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GENERALIZED TRACE AND MODIFIED DIMENSION FUNCTIONS ON

RIBBON CATEGORIES

NATHAN GEER, JONATHAN KUJAWA, AND BERTRAND PATUREAU-MIRAND

Abstract. In this paper we use topological techniques to construct generalized trace and
modified dimension functions on ideals in certain ribbon categories. Examples of such rib-
bon categories naturally arise in representation theory where the usual trace and dimension
functions are zero, but these generalized trace and modified dimension functions are non-
zero. Such examples include categories of finite dimensional modules of certain Lie algebras
and finite groups over a field of positive characteristic and categories of finite dimensional
modules of basic Lie superalgebras over the complex numbers. These modified dimensions
can be interpreted categorically and are closely related to some basic notions from repre-
sentation theory.

1. Introduction

1.1. It is well understood that there is a strong connection between representation theory
and low dimensional topology. The path is especially well trodden going from algebra to
topology (although notable exceptions do exist [6]). In this paper we use the topological
techniques of [29] to define generalized trace and modified dimension functions for certain
ribbon categories and illustrate this theory with several examples arising in representation
theory. In these examples the usual trace and dimension functions are trivial, however the
generalized trace and modified dimension functions are non-trivial and are closely related to
the underlying representation theory.

For our purposes we have in mind the approach in [54]. The general idea is to start with
some suitable category (e.g. finite dimensional representations of some algebraic object)
which admits a tensor product and braiding isomorphisms

cV,W : V ⊗W
∼=
−→W ⊗ V

for all V andW in the category, and then use that category to create invariants of knots, links,
3-manifolds, etc. by interpreting the relevant knot or link as a morphism in the category using
the braiding to represent crossings in the knot or link diagram. If you apply this machine
you quickly discover two difficulties:

(1) Many categories arising in algebra are symmetric (i.e. the square of the braiding is
the identity) and, hence, yield only trivial invariants.

(2) Many objects in these categories have categorical dimension zero and, again, neces-
sarily yield only trival invariants.

Regarding the first, many natural categories fit within the above framework but happen to
be symmetric (e.g. representations of finite groups, Lie algebras, etc.). Therefore they have
not received the same level of study from this point of view as, for example, representations
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of quantum groups. A priori, however, there is no reason to exclude symmetric categories
from consideration. Indeed, we will see that the symmetric categories are equally interesting.

Tackling the second problem, the first and third authors introduced a modified dimension
for representations of quantum groups associated to Lie superalgebras [27], and with Turaev
a generalization of this construction to include, for example, the quantum group for sl(2) at
a root of unity [29]. The key point is that this modified dimension has properties analogous
to the categorical dimension, but can still be nonzero even when the categorical dimension
is zero. This allows one to apply the above machine to objects with categorical dimension
zero and obtain nontrivial topological invariants. The main goal of this paper is put these
results into a categorical framework which includes the non-quantum setting and to provide
several examples and applications within well studied categories in representation theory.

It should also be noted that in [28] the first and third authors constructed generalized
trace and modified dimension functions on the ideal of projective modules in the category of
finite dimensional modules over a Lie superalgebra of Type A or C. The techniques of [28]
are based on quantum groups and the Kontsevich integral. The work of this paper is a vast
generalization of [28] and is based on purely topological techniques.

1.2. The basic setting of our results is within a ribbon category C. That is, roughly speaking,
within a category C with a tensor product bifunctor

−⊗− : C × C → C,

a unit object 1, and a braiding; that is, for all V andW in C we have canonical isomorphisms

cV,W : V ⊗W →W ⊗ V.

Furthermore, C admits a duality functor

V 7→ V ∗,

and morphisms

bV : 1 → V ⊗ V ∗ dV : V ∗ ⊗ V → 1,

b′V : 1 → V ∗ ⊗ V d′V : V ⊗ V ∗ → 1.

This data is subject to suitable axioms. Section 2.1 for the precise definition.
Such categories are ubiquitus in nature. Let us mention just a few occurrances. In

algebra, examples of such categories include finite dimensional representations of groups,
Lie (super)algebras, and quantum groups. In algebraic geometry, they arise as the derived
categories of perfect complexes over certain schemes [5], and in the theory of motives as
Tannakian categories. In topology they can be found in stable homotopy theory [31] and,
as discussed above, are an integral part of low dimensional topology. Ribbon categories also
arise as examples of fusion categories [20]. On the other hand, ribbon categories subject
to additional axioms are the source of topological quantum field theories. These in turn
give 3-manifold invariants [49], and provides connections to physics [56, 57] and quantum
computing [21, 22].

1.3. The paper has two main components. In the first half (Sections 3-5) we introduce
the fundamental new concepts of the paper. Let C be a ribbon category and set K =
EndC(1). Throughout we assume C is an Ab-category; i.e. for all V,W in C, HomC(V,W ) is
an additive abelian group and both the tensor product functor and composition of morphisms
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are bilinear. We also assume for convenience that K is a field. Neither assumption is
particularly strict. Even so, they are stricter than is necessary. In particular, we discuss in
Section 5 how to drop the assumption that K is a field.

We call a full subcategory I of C an ideal if it is closed under retracts (i.e. if W ∈ I and
α : X → W and β : W → X satisfies β ◦ α = IdX , then X ∈ I) and if X in C and Y in I
implies X ⊗ Y is in I. We will be most interested in the case when one fixes an object J in
C and takes IJ to be the ideal of all objects which are retracts of V ⊗X for some X in C.

Our first new definition is as follows. A trace on an ideal I is a family of K-linear functions
t = {tV }V ∈I

tV : EndC(V ) → K,

which is suitably compatible with the tensor product and composition of morphisms (cf.
Definition 3.2.1). Given a trace on I, t = {tV }V ∈I , we can then define a modified dimension
function on I via

dt(V ) = tV (IdV ). (1.3.1)

Our second new definition is as follows. Assume that J in C admits a linear map

tJ : EndC(J) → K

which satisfies

tJ ((dJ ⊗ IdJ) ◦ (IdJ∗ ⊗h) ◦ (b′J ⊗ IdJ)) = tJ ((IdJ ⊗d
′
J) ◦ (h⊗ IdJ∗) ◦ (IdJ ⊗bJ )) ,

for all h ∈ EndC(J ⊗ J). That is, in the graphical calculus discussed in Section 2.6 we have

tJ

(

6
?

h

)

= tJ

(

6
?

h

)

for all h ∈ EndC(J ⊗ J). Such a linear map is called an ambidextrous trace on J .
Our first main result shows that these two notions are intimately related. Recall that IJ

is the ideal whose objects are those which are retracts of J ⊗X for some X in C.

