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Generalized Bernstein–Reznikov integrals

Jean–Louis Clerc, Toshiyuki Kobayashi, Bent Ørsted, Michael Pevzner

Abstract

We find a closed formula for the triple integral on spheres in
R2n × R2n × R2n whose kernel is given by powers of the standard
symplectic form. This gives a new proof to the Bernstein–Reznikov
integral formula in the n = 1 case. Our method also applies for linear
and conformal structures.

1 Triple product integral formula

We consider the symplectic form [ , ] on R2n = Rn ⊕ Rn given by

[(x, ξ), (y, η)] := −〈x, η〉+ 〈y, ξ〉. (1.1)

In this paper we prove a closed formula for the following triple integral:

Theorem 1.1. Let dσ be the Euclidean measure on the sphere S2n−1. Then,

∫

S2n−1×S2n−1×S2n−1

∣∣[Y, Z]
∣∣α−n

2

∣∣[Z,X ]
∣∣β−n

2

∣∣[X, Y ]
∣∣ γ−n

2 dσ(X)dσ(Y )dσ(Z)

=
(
2πn− 1

2

)3Γ
(
2−n+α

4

)
Γ
(
2−n+β

4

)
Γ
(
2−n+γ

4

)
Γ
(
δ+n
4

)

Γ(n)Γ
(
n−λ1

2

)
Γ
(
n−λ2

2

)
Γ
(
n−λ3

2

) .

Here, α = λ1 − λ2 − λ3, β = −λ1 + λ2 − λ3, γ = −λ1 − λ2 + λ3, δ =
−λ1 − λ2 − λ3 = α + β + γ.
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The integral converges absolutely if and only if (λ1, λ2, λ3) ∈ C3 lies in
the following non-empty open region (see Proposition 6.8) defined by:

Reα > n− 2, Re β > n− 2, Re γ > n− 2 (n ≥ 2),

Reα > n− 2, Re β > n− 2, Re γ > n− 2, Re δ > −1 (n = 1).

The integral under consideration extends as a meromorphic function of λ1, λ2
and λ3 ([3, Theorem 2], [15], see also [7]). A special case (n = 1) of Theorem
1.1 was previously established by J. Bernstein and A. Reznikov [5].

The strategy of our proof is to interpret the triple product integral as
the trace of a certain integral operator, for which we will find an explicit
formula of eigenvalues and their multiplicities. For this, our approach uses
the Fourier transform in the ambient space, appeals to the classical Bochner
identity, and finally reduces it to the special value of the hypergeometric
function 5F4. It gives a new proof even when n = 1.

Sections 2 and 3 are devoted to the proof of Theorem 1.1. In Section 4,
we discuss analogous integrals of the triple product kernels involving |x−y|λ
or |〈x, y〉|λ instead of

∣∣[x, y]
∣∣λ.

The underlying symmetries for Theorem 1.1 are given by the symplectic
group Sp(n,R) of any rank n, whereas those of Theorem 4.2 correspond to
the rank one group SO0(m+ 1, 1). Even in rank one case, our methods give
a new and simple proof of the original results due to Deitmar [6] for the case
|x − y|λ (see Theorem 4.2). Section 5 highlights some general perspectives
from representation theoretic point of view.

In Sections 2 and 6 we have made an effort, following questions of the
referee, to explain the role of meromorphic families of homogeneous distri-
butions and the precise condition for the absolute convergence of the triple
integral, respectively.

Notations: N = {0, 1, 2, . . .}, R+ = {x ∈ R : x > 0}.

2 Eigenvalues of integral transforms Tµ
We introduce a family of linear operators that depend meromorphically on
µ ∈ C by

Tµ : C∞(S2n−1) → C∞(S2n−1)

defined by

(Tµf)(η) :=

∫

S2n−1

f(ω)
∣∣[ω, η]

∣∣−µ−n
dσ(ω). (2.1)
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The integral (2.1) converges absolutely if Reµ < −n + 1, and has a
meromorphic continuation for µ ∈ C. If µ is real and sufficiently negative (e.g.
µ < −n), then the kernel function K(ω, η) := |[ω, η]|−µ−n is square integrable
on S2n−1 × S2n−1 and K(ω, η) = K(η, ω), and consequently, Tµ becomes
a self-adjoint, Hilbert–Schmidt operator on L2(S2n−1). In this section, we
determine all the eigenvalues of Tµ and the corresponding eigenspaces (see
Theorem 2.1).

2.1 Harmonic polynomials on R2n and Cn

First, let us remind the classic theory of spherical harmonics on real and
complex vector spaces.

For k ∈ N, we denote by Hk(RN) the vector space consisting of homoge-

neous polynomials p(x1, . . . , xN ) of degree k such that
N∑

j=1

∂2

∂x2j
p = 0.

In the polar coordinates x = rω (r ≥ 0, ω ∈ SN−1), we have

N∑

j=1

∂2

∂x2j
=

1

r2

((
r
∂

∂r

)2
+ (N − 2)

(
r
2

∂r

)
+∆SN−1

)
,

where ∆SN−1 denotes the Laplace–Beltrami operator on the unit sphere en-
dowed with the standard Riemannian metric. In light that r ∂

∂r
p = kp for a

homogeneous function p of degree k, we see that the restriction p|SN−1 for
p ∈ Hk(RN) belongs to the following eigenspace of ∆SN−1 :

Vk(S
N−1) := {ϕ ∈ C∞(SN−1) : ∆SN−1ϕ = −k(k +N − 2)ϕ}. (2.2)

Since homogeneous functions on RN are determined uniquely by the re-
striction to SN−1, we get an injective map

Hk(RN) → Vk(S
N−1), p 7→ p|SN−1

for each k ∈ N. This map is also surjective (see [9, Introduction, Theorem
3.1] for example), and we shall identify Hk(RN) with Vk(S

N−1). Thus, we
regard the following algebraic direct sum

H(RN ) :=
∞⊕

k=0

Hk(RN)
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as a dense subspace of C∞(SN−1).
Analogously, we can define the space of harmonic polynomials on Cn. For

α, β ∈ N, we denote by Hα,β(Cn) the vector space consisting of polynomials
p(Z, Z̄) on Cn subject to the following two conditions:

(1) p(Z, Z̄) is homogeneous of degree α in Z = (z1, . . . , zn) and of degree β
in Z̄ = (z̄1, . . . , z̄n).

(2)
n∑

j=1

∂2

∂zi∂z̄i
p(Z, Z̄) = 0.

Then, Hα,β(Cn) is a finite dimensional vector space. It is non-zero except for
the case where n = 1 and α, β ≥ 1.

By definition, we have a natural linear isomorphism:

Hk(R2n) ≃
⊕

α+β=k

Hα,β(Cn). (2.3)

We shall see that Hα,β(Cn) is an eigenspace of the operator Tµ for any
µ and for every α and β. To be more precise, we introduce a meromorphic
function of µ by

Ak(µ,C
n) ≡ Ak(µ) :=





0 (k : odd),

2πn− 1

2

Γ(1−n−µ
2

)Γ(k+n+µ
2

)

Γ(n+µ
2
)Γ(k+n−µ

2
)

(k : even).
(2.4)

We shall use the notation Ak(µ,C
n) when we emphasize the ambient

space Cn (see (4.6)).

Theorem 2.1. For α, β ∈ N,

Tµ

∣∣∣
Hα,β(Cn)

= (−1)βAα+β(µ) id .

The rest of this section is devoted to the proof of Theorem 2.1.
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2.2 Preliminary results on homogeneous distributions

In this section we collect some basic concepts and results on distributions
in a way that we shall use later. See [7, Chapters 1 and 2], and also [12,
Appendix].

A distribution Fν depending on a complex parameter ν is defined to be
meromorphic if for every test function ϕ, 〈Fν , ϕ〉 is a meromorphic function
in ν. We say Fν has a pole at ν = ν0 if 〈Fν , ϕ〉 has a pole at ν = ν0 for some
ϕ. Then, taking its residue at ν0, we get a new distribution

ϕ 7→ res
ν=ν0

〈Fν , ϕ〉,

which we denote by res
ν=ν0

Fν .

Suppose F is a distribution defined in a conic open subset in RN . We say
F is homogeneous of degree λ if

N∑

j=1

xj
∂

∂xj
F = λF (2.5)

in the sense of distributions, or equivalently, 〈F, ϕ
(
1
a
·
)
〉 = aλ+N 〈F, ϕ〉 for any

test function ϕ and a > 0.
Globally defined homogeneous distributions on RN are determined by

their restrictions to RN \ {0} for generic degree:

Lemma 2.2. Suppose f is a distribution on RN which is homogeneous of
degree λ. If f |RN\{0} = 0 and λ /∈ {−N,−N − 1,−N − 2, . . . }, then f = 0
as distribution on RN .

Proof. By the general structural theory on distributions, if supp f ⊂ {0}
then f must be a finite linear combination of the Dirac delta function δ(x)
and its derivatives. On the other hand, the degree of the delta function and
its derivatives is one of −N,−N − 1,−N − 2, . . . . By our assumption on f ,
this does not happen. Hence, we conclude f = 0 as distribution on RN .

For a given function p ∈ C∞(SN−1), we define its extension into a homo-
geneous function of degree λ by

pλ(rω) := rλp(ω), (r > 0, ω ∈ SN−1).

We regard the locally integrable functions as distributions by multiplying the
Lebesgue measure.
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Lemma 2.3. Let p ∈ C∞(SN−1), then

1) pλ is locally integrable on RN if Reλ > −N .

2) pλ extends to a tempered distribution which depends meromorphically on
λ ∈ C. Its poles are simple and contained in the set {−N,−N − 1, . . . }.

3) The distribution pλ is homogeneous of degree λ in the sense of (2.5) if λ
is not a pole.

Proof. 1) Clear from the formula of the Lebesgue measure dx = rN−1drdσ(ω)
in the polar coordinates x = rω (r > 0, ω ∈ SN−1).

2) Take a test function ϕ ∈ S(RN ). Suppose first Reλ > −N . Then, we
can decompose 〈pλ, ϕ〉 as

〈pλ, ϕ〉 =
∫

|x|≤1

pλ(x)ϕ(x)dx+

∫

|x|>1

pλ(x)ϕ(x)dx.

