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Abstract

Let Γ be an amenable group and V be a finite dimensional vector space.
Gromov pointed out that the von Neumann dimension of linear subspaces of
ℓ2(Γ;V ) (with respect to Γ) can be obtained by looking at a growth factor
for a dynamical (pseudo-)distance. This dynamical point of view (reminiscent
of metric entropy) does not requires a Hilbertian structure. It is used in
this article to associate to a Γ-invariant linear subspaces Y of ℓp(Γ;V ) a real
positive number dimℓpY (which is the von Neumann dimension when p = 2).
By analogy with von Neumann dimension, the properties of this quantity are
explored to conclude that there can be no injective Γ-equivariant linear map
of finite-type from ℓp(Γ;V ) → ℓp(Γ;V ′) if dimV > dimV ′. A generalization
of the Ornstein-Weiss lemma is developed along the way.

1 Introduction

Let Γ be a discrete group, then it is possible to associate to certain unitary repre-
sentations a positive real number called von Neumann dimension (see [11, §1] or [14,
§1]). More precisely, let f : Γ → X be a map. The natural (right) action of Γ on
spaces of maps means is, in the present text, the action given by γf(·) = f(γ−1·).
Now, let H be a Hilbert space and consider the space ℓ2(Γ) ⊗ H where Γ acts
naturally on the first factor and trivially on the second. Then, the von Neumann
dimension is defined for Γ-invariant subspaces of ℓ2(Γ)⊗H .

Let V be a finite dimensional vector space and ‖·‖ a norm (the choice of which
will not matter as the dimension is finite). The subject matter of this article are
Γ-invariant linear subspaces of

ℓp(Γ;V ) = ℓp(Γ)⊗ V = {f : Γ → V |
∑

γ∈Γ

‖f(γ)‖
p
is finite}

for the natural action of Γ. Misha Gromov asked the following question (see
[6, p.353]): are ℓp(Γ,Rn) and ℓp(Γ,Rm) Γ-isomorphic if and only if m = n?

From now on Γ will be assumed amenable. There are reasons to exclude non-
amenable groups. Indeed, D. Gaboriau pointed out that if a notion of dimension
existed in the ℓp setting (that is, a quantity satisfying properties P1-P10 listed
below), then there would be a formula for the Euler characteristic of Γ as the
alternate sum of the dimensions of ℓp cohomology spaces. On one hand, torsion-
free cocompact lattices in SO(4, 1) have positive Euler characteristic. On the other,
for p big enough, their ℓp cohomology vanishes in all degrees but the first (see
[15, Theorem 2.1]). This would lead to a contradiction.
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Hence, we are looking for a notion of dimension for such subspaces, which
would increase under injective equivariant linear maps. Inspired by an argument of
[6, §1.12] (and partially answering the question found therein), we shall introduce
a quantity dimℓp which, when p = 2, coincides with definition of von Neumann
dimension. This quantity is obtained by a process similar to that of metric entropy
or mean dimension, i.e. by looking at an asymptotic growth factor. The definition
relies a priori on an exhaustion of Γ, but a generalization of the Ornstein-Weiss
lemma in section 5 implies the result is independent of this choice.

Though we prove many properties of dimℓp , important properties are still lack-
ing. Nevertheless, the results obtained in this paper suffice to establish a non
existence result for maps of finite type. We recall their construction.

Let D ⊂ Γ be a finite set and let g : V D → V ′ be a continuous map. This data
enables the definition of a Γ-equivariant continuous map gD from Z ⊂ ℓp(Γ;V ) to
ℓp(Γ;V ′) as follows

gD(z)(γ) = g(z(γδ))δ∈D.

Remark that what we denote here as ℓp(Γ;V ) is more frequently written ℓp(Γ)⊗V .

Theorem 1.1. Let Γ be an amenable discrete group. Let V and V ′ be finite dimen-
sional vector spaces. If f : ℓp(Γ;V ) → ℓp(Γ;V ′) is an injective Γ-equivariant linear
map of finite type then dimV ≤ dim V ′.

Consequently, if we restrict ourselves to maps of finite type, the question above
has a positive answer: there is a Γ-isomorphism of finite type between ℓp(Γ;Rn)
and ℓp(Γ;Rm) if and only if m = n.

2 Definition and properties of dimℓp

Given a positive number ǫ, a notion of dimension up to scale ǫ for (X, τ, δ) a topo-
logical space equipped with a pseudo-distance will be needed. Data compression
problems turn out to be a good source of inspiration. When one is interested in
compression algorithms, it is not only important that the compression map has
“small” fibers (so that not too much data is lost) but also has an image which is
“small” in some sense (so that the compression is effective).

A slight variant of the one used in [2], [5], [6], [18] or [19] shall be employed,
namely one that is also defined for pseudo-distances. As such, it will be useful to
use a topology τ that does not come from the pseudo-distance. Please note that the
term diameter (denoted Diam ) will continue to be used even if it is defined using a
pseudo-distance (thus a set of diameter 0 may contain more than one point).

Definition 2.1. Let (X, τ, δ) be a metric space. Call wdim ǫ(X, τ, δ) the smallest
integer k such that there exists a continuous (for τ) map f : X → K where K is a
k-dimensional polyhedron such that ∀k ∈ K,Diam f−1(k) ≤ ǫ.

wdim ǫ(X, τ, δ) = inf
f :X →֒K

{
dimK

∣∣∣∣
f is continuous for τ and
∀k ∈ K,Diam f−1(k) < ǫ

}
.

We will sometimes omit to mention τ when it is the topology induced by δ.

Definition 2.2. Let (X, τ, δ) be a space endowed with a topology τ and a pseudo-
distance δ. Let Γ be a countable group which acts on X and let {Ωi} be an
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increasing sequence of finite subsets of Γ. The ℓp(Γ) width growth coefficient of X
for the sequence {Ωi} is

Wgcℓp(X, τ, {Ωi}) = lim
ǫ→0

lim sup
i→∞

wdim ǫ(X, τ, δℓp(Ωi))

|Ωi|
∈ [0,+∞].

where δℓp(Ω)(x, x
′) =

( ∑
γ∈Ω

δ(γx, γx′)p
)1/p

for p < ∞

and δℓ∞(Ω)(x, x
′) = sup

γ∈Ω
δ(γx, γx′).

When δ is a distance, δℓ∞(Ω) is often called the dynamical distance. If fur-
thermore τ is the topology this distance induces, then this is the (metric) mean
dimension (see [6, §1.5] or [9, §4]). In the present text, this is an intermediate def-
inition and will only be used in a particular context, namely when X is a subset
of ℓ∞(Γ;V ). The pseudo-metric will be given by evaluation at the neutral element
eΓ of Γ: ev(x, x′) = ‖x(eΓ)− x′(eΓ)‖V . Lastly, τ

∗ will denote the product topology
induced from X ⊂ V Γ (which coincides with the weak-∗ topology, when defined).

Definition 2.3. Let V be a finite-dimensional normed vector space. Let Y ⊂
ℓ∞(Γ;V ) be a subset invariant by the natural action of Γ, an amenable countable
group. Let Ωi be a Følner sequence for Γ. Then, the ℓp von Neumann dimension
of Y is defined by

dimℓp(Y, {Ωi}) = sup
r∈R≥0

Wgcℓp(B
Y,p
r , ev, {Ωi})

where BY,p
r = Y ∩B

ℓp(Γ;V )
r .

Note that BY,p
r is defined by an intersection rather than a projection, as the

former are not always easy to define in ℓp. Also, the choice of τ∗ as a topology comes
from the fact that it is the weakest topology that is stronger than the topologies
induced by δℓp(Ω) for any p or Ω.

From now on, Y will almost always be a linear subspace. In these cases, one
does not need to take the sup on r. Indeed, Wgcℓp(B

Y,p
r , ev, {Ωi}) does not depend

on r (as can be seen using dilation and a change of variable ǫ 7→ rǫ).
When Y is a Γ-invariant linear subspace of ℓ∞(Γ;V ),

P1 (Independence) dimℓp(Y, {Ωi}) is actually independent of the choice of Følner
sequence {Ωi} (cf. corollary 5.2);

P2 (Normalization) dimℓpℓ
p(Γ;V ) = dimV (cf. example 3.5);

P3 (Invariance) If f : Y1 → Y2 is an injective Γ-equivariant linear map of finite
type, then dimℓpY1 ≤ dimℓpY2 (cf. proposition 3.8 and corollary 3.9);

P4 (Completion) If Y is the completion of Y in ℓp(Γ;V ) for the ℓp norm, then
dimℓpY = dimℓpY (cf. proposition 3.10);

P5 (Reduction) If Γ1 ⊂ Γ2 is of finite index, and if Y ⊂ ℓp(Γ2;V ) is seen by restric-
tion as a subspace of ℓp(Γ1;V

[Γ2:Γ1]) then [Γ2 : Γ1]dimℓp(Y,Γ2) = dimℓp(Y,Γ1)
(cf. proposition 3.11).

P6 If Y ⊂ ℓ2(Γ;V ), dimℓ2Y coincides with the von Neumann dimension (cf.
corollary A.2);

3



In light of P6, when p = 2 the following further properties of dimℓ2 are listed by
Cheeger and Gromov in [1, §1].