Theorem 1.3.1. If I is an ideal of a ribbon category C and {tV }V ∈I is a trace on I, then
each tV is an ambidextrous trace on V . Conversely, if J in C admits an ambidextrous trace,
then there is a unique trace on IJ determined by that ambidextrous trace.

1.4. We will be particularly interested when there is a canonical choice for a trace function.
Namely, assume J is absolutely indecomposable (i.e. EndC(J)/Rad (EndC(J)) ∼= K) and the
canonical projection

t : EndC(J) → EndC(J)/Rad (EndC(J)) ∼= K

is an ambidextrous trace on J . An absolutely indecomposable object whose canonical map
gives an ambidextrous trace is called ambidextrous. Using the trace on IJ defined by the
previous theorem we use (1.3.1) to define a modified dimension function

dJ : Ob(IJ) → K

by
dJ(V ) = tV (IdV ) .

Applying this construction in the special case when J = 1, the identity map EndC(1) → K
defines an ambidextrous trace on I1 = C and we recover the familiar notions of categorical
trace and dimension. Thus the above setup generalizes these well studied functions. We also
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see that results known for the categorical dimension hold for the modified dimension as well.
For example, we have the following results.

Theorem 1.4.1. Let C be an abelian category, J be ambidextrous and let V be an object in
IJ with EndC(V ) = K and dV : V ∗ ⊗ V → 1 an epimorphism. We then have the following
results.

(1) Let U ∈ IV ⊆ IJ . If dJ(V ) = 0, then dJ(U) = 0.
(2) The canonical epimorphism dV ⊗ IdJ : V ∗ ⊗ V ⊗ J −→ J → 0 splits if and only if

dJ(V ) 6= 0.
(3) If J is not projective in C and P is projective in C, then P is an object of IJ and

dJ(P ) = 0.

The above results may become more recognizable when we specialize to the particular
case of finite dimensional representations of a finite group over an algebraically closed field
of characteristic p and take J to be the trivial module. In this setting the first statement
of the theorem becomes the statement that if p divides the dimension of V , then p divides
the dimension of any direct summand of V ⊗ X for any module X . The second statement
becomes the statement that the trivial module is a direct summand of V ∗ ⊗ V if and only if
p does not divide the dimension of V . In this particular context these results were proven
by Benson and Carlson [11]. The third statement becomes the well known result that for a
finite group whose order is divisible by p, the projective modules over a field of characteristic
p all have dimension divisible by p. As another example, if we specialize Theorem 1.4.1(1) to
when C is the finite dimensional representations of a quantum group at a root of unity and
again J is the trivial module, we then recover a result of Andersen [2, Lemma 3.6]. The above
theorem demonstrates that these results fit within a more general categorical framework.

1.5. The second half of the paper (Sections 6-8) is devoted to applying the above theory to
specific settings. The examples were chosen primarily on the basis of the areas of expertise
among the authors. It would also be interesting to investigate the theory in other contexts.

We first consider the finite dimensional representatations of a basic classical Lie superal-
gebra g over the complex numbers, C (see Section 6 for definitions). We prove that when
g = gl(m|n) or a simple Lie superalgebra of type A or C, then the modified dimension de-
fined categorically here coincides with the one defined in [27] using supercharacters. As a
conseqence we obtain an explicit formula for dJ(L) whenever both J and L are simple super-
modules of atypicality zero. Furthermore, the formula implies it is nonzero. In contrast, the
categorical dimension is zero for such supermodules. It was precisely to avoid problem (2)
discussed above which lead the authors of [27] to their original formulation of the modified
dimension (in the quantum setting).

In the setting of basic classical Lie superalgebras Kac and Wakimoto [34] introduced
combinatorially defined integers called the defect of g and the atypicality of a simple su-
permodule of g. Let us write def(g) for the defect of g and atyp(L) for the atypicality
of a simple supermodule L. In general, the atypicality of a simple supermodule is among
0, 1, 2, . . . , def(g) and def(g) = atyp(C), where C is the trivial module. Also, recall that if
L = L0̄ ⊕ L1̄ is a supermodule, then the categorical dimension is given by the superdimen-
sion: sdim(L) = dimC (L0̄)− dimC (L1̄). Kac and Wakimoto stated the following intriguing
conjecture [34, Conjecture 3.1].
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Conjecture 1.5.1. Let g be a basic classical Lie superalgebra and let L be a simple g-
supermodule. Then

atyp(L) = def(g) if and only if sdim(L) 6= 0.

Partial results are known (e.g. [13, 19, 34]) and recently Serganova has announced a proof
for the classical contragradiant Lie superalgebras using category equivalences, Zuckerman
functors, and a character formula of Penkov [51]. In any case, our framework immediately
suggests that this conjecture is but the “top level” (that is, when J = C and atyp(J) =
def(g)) of the following generalized Kac-Wakimoto conjecture.

Conjecture 1.5.2. Let g be a basic classical Lie superalgebra, let J be a simple g-supermodule
which admits an ambidextrous trace and let L ∈ IJ be a simple g-supermodule. Then

atyp(L) = atyp(J) if and only if dJ(L) 6= 0.

In the case of gl(m|n) we can provide the following strong evidence for the generalized Kac-
Wakimoto conjecture. We remind the reader that a simple g-supermodule is, by definition,
polynomial if it appears as a composition factor of some tensor power of the natural module.

Theorem 1.5.3. Let g = gl(m|n), let J be a simple g-supermodule which admits an am-
bidextrous trace, and let L ∈ IJ be a simple g-supermodule. Then the following are true.

(1) One always has atyp(L) ≤ atyp(J).
(2) If dJ(L) 6= 0, then atyp(L) = atyp(J).
(3) If atyp(J) = 0, then atyp(L) = atyp(J) and dJ(L) 6= 0.
(4) If J and L are polynomial, then J necessarily admits an ambidextrous trace (i.e. it

does not have to be assumed), and dJ(L) 6= 0 if and only if atyp(L) = atyp(J).

That is, for gl(m|n) we can prove one direction of the generalized Kac-Wakimoto conjecture
in general, and both directions for both atypicality zero and polynomial representations.