The second term extends holomorphically in the entire complex plane. Let
us prove that the first term extends meromorphically in C. For this, we fix
k ∈ N, and consider the Taylor expansion of ϕ:

ϕ(x) =
∑

|α|≤k

ϕ(α)(0)

α!
xα + ϕk(x),

where α = (α1, . . . , αN) is a multi-index, xα = xα1

1 · · ·xαN

N , |α| = α1+· · ·+αN ,
and ϕk(x) = O(|x|k+1). Accordingly, we have

∫

|x|≤1

pλ(x)ϕ(x)dx

=
∑

|α|≤k

ϕ(α)(0)

α!

∫

SN−1

p(ω)ωαdσ(ω)

∫ 1

0

rλ+|α|+N−1dr +

∫

|x|≤1

pλ(x)ϕk(x)dx

=
∑

|α|≤k

1

λ+ |α|+N

ϕ(α)(0)

α!

∫

SN−1

p(ω)ωαdσ(ω) +

∫

|x|≤1

pλϕk(x)dx.

The last term extends holomorphically to the open set {λ ∈ C : Reλ >
−N − k}. Since k is arbitrary we see that 〈pλ, ϕ〉 extends meromorphically
to the entire complex plane, and all its poles are simple and contained in the
set {−N,−N − 1,−N − 2, . . . }. Thus, the second statement is proved.
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3) The differential equation
N∑

j=1

xj
∂

∂xj
pλ(x) = λpλ(x) holds in the sense

of distributions for Reλ≫ 0. This equation extends to all complex λ except
for poles because the distribution pλ depends meromorphically on λ.

Example 2.4 (k = 0 case). For k = 0, Hk(RN) is one-dimensional, spanned
by the constant function 1. We denote by rλ the corresponding homogeneous
distribution 1λ.

As we saw in the proof of Lemma 2.3, the distribution rλ has a simple
pole at λ = −N and its residue is given by

res
λ=−N

rλ = vol(SN−1)δ(x) =
2π

N
2

Γ(N
2
)
δ(x). (2.6)

Example 2.5 (N = 1 case). In the one dimensional case, SN−1 consists of
two points, 1 and −1, and consequently, the homogeneous distribution pλ is
determined by the values pλ(1) and pλ(−1). From this viewpoint, we give a
list of classical homogeneous distributions on R.

pλ xλ+ xλ− |x|λ |x|λ sgn x (x+ i0)λ (x− i0)λ

p(1) 1 0 1 1 1 1

p(−1) 0 1 1 −1 eiπλ e−iπλ

Table 2.5.1: Homogeneous distributions on R

The notation (x± i0)λ indicates that these distributions are obtained as the
boundary values of holomorphic functions in the upper (or lower) half plane.
For Reλ > −1,

lim
ε↓0

(x± iε)λ = (x± i0)λ

holds both in the ordinary sense and in distribution sense. The distribu-
tions (x ± i0)λ extend holomorphically to all complex λ, whereas the poles
of xλ±, |x|λ, |x|λ sgn x are located at {−1,−2,−3, . . . }, {−1,−3,−5, . . . },
{−2,−4,−6, . . . }, respectively.

7



For λ 6= −1,−2, . . . , any two in Table 2.5.1 form a basis in the space of
homogeneous distributions of degree λ. For example, by a simple basis change
one gets:

(x− i0)λ = e−iπλ
2 (cos

π

2
λ|x|λ + i sin

π

2
λ|x|λ sgn x). (2.7)

2.3 Application of the Bochner identity

Let 〈 , 〉 be the standard inner product on RN . We consider the Fourier
transform F ≡ FRN on RN normalized by

(Ff)(Y ) :=
∫

RN

f(X)e−2πi〈X,Y 〉dX,

and we extend F to the space S ′(RN) of tempered distributions.
If f ∈ S ′(RN) is homogeneous of degree λ, then its Fourier transform Ff

is homogeneous of degree −λ−N .

Example 2.6 (N = 1 case).

1) F(xλ+)(y) =
e−

iπ
2
(λ+1)Γ(λ+ 1)

(2π)λ+1
(y − i0)−λ−1.

2) F(|x|λ)(y) = Γ(λ+1
2
)

πλ+ 1

2Γ(−λ
2
)
|y|−λ−1, and

F(|x|λ sgn x)(y) = −iΓ(λ+2
2
)

πλ+ 1

2Γ(1−λ
2
)
|y|−λ−1 sgn y.

These formulas may be found for instance in [7, Chapter II, §2.3], how-
ever, we shall give a brief proof because its intermediate step (e.g. (2.8)
below) will be used later (see the proof of Proposition 2.13).

Proof of Example 2.6. 1) Suppose Reλ > −1. Then xλ+ is locally integrable
on R, and we have

lim
ε↓0

e−2πεxxλ+ = xλ+

both in the ordinary sense and in the sense of distributions. Then, by
Cauchy’s integral formula and by the definition of the Gamma function, we
get

F(e−2πεxxλ+)(y) =
e−

πi
2
(λ+1)Γ(λ+ 1)

(2π)λ+1
(y − iε)−λ−1, (2.8)
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for ε > 0. Taking the limit as ε→ 0 we get the desired identity for Reλ > −1.
By the meromorphic continuation on λ, the first statement is proved.
2) Similarly to 1), we can obtain a closed formula for F(xλ−)(y). Then the

second statement follows readily from the base change matrix for the three
bases {xλ+, xλ−}, {|x|λ, |x|λ sgn x}, and {(x+ i0)λ, (x− i0)λ} for homogeneous
distributions on R. (We also use the duplication formula of the Gamma
function.)

We are ready to state the main result of this subsection. Let us define
the following meromorphic function of λ by

BN (λ, k) := π−λ−N
2 i−kΓ(

k+λ+N
2

)

Γ(k−λ
2
)
.

Lemma 2.7. For any p ∈ Hk(RN), we have the following identity

Fpλ = BN(λ, k)p−λ−N (2.9)

as distributions on RN that depend meromorphically on λ.

Example 2.8. Since (2.9) is an identity for meromorphic distributions, we
can pass to the limit, or compute residues at special values whenever it makes
sense. For instance, let k = 0. Then, by (2.6), the special value of (2.9) at
λ = 0 yields

F(1) = lim
λ→0

BN(λ, 0)r
−λ−N = δ(y).

In view of the identity BN(λ, 0)BN(−λ − N, 0) = 1, the residue of (2.9) at
λ = −N yields

F(δ(x)) = 1.

This, of course, is in agreement with the inversion formula for the Fourier
transform.

Proof of Lemma 2.7. For N = 1, k equals either 0 or 1, and correspondingly,
pλ is a scalar multiple of |x|λ or |x|λ sgn x, respectively. Hence, Lemma 2.7
in the case N = 1 is equivalent to Example 2.6 2).

Let us prove (2.9) for N ≥ 2 as the identity of distributions on RN . We
shall first prove the identity (2.9) on RN \ {0} in the non-empty domain:

−N < Reλ < −1

2
(N + 1). (2.10)
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Since the both sides of (2.9) are homogeneous distributions of the same
degree, this will imply that the identity (2.9) holds on RN by Lemma 2.2.
Further, since the both sides of (2.9) depend meromorphically on λ by Lemma
2.3, the identity (2.9) holds for all λ in the sense of distributions that depend
meromorphically on λ.

The rest of this proof is devoted to show (2.9) on RN \ {0} in the domain
(2.10). For this, it is sufficient to prove that

〈Fpλ, gq〉 = BN(λ, k)〈p−λ−N , gq〉,

for any compactly supported function g ∈ C∞
c (R+) and any q ∈ Hl(RN)

(l ∈ N) because the linear spans of such functions form a dense subspace in
C∞

c (R \ {0}). Here, gq stands for a function on RN \ {0} defined by

(gq)(sη) = g(s)q(η) (s > 0, η ∈ SN−1).

By definition of the Fourier transform on S ′(RN), 〈Fpλ, gq〉 = 〈pλ,F(gq)〉.
Hence, what we need to prove is

〈pλ,F(gq)〉 = BN(λ, k)〈p−λ−N , gq〉. (2.11)

We note that both pλ and p−λ−N are locally integrable functions on RN under
the assumption (2.10). To calculate the left-hand side of (2.11), we use the
Bochner identity for q ∈ Hl(RN):

∫

SN−1

q(ω)e−iν〈ω,η〉dω = (2π)
N
2 i−lν1−

N
2 Jl+N

2
−1(ν)q(η),

where Jµ(ν) denotes the Bessel function of the first kind. Then, we get the
following formula after a change of variables x = 2πrs:

F(gq)(rω) = 2πi−lr1−
N
2 q(ω)

∫ ∞

0

s
N
2 g(s)Jl+N

2
−1(2πrs)ds.

Hence, we have

〈pλ,F(gq)〉 =
∫ ∞

0

∫

SN−1

(∫ ∞

0

I(r, s)ds
)
p(ω)q(ω)dσ(ω)dr, (2.12)

where we set
I(r, s) := 2πi−lrλ+

N
2 s

N
2 g(s)Jl+N

2
−1(2πrs).

At this point, we prepare the following:

10



Claim 2.9. Assume that λ satisfies (2.10) and that g is compactly supported
in R+.

1) I(r, s) ∈ L1(R+ × R+, drds).

2)

∫ ∞

0

I(r, s)ds = BN(λ, l)g(s)s
−λ−1.

Proof of Claim 2.9. 1) Since the support of g is away from 0 and∞, it follows
from the asymptotic behaviour of the Bessel function Jµ(z) as z → 0 and
z → ∞ that there exists a constant c > 0 such that

|I(r, s)| ≤
{
c rReλ+N+l−1 as r → 0,

c rReλ+ 1

2
(N−1) as r → ∞.

By the assumption −N < Reλ < −1
2
(N + 1), we conclude I(r, s) is an

integrable function on R+ × R+.
2) This is a direct consequence of the following classical formula of the

Hankel transform [8, 6.561.14]

∫ ∞

0

xµJν(x)dx = 2µ
Γ(1+ν+µ

2
)

Γ(1+ν−µ
2

)
,

for Re(µ+ ν) > −1 and Reµ < −1
2
.

