is FT by Lemma 2.8. Let B̃
be the crepant pull-back of B. One can take t so that the multiplicities
in B̃ of µ-exceptional divisors are ≥ 1− εd−1. Thus for the pair (X̃, D̃)

conditions (i)-(iii) hold. Therefore, we may replace (X,D) with (X̃, D̃)
(and B, Θ with their crepant pull-backs).

Let f : X → Z be the contraction given by −(K +D). By Theorem
1.5 (see 4.13 and 9.5) we may assume that dimZ > 0. We apply
induction by N := dimX − dimZ.

First, consider the case N = 0. Then −(K+D) is big. We will show
that K +D is n-complemented for some n ∈ Nd−1(R).

Fix n0 ≫ 0, and let δ := 1/n0. Then Dδ := D − δ ⌊D⌋ ∈ Φ(R).
It is sufficient to show that KX + Dδ is n-complemented for some
n ∈ Nd−1(R). We will apply a variant of [PS01, Th. 5.1] with hy-
perstandard multiplicities. To do this, we run −(K + Dδ)-MMP over
Z. Clearly, this is equivalent ⌊D⌋-MMP over Z. This process preserve
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the Q-factoriality and lc (but not dlt) property of K +D. At the end
we get a model (X ′, D′) such that −(KX′ + D′

δ) is nef over Z. Since
X ′ is FT, the Mori cone NE(X ′) is rational polyhedral. Taking our
condition 0 < δ ≪ 1 into account we get that −(KX′ + D′

δ) is nef.
Since

−(KX′ +D′
δ) = −(KX′ +D′) + δ ⌊D′⌋ ,

where ⌊D′⌋ is effective, −(KX′ +D′
δ) is also big. Note that (X ′, D′) is

lc but not klt. By our assumptions,

D′
δ = (1− δ)D′ + δB′ ≤ (1− δ)D′ + δΘ′

and (X ′, (1 − δ)D′ + δΘ′) is klt. Therefore so is (X ′, D′
δ). Now we

apply [PS01, Th. 5.1] with Φ = Φ(R). This says that we can extend
complements from some (possibly exceptional) divisor. By Proposition
3.9 the multiplicities of the corresponding different are contained in R.
We obtain an n-complement of KX′ + D′

δ for some n ∈ Nd−1(R). By
Proposition 3.6 we can pull-back this complement to X (we use the
inclusion D′

δ ∈ Φ(R) ⊂Pn).
Now assume that Proposition 9.7 holds for all N ′ < N . Run ⌊D⌋-

MMP over Z. After some flips and divisorial contractions we get a
model on which ⌊D⌋ is nef over Z. Since X is FT, the Mori cone
NE(X) is rational polyhedral. Hence −(K + D − δ ⌊D⌋) is nef for
0 < δ ≪ 1. As above, put Dδ := D − δ ⌊D⌋. We can take δ = 1/n0,
n0 ≫ 0 and then Dδ ∈ Φ(R). On the other hand, Dδ ≤ (1− δ)D+ δB
for some δ > 0. Therefore, (X,Dδ) is klt. Now let f ♭ : X → Z♭ be the
contraction given by −(K+Dδ). Since −(K+Dδ) = −(K+D)+δ ⌊D⌋,
there is decomposition f : X

f♭

−→ Z♭ −→ Z.
If dimZ♭ = 0, then Z♭ = Z is a point, a contradiction. If dimZ♭ <

dimX, then by Corollary 7.18 (Z♭, (Dδ)div +(Dδ)mod) is a klt log semi-
Fano variety. We can apply Proposition 9.4 to the contraction X → Z♭

and obtain a bounded complement of K + Dδ. Clearly, this will be a
complement of K +D.

Therefore, we may assume that −(K + Dδ) is big, f ♭ is birational,

and so ⌊D⌋ is big over Z. In particular, the horizontal part ⌊D⌋h of
⌊D⌋ in non-trivial.

Replace (X,D) with its dlt modification. Assume that ⌊D⌋h 6= ⌊D⌋.
As above, run ⌊D⌋h-MMP over Z. For 0 < δ ≪ 1, the divisor −(K +

D− δ ⌊D⌋h) will be nef. Moreover, it is big over Z. Therefore, −(K +

D − δ ⌊D⌋h) defines a contraction f ′ : X → Z ′ with dimZ ′ > dimZ.
By our inductive hypothesis there is a bounded complement.
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It remains to consider the case when ⌊D⌋h = ⌊D⌋. Then any lc
centre of (X,D) dominates Z. By Corollary 7.18 and Proposition 9.4
there is a bounded complement of K +D.