P7 (Non-triviality) Y ⊂ ℓ2 is trivial if and only if dimℓ2Y = 0.

P8 (Additivity) dimℓ2Y1 ⊕ Y2 = dimℓ2Y1 + dimℓ2Y2;

P9 (Continuity) If {Yi} is a decreasing sequence of closed linear subspaces then
dimℓ2(∩Yi) = lim

i→∞
dimℓ2Yi

P10 (Reciprocity) If Γ1 ⊂ Γ2 and if Y2 ⊂ ℓ2(Γ2;V ) is the subspace induced by
Y1 ⊂ ℓ2(Γ1;V ) then dimℓ2(Y2,Γ2) = dimℓ2(Y1,Γ1);

Proposition 4.1 also establishes P7 for dimℓ1 . On the other hand, the continuity
property (P9) of the von Neumann dimension does not hold if p = 1 (see example
4.2).

For linear subspaces Y ⊂ ℓ∞ non-triviality (P7) is false, though it might be
true for Y ⊂ c0(Γ, V ), the latter being the space of all x ∈ ℓ∞(Γ;V ) tending to 0
at infinity, i.e. ‖x‖ℓ∞(ΓrFi)

→ 0 for all exhaustive increasing sequence of (finite)

subsets {Fi}.
Finally, the existence of an element of finite support in Y implies P7. By using

a similar but less convenient definition of dimℓ2 , the author is also aware of a proof
of P7, P8 and P10 (when the index is finite) for p = 2 without using P6 and the
previously known properties of von Neumann dimension.

Though these properties are stated for Γ-invariant linear subspaces, some remain
true for more general subsets Y : P1 and P5 hold for any Γ-invariant subset, and
P4 is also true when Y is not Γ-invariant.

These properties are sufficient to offer a partial answer to the question discussed
at the beginning of the present article.

Proof of theorem 1.1. It is but a simple consequence of P2 and P3.

Being crucial to the proof above and less technical, we shall begin by proving
properties P2-P5. Section 4 then discusses P7 and P9 for p = 1 or ∞. The proof of
P1 requires some quite technical lemmas on amenable groups and is thus relegated
to section 5. As for P6, it relies mostly on a result of Gromov and is discussed in
appendix A.

3 Proof of properties P2-P5

Before the properties of dimℓp can be established, the basic properties of wdim ǫ

must be mentioned.

3.1 Properties of wdim ǫ

Most of the content of this subsection may be found in [2, §4.5], [3, §3], [5, Propo-
sition 2.1] and [6, §1.1].

Proposition 3.1. Let X be space endowed with a topology τ and a pseudo-distance
δ.

a. The function ǫ 7→ wdim ǫ(X, τ, δ) is non-increasing.
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b. Suppose δ is a distance and τ the topology it induces. Let dimX be the covering
dimension of X, then wdim ǫ(X, τ, δ) ≤ dimX.

c. wdim ǫ(X, τ, δ) = 0 ⇔ ǫ ≥ DiamX.

Except for b, the proof of these properties are simple. Before moving on, let us
recall two (fundamental) examples.

Example 3.2: Let X be a normed vector space with the distance δ(x, x′) = ‖x− x′‖
and τ the norm topology. Let A = BX

1 be its unit ball. Then (see [6, §1.1B] or, for
more details, [5, Lemma 2.5] or [19, Appendix]) wdim ǫ(A, τ, δ) = dimX if ǫ < 1
and (by considering the map which sends all of A to one point) wdim ǫ(A, τ, δ) = 0
if ǫ ≥ 2.

The second example comes from a question which arises naturally in the context
of compressed sensing, namely we look at a ball for some norm but we endow with
a metric coming from another norm.

Example 3.3: Let ℓp(n) denote R
n with its ℓp norm. Then one can try to compute

the wdim of B
ℓq(n)
1 ⊂ ℓp(n). (In compression theory, it is frequent to consider a

ball for some metric endowed with a different metric; see [4].) When q ≥ p then
the behaviour is essentially as in the previous example. However, if q < p then one
finds that, for 1 ≤ k < n,

wdim ǫ(B
ℓp(n)
1 , ℓq)





= 0 if 2 ≤ ǫ,
≤ k if 2(k + 1)1/q−1/p ≤ ǫ,

≥ k if ǫ < k1/q−1/p,

= n if ǫ < n1/q−1/p.

We briefly mention how to obtain these. The first line is a consequence of 3.1.c.
The second is found by using an explicit map described in [5, proposition 1.3] and
[18]. This maps takes a vector, keeps only the k biggest coordinates (in absolute
value), then from these k coordinates take the smallest and substract (or add, so
as to reduce in absolute value) it to the others. Finally, the third line comes from
the presence of an ℓq ball of dimension k and radius k1/q−1/p in ℓp(n). The fourth
line is also obtained using this argument (for n) together with proposition 3.1.b.

This second set of properties are crucial to what follows.

Proposition 3.4. For i = 1, 2, let Xi be spaces endowed with topologies τi and
pseudo-metric δi.

a. Let f : X1 → X2 be a continuous map such that δ1(x, x
′) ≤ Cδ2

(
f(x), f(x′)

)

where C ∈]0,∞[. Then wdim ǫ(X1, τ1, δ1) ≤ wdim ǫ/C(X2, τ2, δ2).

b. A dilation has the expected effect, i.e. let f : X1 → X2 be a homeomorphism
such that δ1(x, x

′) = Cδ2
(
f(x), f(x′)

)
. Then wdim ǫX1 = wdim ǫ/CX2.

c. Let X := X1 ×q X2 be the space X1 ×X2 endowed with the product topology
and the pseudo-metric δ := δ1×q δ2 given by δ(x, x′)q = δ1(x, x

′)q+ δ2(x, x
′)q,

when q ∈ [1,∞[, and δ(x, x′) = max
(
δ1(x

′x′), δ2(x, x
′)
)
when q = ∞. Then

wdim 21/qǫX ≤ wdim ǫX1 +wdim ǫX2.

The proofs can be found in [2, §4.5], [3, Lemma 3.2] or [5, Proposition 2.1].
For example, the third is obtained by looking at the size of the fibers of the map
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f = f1 ⊕ f2, where fi : Xi → Ki satisfy the conditions of definition 2.1 and
dimKi = wdim ǫ(Xi, τi, δi).

A useful way of stating 3.4.a is that a continuous map that does not reduce
distances will not make wdim ǫ smaller.

3.2 Properties of dimℓp

Let us begin by two basic examples.

Example 3.5: If 1 ≤ q < p ≤ ∞, and Y = B
ℓq(Γ;R)
1 then dimℓp(Y, {Ωi}) = 0

(independently of the choice of sequence {Ωi}). Indeed, BY,p
r ⊂ B

ℓq(Γ;R)
r , and

wdim ǫ(B
Y,p
r , evℓp(Ωi)) = wdim ǫ(B

ℓq(ni)
r′ , ℓp) where ni = |Ωi|. However using exam-

ple 3.3 (and dilations to get back to a unit ball, see proposition 3.1.b),

wdim ǫ(B
ℓq(ni)
r′ , ℓp) is, for fixed ǫ, bounded above and below by two functions that

do not depend on ni. Thus,

lim sup
i→∞

wdim ǫ(B
Y,p
r , τ∗, evΩi)

|Ωi|
≤ lim sup

i→∞

wdim ǫ(B
ℓq(ni), ℓp)

|Ωi|
= 0.

Example 3.6: By direct computation, we now show that

dimℓpℓ
q(Γ;V ) = dimV.

For q ∈ [1,∞], let Y ′ = ℓq(Γ;V ). Then (BY ′,p
1 , τ∗, evℓp(Ω)) is “isometric” (for

the pseudo-distance) to (B
ℓp(Ω;V )
1 , evℓp(Ω)). Indeed, the restriction map to Ω has a

kernel of “diameter” 0, so property 3.4.a applies with C = 1. On the other hand,
inclusion of ℓp(Ω, V ) in ℓp(Γ, V ) (by extending the functions by 0) is also a linear

map and property 3.4.a holds again with C = 1. Consequently, (BY ′,p
1 , τ∗, evℓp(Ω))

will have the same wdim ǫ as (B
ℓp(Ω;V )
1 , evℓp(Ω)), ∀ǫ. This later being a ball with its

proper metric, if ǫ < 1 its wdim ǫ will be the dimension of the space, |Ω|dimV .

In what follows the total vector space will be Y ⊂ ℓp(Γ;V ). So (BY,p
r , τ∗, evℓp(Ω))

is the set BY,p
r ⊂ ℓp(Γ;V ) with the pseudo-norm evℓp(Ω) and the topology induced

from the product topology. We stress that BY,p
r is not the ball for the pseudo-

norm evℓp(Ω); it is the intersection of Y with the ball of radius r in ℓp(Γ) (endowed
with its actual norm). The next property is a corollary of a generalization of the
Ornstein-Weiss lemma described in section 5. Even if proposition 5.2 is a very
important property, weaker version can be sufficient for some of our needs. Indeed,
the following simple lemma is actually all that we need to show that dimℓp is
preserved under Γ-equivariant maps of finite type.