Returning to the proof of Lemma 2.7, we can now apply Fubini’s theorem
for the right-hand side of (2.12) to get

〈pλ,F(gq)〉 =
(∫

SN−1

p(ω)q(ω)dσ(ω)
)∫ ∞

0

(∫ ∞

0

I(r, s)ds
)
dr

= BN(λ, l)

∫

SN−1

p(ω)q(ω)dσ(ω)

∫ ∞

0

g(s)s−λ−1ds.

We recall that p ∈ Hk(RN) and q ∈ Hl(RN), therefore the first factor is
non-zero only if k = l. Then the right-hand side equals

= BN(λ, k)〈p−λ−N , gq〉.

Hence (2.11) is proved in the non-empty open domain of λ satisfying the
inequality (2.10). Therefore, the proof of Lemma 2.7 is completed.
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2.4 Fourier transform of homogeneous functions

We consider the restriction of the Fourier transform F on RN to the space
of homogeneous functions. For µ ∈ C, we set

Vµ ≡ Vµ(R
N) (2.13)

:= {f ∈ C∞(RN \ {0}) : f(tX) = |t|−µ−N
2 f(X) for any t ∈ R \ {0}}.

Then, Vµ may be regarded as a subspace of the space S ′(RN) of tempered
distributions for µ 6= N

2
, N

2
+ 2, . . . . We note that f ∈ Vµ is determined by

the restriction f |SN−1, and thus Vµ can be identified with the space of smooth
even functions on SN−1. In this subsection, we will prove:

Proposition 2.10. Suppose |µ| 6= N
2
, N

2
+2, . . . . Then the Fourier transform

F : S ′(RN) → S ′(RN) induces a bijection between V−µ and Vµ.

For the proof of this proposition, we prepare some general result as
follows. Let M be a compact smooth Riemannian manifold. We write
∆M for the Laplace–Beltrami operator, Ker(∆M − λ) for the eigenspace
{f ∈ C∞(M) : ∆Mf = λf}, and τ for the Riemannian volume element.
Then we can regard C∞(M) as a subspace of D′(M), the space of distribu-
tions, by f(x) 7→ f(x)dτ(x).

Lemma 2.11. Suppose A : C∞(M) → D′(M) is a linear map satisfying the
following two properties:

A acts as a scalar, say a(λ) ∈ C, on each eigenspace Ker(∆M − λ). (2.14)

a(λ) is at most of polynomial growth, namely,

there exist C,N > 0 such that |a(λ)| ≤ C(1 + |λ|)N . (2.15)

Then, Aψ ∈ C∞(M) for any ψ ∈ C∞(M).

Remark 2.12. For a real analytic manifold M , an analogous statement holds
for a linear map A : A(M) → B(M), where A, B denote the sheaf of real
analytic functions, (Sato’s) hyperfunctions, respectively, if a(λ) is at most of
infra exponential growth (see [11, Section 2.3]).
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Proof of Lemma 2.11. By Sobolev’s lemma, a distribution T on M belongs
to C∞(M) if and only if ∆l

MT (in the sense of distributions) belongs to
L2(M) for any l ∈ N. We will show that this is the case for T = Aψ if
ψ ∈ C∞(M).

Let 0 = λ0 > λ1 ≥ λ2 ≥ . . . the (negative) eigenvalues of ∆M , repeated
according to their multiplicites. We take an orthonormal basis {ϕj : j =
0, 1, 2, . . .} in L2(M) consisting of real-valued eigenfunctions of ∆M with
eigenvalues λj. Then any distribution T on M can be expanded into a series
of eigenfunctions (as a distribution):

T =
∑

j

cjϕj, cj := 〈T, ϕj〉 .

For l ∈ N, the condition ∆l
MT ∈ L2(M) amounts to

∑

j

|cj|2λ2lj <∞ ,

so that

T ∈ C∞(M) ⇐⇒
∑

j

|cj |2(1 + |λj|)2l <∞ for any l ∈ N .

Take any ψ ∈ C∞(M), and expand it into a series of eigenfunctions

ψ =
∑

j

bjϕj , bj = 〈ψ, ϕj〉L2(M) .

Applying the operator A, we get from (2.14)

Aψ =
∑

j

bja(λj)ϕj .

For any l ∈ N, using (2.15)

∑

j

|bja(λj)|2λ2lj ≤ C
∑

j

|bj|2(1+|λj|)2Nλ2lj ≤ C
∑

j

|bj |2(1+|λj)|2N+2l < +∞ .

Thus Aψ ∈ C∞(M). Hence Lemma 2.11 is proved.

We are ready to complete the proof of Proposition 2.10.
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Proof of Proposition 2.10. For f ∈ V−µ, Ff is a homogeneous distribution
of degree −µ− N

2
. Therefore, to see that Ff ∈ C∞(RN \ {0}), it is sufficient

to show that the restriction Ff |SN−1 is a smooth function on SN−1. This
follows from the general result (see Lemma 2.11) together with Lemma 2.7
and Stirling’s formula on the asymptotic behaviour of the Gamma function.
Hence, Proposition 2.10 is proved.

2.5 Operator Tµ and Symplectic Fourier transform FJ

The key idea to find eigenvalues of the integral transform Tµ on L2(S2n−1)
is to interpret it as the restriction of the symplectic Fourier transform, to be
denoted by FJ , on the ambient space R2n.

If Reµ < −N
2
+ 1, the following integral converges absolutely for any

h ∈ C∞(SN−1):

(Qµh)(η) :=

∫

SN−1

|〈ω, η〉|−µ−N
2 h(ω)dω. (2.16)

Then Qµh extends meromorphically on µ ∈ C, whose poles are simple and
contained in the set {1 − N

2
, 3 − N

2
, 5 − N

2
, . . . }. Thus, we get a family of

linear operators that depend meromorphically on µ ∈ C by

Qµ : C∞(SN−1) → C∞(SN−1).

We may regard Qµh as an even homogeneous function on RN \ {0} of degree
−µ− N

2
by simply letting η be a variable in RN \ {0}. Then, Qµh ∈ Vµ. By

Proposition 2.10, the Fourier transform F gives a bijection between V−µ and
Vµ for |µ| 6= N

2
, N

2
+ 2, . . . . On the other hand, Vµ can be identified with the

space of smooth even functions on SN−1. We notice that the latter space is
independent of µ. Thus, we have the following diagram:

F : S ′(RN)
∼−→ S ′(RN)

∪ � ∪
V−µ

∼−→ Vµ

∩ ∩
Qµ : C∞(SN−1) −→ C∞(SN−1)

14



The lower diagram commutes up to a scalar constant. To make a precise
statement, we define

CN(µ) :=
(2π)µ+

N
2

Γ(µ+ N
2
) cos π

2
(µ+ N

2
)

=
2πµ+N−1

2 Γ(2−N−2µ
4

)

Γ(N+2µ
4

)
. (2.17)

Then we have:

Proposition 2.13. As operators that depend meromorphically on µ, Qµ sat-
isfy the following identity:

Qµ = CN(µ)F
∣∣
V−µ

.

Proof. Any element in V−µ is of the form

hµ−N
2

(rω) = rµ−
N
2 h(ω) (r > 0, ω ∈ SN−1),

for some h ∈ C∞(SN−1) which is an even function, i.e., h(ω) = h(−ω).
We shall prove

Qµhµ−N
2

= CN(µ)Fhµ−N
2

(2.18)

as distributions on RN \ {0}. For each fixed h, the both sides of (2.18) are
distributions that depend meromorphically on µ. Therefore, it is sufficient
to prove (2.18) for some non-empty open domain in µ, say,

Reµ > −N
2
. (2.19)

The inequality (2.19) implies that hµ−N
2

∈ L1
loc(R

N ), and we have

lim
ε↓0

e−2πεrhµ−N
2

(rω) = hµ−N
2

(rω)

as a locally integrable function, and also in S ′(RN). Hence, taking the Fourier
transform, we get

lim
ε↓0

F(e−2πεrhµ−N
2

) = Fhµ−N
2

in S ′(RN).
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Let us compute F(e−2πεrhµ−N
2

). Below, we use the Fourier transform for

both RN and R, which will be denoted by FRN and FR to avoid confusion.
We note that e−2πεrhµ−N

2

∈ L1(RN) if ε > 0 and µ satisfies (2.19). Let s > 0

and η ∈ SN−1. Then the Fourier transform can be computed by the Lebesgue
integral:

FRN (e−2πεrhµ−N
2

)(sη)

=

∫

SN−1

∫ ∞

0

e−2πεrrµ+
N
2
−1e−2πirs〈ω,η〉drdσ(ω)

=

∫

SN−1

FR(r
µ+N

2
−1

+ )(s〈ω, η〉 − iε)dσ(ω)

=
Γ(µ+ N

2
)e−

πi
2
(µ+N

2
)

(2π)µ+
N
2

∫

SN−1

(s〈ω, η〉 − iε)−µ−N
2 h(ω)dσ(ω).

Taking the limit as ε→ 0, we get

FRNhµ−N
2

(sη) =
Γ(µ+ N

2
)e−

πi
2
(µ+N

2
)

(2π)µ+
N
2 sµ+

N
2

∫

SN−1

(〈ω, η〉 − i0)−µ−N
2 h(ω)dσ(ω),

where (〈ω, η〉−i0)λ denotes the substitution of x = 〈ω, η〉 into the distribution
(x− i0)λ (see Example 2.5). Since h is an even function, the above integral
amounts to

ei
π
2
(µ+N

2
) cos

π

2

(
µ+

N

2

)∫

SN−1

|〈ω, η〉|−µ−N
2 h(ω)dσ(ω)

by (2.7). Therefore, FRNhµ−N
2

(sη) equals

(2π)−µ−N
2 s−µ−N

2 Γ

(
µ+

N

2

)
cos

π

2

(
µ+

N

2

)∫

SN−1

|〈ω, η〉|−µ−N
2 h(ω)dσ(ω)

= CN(µ)
−1s−µ−N

2 (Qµh)(η).