1.6. We also examine the case when C is the finite dimensional representations of a finite
group G over an algebraically closed field. We consider the cases when G is the cyclic group
of order p over a field of characteristic p, and the Klein four group over a field of charac-
teristic two. We use explicit calculations and the results of earlier authors to analyze the
ideal structure of C (cf. Proposition 7.2.1) and to prove the existence of indecomposable
modules whose canonical trace is ambidextrous. We prove that C has ambidextrous objects
and, perhaps most intriguingly, see by direct calculation that a certain family of two di-
mensional indecomposable modules of the Klein four group rather unexpectedly admits an
ambidextrous trace.

We also consider the case when C is the finite dimensional representations of the Lie algebra
sl2(k) over an algebraically closed field of characteristic p > 2. In this case we focus on the
simple sl2(k)-modules. We analyze the ideal structure of C (Theorem 8.2.1) and obtain
the following complete classification of which simple sl2(k)-modules admit an ambidextrous
trace.

Theorem 1.6.1. A simple sl(2)-module admits a nontrivial ambidextrous trace if and only
if it is either restricted or projective.
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1.7. The results of this paper raise a number of intriguing questions. For example, it
remains mysterious which objects and ideals in a category admit a nontrivial ambidextrous
trace. Further examples need to be developed to shed light on this question.

As another example, the generalized Kac-Wakimoto conjecture and the results of Theo-
rem 1.5.3 suggest a close relationship between the modified dimension and classical results
on the vanishing of the categorical dimension. This includes the well known Kac-Weisfeiler
conjecture for Lie algebras in characteristic p (proved by Premet in [47]), the DeConcini, Kac
and Procesi conjecture for quantum groups at a root of unity [40], 2 and p divisibility for Lie
superalgebras [14] and [55], and well known p divisibility results for modular representations
of finite groups. In many of these contexts one has the powerful tool of support varieties.
The results just mentioned and the theory presented here are both compatible with these
support variety theories and it would be interesting to further develop this relationship.

In a third direction, the category of ribbon graphs is naturally a 2-category. The notion
of 2-categories have recently received a great deal of attention in representation theory due
to work of Khovanov and Lauda [42, 36, 37, 38] and Rouquier [50] in their study of categori-
fication of quantum groups and their representations. Of particular relevance to the work
here, Ganter and Kapranov categorified the notion of the categorical trace and used this to
study representations and character theory in 2-categories [26]. It would be interesting to
determine a categorification of our more general notion of a trace.

Finally, we recall that one can define the radical of a ribbon category C as a certain ideal
defined by the categorical trace. The resulting quotient category plays an important role
in representation theory. For example, Andersen constructed a three dimensional quantum
field theory from the category of tilting modules for a quantum group at a root of unity via
this technique [2]. In recent work Deligne [18] and Knop [39] used this approach to show
how to construct categories which interpolate among the representation categories of the
symmetric groups and GL(n,Fq), respectively. In a similar fashion if one has a trace on an
ideal in the sense of this paper one can define the “radical” of the ideal using this trace.
We would expect that our construction would allow one to refine the above technique by
allowing one to consider subquotient categories of C.

2. Ribbon Ab-categories and the graphical calculus

In this section we provide the framework within which the results of this paper are de-
veloped. In Section 2.1 we introduce the notion of a ribbon Ab-category. Many fami-
lar categories in representation theory (e.g. finite dimensional representations of Lie (su-
per)algebras, groups, and quantum groups) are ribbon Ab-categories. A key feature of
ribbon Ab-categories is the ability to represent morphisms via diagrams. Manipulations of
the diagrams correspond to identities among morphisms and this provides a powerful tool
for understanding morphisms in C. We provide a brief overview of this graphical calculus in
Section 2.6.

2.1. Ribbon Ab-categories. For notation and the general setup of ribbon Ab-categories
our references are [54] and [35]. A tensor category C is a category equipped with a covariant
bifunctor ⊗ : C×C → C called the tensor product, a unit object 1, an associativity constraint,
and left and right unit constraints such that the Triangle and Pentagon Axioms hold (see
[35, XI.2]). In particular, for any V in C, 1⊗ V and V ⊗ 1 are canonically isomorphic to V .
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A braiding on a tensor category C consists of a family of isomorphisms {cV,W : V ⊗W →
W ⊗ V }, defined for each pair of objects V,W which satisfy the Hexagon Axiom [35, XIII.1
(1.3-1.4)] as well as the naturality condition expressed in the commutative diagram [35,
(XIII.1.2)]. We say a tensor category is braided if it has a braiding. We call a tensor
category symmetric if cW,V ◦ cV,W = IdV⊗W for all V and W in C.

A tensor category C has duality if for each object V in C there exits an object V ∗ and
morphisms

bV : 1 → V ⊗ V ∗ and dV : V ∗ ⊗ V → 1

satisfying relations

(IdV ⊗dV ) ◦ (bV ⊗ IdV ) = IdV (2.1.1)

(dV ⊗ IdV ∗) ◦ (IdV ∗ ⊗bV ) = IdV ∗ .

A twist in a braided tensor category C with duality is a family {θV : V → V } of natural
isomorphisms defined for each object V of C satisfying relations [35, (XIV.3.1-3.2)]. Let
us point out that the existence of twists is equivalent to having functorial isomorphisms

V
∼=
−→ V ∗∗ for all V in C (cf. [4, Section 2.2]).
A ribbon category is a braided tensor category with duality and a twist. A tensor category

C is said to be an Ab-category if for any pair of objects V,W of C the set of morphism
HomC(V,W ) is an additive abelian group and the composition and tensor product of mor-
phisms are bilinear.

Let us end this section with two useful observations about ribbon Ab-categories. The first
is that if C is an abelian category, then by [4, Proposition 2.1.8] the tensor product functor
is necessarily exact in both entries. The second is that any symmetric tensor category
with duality is necessarily a ribbon category [4, Corollary 2.2.3]. As a consequence, many
categories which arise in representation theory are ribbon Ab-categories.

2.2. The ground ring of C. Let C be a ribbon Ab-category. Composition of morphisms
induces a commutative ring structure on

K = EndC(1).

This ring is called the ground ring of C. In this paper we will assume for convenience that
K is a field. However, the setup and theorems of the first three sections are valid even when
K is an arbitrary commutative ring. In Section 5 we discuss which changes are needed in
order to achieve this generality.

We note that for any pair of objects V andW of C the abelian group HomC(V,W ) becomes
a left K-module. Namely, for any k ∈ K and f ∈ HomC(V,W ) the action is defined by
kf = k ⊗ f and using the left and right unit constraints.