Lemma 3.7. Let Y be as above, and let {Ωi} and {Ω′
i} be such that

lim
i→∞

|Ωi ∪ Ω′
i r Ωi ∩ Ω′

i|

|Ωi ∪Ω′
i|

= 0,

then Wgcℓp(B
Y,p
1 , ev, {Ωi}) = Wgcℓp(B

Y,p
1 , ev, {Ω′

i})

Proof. It suffices to note that, when Ω ⊂ Ω′,

wdim ǫ(B
Y
1 , evℓp(Ω))
|Ω|

|Ω|
|Ω′|

≤
wdim ǫ(B

Y
1 , evℓp(Ω′))

|Ω′|

≤
wdim ǫ(B

Y
1 , evℓp(Ω))
|Ω|

|Ω|
|Ω′|

+ dimV
|Ω′

r Ω|
|Ω′|

.
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Furthermore,
|Ω|
|Ω′|

= 1 −
|Ω′

r Ω|
|Ω′|

. Thus, computing Wgc with respect to the

sequences {Ωi∩Ω′
i}, {Ωi} or {Ω′

i} will yield the same result as a computation made
using {Ωi ∪Ω′

i}.

Proposition 3.8. Let Y ⊂ ℓ∞(Γ;V ) and Y ′ ⊂ ℓ∞(Γ;V ′) be Γ-invariant lin-
ear subspaces. Let f : Y → Y ′ be a Γ-equivariant map continuous for τ∗ and
such that there exists a real cf ∈ R>0 and a finite subset Df ⊂ Γ satisfying
ev(x, y) ≤ cf evℓp(Df )(f(x), f(y)) then

dimℓp(Y, {Ωi}) ≤ dimℓp(Y
′, {Ωi})

Proof. The case p = ∞ is simpler, we shall only describe the case p < ∞. Here

BY ′,p
r = Y ′ ∩ B

ℓp(Γ;V ′)
r . On one hand, since f is continuous for τ∗ (the product

topology or the weak-∗ topology), ∃rf ∈ R>0 such that f(BY
1 ) ⊂ BY ′,p

rf . Indeed,

since the image is weakly-∗ compact (in particular, weakly-∗ bounded) it is bounded
(cf. [16, theorem 3.18]). On the other hand, the assumption satisfied by f on
distances propagates by equivariance to different evaluations:

ev(γx, γy) ≤ cf evℓp(Df )(f(γx), f(γy)) = cf evℓp(Df )(γf(x), γf(y))
= cf evℓp(Dfγ)(f(x), f(y)).

This implies that evℓp(Ω)(x, y) ≤ cf |Df | evℓp(ΩDf )(f(x), f(y)) and, incidentally, that
f is injective. Lastly, since the image of the ball (of radius 1) is contained in a ball
(of radius rf )

wdim ǫ(B
Y,p
1 , evℓp(Ωi)) ≤ wdim ǫ/cf |Df |(B

Y ′,p
rf , evℓp(DfΩi))

≤ wdim ǫ/cf |Df |rf (B
Y ′,p
1 , evℓp(ΩiDf )).

The first inequality comes from 3.4.a. Dividing by |DfΩi| =
|DfΩi|
|Ωi|

|Ωi| and passing

to the limit yields that

Wgcℓp(B
Y,p
1 , ev, {Ωi}) limi→∞

|DfΩi|

|Ωi|
≤ Wgcℓp(B

Y ′,p
1 , ev, {ΩiDf}).

Since {Ωi} is a Følner sequence, the limit on the left-hand side is 1. Furthermore,
the hypothesis of lemma 3.7 are satisfied; the right-hand term is nothing else than
dimℓp(Y

′, {Ωi}).

From now on, we will drop the explicit reference to the Følner sequence.
Since the assumptions of the previous proposition are quite abstract, it is good

to check that they hold in certain categories of maps. The main constraint is the
existence of cf and Df . Let f be a map to which proposition 3.8 applies. Let
f−1 : Y ′ = Im f → Y the inverse of f on its image, then the condition

ev(x, y) ≤ cf evℓp(Df )(f(x), f(y))

can be read as a condition on the modulus of continuity of f−1. More precisely,
f−1 : (Y ′, evℓp(Df )) → (Y, ev) must be continuous with a linear modulus of conti-
nuity, i.e. f−1 must be Lipschitz. If the function f−1 is continuous for the product
topology, weakening the topology on its image is evidently not restrictive. Things
are not so direct on the domain.

7



For Ω ⊂ Γ, denote by RΩ : V Γ → V Ω the restriction of functions to the domain
Ω. Let U ⊂ (Y, ev) be an open set; then if Y is seen as a subset of V Γ, R{eΓ}U is
an open set on the factor R{eΓ}Y , and all of Y on the other factors: RΓr{eΓ}U =
RΓr{eΓ}Y . It is then possible that on a finite number of factors of Y ′ ⊂ V ′Γ

(the required set Df ) f(U) will not be all the image of f : RDf(U) 6= RDY ′.
For example, for F ⊂ Γ a finite subset and f = fF of finite type, the condition
is that f : (Y, ev) → (Y, evℓp(F )) be open (on its image) and of Lipschitz inverse.
Remember that the condition on the distances in proposition 3.8 and Γ-equivariance
imply injectivity of the map. Here is the major application of proposition 3.8.

Corollary 3.9. Let Y ⊂ ℓ∞(Γ;V ) and Y ′ ⊂ ℓ∞(Γ;V ′) be Γ-invariant linear sub-
spaces. Let f : Y → Y ′ be a Γ-equivariant injective linear map of finite type. Then

dimℓpY ≤ dimℓpY
′.

Proof. Let F ⊂ Γ be a finite subset which can be used to define f as a map of
finite type, i.e. f = fF . If f is a linear map, injectivity of f implies that it is open
on its image (Banach-Schauder theorem or open mapping theorem) for the norm
topologies. This remains true for the topology of ev on the domain and evpℓ (F ) on
the image as the first is weaker (its open sets are described above) and the image
of open sets is of the form R−1

F U ′ for U ′ ⊂ V F . So f : (Y, ev) → (Y, evℓp(F )) is open
(on its image).

Next, write the Γ-equivariant linear map of finite type f as

x 7→ f(x) such that f(x)(γ) =
∑

γ′∈F

aγ′

(
x(γ′γ)

)
,

where aγ′ ∈ Hom(V, V ′). Since it is injective, it possesses a Γ-equivariant linear
inverse (on its image) f−1 = g:

x 7→ g(x) such that g(x)(γ) =
∑

γ′∈G

bγ′

(
x(γ′γ)

)
,

where bγ′ ∈ Hom(V ′, V ) and G ⊂ Γ might not be finite.
Then proposition 3.8 can be invoked with Df = F , and cf the Lipschitz constant

of g : (Y ′, evF−1) → (Y, ev). Thus cf ≤ ‖ ⊕γ∈F−1∩G bγ‖.

Proposition 3.10. Let Y ⊂ ℓ∞(Γ;V ) be an open linear subspace and let Y be its
completion in ℓp(Γ;V ), then dimℓpY = dimℓpY .

Proof. The argument is identical to that of example 3.5: when restricted to a finite
Ω ⊂ Γ, these two spaces cannot be distinguished (being of finite dimension they are
closed). In other words, there exists a linear map, given by the restriction RΩ, and
whose kernel is in the “ball” of radius 0:

RΩ : (BY
1 , evℓp(Ω)) → (RΩB

Y
1 , evℓp(Ω)).

Thus, ∀ǫ ∈ [0, 1], wdim ǫ(B
Y ,p
1 , evℓp(Ω)) ≤ wdim ǫ(RΩB

Y,p
1 , evℓp(Ω)).

On the other hand, let s : RΩB
Y,p
1 → BY,p

1 such that RΩ ◦ s = Id be determined
by an inverse of RΩY → Y , then s is a linear map which increases distances. Con-
sequently, wdim ǫ(RΩB

Y,p
1 , evℓp(Ω)) ≤ wdim ǫ(B

Y,p
1 , evℓp(Ω)). Finally, by inclusion

Y ⊂ Y , we have wdim ǫ(B
Y,p
1 , evℓp(Ω)) ≤ wdim ǫ(B

Y ,p
1 , evℓp(Ω)).
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If [Γ2 : Γ1] = |G| < ∞, a set Y ⊂ ℓp(Γ2;V ) is also a set of ℓp(Γ1;V
G). Indeed,

to y ∈ ℓp(Γ2;V ) one can associate i(y) where i(y)(γ) = (y(γg))g∈G ∈ V G. This
operation behaves nicely with dimℓp .

Proposition 3.11. Let Γ1 ⊂ Γ2 be amenable groups and G = Γ2/Γ1 where |G| is
finite, if Y ⊂ ℓp(Γ2;V ) is seen by restriction as a linear subspace of ℓp(Γ1;V

G) then
|G|dimℓp(Y,Γ2) = dimℓp(Y,Γ1).

Proof. Let {Ω
(1)
i } be a Følner sequence for Γ1 and let {Ω

(2)
i } = {Ω

(1)
i G} be the

corresponding Følner sequence in Γ2. It is then sufficient to see that (BY2
1 , ev

Ω
(2)
i

)

is by construction isometric to (BY1
1 , ev

Ω
(1)
i

).