Thus, Proposition 2.13 has been proved.

So far, N has been an arbitrary positive integer. Suppose now that N is
an even integer, say, N = 2n. We introduce the symplectic Fourier transform
defined by the formula:

(FJf)(Y ) :=

∫

R2n

f(X)e−2πi[X,Y ]dX.
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We identify R2n with Cn by (x, ξ) 7→ x + iξ. Correspondingly, the complex
structure on R2n is given by the linear transform

J : R2n → R2n, J(x, ξ) := (−ξ, x).
Then the formula (1.1) is equivalent to

[X, Y ] = 〈X, JY 〉 (X, Y ∈ R2n),

and therefore, our FJ and the usual Fourier transform FR2n are related by
the formula:

(FJf)(Y ) = FR2n(JY ). (2.20)

Likewise, the linear operators Tµ (see (2.1)) and Qµ for N = 2n (see
(2.16)) are related by

Tµf(Y ) = Qµ(JY ).

Therefore, Proposition 2.13 leads us to:

Proposition 2.14. Let CN(µ) be the constant defined in (2.17). Then,

Tµ = C2n(µ)FJ

∣∣
V−µ

.

Remark 2.15. Since the symplectic Fourier transform FJ induces a bijection
FJ

∣∣
V−µ

: V−µ
∼→ Vµ for all µ ∈ C, Proposition 2.14 implies that Tµ is also

bijective as far as C2n(µ) 6= 0,∞.
We note that C2n(µ) has simple zeros at µ + n = 0,−2,−4, . . . . In this

case, the kernel
∣∣[X, Y ]

∣∣−µ−n
is a polynomial in Y of degree −(µ + n), and

correspondingly, (Tµf)(Y ) is also a polynomial of the same degree. Thus,
Image Tµ is finite dimensional, and Ker Tµ is infinite dimensional.

On the other hand, C2n(µ) has simple poles at µ + n = 1, 3, 5, . . . . This
corresponds to the fact that the distribution |x|λ of one variable has simple
poles at λ = −1,−3,−5, . . . (see [7]).

We are now ready to complete the proof of Theorem 2.1.

Proof of Theorem 2.1. Suppose p ∈ Hα,β(Cn). Since J acts on zj (1 ≤ j ≤ n)
by

√
−1 and z̄j by −

√
−1, we have

p(Jη) = (−1)
α−β
2 p(η). (2.21)

In view of Lemma 2.7, Proposition 2.14, and (2.20), the operator Tµ acts on
Hα,β(Cn) as a scalar

(−1)
α−β
2 C2n(µ)B2n(µ− n, α + β).

This amounts to (−1)βAα+β(µ), whence Theorem 2.1.
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3 Proof of Theorem 1.1

3.1 Dimension formulas for spherical harmonics

This subsection summarizes some elementary results on the dimensions of
harmonic polynomials in a way that we shall use later. They are more or less
known, however, we give a brief account of them for the convenience of the
reader.

Let Pk(RN) be the complex vector space of homogeneous polynomials in
N variables of degree k. Its dimension is given by the binomial coefficient:

dimPk(RN ) =

(
k +N − 1

k

)
.

In light of the linear bijection (see e.g. [9, pp. 17]):

Hk(RN)⊕Pk−2(RN)
∼→ Pk(RN), (p, q) 7→ p(X) + |X|2q(X),

we get the dimension formula of Hk(RN):

dimHk(RN) = dimPk(RN)− dimPk−2(RN)

=
(k +N − 3)!(2k +N − 2)

k!(N − 2)!
. (3.1)

In the next subsection, we shall use the following recurrence formula:

Lemma 3.1. dimHk(RN) + dimHk−1(RN+1) = dimHk(RN+1).

Proof. By the elementary combinatorial formula

(
m
k

)
+

(
m

k − 1

)
=

(
m+ 1
k

)
,

we have
dimPk(RN) + dimPk−1(RN+1) = dimPk(RN+1). (3.2)

Taking the difference of (3.2) for k and k − 2, and applying (3.1), we get
Lemma 3.1.

To find the dimension formula of Hα,β(Cn) one might apply the above
method (see e.g. [16, Section 11.2.1]), but it would be more convenient for
our purpose to use representation theory. There is a natural action of the
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unitary group U(n) on Hα,β(Cn). This representation is irreducible, and its
highest weight is given by (α, 0, . . . , 0,−β) in the standard coordinates of the
Cartan subalgebra. By the Weyl character formula, we get

dimHα,β(Cn) =
(α + β + n− 1)

(n− 1)!(n− 2)!

n−1∏

i=2

(α + i− 1)(β + n− i).

If we use the Pochhammer symbol (a)l defined by

(a)l :=
Γ(a+ l)

Γ(a)
= a(a + 1) · · · (a+ l − 1),

then we may express these dimensions as

dimHk(RN) =
(k + 1)N−3(2k +N − 2)

Γ(N − 1)
,

dimHα,β(Cn) =
(α + β + n− 1)(α + 1)n−2(β + 1)n−2

Γ(n)Γ(n− 1)
. (3.3)

3.2 Alternating sum of dimHα,β(Cn)

By the direct sum decomposition (2.3), the following identity is obvious:

dimHk(R2n) =
∑

α+β=k

dimHα,β(Cn).

However, what we need for the proof of Theorem 1.1 is an explicit formula
for the alternating sum:

D(k) :=
∑

α+β=k

(−1)β dimHα,β(Cn).

Clearly, D(k) = 0 for odd k because dimHα,β(Cn) = dimHβ,α(Cn).
A closed formula of D(k) for even k is the main issue of this subsection,

and we establish the following relation:

Proposition 3.2.

D(2l) = dimHl(Rn+1) =
(n− 1)l(

n+1
2
)l

l!(n−1
2
)l

. (3.4)
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Remark 3.3. The Pochhammer symbol (a)l may be regarded as a meromor-
phic function. Thus, the right-hand side of (3.4) can be regarded as a mero-
morphic function of n. In this sense, the right-hand side of (3.4) still makes
sense for n = 1.

The rest of this subsection is devoted to the proof of Proposition 3.2. For
this, we set

X(l) := xl +
1

xl
for l = 1, 2, . . . .

It is readily seen that X(l) is expressed as a monomial in

X := x+
1

x

of degree l. For example,

X(1) = X, X(2) = X2 − 2, X(3) = X3 − 3X, . . . . (3.5)

For an arbitrary l, we have the following formula:

Lemma 3.4.

X(l) =

[ l
2
]∑

j=0

(−1)j dimHj(Rl+2−2j)X l−2j . (3.6)

Proof. We prove Lemma 3.4 by induction on l. The equation (3.6) holds for
l = 1, 2 by (3.5). Suppose l ≥ 2. We shall prove the equation (3.6) for l + 1.
We use

X(l+1) =

(
x+

1

x

)(
xl +

1

xl

)
−
(
xl−1 +

1

xl−1

)

= XX(l) −X(l−1).

By substituting (3.6) for l and l − 1 into the right-hand side, we get

X(l+1) =

[ l
2
]∑

j=0

(−1)j dimHj(Rl+2−2j)X l+1−2j

−
[ l−1

2
]∑

i=0

(−1)i dimHi(Rl+1−2i)X l−1−2i

= X l+1 +

[ l+1

2
]∑

j=1

(
(−1)j(dimHj(Rl+2−2j) + dimHj−1(Rl+3−2j))X l+1−2j

)
.
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To see the second equality for odd l, we note that dimHd(R1) = 0 for d ≥ 2,
and thus

dimHj(Rl+2−2j) = 0 for j =
l + 1

2
. (3.7)

Applying the recurrence formula given in Lemma 3.1, we get (3.6) for
l + 1. By induction, we have proved Lemma 3.4.

Proof of Proposition 3.2. We take a maximal torus T of U(n) and its coor-
dinate (x1, . . . , xn) such that

T = {x = (x1, . . . , xn) ∈ Cn : |x1| = · · · = |xn| = 1},

and that the linear map J : R2n → R2n is represented as J = (
√
−1, . . . ,

√
−1) ∈

T . Then the character χHk(R2n)(g) of the representation of O(2n) on Hk(R2n)
takes the value

∑

α+β=k

(−1)
α−β
2 dimHα,β(Cn) = (−1)

k
2D(k)

at g = J .
By using this observation, we shall analyze the character χHk(R2n)(g) as

g approaches to the singular point J ∈ T .
Let

X
(l)
j := xlj +

1

xlj
(1 ≤ j ≤ n, l ∈ N),

and we set

sk(x) := det




X
(k+n−1)
1 X

(k+n−1)
2 · · · X

(k+n−1)
n

X
(n−2)
1 X

(n−2)
2 · · · X

(n−2)
n

...
...

...

X
(1)
1 X

(1)
2 X

(1)
n

1 1 · · · 1



.

Then, by the Weyl character formula for the group O(2n) and by using a
trick which reduces the summation over the Weyl group for O(2n) to that
over the symmetric group Sn (see [14]), we have

χHk(R2n)(x) =
sk(x)

s0(x)
for x ∈ T .
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Since X(l) ≡ X l mod Q-span〈1, X, . . . , X l−1〉 an elementary property of
the determinant shows:

sk(x) = det




X
(k+n−1)
1 X

(k+n−1)
2 · · · X

(k+n−1)
n

Xn−2
1 Xn−2

2 · · · Xn−2
n

...
...

...
X1 X2 Xn

1 1 · · · 1



.

As xj goes to
√
−1, Xj tends to 0 (1 ≤ j ≤ n). Therefore, we have

χ2l
H(R2n)(J) = lim

X1,...,XN→0

s2l(x)

s0(x)

= the coefficient of Xn−1 in the expansion (3.6)
for X(2l+n−1)

= (−1)l dimHl(Rn+1).

Here, we have used Lemma 3.4 for the last equality. Thus, we have proved

D(2l) = dimHl(Rn+1).

The second equality of (3.4) is immediate from (3.1).

3.3 Triple integral as a Trace

We are now ready to prove Theorem 1.1. As we remarked in Introduction,
the both sides of Theorem 1.1 are meromorphic functions of λ1, λ2, and λ3.
Therefore, it is sufficient to prove the identity in Theorem 1.1 in an open set
of the parameters (λ1, λ2, λ3) ∈ C3.