2.3. Absolutely irreducible and Indecomposable objects. An object V of C is called
absolutely irreducible if EndC(V ) = K IdV . We say it is absolutely indecomposable if

EndC(V )/Rad (EndC(V )) ∼= K

where Rad(EndC(V )) is the radical of EndC(V ). In either case we write

〈 〉 : EndC(V ) → K (2.3.1)

for the canonical linear map.
7



Throughout we assume that if J is absolutely indecomposable, then the elements of the
radical of EndC(J) are nilpotent. This is not a very restrictive assumption. For example, if
EndC(J) is artinian (e.g. if J is of finite length), then every element of the radical of EndC(J)
is nilpotent. If the reader prefers, all statements involving an absolutely indecomposable
object can be specialized to the assumption that J is absolutely irreducible and then no
extra assumptions are required.

2.4. The categorical trace and dimension. For brevity and convenience we define fol-
lowing morphisms in C,

b′V : 1 → V ∗ ⊗ V,

d′V : V ⊗ V ∗ → 1,

given by

b′V = (IdV ∗ ⊗θV ) ◦ cV,V ∗ ◦ bV

d′V = dV ◦ cV,V ∗ ◦ (θV ⊗ IdV ∗)

Then for any V in C and f ∈ EndC(V ), the categorical trace on C is given by

trC(f) = d′V ◦ (f ⊗ IdV ∗) ◦ bV ∈ K.

In particular, define dimC : Ob(C) → K by

dimC(V ) = trC(IdV ).

We call dimC(V ) the categorical dimension of V .

2.5. In Lemma 3.3.4(2) it is assumed that the categorical trace vanishes on the radical
of EndC(J) for an absolutely indecomposable object. The following result yields a general
scenario where this occurs. It is presumably well known to experts and we wrote down a
proof based on one given by Deligne [18, Lemma 3.5] in the symmetric setting.

Lemma 2.5.1. Let C be a ribbon category which is an abelian category. Let

0 −−−→ A′ r
−−−→ A

s
−−−→ A′′ −−−→ 0





y
f ′





y

f





y
f ′′

0 −−−→ A′ r
−−−→ A

s
−−−→ A′′ −−−→ 0

(2.5.1)

be a morphism of short exact sequences in C. Then

TrC(f) = TrC(f
′) + TrC(f

′′).

Proof. Before proving the proposition, we first set the groundwork. Recall that for M,N in
C one has canonical isomorphisms of K-modules:

HomC(M,N) ∼= HomC(1, N ⊗M∗) ∼= HomC(N
∗,M∗).

Given g ∈ HomC(M,N) we write ĝ for the corresponding element in HomC(1, N⊗M∗) and g∗

for the corresponding element in HomC(N
∗,M∗). To avoid confusion, given g ∈ HomC(M,M)

we will write trM(g) for trC(g) and, in a slight abuse of notation, we write trM(ĝ) using the
above isomorphism. Finally, we note that for such a morphism, d′M ◦ ĝ = trM(g).

Consider the short exact sequence

0 → A′ r
−→ A

s
−→ A′′ → 0. (2.5.2)
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Applying the duality functor yields another short exact sequence and, recalling from Sec-
tion 2.1 that tensor functor is exact, we can tensor these together to obtain the following
bicomplex which is exact everywhere:

0 0 0




y





y





y

0 −−−→ A′ ⊗ (A′′)∗
r⊗1

−−−→ A⊗ (A′′)∗
s⊗1

−−−→ A′′ ⊗ (A′′)∗ −−−→ 0




y
1⊗s∗





y
1⊗s∗





y
1⊗s∗

0 −−−→ A′ ⊗ A∗ r⊗1
−−−→ A⊗A∗ s⊗1

−−−→ A′′ ⊗A∗ −−−→ 0




y
1⊗r∗





y
1⊗r∗





y
1⊗r∗

0 −−−→ A′ ⊗ (A′)∗
r⊗1

−−−→ A⊗ (A′)∗
s⊗1

−−−→ A′′ ⊗ (A′)∗ −−−→ 0




y





y





y

0 0 0

(2.5.3)

Let

s⊗ r∗ = s⊗ 1 ◦ 1⊗ r∗ : A⊗ A∗ → A′′ ⊗ (A′)
∗

and let F = Ker(s ⊗ r∗). It is an easy exercise to verify that for f in (2.5.1) one has

s⊗ r∗ ◦ f̂ = 0; that is, the image of f̂ lies in F .
A diagram chase using this diagram verifies that

F = Im (r ⊗ 1) + Im (1⊗ s∗) . (2.5.4)

Namely, let x ∈ F . Then s⊗1 (1⊗ r∗(x)) = 0 and, hence, 1⊗r∗(x) lies in the image of r⊗1.
Fix w1 ∈ A′ ⊗ (A′)∗ so that r ⊗ 1(w1) = 1⊗ r∗(x). Since 1⊗ r∗ is surjective, we can choose
w2 ∈ A′ ⊗ A∗ so that 1⊗ r∗(w2) = w1. Let x

′ = r ⊗ 1(w2). Now consider x− x1 ∈ A⊗ A∗.
We then have

1⊗ r∗(x− x′) = 1⊗ r∗(x)− 1⊗ r∗(x′)

= 1⊗ r∗(x)− 1⊗ r∗(r ⊗ 1(w2))

= 1⊗ r∗(x)− r ⊗ 1(1⊗ r∗(w2))

= 1⊗ r∗(x)− r ⊗ 1(w1) = 0.

Hence x− x′ lies in the kernel of 1⊗ r∗ and, hence, the image of 1⊗ s∗. Therefore, since x′

was in the image of r ⊗ 1, it follows that x lies in the sum of the images of the morphisms
r ⊗ 1 and 1⊗ s∗, just as claimed.

We now note that we have morphisms

ϕ′ : F → A′ ⊗ (A′)
∗

ϕ′′ : F → A′′ ⊗ (A′′)
∗

defined as follows.
Let x ∈ F . Then 0 = s ⊗ r∗(x) = s ⊗ 1 (1⊗ r∗(x)). From the bottom row of (2.5.3)

the fact that s ⊗ 1 (1⊗ r∗(x)) = 0 implies that 1 ⊗ r∗(x) lies in the image of the injective
morphism r ⊗ 1. We can then define ϕ′ = (r ⊗ 1)−1 ◦ 1⊗ r∗.
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Similarly, 0 = s ⊗ r∗(x) = 1 ⊗ r∗ (s⊗ 1(x)). Using the rightmost column of (2.5.3) we
see that s ⊗ 1(x) lies in the image of the injective morphism 1 ⊗ s∗. We can then define
ϕ′′ = (1⊗ s∗)−1 ◦ s⊗ 1.