Let us mention a typical problem when one deals with ℓp spaces, for p 6= 2, that
is the existence of linear subspaces which are not the image of projection (cf. [12]
and [17]). A characterization of subspaces of ℓp possessing a projection of norm 1
can be found in [10, I.§2]. We shall briefly discuss the case where Y ⊂ ℓp(Γ;R) is
a Γ-invariant linear subspace and there exists a Γ-equivariant bounded linear map,
PY (which is not necessarily a projection). Then let y = PY δeΓ where δeΓ is the
Dirac mass at eΓ ∈ Γ, and let q ≤ p be such that y ∈ ℓq(Γ;R). For a x ∈ ℓp(Γ;R),
write x =

∑
kγδγ . By linearity and Γ-equivariance of PY ,

PY x = PY

∑

γ∈Γ

kγδγ =
∑

γ∈Γ

kγPY (γδeΓ) =
∑

γ∈Γ

kγγy

Choosing kγ = |y(γ−1)|
q
p−1y(γ−1), the evaluation (PY x)(eΓ) =

∑
|y(γ−1)|

q
p+1

must be finite. This forces q
p + 1 ≤ q, in other words q ≤ p′ (where p′ is the

conjugate exponent to p). When p > 2, the existence of such a map means has the
(restrictive) consequence that there exists in Y an element which is also in ℓp

′

(Γ;R).

4 Further properties in special cases

We now discuss property P7, that is if Y is non-trivial then dimℓpY is positive.
This question is difficult as an intuitive proof only works for p = 1. Before we move
to this proof, let us argue why the three following assumptions seem necessary for
it to hold: Y must be a linear subspace, Y must be Γ-invariant, and Y must be
contained in ℓp(Γ;V ) for finite p or in c0(Γ;V ) if p = ∞. Here are some cases of
non-trivial Y for which one of the assumptions does not hold and where dimℓp is 0.

First, suppose Y is not a linear subspace. In example 3.5 the ℓq balls where
q < p are shown to have their dimℓp equal to 0. Alternatively, one could also take
Y to be the subset of ℓ∞(Γ;V ) given by function with support of cardinality less
than k (for a fixed k ∈ Z>0).

Second, if Y is a linear subspace of ℓ∞(Γ;V ) but is not Γ-invariant, it could be
of finite dimension, and consequently dimℓp will be trivial.

Last, when p is finite, the existence of a y ∈ Y whose ℓp norm is finite is only

guaranteed if Y ⊂ ℓp. Otherwise, it could happen that Y ∩B
ℓp(Γ;V )
r = {0}, ∀r. On

the other hand, if p = ∞, take Y ⊂ ℓ∞(Γ;V ) the (Γ-invariant) line generated by a
constant function y (i.e. such that ∃v ∈ V, ∀γ ∈ Γ, y(γ) = v). Y is 1-dimensional,
and consequently dimℓ∞Y = 0. But Y is not trivial. However, the question for a
Γ-invariant linear subspace Y ⊂ c0(Γ;V ) remains interesting.
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Fortunately, in the ℓ1 case things can be proved without difficulties. As noted
before this method does not extend to p > 1.

Proposition 4.1. Let Y ⊂ ℓ1(Γ;V ) be a Γ-invariant linear subspace, then
dimℓ1Y = 0 if and only if Y is trivial.

Proof. This proof requires some results on amenable groups; these can be found in
section 5. If one wants, it is possible to think of Γ as Zn and take finite sets to be
rectangles.

If Y is trivial then dimℓ1Y is obviously 0. Otherwise, let 0 6= y ∈ Y and
renormalize it so that ‖y‖ℓ1(Γ) = 1. For all ǫ ∈]0, 1/2[, ∃F ⊂ Γ finite (which

depends on y and ǫ) such that ‖y‖ℓ1(F ) > 1− ǫ (and consequently ‖y‖ℓ1(ΓrF ) ≤ ǫ).
Then let ỹ be identical to y on F and 0 elsewhere.

For i sufficiently big, Ωi contains a non-empty ρ-quasi-tiling by F (see definition
5.4), since F ⊂ Ωi and α(Ωi;F ) tends to 0. Applying lemma 5.5 to find translates of
F which are ρ-disjoint, where ρ = 1/2|F |, we obtain a quasi-tiling whose elements
are actually disjoint since ρ < |F |−1, and the number of such translates is at least
(1− α(Ωi;F ))|Ωi|/2|F |.

Let γj for j ∈ Ji ⊂ Z>0 be the elements by which the sets F are translated for
a ρ-quasi-tiling of Ωi (since the Ωi form an increasing sequence and that lemma 5.5
applies to all maximal ρ-quasi-tiling, it can be assumed that the Ji are increasing).
Let Vi = 〈γjy|j ∈ Ji〉 be the linear subspace generated by the corresponding trans-

lates of y. Trivially BVi
1 ⊂ BY

1 , and we will construct a map from a ball to BVi
1 .

Let

π : ℓ1(Ji;R) → Vi

(aj)j∈Ji 7→
∑
j∈Ji

ajγjy and
π̃ : ℓ1(Ji;R) → Vi

(aj)j∈Ji 7→
∑
j∈Ji

ajγj ỹ

With these notations,

‖π̃(a)‖ℓ1(Γ) =
∑
k∈Ji

∥∥∥
∑
j∈Ji

ajγj ỹ
∥∥∥
ℓ1(γkF )

=
∑
k∈Ji

∥∥∥akγkỹ
∥∥∥
ℓ1(γkF )

=
∑
k∈Ji

|ak| ‖ỹ‖ℓ1(F ) = ‖y‖ℓ1(F )

∑
k∈Ji

|ak|.

On the other hand,

‖π̃(a)− π(a)‖ℓ1(Γ) =
∥∥∥
∑
j∈Ji

ajγj(ỹ − y)
∥∥∥
ℓ1(Γ)

=
∑
γ∈Γ

∣∣∣
∑
j∈Ji

ajγj(ỹ − y)
∣∣∣

≤
∑
γ∈Γ

∑
j∈Ji

|ajγj(ỹ(γ)− y(γ))| =
∑
γ∈Γ

∑
j∈Ji

|aj||ỹ(γ)− y(γ)|

=
∑
j∈Ji

|aj |
(∑
γ∈Γ

|γj(ỹ(γ)− y(γ))|
)

= ‖y‖ℓ1(ΓrF )

∑
j∈Ji

|aj |.

In short,

‖π̃(a)‖ℓ1(Γ) = ‖y‖ℓ1(F ) ‖a‖ℓ1(Ji)
and ‖π̃(a)− π(a)‖ℓ1(Γ) ≤ ‖y‖ℓ1(ΓrF ) ‖a‖ℓ1(Ji)

.

Since 1− ǫ ≤ ‖y‖ℓ1(F ) ≤ 1 and ‖y‖ℓ1(ΓrF ) ≤ ǫ, we conclude that

(1 − 2ǫ) ‖a‖ℓ1(Ji)
≤ ‖π(a)‖ℓ1(Γ;V ) ≤ (1 + ǫ) ‖a‖ℓ1(Ji)
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This means that (BY
1 , evℓ1(Ωi)) contains, with a controlled distortion, a ℓ1 ball (with

its ℓ1 metric) of radius 1 and of dimension 1
2|F |(1 − α(Ωi;F ))|Ωi|, whence

dimℓ1Y = lim
ǫ′→0

lim sup
i→∞

wdim ǫ′ (B
Y
1 , evℓ1(Ωi)

)

|Ωi|

≥ lim
ǫ′→0

lim sup
i→∞

1
2|F | (1− α(Ωi;F )) = 1

2|F | .

As required dimℓ1Y > 0.

This result can be extended to p > 1 in the special case that Y ⊂ ℓp(Γ;V )
contains an element in ℓ1 (in particular, an element of finite support). By P6,
positivity (P7) is also true for p = 2. Positivity means that if one looks at a
p-summable two-sided sequence y ∈ ℓp(Z;R), there are subspaces of the space gen-
erated by y and sequences obtained by shifting y up to n times left or right of
dimension proportional to n and so that no element decreases too much in norm
when restricted to [−n, n]. The above result is a simple consequence that this is
true for p = 1, p = 2 is also true albeit not so simple, and one is then lead to ask if
this can be true for other values of p 6= ∞ or in c0.

Even if we cannot show continuity, the following example is worthy of interest.
The sequence of vector subspaces discussed there will not satisfy the continuity
property (P9). This is quite unfortunate, as ℓ1 is among the few cases where
positivity can be shown.

Example 4.2: We exhibit a decreasing sequence of closed linear subspaces of ℓ1(Z,R),
{Yi}, such that

1 = lim
i→∞

dimℓ1Yi 6= dimℓ1 ∩
i→∞

Yi = 0.

Define ∀k ∈ Z>0, πk : ℓ1(Z;R) → ℓ∞(Z/kZ;R) in the following way: for n ∈ Z/kZ

πk(x)(n) =
∑

i≡n mod k

x(i).