�

This finishes the proof of Theorem 1.4. Corollaries 1.7 and 1.8 im-
mediately follows by this theorem, Corollary 8.15, and [Ale94].

9.8. Proof of Corollary 1.11. Replacing (X,D) with its log termi-
nal modification we may assume that (X,D) is dlt. If D = 0, we have
nK ∼ 0 for some n ≤ 21 by [Bla95]. Thus we assume that D 6= 0.
Run K-MMP. We can pull-back complements by Proposition 3.6. The
end result is a K-negative extremal contraction (X ′, D′) → Z with
dimZ ≤ 1. If Z is a curve, then either Z ≃ P1 or Z is an elliptic curve.
In both cases we apply Proposition 9.4 (the FT property of X is not
needed). Otherwise X ′ is a klt log del Pezzo surface with ρ(X ′) = 1.
In particular, X ′ is FT. In this case the assertion follows by Theorem
1.5.

9.9. Proof of Corollary 1.9. First we construct a crepant dlt model
(X̄, D̄) of (X,D) such that each component of D̄ meets

⌊
D̄
⌋
. Re-

placing (X,D) with its log terminal modification we may assume that
(X,D) is dlt, X is Q-factorial, and ⌊D⌋ 6= 0. If ⌊D⌋ = D, we put
(X̄, D̄) = (X,D). Otherwise, run K +D− ⌊D⌋-MMP. Note that none
of connected components of ⌊D⌋ is contracted. Moreover, the num-
ber of connected components of ⌊D⌋ remains the same (cf. [Kol92,
Prop. 12.3.2], [Sho93, Th. 6.9]). At the end we get an extremal con-
traction (X ′, D′) → Z with dimZ ≤ 2. If Z is not a point, we can
apply Proposition 9.4. Otherwise, ρ(X ′) = 1, ⌊D′⌋ is connected, and
each component of D′ meets ⌊D′⌋. The same holds on a log terminal
modification (X̄, D̄) of (X ′, D′) because X is Q-factorial.

By Corollary 1.11, for each component D̄i ⊂
⌊
D̄
⌋
, the log divi-

sor KD̄i
+ DiffD̄i

(D̄ − D̄i) has bounded complements, i.e., there is
n0 = n0(R) such that n0(KD̄i

+ DiffD̄i
(D̄ − D̄i)) ∼ 0. Thus we

may assume that n0(KX̄ + D̄)|⌊D̄⌋ ∼ 0. Recall that the multiplici-

ties of DiffD̄i
(D̄ − D̄i) =

∑
δj∆j are computed by the formula δj =

1 − 1/mj + (
∑

l kldl)/mj, where mj, kl ∈ Z, mj > 0, kl ≥ 0, dl
are multiplicities of D̄, and

∑
l kldl ≤ 1. Since dl ∈ Φ(R), there is

only a finite number of possibilities for dl with kl 6= 0. Further, since
n0δj ∈ Z, there is only a finite number of possibilities for mj . Thus
we can take n1 = n1(R) such that n1D̄ is an integral divisor and
n1(KX̄ + D̄)|⌊D̄⌋ ∼ 0. Since X̄ is FT, there is an integer n2 such that
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n1n2(KX̄ + D̄) ∼ 0 on X̄. This defines a cyclic étale over
⌊
D̄
⌋

cover

π : X̂ → X̄. Let D̂ := π∗D̄. Then (X̂, D̂) is a 0-pair such that
⌊
D̂
⌋

has at least n2 connected components. On the other hand, the number
of connected componets of a 0-pair is at most two (see [Fuj00, 2.1], cf.
[Sho93, 6.9]). Thus, n(KX̄ + D̄) ∼ 0, where n = 2n1. This proves our
corollary.

9.10. Proof of Corollary 1.10. In notation of 4.1, take 0 < ε̄ <
ε2(R)/2. We may assume that (X,B) is such as in 4.2, so there are
(at least) two components B1 and B2 of multiplicities bi ≥ 1− ε̄ in B.
Then by Lemma 6.7 and (4.2.1) components B1, B2 do not meet each
other and by Corollary 4.6 this holds on each step of the LMMP as in
4.5. Therefore, we cannot get a model with ρ = 1. In particular, case
(4.9.1) is impossible.

Consider case (4.9.2). If the divisor −(KY +DY ) is big, we can argue
as in the proof of Proposition 9.7. Then we do not need Conjecture 1.1.
If KY +DY ≡ 0, we can use Corollary 1.9; it is sufficient to have only
one divisor E (exceptional or not) with a(E,X,D) ≤ −1 + ε̄. In other
cases we use induction to actual fibrations (Proposition 9.4), that is,
with the fibres and the base of dimension ≥ 1 and by our assumptions
with dimensions ≤ 2.
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