Since the image of f̂ lies in F we can form the morphisms ϕ′ ◦ f̂ : 1 → A′ ⊗ (A′)∗ and

ϕ′′ ◦ f̂ : 1 → A′′ ⊗ (A′′)∗. We now consider the morphism

Γ = d′A′ ◦ ϕ′ ◦ f̂ + d′A′′ ◦ ϕ′′ ◦ f̂ : 1 → 1

Using the commutivity of (2.5.1) and the diagram calculus discussed in Section 2.6 (or direct

calculation), one has that ϕ′ ◦ f̂ = f̂ ′ and ϕ′′ ◦ f̂ = f̂ ′′. Therefore we have

Γ = trA′(f ′) + trA′′(f ′′). (2.5.5)

On the other hand, if u ∈ 1, then by (2.5.4) we have that f̂(u) = r⊗ 1(v) + 1⊗ s∗(w) for
some v ∈ A′ ⊗ A∗ and w ∈ A⊗ (A′′)∗. Therefore we have

Γ(u) = (dA′ ◦ ϕ′ ◦ r ⊗ 1)(v) + (dA′′ ◦ ϕ′′ ◦ 1⊗ s∗)(w)

= (dA′ ◦ 1⊗ r∗)(v) + (dA′′ ◦ s⊗ 1)(w)

= (dA ◦ r ⊗ 1)(v) + (dA ◦ 1⊗ s∗)(w)

= dA ◦ (r ⊗ 1(v) + 1⊗ s∗(w))

= (dA ◦ f̂)(u)

= trA(f)(u)

Where the first equality holds because when you expand out the expression, two terms are
zero; the second equality follows from an elementary simplification; and the third equality
follows from diagram calculus which shows that dA′ ◦ 1 ⊗ r∗ = dA ◦ r ⊗ 1 and dA′′ ◦ s⊗ 1 =
dA ◦ 1⊗ s∗. Thus we have

Γ = trA(f). (2.5.6)

Equating (2.5.5) and (2.5.6) yields the first statement of the proposition.
�

We then have the following corollary.

Corollary 2.5.2. If C is as in the previous lemma and J in C is an absolutely indecomposable
object, then trC is identically zero on Rad (EndC(J)).

Proof. If f ∈ Rad (EndC(J)), then f is a nilpotent morphism (cf. our assumption in Sec-
tion 2.2). Say fn = 0. Now consider the morphism of short exact sequences in C given
by

0 −−−→ Ker(f)
r

−−−→ A
s

−−−→ A/Ker(f) −−−→ 0




y
0





y

f





y
f̄

0 −−−→ Ker(f)
r

−−−→ A
s

−−−→ A/Ker(f) −−−→ 0,

where r and s are the canonical morphisms, and f̄ is the morphism induced by f . A
straightforward induction on n using the above lemma proves that trC(f) = 0.

�
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2.6. The Diagrammatic Calculus. Next we will discuss how one can represent morphisms
in the category C with graphs. The algebraic identities of the ribbon category give a graphical
calculus in which graphs representing morphisms in C can easily be minipulated. We will not
present the complete calculus here; however, we will provide the important relations which
are required for the proofs. For more details on this graphical calculus see [35, Chapter XIV].

We represent a morphism f : U → V by a box with two vertical arrows as in Figure 1a,
where U, V are the colors of the arrows and f is the color of the box. Note that we follow the
convention that the graphical depiction of morphisms should be read from bottom to top.
In the special case of IdV : V → V we commonly omit the box labeled by IdV and simply
draw a plain vertical line colored by V . The composition of two morphisms is obtained by
putting one box on top of the other. Also note that here and elsewhere we use the symbol
=̇ between two graphs to mean that the corresponding morphisms in C are equal.

V
��
f

U

��

(a)
Graph
for
f

W
��

g ◦ f

U

��

=̇
f

g

(b)
Graph
for
f ◦ g

V
��
f

U

��

W
��
g

V

��

=̇

W
��

V
��
f ⊗ g

V

��
U

��

(c) Graph for f ⊗ g

Wm...
��

W1
��
f

Vn...

��
V1

��

(d)
Graph
of
f

Figure 1.

The tensor product of two morphisms is represented by setting the two corresponding
graphs next to each other. For example, if f : U → V and g : V → W are morphism of C
then we represent g ◦f and f ⊗g by Figures 1b and 1c, respectively. In general, a morphism
f : V1 ⊗ · · · ⊗ Vn → W1 ⊗ · · · ⊗Wm in C can be represented by the box and arrows given in
Figure 1d.

The braiding cV,W and its inverse c−1
V,W are represented by Figure 2. The invertibility and

V W

cV,W

W V

c−1
V,W

Figure 2.

naturality of cV,W are expressed in Figures 3a and 3b, respectively. The naturality of c−1
V,W

gives a similar expression. Next we assign graphs to the duality morphisms. The morphisms
bV , dV , b

′
V and d′V are represented by the graphs in Figure 4. The relations given in (2.1.1)

are represented by the graphical expressions in Figure 5.
To illustrate how one uses these graphs and the graphical calculus, in Figure 6 we compute

the graph corresponding to the twist. The first equality in Figure 6 is by definition, the
11



V W V W V W

=̇ =̇

(a) Invertibility of the Braiding

g f f g

W ′ V ′ W ′ V ′

V W V W

=̇

(b) Naturality of the Braiding

Figure 3.

bV dV b′V d′V

@A
V

BC
// ED VGF // @A BC

oo
V EDGFooV

Figure 4.

V V

=̇

V V

=̇

Figure 5.

=̇ θV =̇

θV

=̇

θV

=̇

θV

Figure 6. All of the edges are colored with V .

second and third by naturality of the braiding, the last one by Figure 5. Similarly, one can
show that the equalities represented in Figures 7a and 7b hold. In particular, note that this
example shows if the twist is nontrivial then a kink can not be undone by the graphical
calculus. However, the invertibility of θV implies that the morphisms represented in Figure
7c are equal.

The graphs above can be described in the language of ribbon graphs and their diagrams
(see [35, 54]). As Figures 3 and 5 suggest one can consider these graphs up to isotopy. This
is similar to isotopy of framed knots or links in R3 where the plane determined by a box
should always be parallel to the plane R× R × 0 and the line determined by the base of a
box should always be parallel to the line R × 0 × 0. Here “framed” refers to the fact that
kinks can not be undone.