Continuous linear maps between Banach spaces have a closed kernel (for τ , the

norm topology in ℓ1), thus Yj =
j
∩

k=1
kerπk is a decreasing sequence of closed sets

(for τ). To compute dimℓ1 , choose the Følner sequence Ωi = [−i, i] ∩ Z. For a
N ∈ N, let yN ∈ Y1 be such that yN (0) = 1/2, yN (N) = −1/2 and which is

zero elsewhere. Let Nj = lcm(1, 2, . . . , j). For all j, yNj ∈ B
Yj

1 . These elements

give a map (B
ℓ1(Z;R)
1/2 , evℓ1(Ω)) to (B

Yj

1 , evℓ1(Ω)) which possesses fibers of “diameter”

0. They are defined as follows, y ∈ B
ℓ1(Z;R)
1/2 is restricted to Ω then extended by 0

outside Ω. Then, let k ∈ Z>0 be such that kNj is bigger than the diameter of Ω ⊂ Z,

then ỹ(m) =
∑

n∈Ω 2ykNj(m − n)y(n) is an element of B
Yj

1 . Thence dimℓ1Yj ≥ 1,
and as the other inequality is automatic, dimℓ1Yj = 1.

We claim that Y∞ = ∩Yj = {0}. If this were false, then a non-trivial element
y ∈ Y∞ would have the property that

∀i ∈ Z, ∀n ∈ Z,−y(i) =
∑

06=k∈Z

y(i+ kn).

To get a contradiction, take the limit when n → ∞ and show that it is equal to 0.
First we normalize y so that it is of norm 1 and suppose that |y(i)| > δ for some i.

11



As an absolutely convergent sequence, y should be concentrated on some set: there
exists nδ such that ‖y‖ℓ1(Ωnδ

) ≥ 1− δ/2. However when n > 2nδ + 1

|y(i)| =

∣∣∣∣∣∣

∑

06=k∈Z

y(i+ kn)

∣∣∣∣∣∣
≤ δ/2,

which is a contradiction.Thus dimℓ1Y∞ = 0 whereas lim
n→∞

dimℓ1Yn = 1.

Such an possibility is fortunately confined to ℓ1; more generally the above con-
struction can be described as follows. Let Γ′ ⊂ Γ be a subgroup of finite index. Let
π : Y → W be a Γ′-invariant linear map from Y ⊂ ℓp(Γ;V ) to a finite dimensional
vector space W . Then the existence of such a map implies the existence of dimW
elements of ℓp

′

(Γ;V ∗) which are invariant by Γ′. This is impossible if p′ 6= ∞, as
such elements would not be decreasing at infinity. For such spaces to exists, p′ must
be ∞.

5 P1 and Ornstein-Weiss’ Lemma

The aim of this section is to show independence (P1) on the choice Følner
sequence. This will be achieved by extending Ornstein-Weiss’ lemma to meet our
needs.

Theorem 5.1. Let Γ be a discrete amenable group. Let a : R≥0×Pfinite(Γ) → R≥0

be a function such that, ∀Ω,Ω′ ⊂ Γ are finite and ∀ǫ ∈ R>0

(a) a is Γ-invariant, i.e. ∀γ ∈ Γ, a(ǫ, γΩ) = a(ǫ,Ω)
(b) a is decreasing in ǫ, i.e. ∀ǫ′ ≤ ǫ, a(ǫ′,Ω) ≥ a(ǫ,Ω)
(c) a is K-sublinear in Ω, i.e. ∃K ∈ R>0, a(ǫ,Ω) ≤ K|Ω|
(d) a is c-subadditive in Ω, i.e. ∃c ∈]0, 1], a(ǫ,Ω ∪ Ω′) ≤ a(cǫ,Ω) + a(cǫ,Ω′)

then, for any Følner sequence {Ωi},

lim
ǫ→0

lim sup
i→∞

a(ǫ,Ωi)

|Ωi|
= lim

ǫ→0
lim inf
i→∞

a(ǫ,Ωi)

|Ωi|
.

Furthermore, these limits are independent of the chosen sequence {Ωi}.

Remark that the K-sublinear hypothesis (c) is equivalent to another statement.
Indeed, using c-subadditivity (d), Γ-invariance (a) and monotonicity in ǫ (b), for
all Ω, a(ǫ,Ω) ≤ a(c|Ω|ǫ, eΓ)|Ω| where eΓ ∈ Γ is the neutral element. Thus if (a), (b)
and (d) hold, then (c) ⇔ lim

ǫ→0
a(ǫ, eΓ) < ∞.

This understood, the previous theorem is a generalization of the Ornstein-Weiss
lemma. Indeed, the assumptions of the latter, are that a(ǫ,Ω) = a(Ω) is is sub-
additive: then monotonicity (b) always hold, being K-sublinear (c) is automatic
(see above), and c-subadditivity (d) is equivalent to usual subadditivity (c = 1).

The proof of theorem 5.1 being quite technical, let us first show why P1 is a
consequence of this theorem.

Corollary 5.2. dimℓp is independent of the choice of Følner sequence.

Proof. It suffices to prove that for any Y ⊂ ℓ∞(Γ;V ) a Γ-invariant set, theorem 5.1
can be invoked, where a(ǫ,Ω) = wdim ǫ(B

Y,p
r , evℓp(Ω)). Here is why:
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(a) By Γ-invariance of Y .

(b) As wdim ǫ is decreasing in ǫ (cf. proposition 3.4.a).

(c) Using proposition 3.1.b wdim ǫ(B
ℓp(Ω)
r , evℓp(Ω)) ≤ |Ω|dimV . Then proposition

3.4.a allows to conclude as (BY,p
r , τ∗, evℓp(Ω)) can be sent without reducing

distance by a continuous map to (B
ℓp(Ω)
r , evℓp(Ω))

(d) Let πi : ℓ
p(Γ, V ) → ℓp(Ωi, V ), then

π1 × π2 : (BY,p
r , evℓp(Ω)) → (BY,p

r , evℓp(Ω1))×p (B
Y,p
r , evℓp(Ω2))

is a linear map that does not reduce distances. Applying proposition 3.4.a
and 3.4.c, yields

wdim 21/pǫ(B
Y,p
r , evℓp(Ω)) ≤ wdim ǫ(B

Y,p
r , evℓp(Ω1)) + wdim ǫ(B

Y,p
r , evℓp(Ω2)).

Thence, we conclude that a(ǫ,Ω) is 2−1/p-subadditive.

The following notations and definitions will be required in our arguments. The
original proof of the Ornstein-Weiss lemma can be found in [13]. The proof that
can be better adapted to our case is however that of [6, §1.3.1] (also explained in
[8]).

Definition 5.3. Let Γ be a group, let F ⊂ Γ be such that eΓ ∈ F then define
respectively the outer F -boundary, the inner F -boundary, the F -boundary, the F -
interior and the F -closure of Ω to be

∂+FΩ = {γ /∈ Ω|γF ∩Ω 6= ∅ and γF ∩Ωc 6= ∅} = F−1Ω ∩ Ωc

∂−FΩ = {γ ∈ Ω|γF ∩Ω 6= ∅ and γF ∩Ωc 6= ∅} = F−1Ωc ∩ Ω
∂FΩ = {γ ∈ Γ|γF ∩Ω 6= ∅and γF ∩ Ωc 6= ∅} = ∂+FΩ ∪ ∂−FΩ
intFΩ = {γ ∈ Γ|γF ⊂ Ω} = Ωr ∂−FΩ
cloFΩ = {γ ∈ Γ|γF ∩Ω 6= ∅} = Ω ∪ ∂+FΩ.

Moreover, let | · | denote a measure on Γ. The relative amenability function will be

defined as α(Ω;F ) = |∂FΩ|
|Ω| , given that these numbers are finite.

Before we move on to technical results, observe that the Følner condition implies
that α(Ωi;F ) → 0 for any finite set F and any Følner sequence {Ωi}. Another useful
property is that if F ′ ⊂ F , then α(Ω;F ′) ≤ α(Ω;F ) since ∂F ′Ω ⊂ ∂FΩ. We start
by showing covering properties of big sets by smaller sets.

Definition 5.4. Let ǫ ∈]0, 1[. Subsets Fi of finite measure of Γ will be said ǫ-
disjoint if there exists F ′

i ⊂ Fi which are disjoint and such that |F ′
i | ≥ (1 − ǫ)|Fi|

and ∪F ′
i = ∪Fi.

A subset of finite measure Ω will be said to admit an ǫ-quasi-tiling by the subsets
Fi if

(a) Fi ⊂ Ω,

(b) the Fi are ǫ-disjoint,

Here is a first lemma which studies the proportion of a set Ω covered by an
ǫ-quasi-tiling of translates of another set F .
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Lemma 5.5. Let Γ be a discrete group endowed with the counting measure, denoted
by | · |. Let Ω ⊂ Γ and eΓ ∈ F ⊂ Γ both finite sets and such that α(Ω;F ) < 1. Let
{γi}1≤i≤k be a maximal sequence of elements of Γ such that the γiF form an ǫ-

quasi-tiling of Ω. Let U i
F =

i
∪

j=1
γjF , then

|Uk
F |

|Ω|
≥ ǫ(1− α(Ω;F )).

Proof. (This proof corresponds to the first part of the proof of the Ornstein-Weiss
lemma in [6, §1.3.1].) We shall use this general fact:

∫

Γ

|G1 ∩ γG2|dµ(γ) =

∫

Γ

∫

Γ

1lG1∩γG2(γ
′)dµ(γ′)dµ(γ)

=

∫

Γ

∫

Γ

1lG1(γ
′)1lG2(γ

′γ−1)dµ(γ)dµ(γ′)

=

∫

Γ

1lG1(γ
′)

(∫

Γ

1lG2(γ
′γ−1)dµ(γ)

)
dµ(γ′)

=

∫

Γ

1lG1(γ
′)|G2|dµ(γ

′)

= |G1||G2|.