By the change of variables µj :=
1
2
(λ1+λ2 +λ3−n)−λj (1 ≤ j ≤ 3), we

first consider the case when Reµ1 ≪ 0, Reµ2 ≪ 0, and Reµ3 ≪ 0. Then,
the operators Tµ1

, Tµ2
, and Tµ3

are Hilbert–Schmidt operators on L2(S2n−1).
In particular, the composition Tµ1

Tµ2
Tµ3

is of trace class, and its trace is
given by

Trace(Tµ1
Tµ2

Tµ3
)

=

∫

(S2n−1)3

∣∣[X, Y ]
∣∣−µ1−n∣∣[Y, Z]

∣∣−µ2−n∣∣[Z,X ]
∣∣−µ3−n

dσ(X)dσ(Y )dσ(Z).
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On the other hand, the trace of the operator Tµ1
Tµ2

Tµ3
can be also computed

by its eigenvalues. Therefore, by using Theorem 2.1, we have

Trace(Tµ1
Tµ2

Tµ3
) =

∑

α,β

(
3∏

j=1

(−1)βAα+β(µj)

)
dimHα,β(Cn)

=
∞∑

k=0

3∏

j=1

Ak(µj)

(
∑

α+β=k

(−1)3β dimHα,β(Cn)

)

=

∞∑

l=0

D(2l)

3∏

j=1

A2l(µj).

Applying Proposition 3.2, we get

Trace(Tµ1
Tµ2

Tµ3
) =

∞∑

l=0

A2l(µ1)A2l(µ2)A2l(µ3) dimHl(Rn+1).

In light of the recurrence relation:

A2l+2(µ)

A2l(µ)
=
l + n+µ

2

l + n−µ
2

,

the meromorphic function A2l(µ) can be expressed in terms of Pochhammer
symbols as

A2l(µ) =
(n+µ

2
)l

(n−µ
2
)l
A0(µ),

where

A0(µ) = 2πn− 1

2

Γ(1−n−µ
2

)

Γ(n−µ
2
)
. (3.8)

Therefore,

Trace(Tµ1
Tµ2

Tµ3
)

= A0(µ1)A0(µ2)A0(µ3)

∞∑

l=0

(n− 1)l(
n+1
2
)l

l!(n−1
2
)l

3∏

j=1

(
n+µj

2
)l

(
n−µj

2
)l

= A0(µ1)A0(µ2)A0(µ3) 5F4

(
n− 1 n+1

2
n+µ1

2
n+µ2

2
n+µ3

2

n−1
2

n−µ1

2
n−µ2

2
n−µ3

2

; 1

)
.
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Here 5F4 is a generalized hypergeometric function.
A generalized hypergeometric function

pFq

(
α1 α2 · · · αp

β1 · · · βq
; z

)

is called well-poised (see [1]) if p = q + 1 and

1 + α1 = α2 + β1 = · · · = αp + βq.

In particular, our case is well-poised, and we can use the following Dougall–
Ramanujan identity (see [loc. cit., pp. 25–26]):

5F4

(
m− 1 m+1

2
−x −y −z

m−1
2

x+m y +m z +m
; 1

)

=
Γ(x+m)Γ(y +m)Γ(z +m)Γ(x+ y + z +m)

Γ(m)Γ(x+ y +m)Γ(y + z +m)Γ(x+ z +m)
.

Together with (3.8), we get

Trace(Tµ1
Tµ2

Tµ3
) =

(2πn− 1

2 )3Γ(1−n−µ1

2
)Γ(1−n−µ2

2
)Γ(1−n−µ3

2
)Γ(−µ1−µ2−µ3−n

2
)

Γ(n)Γ(−µ1+µ2

2
)Γ(−µ2+µ3

2
)Γ(−µ1+µ3

2
)

.

(3.9)
Now, Theorem 1.1 follows by substituting µ1 = −1

2
(α+ n), µ2 = −1

2
(β + n),

and µ3 = −1
2
(γ + n).

4 Other triple integral formulas

In this section, we discuss explicit formulas for the integrals of the triple
product of powers of |x − y| and |〈x, y〉| instead of those of the symplectic
form

∣∣[X, Y ]
∣∣.

4.1 Triple product of powers of |x− y|
In this subsection we consider a family of linear operators that depend mero-
morphically on µ ∈ C by

Rµ : C∞(Sm) → C∞(Sm)
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defined by

(Rµf)(η) =

∫

Sm

|ω − η|−µ−mf(ω)dσ(ω). (4.1)

The multiplier action of Rµ on spherical harmonics is known (see e.g. [2]):

Rµ

∣∣∣
Hk(Rm+1)

= γk(µ) id, (4.2)

where γk(µ) ≡ γk(µ,R
m+1) is given by

γk(µ) =
Γ(m+ 1

2
)Γ(−µ

2
)Γ(k + m+µ

2
)

2µ+1
√
πΓ(µ+m

2
)Γ(k + m−µ

2
)
. (4.3)

Then, by an argument parallel to Section 3.3, we can obtain a closed
formula for the triple integral built on Rµ (see Theorem 4.2 below). Instead
of repeating similar computations, we pin down a comparison result between
the two triple integral formulas by using Proposition 3.2. This comparison
result explains the reason why the same method (e.g. Dougall–Ramanujan
identity) is applicable, and seems interesting for its own sake.

Proposition 4.1.

Trace(Rµ1
Rµ2

Rµ3
: L2(Sm) → L2(Sm))

= cTrace(Tµ1
Tµ2

Tµ3
: L2(S2m−1) → L2(S2m−1)), (4.4)

where

c =

(
Γ(m+ 1

2
)

22πm

)3 3∏

j=1

Γ(−µj

2
)

2µjΓ(
−µj−m+1

2
)
.

Proof. By (4.2) the left-hand side of (4.4) equals

∞∑

k=0

(
3∏

j=1

γk(µj,R
m+1)

)
dimHk(Rm+1). (4.5)

Comparing (4.3) with Theorem 2.1 we get

γk(µ,R
m+1)

A2k(µ,Cm)
=

Γ(m+ 1
2
)Γ(−µ

2
)

2µ+2πmΓ(−µ−m+1
2

)
. (4.6)

By (4.6) and (3.9), we see that (4.5) equals the right-hand side of (4.4).

25



The right-hand side in Proposition 4.1 was found in (3.9). Then, by a
simple computation, we get

Trace(Rµ1
Rµ2

Rµ3
)

=

(
Γ(m+ 1

2
)

2π
1

2

)3
Γ(−µ1−µ2−µ3−m

2
)

Γ(m)

3∏

j=1

Γ(−µj

2
)

2µjΓ(
µj−(µ1+µ2+µ3)

2
)
.

Finally, substituting µj = 1
2
(λ1 + λ2 + λ3 − m) − λj (1 ≤ j ≤ 3), we have

proved the following:

Theorem 4.2. Let α, β, γ, and δ be as in Theorem 1.1
∫

Sm×Sm×Sm

|Y − Z|α−m
2 |Z −X|β−m

2 |X − Y | γ−m
2 dσ(X)dσ(Y )dσ(Z)

=

(
Γ(m+ 1

2
)

21−
m
2 π

1

2

)3
1

2
λ1+λ2+λ3

2 Γ(m)

Γ(α+m
4

)Γ(β+m
4

)Γ(γ+m
4

)Γ( δ+m
4

)

Γ(m−λ1

2
)Γ(m−λ2

2
)Γ(m−λ3

2
)

.

We will give in Proposition 6.9 the domain for the absolute convergence
of the above integral.

Remark 4.3. The formula in Theorem 4.2 was previously found by A. Deitmar
[6] by a different method; namely it established a recurrence formula bridging
SOo(ℓ + 1, 1) to SOo(ℓ− 1, 1) and used the Bernstein–Reznikov formula for
SOo(2, 1) and an analogous formula for SOo(3, 1).

4.2 Triple product of powers of |〈x, y〉|
In this subsection we consider the third case, namely, the linear operators
Qµ : C∞(SN−1) → C∞(SN−1) defined by the kernel |〈x, y〉|−µ−N

2 (see (2.16))
and the corresponding triple product integrals.

Here is the counterpart of Theorem 2.1 for Qµ:

Proposition 4.4. Qµ

∣∣∣
Hk(RN )

= 0 for odd k, and

Qµ

∣∣∣
H2l(RN )

= cN(µ, l) id,

where

cN(µ, l) = (−1)l
2π

N−1

2 Γ(2−N−2µ
4

)Γ(l + 2µ+N
4

)

Γ(N+2µ
4

)Γ(l + −2µ+N
4

)
.
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Proof. By Lemma 2.7 and Proposition 2.13, we have

cN (µ, l) = CN(µ)BN(µ− N

2
, 2l).

As in the previous cases, we have

Trace(Qµ1
Qµ2

Qµ3
: L2(SN−1) → L2(SN−1))

=

∞∑

l=0

(
3∏

j=1

cN(µj, l)

)
dimH2l(RN). (4.7)

By substituting

cN(µ, l) = (−1)lcN (µ, 0)
(N+2µ

4
)l

(N−2µ
4

)l
,

dimH2l(RN) =
(N
2
− 1)l(

N−1
2

)l(
N+2
4

)l

l!(1
2
)l(

N−2
4

)l

into the right-hand side of (4.7), we see that (4.7) equals

(
3∏

j=0

cN(µj, 0)

)
∞∑

j=0

(−1)l
3∏

j=1

(
N+2µj

4
)l

(
N−2µj

4
)l

(N
2
− 1)l(

N−1
2

)l(
N+2
4

)l

l!(1
2
)l(

N−2
4

)l

=

3∏

j=0

cN(µj, 0)6F5

(
N
2
− 1 N+2

4
N−1
2

N+2µ1

4
N+2µ2

4
N+2µ3

4

N−2
4

1
2

N−2µ1

4
N−2µ2

4
N−2µ3

4

; 1

)
.