12



=̇ θV

(a)

=̇ θ−1
V

=̇

(b)

=̇ =̇

(c)

Figure 7. All of the edges are colored with V .

V V
f

h

g

g

f

h
V VW U

=̇

Figure 8.

W

V

V

U

θW
f

h

g

W

V

V U

θW
f

h

g

U

V

V

θU
g

f

h

=̇ =̇

Figure 9.

As an exercise in the graphical calculus we give an equality which will be used later. For
morphisms f : V →W, g : W → U, h : U → V we have:

trR
(

(IdV ⊗f) ◦ c−1
V,V ◦ (IdV ⊗hg

)

= trR
(

(IdV ⊗gf) ◦ c−1
V,V ◦ (IdV ⊗h)

)

, (2.6.1)

where trR is defined in (3.2.2). Figure 8 is a graphical representation of Equation 2.6.1. The
proof is provided in Figure 9 using the graphical calculus. Specifically, we use the naturality
and invertibility of the braiding, the naturality of the twist (g ◦ θW = θU ◦ g), and the
definition of d′W to prove of (2.6.1). The left (resp. right) side of Figure 8 represents the
same morphism as the left (resp. right) side of Figure 9.
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3. Generalized traces

In this section we introduce the fundamental definitions of the paper. The rough idea is
to generalize the notion of the categorical trace by defining a generalized trace to be a family
of linear functions on a full subcategory which have the desired properties. As we will see,
the key idea is the notion of an ambidextrous trace.

3.1. Ideals. We first introduce the notion of an ideal in a ribbon Ab-category.

Definition 3.1.1. We say a full subcategory I of a ribbon Ab-category C is an ideal if the
following two conditions are met:

(1) If V is an object of I and W is any object of C, then V ⊗W is an object of I.
(2) I is closed under retracts; that is, if V is an object of I, W is any object of C, and

if there exists morphisms f : W → V , g : V → W such that g ◦ f = IdW , then W is
an object of I.

Let us point out that a ribbon Ab-category is not neccessarily additive and, hence, we do
not require that an ideal be closed under direct sums as the reader might expect.

The main example of an ideal which is used in this paper is constructed as follows. Let V
be a fixed object of C. Let IV be the full subcategory of all objects U satisfying the property
that there exists an object W and morphisms α : U → V ⊗W and β : V ⊗W → U with
β ◦ α = IdU . It is not difficult to verify IV forms an ideal.

The following lemma records some basic properties of IV . Note that in the proof and
thereafter, for brevity we sometimes write fg to denote f ◦ g for morphisms f and g in C.

Lemma 3.1.2. Let U, V ∈ Ob(C). Then the following statements are true.

(1) If U ∈ IV then IU ⊂ IV .
(2) IV = IV ∗.

Proof. Since U ∈ IV there exists W , α : U → V ⊗W and β : V ⊗W → U with β ◦α = IdU .
Similarly, if U ′ ∈ IU then there exists W ′, α′ : U ′ → U ⊗W ′ and β ′ : U ⊗W ′ → U ′ with
β ′ ◦α′ = IdU ′. Now let α′′ : U ′ → V ⊗W ⊗W ′ and β ′′ : V ⊗W ⊗W ′ → U ′ be the morphisms
given by α′′ = (α ⊗ IdW ′)α′ and β ′′ = β ′(β ⊗ IdW ′). Then β ′′ ◦ α′′ = IdU ′ and so U ′ ∈ IV .
Thus, IU ⊂ IV and we have proved item (1) of the lemma.

To prove item (2) let α : V → V ∗ ⊗ V ⊗ V and β : V ∗ ⊗ V ⊗ V → V be the morphisms
given by α = (cV,V ∗ ⊗ IdV )(IdV ⊗b′V ) and β = (d′V ⊗ IdV )(c

−1
V,V ∗ ⊗ IdV ) then β ◦ α = IdV . So

V ∈ IV ∗ and item (1) of the lemma implies that IV ⊂ IV ∗ . Similarly IV ∗ ⊂ IV . �

3.2. Traces. We can now give the fundamental definitions of the paper.
First, for any objects V,W of C and any endomorphism f of V ⊗W , set

trL(f) = (dV ⊗ IdW ) ◦ (IdV ∗ ⊗f) ◦ (b′V ⊗ IdW ) ∈ EndC(W ), (3.2.1)

and

trR(f) = (IdV ⊗d′W ) ◦ (f ⊗ IdW ∗) ◦ (IdV ⊗bW ) ∈ EndC(V ). (3.2.2)

Definition 3.2.1. If I is an ideal in C then a trace on I is a family of linear functions

{tV : EndC(V ) → K}

where V runs over all objects of I and such that following two conditions hold.
14



(1) If U ∈ I and W ∈ Ob(C) then for any f ∈ EndC(U ⊗W ) we have

tU⊗W (f) = tU (trR(f)) . (3.2.3)

(2) If U, V ∈ I then for any morphisms f : V → U and g : U → V in C we have

tV (g ◦ f) = tU(f ◦ g). (3.2.4)

We remark that it follows from (3.2.4) that a trace necessarily vanishes on commutators.

Definition 3.2.2. For V ∈ Ob(C) we say a linear function t : EndC(V ) → K is an am-
bidextrous trace on V if for all f ∈ EndC(V ⊗ V ) we have

t(trL(f)) = t(trR(f)).

Recall that V in C is said to be absolutely irreducible if EndC(V ) = K, absolutely inde-
composable if EndC(V )/Rad(EndC(V )) ∼= K, and in either case we write 〈 〉 : EndC(V ) → K
for the canonical linear map.

Definition 3.2.3. We say an object J of C is ambidextrous if J is an absolutely indecom-
posable object whose canonical linear map defines a non-zero ambidextrous trace on J .

For short we say J is ambi if J is ambidextrous.

3.3. Fundamental Properties of a Trace on an Ideal. Our first results show that the
notion of a trace on an ideal and an ambidextrous trace on an object are intimately related
concepts. The proofs are most easily expressed using the graphical calculus on C although
the more algebraically minded reader can easily translate the proofs into ones which directly
use the axioms of a ribbon Ab-category.

Theorem 3.3.1. If I is an ideal of C and {tV }V ∈I is a trace on I, then tV is an ambidextrous
trace for all V ∈ I.