Thus,

|intFΩ|
−1

∫

intFΩ

|Uk
F ∩ γF |dµ(γ) ≤ |intFΩ|

−1

∫

Γ

|Uk
F ∩ γF |dµ(γ)

≤ (1− α(Ω;F ))−1|Ω|−1|Uk
F ||F |.

Clearly, |U i−1
F ∩ γiF | ≤ ǫ|F |, as the γiF are ǫ-disjoint. On the other hand, maxi-

mality of k implies that ∀γ ∈ intFΩ, |U
k
F ∩ γF | ≥ ǫ|F |. We then observe that

|intFΩ|
−1

∫

intFΩ

|Uk
F ∩ γF |dµ(γ) ≥ ǫ|F |.

Consequently, ǫ(1− α(Ω;F )) ≤ |Uk
F |/|Ω|.

Note that the quasi-tiling can be empty if α(Ω;F ) = 1. More precisely, the

proof actually works for α−(Ω;F ) :=
|∂−F Ω|

|Ω| instead of α. It has the advantage that

intFΩ 6= ∅ implies that α−(Ω;F ) < 1 and the quasi-tiling is non-empty. In any
case, in the upcoming applications, F will always be contained in Ω. The three
following lemmas are technical ingredients which will be used in the proof of the
generalisation of the Ornstein-Weiss lemma.

Lemma 5.6. Let Ω′ ⊂ Ω ⊂ Γ and F ⊂ Γ be finite. Suppose that there exists ǫ such
that |Ωr Ω′| ≥ ǫ|Ω|, then

α(Ωr Ω′;F ) ≤
α(Ω′;F ) + α(Ω;F )

ǫ
.

Proof. Since |∂F (Ω r Ω′)| ≤ |∂FΩ| + |∂FΩ
′| = α(Ω;F )|Ω| + α(Ω′;F )|Ω′|, and that

|Ωr Ω′| ≥ ǫ|Ω| ≥ ǫ|Ω′|, a substitution yields

α(Ωr Ω′;F ) =
|∂F (Ωr Ω′)|

|Ωr Ω′|
≤

α(Ω;F )|Ω|

ǫ|Ω|
+

α(Ω′;F )|Ω′|

ǫ|Ω′|
.
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Lemma 5.7. Let F ⊂ Γ be finite, and let {Di}1≤i≤n be an ǫ-disjoint family of
subsets. Then

α(∪Di;F ) ≤
max(α(Di;F ))

1− ǫ

Proof. Since ∂F (∪Di) ⊂ ∪∂FDi, we obtain that

|∂F (∪Di)| ≤
∑

|∂FDi| ≤
∑

α(Di;F ) |Di| ≤ max(α(Di;F ))
∑

|Di|

However (1 − ǫ)
∑

|Di| ≤ |∪Di| as they are ǫ-disjoint. Thus

α(∪Di;F ) =
∂F (∪Di)

|∪Di|
≤

max(α(Di;F ))

1− ǫ
.

The last lemma is an adaptation of a useful property of Z to general amenable
group. Consider the typical Følner sequence for Z, Ii = [−i, i]. Then any sufficiently
big interval in this family is covered (except for small bits) by translates of some Ii.

Lemma 5.8. Let {Fi} be a Følner sequence, let δ ∈]0, 1/2[. Then there exists a
subsequence (which depends on δ) {Fni}, an integer N(δ), and a sequence of integers
{ki}1≤i≤N such that for all set Ω containing FnN and satisfying α(Ω, FnN ) ≤ 2δ2N

there exists a family G of δ-disjoint sets such that | ∪
F∈G

F | ≥ (1 − δ)|Ω| and G

consists in ki translates of the sets Fni

Proof. (This part argument of the argument is briefly presented in [6, §1.3.1], more
details are found in [8]; the original result can be found in [13].) In order to better
show how the constants enter the proof, we denote ǫ1 = δ2N , ǫ2 = 2δ2N and ρ = δ.
First, ∀ǫ1 ∈]0, 1[, it is possible to refine the sequence {Fi} to have

α(Fi+1, Fi) ≤ ǫ1.

Now, let Ω(1) = Ω so that α(Ω(1), Fn) ≤ ǫ2, where n will be determined later on. We
will cover Ω(1) to a proportion of 1−δ by almost disjoint translates of the Fi, where
1 ≤ i ≤ n, in n steps (or less). For any ρ ∈]0, 1

2 [, lemma 5.5 gives a ρ-quasi-tiling of

Ω(1) by kn translates of Fn such that |Ukn

Fn
| ≥ ρ(1−ǫ2)|Ω

(1)|. Let Ω(2) = Ω(1)
rUkn

Fn
,

then |Ω(2)| ≤ (1− ρ+ ǫ2ρ)|Ω
(1)|.

If |Ω(2)| ≤ δ|Ω(1)| the goal is achieved and there is no need to continue. Other-
wise, lemma 5.6 then lemma 5.7 shows that

α(Ω(2), Fn−1) ≤
1

δ
(ǫ1 + α(Ukn

Fn
;Fn−1)) ≤

1

δ
(ǫ1 +

ǫ1
1− ρ

) ≤ 3
ǫ1
δ
.

It is now possible to recover Ω(2) by a ρ-quasi-tiling of kn−1 translates of Fn−1 in

such a way that |U
kn−1

Fn−1
| ≥ ρ(1 − 3 ǫ1

δ )|Ω
(2)|. We now have a set Ω(3) such that

|Ω(3)| ≤ (1− ρ− 3ρ
ǫ1
δ
)|Ω(2)| ≤ (1− ρ+ ǫ2ρ)(1− ρ+ ρ

3ǫ1
δ

)|Ω(1)|

We will now take ǫ2 = 2ǫ1. Proceeding by induction, as long as |Ω(i−1)| ≥ ǫ|Ω(1)|,
the set Ω(i) (for 1 ≤ i ≤ n) will have the following properties:

1. α(Ω(i), Fn−i+1) ≤ (1 + i)ǫ1/δ
i−1

15



2. U
kn−i+1

Fn−i+1
is a ρ-quasi-tiling of Ω(i) by translates of Fn−i+1

3. If Ω(i+1) = Ω(i)
rU

kn−i+1

Fn−i+1
then |Ω(i+1)| ≤ |Ω(1)|

i∏
j=1

(1− ρ(1− (1 + j)ǫ1/δ
j−1))

Since it is not possible to hope that this process terminates before i = n, it remains
to be checked that if n is big enough, we still get a quasi-tiling that covers (1−δ)|Ω(1)|
elements. To achieve this, observe that the product in the third property above can
be bounded if i = n by

n∏

j=1

(1− ρ(1 − (1 + j)ǫ1/δ
j−1)) ≤ (1− ρ(1− (1 + n)ǫ1/δ

n−1))n.

For ǫ1 = δ2n, the right-hand term tends to 0 when n tends to ∞. Thus, ∃N(δ, ρ)
such that if ǫ1 = δ2N translates of Fj (where 1 ≤ j ≤ N) form a ρ-quasi-tiling of
any set Ω(1) such that α(Ω(1);FN ) ≤ δ2N .

We substitute as promised ρ = δ to have: for any fixed δ, we choose a subse-
quence whose members satisfy α(Fni+1 , Fni) ≤ δ2N where N is such that

(1− δ(1− (1 +N)δN+1))N < δ.

Then successive applications of lemma 5.5 give the required translates of Fni .

We are now ready to prove the main result of this section. At a first reading, this
proof might be easier to understand with Γ = Z in mind (taking Ωn = [−n, n]∩Z).

Proof of theorem 5.1. Let us first introduce some notations for the functions given
by pointwise convergence and their limits. Let{Ω+,ǫ

i } and {Ω−,ǫ
i } be subsequences

of {Ωi} such that

lim
i→∞

a(ǫ,Ω+,ǫ
i )

|Ω+,ǫ
i |

= lim sup
i→∞

a(ǫ,Ωi)

|Ωi|
and lim

i→∞

a(ǫ,Ω−,ǫ
i )

|Ω−,ǫ
i |

= lim inf
i→∞

a(ǫ,Ωi)

|Ωi|
.

Using (c), these limits are respectively real numbers l+(ǫ) and l−(ǫ) belonging to
the interval [0,K]. Furthermore, let

l+ := lim
ǫ→0

l+(ǫ) and l− := lim
ǫ→0

l−(ǫ).

Trivially, l+(ǫ) ≥ l−(ǫ), but nothing forces l±(0) = l± (in general, equality is not
expected). If we try to use the usual argument directly, a problem arises due to the
c-subadditivity. Indeed, taking a sequence which converges to l+(ǫ) and decompos-
ing it using another sequence which converges to l−(ǫ) by subadditivity will fail. A
factor of c will appear in front of the ǫ (see(d)), and this would force to pass from
the sequence Ω−,ǫ

i to Ω−,cǫ
i at each step. Diagonal arguments settle this problem.

Let

bi(ǫ) =
a(ǫ,Ω

−,1/i
i )

|Ω
−,1/i
i |

.