By using Whipple’s transformation ([1, p.28]):

6F5

(
a, 1 + 1

2
a, b, c, d, e

1
2
a, 1 + a− b, 1 + a− c, 1 + a− d, 1 + a− e

;−1

)

=
Γ(1 + a− d)Γ(1 + a− e)

Γ(1 + a)Γ(1 + a− d− e)

× 3F2

(
1 + a− b− c, d, e

1 + a− b, 1 + a− c
; 1

)
,
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we get

Trace(Qµ1
Qµ2

Qµ3
) =

(2π
N−3

2 )3
∏3

j=1 Γ(
2−N−2µj

4
)

Γ(N
2
)Γ(−µ2+µ3

2
)Γ(N−2µ1

4
)

× 3F2

(
2−N−2µ1

4
N+2µ2

4
N+2µ3

4

1
2

N−2µ1

4

; 1

)
. (4.8)

Hence we have proved:

Theorem 4.5. We have the following identity as a meromorphic function of
(ν1, ν2, ν3):

∫

SN−1×SN−1×SN−1

|〈y, z〉|−2ν1|〈z, x〉|−2ν2 |〈x, y〉|−2ν3dσ(x)dσ(y)dσ(z)

=
(2π

N−3

2 )3
∏3

j=1 Γ(
1
2
− νj)

Γ(N
2
)Γ(−ν2 − ν3 +

N
2
)Γ(−ν1 + N

2
)
× 3F2

(
1
2
− ν1 ν2 ν3

1
2

−ν1 + N
2

; 1

)
.

We will give in Proposition 6.7 the precise region for the absolute conver-
gence of the above integral.

5 Perspectives from representation theory

In this paper we have proved closed formulas for the triple integrals (see e.g.
Theorem 1.1), based on a combination of methods from classical harmonic
analysis. As we have seen, these methods allow us to establish explicit for-
mulas for symplectic groups of any rank, and even in rank one case it gives
a new proof of the original results due to Bernstein and Reznikov [5] and
Deitmar [6].

So far we have avoided infinite dimensional representation theory, which
was not used in our proof of main results. On the other hand, there are a
number of interesting perspectives of these formulas, and also of the steps in
its proof, that deserve comments.

One aspect of Theorem 1.1 is that the triple integral considered therein
arises from a particular series of representations πµ of the symplectic group
G = Sp(n,R) of rank n induced from a maximal parabolic subgroup P ⊂ G
and depending on a complex parameter µ. Section 5 highlights this point
mostly.
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Another aspect is that of analytic number theory, which was the main
theme of [4, 5]. Motivated by the classical Rankin–Selberg method, authors
considered a cocompact discrete subgroup of the rank one symplectic group
and automorphic functions on the associated locally symmetric space. The
product of two such functions may be decomposed in terms of a basis of
automorphic functions and the corresponding coefficients are related to au-
tomorphic L-functions. The closed formula (n = 1 in Theorem 1.1) gave an
estimate of their decay [5].

Yet another aspect of the above mentioned triple integral is that it arises
also in pseudo-differential analysis of the phase space R2n. This phenomenon
was treated in [13], where the symmetries of the Weyl operator calculus on
the Hilbert space L2(R2n) were considered.

5.1 Invariant trilinear forms

Now we focus on some links between the triple integrals discussed in Sections
1–4 and representation theory of semisimple Lie groups.

We begin with a construction of an invariant trilinear form based on the
Knapp–Stein intertwining operators. Let G be a connected real semisimple
Lie group and P an arbitrary parabolic subgroup. Let P = MAN be a
Langlands decomposition, a and n the Lie algebras of A and N respectively,
and 2ρ the sum of roots of n with respect to a. Take a Cartan involution θ
of G stabilizing MA and set K = {g ∈ G : θ(g) = g}.

For λ ∈ a∗C we define (possibly degenerate) principal series representa-
tions of G, to be denoted by πλ, on the space of smooth sections for the
G-equivariant line bundle Lλ+ρ = G×P Cλ+ρ over the real flag variety G/P ,
equivalently on the vector space

V ∞
λ ≡ Vλ := {f ∈ C∞(G) : f(gman) = a−λ−ρf(g), ∀man ∈ P}.

In our parametrization, L2ρ is the volume bundle ΛdimG/PT ∗(G/P ) over G/P .
Similarly, the space of distribution sections for Lλ+ρ will be denoted by V −∞

λ .
These representations are called spherical because Vλ contains a K-fixed
vector 11λ which is defined by the formula: 11λ(kman) := a−λ−ρ for kman ∈
KP .

Denote by P = MAN the opposite parabolic subgroup to P . Assume
that it satisfies the condition:

C1. P and P are conjugate in G.
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Then there exists the G-intertwining operators Tλ : V−λ → Vλ, referred to as
the Knapp–Stein intertwining operators [10], that depend meromorphically
on λ. They are given by the distribution-valued kernels Kλ(x, y) ∈ V −∞

λ ⊗
V −∞
λ such that (Tλf)(x) = 〈f(y), Kλ(x, y)〉 ∈ Vλ for f ∈ V−λ. The Knapp–

Stein kernel Kλ may be thought of as a distribution on G×G subject to the
following invariance condition for g ∈ G and mjajnj ∈MAN (j = 1, 2):

Kλ(gxm1a1n1, gym2a2n2) = a−λ−ρ
1 a−λ−ρ

2 Kλ(x, y). (5.1)

For fj ∈ Vλj
(j = 1, 2, 3), we set

Tλ1,λ2, λ3
(f1, f2, f3)

:= 〈K 1

2
(α−ρ)(y, z)K 1

2
(β−ρ)(z, x)K 1

2
(γ−ρ)(x, y), f1(x)f2(y)f3(z)〉, (5.2)

where α = λ1 − λ2 − λ3, β = −λ1 + λ2 − λ3, γ = −λ1 − λ2 + λ3 ∈ a∗C.
We have the following:

Proposition 5.1. Assume P and P are conjugate in G. Then there exists
a non–empty open region of (λ1, λ2, λ3) ∈ (a∗C)

3 for which the integral (5.2)
converges. It extends as a meromorphic function of λ1, λ2 and λ3. Then, the
resulting continuous trilinear form

Tλ1,λ2, λ3
: Vλ1

⊗ Vλ2
⊗ Vλ3

−→ C (5.3)

is invariant with respect to the diagonal action of G:

Tλ1,λ2, λ3
(πλ1

(g) f1, πλ2
(g) f2, πλ3

(g) f3) = Tλ1,λ2, λ3
(f1, f2, f3).

Proof. We will give in Section 5.2 a sufficient condition on (λ1, λ2, λ3) for
which the integral (5.2) converges absolutely. The meromorphic continua-
tion can be justified by the Atiyah–Bernstein–Gelfand regularization of the
integral (5.2) ([3], see also [7]). Parameters α, β and γ are chosen in such a
way that the integrand in (5.2) is a section of the volume bundle of (G/P )3.
Whence the invariance follows.

The case when P is a minimal parabolic subgroup was considered in [6]
for G = SO0(m + 1, 1). We note that in this situation P is automatically
conjugate to P .

Returning to our settings, we have an isomorphism of Lie algebras:

sp(1,R) ≃ so(2, 1) ≃ sl(2,R),
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each of which is the ‘bottom’ of different series of Lie algebras, namely
sp(n,R), so(n, 1), and sl(n,R). Bearing this in mind, we list the following
three cases:

Case Sp. Theorem 1.1 corresponds to the evaluation of the trilinear form
(5.3) on the K-fixed vector 11λ1

⊗ 11λ2
⊗ 11λ3

for the following particular pair:
G = Sp(n,R) and P = MAN a maximal parabolic subgroup such that
M ≃ Z/2Z×Sp(n−1,R) and N is the Heisenberg group in 2n−1 variables.
Notice that S2n−1 is a double covering of G/P . The representation space Vµ
can be identified with Vµ(R

2n) introduced in (2.13). Then the kernel of the
operator Tµ introduced in (2.1) is Kµ(X, Y ) = |[X, Y ]|−µ−n ∈ V −∞

µ ⊗ V −∞
µ

which gives rise to the Knapp–Stein intertwining operator.
Case SO. Theorem 4.2 corresponds to the case where G = SOo(m+1, 1)

and P is a minimal parabolic subgroup. Through the identification G/P ≃
Sm the Knapp–Stein intertwining operator is given by Rµ (see (4.1)), and the
triple integral in Theorem 4.2 corresponds to the evaluation of the trilinear
form (5.2) on the K-fixed vector.

Case: GL. Yet another expression of the sphere SN−1 as a homogeneous
space is given by G/P , where = GL(N,R) and P is a maximal parabolic
subgroup corresponding to the partition N = 1+(N −1). The operators Qµ

introduced in (2.16) and involved in the Theorem 4.5 can also be interpreted
as the Knapp–Stein integrals for representations induced from P and its
opposite parabolic P . Notice that the condition C1 fails for N > 2 and
Proposition 5.1 does not apply.

What we have found in particular is the eigenvalues of operators Tµ, Qµ

and Rµ in terms of Gamma functions. The corresponding eigenspaces are
irreducible representation spaces of the maximal compact subgroup K. In-
deed, in all three cases the following condition holds:

C2. The space K/(K ∩ M) is a multiplicity–free space, in other words,
(K,K ∩M) is a Gelfand pair.

This implies that the representation space Vµ contains an algebraic direct
sum of pairwise inequivalent irreducible representations of K as its dense
subspace. Therefore the action of the operators Tµ on each K-representation
space is automatically a scalar multiple of the identity by Schur’s lemma.
For example in Case Sp, K ≃ U(n), the corresponding restriction πµ

∣∣
K

is

given by
⊕

α,β∈N

Hα,β(Cn), and the eigenvalues are described in Theorem 2.1.
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In Cases SO andGL the condition C2 is also satisfied. We can see this by
a direct computation but also by the general observation that the unipotent
radical N is abelian and consequently (K, M ∩K) is a symmetric pair.

Another feature of our settings is the following condition:

C3. The diagonal action of G on (G/P )3 admits an open orbit.

(In fact, there is only one such an open dense orbit except the case of
SL(2,R), where there are two open orbits.)