Proof. Let V be an object of C and let f ∈ EndC(V ⊗ V ). From Equation (3.2.3) we have
tV⊗V (f) = tV (trR(f)). On the other hand, Equations (3.2.3) and (3.2.4) imply that

tV⊗V (f) = tV⊗V (cV,V c
−1
V,V f) = tV⊗V (c

−1
V,V fcV,V ) = tV (trR(c

−1
V,V fcV,V )).

Therefore, it suffices to show that trR(c
−1
V,V fcV,V ) = trL(f). To do this we use the graphical

calculus discussed above. In particular, we have the following:

f =̇ f =̇ f =̇ f =̇ f =̇ f (3.3.1)
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α

f

β ′

V ′

α′

β

VJJ

JJ

(a)
Mor-
phism
ψ

α2 α1

f g

β2 β1

J

J

J

J V2

V1

U2
U1

(b) Morphism η

Figure 10.

where all arrows are colored with V . The first equality of Equation (3.3.1) follows from the
fact that θV is invertible (see Figure 7c), the second and fifth from Figure 3a and the third
and fourth from the naturality of the braiding. �

Theorem 3.3.2. Let J be an object of C and t be an ambidextrous trace on J . Then there
is an unique trace {tV }V ∈IJ on IJ with t = tJ .

Proof. For each U ∈ IJ choose an object V in C and morphisms α : U → J ⊗ V and
β : J ⊗ V → U such that β ◦ α = IdU . For f ∈ EndC(U) define tU(f) = t(trR(α ◦ f ◦ β))
which graphically is:

tU(f) = t

















?

6

β

f

α

















We need to show that tU is independent of α, β and V . For U ∈ I suppose that V ′ ∈ Ob(C)
and α′ : U → J ⊗ V ′, β ′ : J ⊗ V ′ → U are morphisms such that β ′ ◦ α′ = IdU . Consider the
morphism ψ : J ⊗ J → J ⊗ J given by

ψ = (θJ ⊗ IdJ ⊗d
′
V )
(

[(IdJ ⊗(αfβ ′))(c−1
J,J ⊗ IdV ′)(IdJ ⊗(α′β))]⊗ IdV ∗

)

(IdJ ⊗ IdJ ⊗bV )

where θJ : J → J is the twist of J . A graphical representation of ψ is given in Figure 10a.
The naturality of the braiding and the fact that β ′((θJθ

−1
J )⊗ IdV ′)α′ = IdU we have trL(ψ) =

trR(α ◦ f ◦ β). On the other hand, the naturality of the braiding and Figure 8 implies that
trR(ψ) = trR(α

′ ◦ f ◦ β ′). But t(trL(ψ)) = t(trR(ψ)) since t is an ambidextrous trace on J .
Thus, the definition of tU is independent of the choices made above.
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Let us prove that the family {tU} satisfies Equation (3.2.4). Let U1, U2 ∈ I and f : U2 →
U1, g : U1 → U2 be morphisms of C. Let αi : Ui → J ⊗Vi and βi : J ⊗Vi → Ui be morphisms
such that βi ◦ αi = IdUi

for i = 1, 2.
Define the morphism η : J ⊗ J → J ⊗ J by

η = (IdJ ⊗ IdJ ⊗d
′
V2
)(IdJ ⊗c

−1
J,V2

⊗ d′V1
⊗ IdV ∗

2
)◦

◦ ([(α2 ⊗ α1)(θU2 ⊗ IdU1)c
−1
U2,U1

(f ⊗ g)(β2 ⊗ β1)]⊗ IdV ∗

1
⊗ IdV ∗

2
)◦

◦ (IdJ ⊗cJ,V2 ⊗ bV1 ⊗ IdV ∗

2
)(IdJ ⊗ IdJ ⊗bV2). (3.3.2)

A graphical representation of η is given in Figure 10b. As above using the diagrammatic
calculus, one can see that trL(η) = trR(α1 ◦ fg ◦ β1) and trR(η) = trR(α2 ◦ gf ◦ β2). Since
t is an ambidextrous trace on J we have t(trL(η)) = t(trR(η)). Thus, the definition of the
family {tU} implies

tU1(fg) = t(trR(α1 ◦ fg ◦ β1)) = t(trR(α2 ◦ gf ◦ β2)) = tU2(gf).

Next, we show the family {tU} satisfies Equation (3.2.3). Let U ∈ IJ and choose V , α and
β as above. LetW ∈ Ob(C) and f ∈ EndC(U⊗W ). Set V ′ = V ⊗W . Let α′ : U⊗W → J⊗V ′

and β ′ : J ⊗ V ′ → U ⊗W be the morphisms given by α ⊗ IdW and β ⊗ IdW , respectively.
These morphisms satisfy β ′ ◦ α′ = IdU⊗W . Then

trR(α
′ ◦ f ◦ β ′) = trR((α⊗ d′W )(f ⊗ IdW ∗)(β ⊗ bW )) = trR(α ◦ trR(f) ◦ β).

Thus, by applying t to the last equation we see tU⊗W (f) = tU(trR(f)).
Finally, we show this trace is unique. First, it is clear that tJ = t. Suppose that {t′U} is a

potentially different trace on IJ with t
′
J = t. For U ∈ IJ choose V , α and β as above. Let

f ∈ EndC(U). Then

t
′
U(f) = t

′
U(f ◦ β ◦ α) = t

′
J⊗V (α ◦ f ◦ β) = t

′
J(trR(α ◦ f ◦ β)) = t(trR(α ◦ f ◦ β)) = tU(f).

This concludes the proof of the theorem. �

The following result follows immediately from the previous theorem.

Corollary 3.3.3. Let V be an absolutely irreducible ambi object. Then there is a unique
non-zero trace on IV up to multiplication by an element of K.

In light of the previous theorem, the existence of a non-zero trace on IV for an object V in
C amounts to verifying that V admits an ambidextrous trace. The following lemma provides
several tools for doing this.

Lemma 3.3.4. Let J be an object of the ribbon Ab-category C.

(1) If the braiding cJ,J commutes with any element of EndC(J ⊗ J), then any linear map
on EndC(J) is an ambidextrous trace on J .

(2) Assume C is as in Lemma 2.5.1 and J is an absolutely indecomposable object of C
such that the elements of Rad (EndC(J)) are nilpotent. If dimC(J) 6= 0, then any
scalar multiple of the canonical trace on EndC(J) is an ambidextrous trace on J .