This is a sequence of bounded decreasing functions defined for ǫ ∈ [0, 1] with value
in [0,K]. Using (one of) Helly’s theorem (cf. [7, §36.5 theorem 5, p.372]), there
exists a subsequence ni which possesses a limit at each point. We briefly recall how
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this subsequence is obtained. First, a sequence {rk}k≥1 of dense rational number

in [0, 1] is taken. Since the bi(ǫ) are bounded, let n
(j)
i be the subsequence which

converges at rk for 1 ≤ k ≤ j. The diagonal sequence ni = n
(i)
i converges at each

rk, and since the functions bi(ǫ) are decreasing, the function lH(ǫ) = lim
i→∞

bni(ǫ)

which is a priori only defined for the rk is also decreasing. It remains to be checked
that lH(ǫ) extended at all the points of [0, 1] by approximating by a sequence of
increasing rk is the actual limit of the subsequence ni (see the above reference for
details). Let us show that lim

ǫ→0
lH(ǫ) = l−. This follows from

∀δ > 0, ∃N1(δ) such that N1(δ) < i ⇒ |bni(
1
ni
)− lH( 1

ni
)| < δ;

∀δ > 0, ∃N2(δ) such that N2(δ) < i ⇒ |bni(
1
ni
)− l−( 1

ni
)| < δ;

∀δ > 0, ∃N3(δ) such that N3(δ) < i ⇒ |l−( 1
ni
)− l−| < δ.

lH(ǫ) is decreasing in ǫ ⇒ lim
ǫ→0

lH(ǫ) = lim
i→∞

lH( 1
ni
)

These four assertions are respectively consequences of the definition of lH , the choice

of Ω
−,1/i
i , the definition of l−, and the fact that a limit that exists (thanks to

monotonicity) is achieved by any sequence. We shall now show that

∀δ > 0, l+(ǫ) ≤ lim
ǫ′→0

lH(ǫ′) + δ = l− + δ.

The argument is in essence the same as for subadditive sequences of real numbers:
lemma 5.8 plays the role of the decomposition n = kn′ + r and c-subadditivity (d)
forces ǫ → 0.

Let δ ∈]0, 1
2 [. Denote by Fi = Ω

−,1/ni
ni . It is possible to refine this sequence so

that
a(ǫ, Fi)/|Fi| ≤ lH(ǫ) + δ.

Applying lemma 5.8 gives an ǫ-quasi-tiling (which does not cover a set of proportion
δ) of any sufficiently big set by translates of the Fi. Since {Ω+,ǫ

i } is also a Følner
sequence, for i big enough, lemma 5.8 applies to each element. Take Ω = Ω+,ǫ

i ,
denote γFj ;mFj the kj translates of Fj obtained (m = 1, . . . , kj), and let i0 be such

that |Ω(i0)| ≤ δ|Ω(1)|. Thanks to repeated use of c-subadditivity (d), we have that

a(ǫ,Ω(1)) ≤

kn∑

m=1

a(cmǫ, γFn;mFn) + a(cknǫ,Ω(2))

≤ . . .

≤

n∑

i=n−i0

( ki∑

m=1

a(cκi+mǫ, γFi;mFi)
)
+ a(cκi0 ǫ,Ω(i0)),

where κi =
n∑

j=n−i

kn. Using Γ-invariance (a), the fact that these functions are

decreasing in ǫ (b), and the K-sublinear property (c), this inequality yields

a(ǫ,Ω(1)) ≤

n∑

i=n−i0

( ki∑

m=1

a(cκi0 ǫ, Fi)
)
+K|Ω(i0)|.
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On one hand, |Ω(i0)| ≤ δ|Ω(1)| and a(c
κi0 ǫ,Fi)
|Fi|

≤ lH(cκi0 ) + δ. Thence,

a(ǫ,Ω(1))

|Ω(1)|
≤

∑

i,m

a(cκi0 ǫ, Fi)
|Fi|

|γFi;mFi|

|Ω(1)|
+K

|Ω(i0)|

|Ω(1)|

≤ (lH(cκi0 ) + δ)
∑

i,m

|γFi;mFi|

|Ω(1)|
+Kδ

On the other hand, the {γFi;mFi} are δ-disjoint. Thus

(1− δ)
∑

|γFi;mFi| ≤ | ∪ γFi;mFi| ≤ |Ω(1)|.

This shows that

a(ǫ,Ω+,ǫ
j )

|Ω+,ǫ
j |

≤ (lH(cκi0 ) + δ)
∑

i,l

|γFi;lFi|

|Ω(1)|
+Kδ ≤

lH(cκi0 ) + δ

1− δ
+Kδ,

For all Ω+,ǫ
j big enough, where κi0 depends on Ω+,ǫ

j . Since lH(ǫ) is decreasing and
lim
ǫ→0

lH(ǫ) = l−, taking the limit when j and κi0 → ∞ is not a problem:

l+(ǫ) ≤ l− + δ(K + l− + 1).

We have shown that l+ = l−.
To deduce the independence on the choice of sequence, notice that given two

Følner sequences {Ωi} and {Ω′
i}, the sequence {Ω̃i} whose elements alternate be-

tween those of the two former sequences will also possess a limit. The limit obtained
with {Ωi} must be equal to the one taken via {Ωi} or {Ω′

i}.

A Von Neumann’s dimension and dimℓ2

We recall an argument of Gromov (see [6, §1.12]) that relates von Neumann to
the semi-axis of ellipsoids and thus showing that dimℓ2 is indeed von Neumann
dimension. We briefly review the definition of the latter.

Let Y ⊂ ℓ2(Γ;V ) be a Γ-invariant linear subspace, ∀Ω ⊂ Γ we define the operator
RΩ : Y → ℓ2(Ω;V ) by restriction to Ω: y 7→ y|Ω. Its adjoint R∗

Ω : ℓ2(Ω;V ) → Y
is the orthogonal projection to Y . To see this, write RΩ(y) = y1lΩ where 1lΩ is the
characteristic function of Ω, then

〈R∗
Ω(x), y〉 := 〈x,RΩy〉 =

∫

Γ

xy1lΩ =

∫

Γ

(1lΩx)y.

However this last expression is simply the scalar product of x, extended as a function
on all of Γ by 0, with y. Thus, R∗

Ω(x) is the projection on Y of the extension of x to
Γ by 0. In what follows we will omit this inclusion (extension by 0) from ℓ2(Ω;V )
to ℓ2(Ω′;V ) when Ω ⊂ Ω′. Dependence on Ω of R∗

Ω will not be written. A crucial
remark is that the invariance of Y by Γ implies that, for Ω,Ω′ ⊂ Γ finite subsets,

TrRΩR
∗

TrRΩ′R∗ =
|Ω|

|Ω′|
.
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A possible definition of von Neumann dimension (see [11] or [14, §1]) is

dimℓ2(Y : Γ) := |Ω|−1TrRΩR
∗

for a Ω ⊂ Γ. This quantity is actually independent of the chosen set. The aim of
this section is to retrieve this quantity as the wdim of a certain object.

Theorem A.1. ( cf. [6, 1.12A]) Let Ωi ⊂ Γ be a Følner sequence, let ni[a, b] be
the number of eigenvalues of the operator RΩiR

∗ (defined relative to Y ) contained
in the interval [a, b]. If 0 < a ≤ b < 1, then

lim
i→∞

ni[a, b]

|Ωi|
= 0

Proof. (The proof is with minor differences in notation that of [6].) Since RΩ and
R∗ are both projections (in ℓ2), the eigenvalues of RΩR

∗ will be contained in [0, 1].
The proof proceeds in three steps.

First, let x ∈ ℓ2(Ω;V ), it will be called an ǫ-quasimode of eigenvalue λ for RΩR
∗

if
‖RΩR

∗x− λx‖ℓ2 ≤ ǫ ‖x‖ℓ2 . (1)

If x is such an element, and if its restriction outside Ω is small, more precisely
∥∥R∗x|ΓrΩ

∥∥
ℓ2

= ‖R∗x−RΩR
∗x‖ℓ2 ≤ δ ‖x‖ℓ2 , (2)

then λ(1 − λ) ≤ 2ǫ+ δ. Indeed, using (1) in (2) yields that

‖R∗x− λx‖ℓ2 ≤ (δ + ǫ) ‖x‖ℓ2 .

R∗ is a projection, R∗R∗ = R∗ and ‖R∗‖ = 1, thence

(1− λ) ‖R∗x‖ℓ2 = ‖R∗x−R∗λx‖ℓ2 = ‖R∗(R∗x− λx)‖ℓ2
≤ ‖R∗x− λx‖ℓ2 ≤ (δ + ǫ) ‖x‖ℓ2 ,

as the eigenvalues of RΩR
∗ are all contained in [0, 1], |1−λ| = 1− λ. Moreover the

restriction to Ω can only reduce the norm, ‖RΩR
∗x‖ℓ2 ≤ ‖R∗x‖ℓ2 . Using (1) anew

gives,

(1− λ)λ ‖x‖ℓ2 ≤ (1− λ) ‖RΩR
∗x‖ℓ2 + (1− λ)ǫ ‖x‖ℓ2 ≤ (δ + (2− λ)ǫ) ‖x‖ℓ2

Second, we will look at smaller set inside Ω, see definition 5.3 for notations. Let Fρ

be a set of cardinality ρ. The next argument will consist in showing that most of
x ∈ ℓ2(intFρΩ;V ) have a small projection to Γr Ω. That is, let

Sρ = RΓrΩR
∗ = (1 −RΩ)R

∗ : ℓ2(intFρΩ;V ) → ℓ2(Γr Ω;V ),

then, for some Fρ, TrS
∗
ρSρ ≤ β(ρ)dim V |intFρΩ| where β(ρ) tends to 0 when ρ → ∞.