The condition C3 is connected to the upper bound of the number of
linearly independent trilinear forms for generic λ1, λ2 and λ3. If this number
equals one then such an invariant trilinear form is proportional to the one
constructed in Proposition 5.1 under the condition C1.

Case Sp (n ≥ 2) is of a particular interest: the group G is of arbitrarily
high rank, N is non-abelian, and (K, M ∩K) is a non-symmetric pair. Nev-
ertheless all the conditions C1, C2 and C3 are fulfilled. The corresponding
trilinear form Tλ1,λ2,λ3

has recently arisen in a different context, namely in
pseudo-differential analysis. More precisely, a new (non-perturbative) com-
position formula based on this trilinear form is established for the Weyl
operator calculus on L2(R2n) in [13], where a slightly different notation is
adopted: Tλ1,λ2, λ3

(f1, f2, f3) = J
0, 0; 0
−λ1,−λ2;λ3

(f1, f2, f3).

5.2 Convergence of the invariant triple integral

This subsection provides a sufficient condition for the convergence of the
triple integral in Proposition 5.1.

We take Σ+(g; a) to be the set of weights of n with respect to a. The
corresponding dominant Weyl chamber a∗+ is defined by

a∗+ := {ν ∈ a∗ : 〈ν, α〉 ≥ 0 for any α ∈ Σ+(g; a)}.

According to the direct sum decomposition a∗C = a∗ +
√
−1a∗, we write

λ = Reλ+
√
−1 Imλ for λ ∈ a∗C. Then we have

Proposition 5.2. Suppose we are in the setting of Proposition 5.1. If

Reα,Reβ,Re γ ∈ −ρ− a∗+, (5.4)

then the integral (5.2) converges absolutely.
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Here, −ρ− a∗+ is a subset of a∗ given by −ρ− a∗+ := {−λ− ρ : λ ∈ a∗+}.
The rest of this subsection is devoted to the proof of Proposition 5.2. We

will show that the integral kernel

K 1

2
(α−ρ)(y, z)K 1

2
(β−ρ)(z, x)K 1

2
(γ−ρ)(y, z)

is bounded on the triple product manifold K×K×K if the assumption (5.4)
is satisfied. (As we shall see in Section 6 for specific cases, the condition (5.4)
is not a necessary condition for the absolute convergence.)

Consider the multiplication map

N ×M ×A×N → G, (n,m, a, n) 7→ nman.

This is a diffeomorphism into an open dense subset G′ := NMAN of G (the
open Bruhat cell). We define the projection µ by

µ : G′ → a, nmeXn 7→ X.

We set K ′ := G′ ∩K. Then we have

Lemma 5.3. K ′ is dense in K. Further, if ν ∈ a∗+ then infk∈K ′〈ν, µ(k)〉 >
−∞.

Proof. It follows from the Iwasawa decomposition G = KAN that any el-
ement of G′ is written as g′ = kan (k ∈ K, a ∈ A, n ∈ N). Since G′

contains the subgroup AN , we get k ∈ K ′. This leads us to the bijection
G′/MAN ≃ K ′/M , which then is a dense subset of G/MAN ≃ K/M .
Hence, K ′ is dense in K.

In order to prove the second assertion, we may assume that G is a linear
group contained in a connected complex Lie groupGC with Lie algebra g⊗RC.
Let PC =MCACNC be the complexified parabolic subgroup of P . We take a
θ-stable Cartan subalgebra t of m. Then, h = t + a is a Cartan subalgebra
of g.

We fix a positive set ∆+(gC, hC) of the root system such that α̃|a ∈
Σ+(g, a) ∪ {0} for any α̃ ∈ ∆+(gC, hC). Suppose λ̃ ∈ h∗C is a dominant
integral weight subject to the following condition:

λ̃|a = λ, λ̃|t ≡ 0, and λ̃ lifts to a holomorphic character of MCAC. (5.5)

Then we get a holomorphic character, to be denoted by Cλ, of PC by
extending trivially on NC.
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Let LC
λ := GC ×PC

Cλ be the GC-equivariant holomorphic bundle over

GC/PC associated to the holomorphic character Cλ of PC. Then, by the
Borel–Weil theorem, the space Fλ := O(GC/PC,LC

λ) of holomorphic sections
for LC

λ gives an irreducible finite dimensional representation of GC with high-

est weight λ̃.
Let fλ ∈ Fλ be the highest weight vector normalized as fλ(e) = 1. Then,

we have fλ(nman) = a−λ for nman ∈ NCMCACNC. In particular, if g ∈ G′,
we get

fλ(g) = e−〈λ,µ(g)〉.

Since fλ is a matrix coefficient, fλ|K is a bounded function for any λ coming

from the above λ̃. In light that R+-span{λ ∈ a∗ : λ̃ satisfies (5.5)} equals
a∗+, we have proved Lemma 5.3.

Let us complete the proof of Proposition 5.2. We recall how the Knapp–
Stein integral operator [10] is given in the present context. Since we have
assumed that the parabolic subgroup P is conjugate to P , we can find w ∈ K
such that w−1Nw = N . Then, we define a function Kλ defined on an open
dense subset of G×G by

Kλ(g1, g2) = e〈λ+ρ,µ(g−1

1
g2w)〉 if g−1

1 g2w ∈ G′.

It follows from Lemma 5.3 below that Kλ is bounded on K ′×K ′ if −(ν+ρ) ∈
a∗+, and in particular, defines a locally integrable function on G × G. The
distribution kernel of the Knapp–Stein intertwining operator coincides with
Kλ(g1, g2) when λ stays in this range.

Return to the setting of Proposition 5.2, and assume the condition (5.4).
Then, by Lemma 5.3, we see thatK 1

2
(α−ρ)(y, z) is bounded onK×K, and like-

wise for K 1

2
(β−ρ)(z, x) and K 1

2
(γ−ρ)(x, y). Since the integral (5.2) is performed

over the product of three copies of the compact manifold K/M (≃ G/P ),
the integral (5.2) converges absolutely for any fj ∈ Vλj

(j = 1, 2, 3). Hence,
Proposition 5.2 has been proved.

6 Convergence of the triple integrals

In Section 5.2, we have given a sufficient condition for the absolute conver-
gence of the invariant triple integral in the general setting. In this section, for
the convenience of the reader, we give the precise region of the parameters for
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which the triple integrals in our main results converge absolutely. Section 6.1
provides a basic machinery for the convergence of the integral of the product
of complex powers under a certain regularity assumption (6.1). This crite-
rion gives immediately the precise region of the absolute convergence of the
integral in Theorem 4.5 (see Proposition 6.7). Unfortunately, the regularity
assumption (6.1) is fulfilled only for generic points for the triple integral in
Theorem 1.1. This difficulty is overcome by additional local arguments in
Section 6.2 (see Proposition 6.8).

6.1 Convergence under the regularity condition

Let M be a differentiable manifold, and f1, . . . , fr ∈ C∞(M). We shall
always assume that the zero set {p ∈ M : fj(p) = 0} is non-empty for any
j (1 ≤ j ≤ r). For each point p ∈ M , we define a subset of the index set
{1, . . . , r} by

I(p) := {j : fj(p) = 0},
and a non-negative integer by

r(p) := dimR-span{dfj(p) : j ∈ I(p)}.

Clearly, we have
r(p) ≤ #I(p) (≤ r).

We fix a Radon measure on M which is equivalent to the Lebesgue measure
on coordinating neighbourhoods (i.e. having the same sets of measure zero).
Here is a basic lemma for the convergence of the integral of |f1|λ1 · · · |fr|λr

on M .

Lemma 6.1. Assume f1, . . . , fr ∈ C∞(M) satisfy the following regularity
condition:

r(p) = #I(p) for any p ∈M. (6.1)

Let λ1, . . . , λr ∈ C. Then, |f1|λ1 · · · |fr|λr is locally integrable if and only if

Reλj > −1 for any j (1 ≤ j ≤ r). (6.2)

Remark 6.2. The local integrability does not depend on the choice of our
measure on M .

Here is a prototype of Lemma 6.1:
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Example 6.3. Let M = Rn. We fix r ≤ n, and set fj(x) = xj (1 ≤ j ≤
r). Then |x1|λ1 · · · |xr|λr is locally integrable against the Lebesgue measure
dx1 · · · dxn if and only if Reλj > −1 (1 ≤ j ≤ r).

This assertion is obvious for r = 1, and the proof for general r is reduced
to the r = 1 case. We observe that the regularity assumption (6.1) is satisfied
because dfj = dxj (1 ≤ j ≤ r) are linearly independent at any point p ∈ Rn.

The proof of Lemma 6.1 is reduced to Example 6.3 as follows:

Proof of Lemma 6.1. Fix a point p ∈ M , and suppose I(p) = {j1, . . . , jk}.
Then, by the implicit function theorem, we can find differentiable functions
yk+1, . . . , yn in a neighbourhood Vp of p such that {fj1, . . . , fjk , yk+1, . . . , yn}
forms coordinates of Vp.

Assume (6.2) is satisfied. Then it follows from Example 6.3 that the
function

∏
j∈I(p) |fj|λj is integrable near p. Multiplying it by the continuous

function
∏

j /∈I(p) |fj |λj , we see that |f1|λ1 · · · |fr|λr is also integrable near p.

Conversely, assume |f1|λ1 · · · |fr|λr is locally integrable. We will show
(6.2). Take a point p ∈ M such that f1(p) = 0. By using the above mentioned
coordinates in Vp, we can find q ∈ Vp such that f1(q) = 0 and fj(q) 6= 0
(2 ≤ j ≤ r). Then the integrability of |f1|λ1 · · · |fr|λr near q is equivalent to
that of |f1|λ1 . This implies Reλ1 > −1. Similarly, we get Reλj > −1 for all
j (1 ≤ j ≤ r). Hence, Lemma 6.1 has been proved.

Next, we discuss the local integrability of the function |f1|λ1 · · · |fr|λr when
the regularity condition (6.1) fails. The following two examples will be used
to determine the range of parameters for which the triple product integral in
Theorem 1.1 is absolutely convergent.

Example 6.4. The function hλ(x, y) := |x|λ1|y|λ2|x−y|λ3 is locally integrable
on R2 if and only if Reλj > −1 (1 ≤ j ≤ 3) and Re(λ1 + λ2 + λ3) > −2.