The dependence on ρ does not only come from the domain of definition: the operator
S∗
ρSρ is

S∗
ρSρ = RintFρΩ(1 −R∗)(1−RΩ)R

∗

= (RintFρΩ −RintFρΩR
∗)(R∗ −RΩR

∗)

= (RintFρΩR
∗ −RintFρΩR

∗R∗ −RintFρΩRΩR
∗ +RintFρΩR

∗RΩR
∗)

= RintFρΩR
∗(RΩR

∗ − 1).
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Any Dirac mass xγ with support at a point γ satisfies ‖R∗xγ‖ℓ2 ≤ 1 (R∗ is
a projection). Thus, there exists Fρ ∋ eΓ, such that ‖(1 − RγFρ)R

∗xγ‖ℓ2 ≤ β(ρ)

where |Fρ| = ρ and lim
ρ→∞

β(ρ) = 0. Consequently, for γ ∈ intFρΩ, ‖Sρxγ‖ℓ2 ≤ β(ρ)

since ΓrΩ is contained in the complement of the union of the γFρ for γ ∈ intFρΩ.
Since ‖S∗

ρ‖ ≤ 1, then ‖S∗
ρSρxγ‖ℓ2 ≤ β(ρ). The Dirac masses being an orthonormal

basis for ℓ2(intFρΩ;V ), it follows that TrS∗
ρSρβ(ρ) ≤ β(ρ)dim V |intFρΩ|.

Last, we shall evaluate ni[a, b] for a, b ∈]0, 1[ and b − a = ǫ ∈]0, 1[. Let Xi be
the space generated by eigenvectors of RΩiR

∗ whose eigenvalue is in [a, b]. Then,
∀λ ∈ [a, b], ∀x ∈ Xi, x is an ǫ-quasimode of eigenvalue λ for RΩiR

∗. The evalu-
ation of dimXi will be done by looking at spaces whose dimension is close. Let
Xρ

i = Xi ∩ ℓ2(intFρΩi, V ) be the subspace of elements which vanish on the thick-

ened boundary, dimXi − dimXρ
i ≤ dim V |∂−Fρ

Ωi|. The amenability of Ωi implies

that this difference is negligible, lim
i→∞

(dimXi − dimXρ
i )/|Ωi| = 0; it will suffice to

evaluate dimXρ
i .

Unfortunately, neither Xρ
i nor Xi is a priori invariant by S∗

ρSρ. Let’s neverthe-
less look at the intersection of Xρ

i with the space generated by eigenvectors of S∗
ρSρ

of eigenvalue ≤ κ2; we will denote this new intersection by Xρ,κ
i . On this space,

‖Sρ‖ ≤ κ since

‖Sρx‖
2
ℓ2 = 〈Sρx, Sρx〉 = 〈x, S∗

ρSρx〉 ≤ κ2 ‖x‖
2
ℓ2

Yet again, this space is of dimension close to that of Xρ
i : if E>κ2

is the space of
eigenvectors of S∗

ρSρ whose eigenvalue is greater than κ2, then

dimXρ
i − dimXρ,κ

i ≤ dimE>κ2

≤ κ−2TrS∗
ρSρ ≤ s|Ω−ρ

i |β(ρ)/κ2.

In other words,

∀κ > 0, ∀α > 0, ∃ρ such that lim sup
i→∞

dimXρ
i − dimXρ,κ

i

|Ωi|
≤ α,

Thus, it remains to evaluate dimXρ,κ
i . To do so, we use the conclusion of the first

part for λ = a, δ = κ and ǫ = b − a: if dimXρ,κ
i > 0, then a(1− a) ≤ 2(b− a) + κ.

Consequently, the inequality b− a < (a− a2 − κ)/2 implies that dimXρ,κ
i = 0. So

when ρ ≥ ρ0(κ, α) is sufficiently big, lim sup
i→∞

dimXρ
i /|Ωi| ≤ α. It follows that

lim sup
i→∞

dimXi

|Ωi|
≤ lim sup

i→∞

dimXi − dimXρ
i

|Ωi|
+ lim sup

i→∞

dimXρ
i

|Ωi|
≤ α.

But α → 0 as ρ → ∞. This proves the theorem for intervals [a, b] satisfying
b − a < a(1 − a)/2, as κ can also be made arbitrarily small for ρ big enough. The
conclusion is obtained by noticing that any interval strictly contained in [0, 1] can
be covered by intervals of this type.

This property enables us interpret von Neumann dimension as a wdim for a set
with a chosen pseudo-metric.

Corollary A.2. ( cf. [6, corollary 1.12.2]) Let Y ⊂ ℓ2(Γ;V ) be an invariant sub-

space, let BY
1 = Y ∩ B

ℓ2(Γ;V )
1 the intersection of the unit ball with Y . Then, for a

given Følner sequence Ωi ⊂ Γ,

∀ǫ ∈]0, 1[, lim
i→∞

1

|Ωi|
wdim ǫ(RΩiB

Y
1 , ℓ2) = dimℓ2Y
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Proof. (We give the argument of [6] in detail.) To get this result RΩB
Y
1 must

be seen as an ellipsoid whose semi-axes are related to the eigenvalues of RΩR
∗.

Remark that BY
1 = R∗B

ℓ2(Γ;V )
1 . Then, an ellipsoid can be defined as the image

of a ball by an self-adjoint operator, say A; the semi-axis of this ellipsoid are in
correspondence with the eigenvalue of A. It might be worth recalling how this
relates to the usual definition of an ellipsoid E (as the set {y| 〈y, Py〉 ≤ 1} for a
positive definite operator P ). The semi-axes of E are of the form λi(P )−1/2 for
λi(P ) an eigenvalue of P . Indeed let BV be a ball in a vector space V , and let
A : V → V be self-adjoint. Restricting to V ′ = ImA = kerA⊥ ⊂ V , it must be
shown that for x ∈ V ′ such that 〈x, x〉 ≤ 1, there exists P : V ′ → V ′ positive
definite such that 〈Ax, PAx〉 ≤ 1. Taking P = A−2 yields the conclusion: A−2 is
a positive definite operator on V ′ whose eigenvalues are λi(A)

−2. Thus ABV is an
ellipsoid with semi-axis λi(P )−1/2 = λi(A).

In our present context, RΩR
∗ is self-adjoint, thus RΩR

∗B
ℓ2(Γ;V )
1 = RΩB

Y
1 is

an ellipsoid whose semi-axis are the eigenvalues of RΩR
∗. This ellipsoid contains

isometrically the ball obtained by ignoring the semi-axis of length < ǫ and replacing
the remaining ones by semi-axis of length ǫ. Thus wdim ǫ(RΩiB

Y
1 , ℓ2) ≥ ni[ǫ, 1]. On

the other hand, wdim ǫ(RΩiB
Y
1 , ℓ2) ≤ ni[ǫ/2, 1], as the continuous map obtained by

projecting on the sub-ellipsoid formed by the semi-axis of length > ǫ/2 indicates.
When i → ∞, the eigenvalues of RΩiR

∗ tend to 0 or 1. In particular, when i → ∞
the inequality

1

|Ωi|
ni[ǫ, 1] ≤

1

|Ωi|
wdim ǫ(RΩiB, ℓ2) ≤

1

|Ωi|
ni[ǫ/2, 1]

shows that lim
i→∞

1
|Ωi|

wdim ǫ(RΩiB
Y
1 , ℓ2) = dimℓ2Y , since ni[a, 1] → TrRΩiR

∗.

This corollary can be expressed in terms of ℓp dimension. Indeed, let

BY
1 = Y ∩ B

ℓ2(Γ;V )
1 be endowed with the pseudo-metric of evaluation at e ∈ Γ:

ev(x, y) = ‖x(e)− y(e)‖V . Translation of this pseudo-metric by an element of γ is
the evaluation at γ. Thus, evℓ2(Ω)(x, y) = ‖x− y‖ℓ2(Ω) = ‖RΩ(x− y)‖ℓ2 . The map

RΩ : BY
1 → RΩB is continuous for the topology of BY

1 as a subset of ℓp (with τ∗ or
even with the norm topology). The fibers are of “diameter” 0 given that Ω′ ⊂ Ω.
Thus, corollary A.2 can be expressed as follows:

Wgcℓ2(B
Y
1 , τ∗, ev, {Ωi}) = dimℓ2Y.

Indeed, RΩiB
Y
1 injects isometrically in (BY

1 , evΩi) and (BY
1 , evΩi) possesses a map

to RΩiB
Y
1 whose fiber are of “diameter” 0. Thus

wdim ǫ(B
Y
1 , evΩi) = wdim ǫ(RΩiB

Y
1 , ℓ2).

This shows that definition 2.3 is equivalent when p = 2 to the von Neumann di-
mension and this for any Følner sequence {Ωi} chosen.

It would have been surprising that this were not the case in general. An alter-
ation of the Ornstein-Weiss lemma (see section 5) enables to show the independence
of the limit on the sequence chosen.
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