Example 6.5. Let p, q > 0 and p + q > 2. Suppose Q(z) is a quadratic
form on Rp+q of signature (p, q). Then |x|λ1 |y|λ2|x + y + Q(z)|λ3 is locally
integrable on Rp+q+2 if and only if Reλj > −1 (1 ≤ j ≤ 3).

We observe that the regularity condition r(p) = #I(p) of Lemma 6.1 fails
at the origin in both of these examples. This failure affects the condition on
λj for the absolute convergence of the integral in Example 6.4, but does not
affect in Example 6.5.
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Prof of Example 6.4. Applying Lemma 6.1 to R2 \ {0}, we see that hλ(x, y)
is locally integrable on R2 \ {0} if and only if Reλj > −1 (1 ≤ j ≤ 3).

To examine the integrability near the origin, we use the polar coordinate
(x, y) = (r cos θ, r sin θ). Then we have

hλ(x, y)dxdy = rλ1+λ2+λ3+1hλ(cos θ, sin θ)drdθ. (6.3)

Since cos θ, sin θ, cos θ − sin θ do not vanish simultaneously and have simple
zero, (6.3) is integrable near the origin if and only if Reλj > −1 (1 ≤ j ≤ 3)
and Re(λ1 + λ2 + λ3) > −2. Therefore, Example 6.4 is proved.

In order to give a proof of Example 6.5, we prepare the following:

Claim 6.6. Let Q(z) be as in Example 6.5. Then there exists a continuous
function A(t, δ) of two variables t ∈ R and δ ≥ 0 such that

A(t, δ) ∼ c δp+q−2 as t→ 0

for some positive constant c and that

∫

|z|≤δ

g(Q(z))dz1 · · · dzp+q =

∫ δ2

−δ2
g(t)A(t, δ)dt.

Proof of Claim 6.6. Without loss of generality, we may and do assume that
Q(z) is of the standard form Q(z) = z21 + · · ·+ z2p − z2p+1−· · ·− z2p+q. Taking
the double polar coordinates

z = (rω, sη), r, s,≥ 0, ω ∈ Sp−1, η ∈ Sq−1,

we have
∫

|z|<δ

g(Q(z))dz = vol(Sp−1) vol(Sq−1)

∫

B+(δ)

g(r2 − s2)rp−1sq−1drds, (6.4)

where we set B+(δ) := {(r, s) ∈ R2 : r ≥ 0, s ≥ 0, r2 + s2 ≤ δ2}. By the
change of variables R := r2 + s2, t := r2 − s2, the right-hand side of (6.4)
amounts to ∫ δ2

−δ2
g(t)A(t, δ)dt,

where A(t, δ) is defined by

A(t, δ) :=
vol(Sp−1) vol(Sq−1)

2
p+q
2

+1

∫ δ2

|t|

(R + t)
p−2

2 (R− t)
q−2

2 dR.
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Putting t = 0, we have

A(0, δ) =
δp+q−2 vol(Sp−1) vol(Sq−1)

2
p+q
2

+1(p+ q − 2)
.

Thus, Claim 6.6 is shown.

We are ready to complete the proof of Example 6.5.

Proof of Example 6.5. The regularity condition (6.1) is fulfilled except for
the origin. Applying Lemma 6.1 to Rp+q+2 \ {0}, we see that |x|λ1 |y|λ2|x +
y + Q(z)|λ3 is locally integrable on Rp+q+2 \ {0} if and only if Reλj > −1
(1 ≤ j ≤ 3).

What remains to prove is that this function is still integrable near the
origin under the same assumption. By Claim 6.6 we can reduce the conver-
gence of the integral to that of the three variables case, namely, it is sufficient
to show that |x|λ1 |y|λ2|x+ y + t|λ3A(t, δ) is integrable against A(t, δ)dxdydt
near (0, 0, 0) ∈ R3 for a fixed δ > 0. Since {x, y, x + y + t} meets the regu-
larity condition (6.1), we can apply Lemma 6.1 again, and conclude that it
is integrable if Reλj > −1 (1 ≤ j ≤ 3). Therefore, the proof of Example 6.5
has been completed.

6.2 Applications to the triple integrals

We apply Lemma 6.1 to find a condition for the convergence of the triple
integrals in the previous sections. The first case is a direct consequence of
Lemma 6.1:

Proposition 6.7 (see Theorem 4.5). Let M := SN−1 × SN−1 × SN−1, and

hλ(x, y, z) := |〈y, z〉|λ1|〈z, x〉|λ2 |〈x, y〉|λ3.

Then

∫

M

hλ(x, y, z)dσ(x)dσ(y)dσ(z) converges if and only if Reλj > −1

(1 ≤ j ≤ 3).

Proof of Proposition 6.7. Since hλ(x, y, z) is a homogeneous function of x
(also, that of y and z), hλ is integrable on M if and only if it is locally

integrable on M̃ := (RN \ {0})× (RN \ {0})× (RN \ {0}).
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We set the following functions of (x, y, z) ∈ M̃ as f1 := 〈y, z〉, f2 := 〈z, x〉,
f3 := 〈x, y〉. Then we have

df1 = 〈z, dy〉 + 〈y, dz〉,
df2 = 〈z, dx〉 + 〈x, dz〉,
df3 = 〈y, dx〉+ 〈x, dy〉.

Let us verify that the functions f1, f2, and f3 meet the regularity assumption
(6.1) of Lemma 6.1 on M̃ .

Suppose #I(x, y, z) = 3, namely,

〈y, z〉 = 〈z, x〉 = 〈x, y〉 = 0. (6.5)

We will show r(x, y, z) = 3. If not, there would exist (a, b, c) 6= (0, 0, 0) such
that adf1 + bdf2 + cdf3 = 0, namely,

bz + cy = 0, az + cx = 0, ay + bx = 0. (6.6)

This would contradict to (6.5). Hence r(x, y, z) must be equal to 3. Thus
(6.1) holds when #I(x, y, z) = 3. Similarly, (6.1) can be verified when
#I(x, y, z) = 1 or 2. Therefore, the assertion of Proposition 6.7 follows
from Lemma 6.1.

In contrast with Proposition 6.7 for the triple product of complex pow-
ers of inner products, the regularity assumption (6.1) does not hold in the
symplectic case. The next example discusses this situation.

Proposition 6.8 (see Theorem 1.1). Let M = S2n−1 × S2n−1 × S2n−1, and

hλ(X, Y, Z) := |[Y, Z]|λ1|[Z,X ]|λ2|[X, Y ]|λ3 .

Then the triple integral

∫

M

hλ(X, Y, Z)dσ(X)dσ(Y )dσ(Z) converges abso-

lutely if and only if

Reλj > −1 (1 ≤ j ≤ 3), Re(λ1 + λ2 + λ3) > −2 for n = 1,

Reλj > −1 (1 ≤ j ≤ 3), for n ≥ 2.

Proof of Proposition 6.8. Since hλ(X, Y, Z) is a homogeneous function of X
(and also, that of Y and Z), hλ is integrable on M if and only if it is locally

integrable on M̃ := (R2n \ {0})× (R2n \ {0})× (R2n \ {0}).
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Similarly to the way of establishing (6.6) in the proof of Example 6.7, we

see that the regularity assumption (6.1) for (X, Y, Z) ∈ M̃ fails if and only if
the three vectors X, Y, Z ∈ R2n \ {0} are proportional to each other. Hence,

hλ is locally integrable on M̃ \ {(aω, bω, cω) : ω ∈ S2n−1, a, b, c ∈ R \ {0}} if
and only if Reλj > −1 (1 ≤ j ≤ 3).

Let us find the condition of integrability of hλ near the point (X, Y, Z) =
(a0ω0, b0ω0, c0ω0) for some a0 > 0, b0 6= 0, c0 6= 0, and ω0 ∈ SN−1. For this
we take coordinates as

X = aω,

Y = bω + xJω + u,

Z = cω + yJω + v,

where a, b, c, x, y ∈ R, ω ∈ S2n−1, and u, v ∈ (R-span{ω, Jω})⊥ (≃ R2n−2),
and we consider the case where a − a0, b − b0, c − c0, x, y, u, v are near the
origin. In view of the relations [ω, Jω] = −1 and 〈ω, u〉 = 〈ω, v〉 = 〈Jω, u〉 =
〈Jω, v〉 = 0, we have

hλ(X, Y, Z)dXdY dZ

= | − by + cx+ [u, v]|λ1|ay|λ2|ax|λ3a2n−1dadbdcdσ(ω)dxdydudv. (6.7)

Since we are dealing with the local integrability for a, b, c 6= 0, the main issue
is the local integrability against dxdydudv.

First, suppose n = 1. Then (6.7) is locally integrable if and only if
| − by + cx|λ1 |y|λ2|x|λ3dxdy is locally integrable on R2 for fixed b, c 6= 0. By
Example 6.4, this is the case if and only if Re(λ1+λ2+λ3) > −2 in addition
to Reλj > −1 (1 ≤ j ≤ 3).

Second, suppose n ≥ 2. Then [u, v] is a quadratic form on R4n−4 of signa-
ture (2n−2, 2n−2). By Example 6.5, |−by+cx+[u, v]|λ1|y|λ2|x|λ3dxdydudv
is locally integrable on R × R × R2n−2 × R2n−2 if and only if Reλj > −1
(1 ≤ j ≤ 3) and this estimate is locally uniform with respect to a, b, c ( 6= 0)
and ω ∈ S2n−1. Hence, the right-hand side of (6.7) is locally integrable if
Reλj > −1 (1 ≤ j ≤ 3).

Thus, the proof of Proposition 6.8 is completed.

Proposition 6.9. Let M = Sm × Sm × Sm and

hλ(X, Y, Z) = |Y − Z|λ1 |Z −X|λ2|Z − Y |λ3 .

40



Then the triple integral
∫
M
hλ(X, Y, Z)dσ(X)dσ(Y )dσ(Z) converges if and

only if

Reλj > −m (1 ≤ j ≤ 3), Re (λ1 + λ2 + λ3) > −2m .

The proof follows the same lines as before.
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