Proof. Let f ∈ EndC(J ⊗ J). To prove (1) it is enough to show that trR(f) = trL(f). From
Equation (3.3.1) we have

trR(f) = trL(c
−1
J,J ◦ f ◦ cJ,J). (3.3.3)
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But cJ,J commutes with EndC(J ⊗ J) and so c−1
J,J ◦ f ◦ cJ,J = f .

To prove (2) we first observe that if 〈 〉 denotes the canonical trace and trC the categorical
trace, then both vanish on Rad (EndC(V )); by definition for the canonical trace and by
Corollary 2.5.2 for the categorical trace. From this we obtain

dimC(J)〈h〉 = trC(h)

for any h ∈ EndC(J). Furthermore, for any f ∈ EndC(J ⊗ J) we have

trC(trL(f)) = trC(f) = trC(trR(f)).

Combining these observations we have

dimC(J)〈trL(f)〉 = trC(trL(f)) = trC(f) = trC(trR(f)) = dimC(J)〈trL(f)〉.

Therefore the canonical trace on J is ambidextrous.
�

Remark 3.3.5. Let us present several several situations in which the above lemma proves
useful.

(1) If the tensor product J ⊗ J is semisimple and multiplicity free then EndC(J ⊗ J) is
commutative and the lemma implies that any linear map on EndC(J) is an ambidex-
trous trace on J .

(2) If c2J,J = 1 and the characteristic of K is not two, then the conjugation action of
c on EndC(J ⊗ J) is semisimple. The endomorphism algebra decomposes into ±1
eigenspaces under this action. If the −1 eigenspace is zero, then c is central and
again any linear map on EndC(J) provides an ambidextrous trace.
Conversely, if f ∈ EndC(J ⊗ J) is in the −1 eigenspace, then by (3.3.3) one has

that

trR(f) = − trL(f).

Therefore, if t : EndC(J) → EndC(1) is a linear map such that t (trL(f)) 6= 0, then t

does not define an ambidextrous trace on J .

We pause to consider the following simple example.

Example 3.3.6. Let J = 1 be the unit object in C. Since EndC(1) is a commutative ring,
Lemma 3.3.4(1) implies that the identity map 〈 〉 : EndC(1) → K defines an ambidextrous
trace on 1. By Theorem 3.3.2 we obtain a trace on I1 = C induced by 〈 〉. We then have

tV = trC

for all V in C. In this way we recover the categorical trace on C. Similarly we recover the
categorical dimension since

d1 = dimC ,

where d1 is the modified dimension defined in the next section.
18



4. Modified dimensions

4.1. The Modified Dimension Function. We now use the trace on an ideal I introduced
above to define a modified dimension function on objects in the ideal I. Namely, let I be
an ideal in an Ab-ribbon category C and let t = {tV }V ∈I

be a trace on I. We define the
modified dimension function

dt : Ob(I) → K

by the formula
dt(V ) = tV (IdV ) .

We will primarily be interested in the ideal IJ where J is an absolutely indecomposable
object in C. Let J be absolutely indecomposable and recall that we write 〈 〉 : EndC(J) → K
for the canonical projection. Recall that we assume the elements of Rad (EndC(J)) are
nilpotent. We remark that then for any f ∈ EndC(J) we have

f = 〈f〉 IdJ +r,

where r ∈ Rad (EndC(J)) and f is invertible if and only if 〈f〉 is non-zero.

Definition 4.1.1. Fix an ambi object J with canonical linear map 〈 〉 and let {tV }V ∈IJ be
the trace on IJ coming from Theorem 3.3.2 applied to 〈 〉. Define the modified dimension
dJ to be the function from objects of IJ to K given by

dJ(V ) = tV (IdV ) = 〈trR(α ◦ β)〉 (4.1.1)

where α : V → J ⊗W and β : J ⊗W → V are morphisms such β ◦ α = IdV for some
W ∈ Ob(C).

4.2. The Modified Dimension and Ideals. Throughout this section we assume J is
an ambidextrous object in C. The following results show a close relationship between the
modified dimension function and ideals.

Theorem 4.2.1. Let V be any object in IJ . If dJ(V ) 6= 0 then IV = IJ .

Proof. Since dJ(V ) 6= 0 then trR(α ◦ β) is an invertible endomorphism of J . Now, let
α′ : J → V ⊗W ∗ and β ′ : V ⊗W ∗ → J be the morphisms given by α′ = (β⊗IdW ∗)◦(IdJ ⊗bW )
and β ′ = (IdJ ⊗d

′
W ) ◦ (α⊗ IdW ∗). Thus, β ′ ◦α′ = trR(α ◦β) and since trR(α ◦β) is invertible

we have J ∈ IV and IJ ⊂ IV . On the other hand, IV ⊂ IJ as V ∈ IJ . �

Lemma 4.2.2. Let V be an absolutely simple object which is an object of IJ . Then dJ(V ) 6= 0
if and only if IJ = IV .

Proof. If dJ(V ) 6= 0 then Theorem 4.2.1 implies IJ = IV . On the other hand, if IV = IJ

then J ∈ IV and so there exists W , α : J → V ⊗ W and β : V ⊗ W → J such that
β ◦α = IdJ . Also, since V ∈ IJ there exists W ′, α′ : V → J ⊗W ′ and β ′ : J ⊗W ′ → V such
that β ′ ◦ α′ = IdJ . Consider the maps α′′ : J → J ⊗ (W ′ ⊗W ) and β ′′ : J ⊗ (W ′ ⊗W ) → J
determined by (α′ ⊗ IdW )α and β(β ′ ⊗ IdW ), respectively. Notice that β ′′ ◦ α′′ = IdJ . So we
can compute dJ(J) with these morphisms, in particular

dJ(J) = t(IdJ) = tJ(IdJ) = 〈trR(α
′′ ◦ β ′′)〉.

Now since V is absolutely simple we have 〈trR(α
′′ ◦ β ′′)〉 = 〈trR(α

′ ◦ β ′)〉〈trR(α ◦ β)〉 which
is non-zero as t(IdJ) = 1. Thus, dJ(V ) = 〈trR(α ◦ β)〉 is invertible and so non zero. �
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Corollary 4.2.3. Let V be an absolutely simple object in IJ and U ∈ IV . If dJ(V ) = 0 then
dJ(U) = 0.

Proof. Suppose that dJ(U) 6= 0 then IU = IJ . Then IV = IJ as IJ = IU ⊂ IV = IV .
Finally, since V is absolutely simple then dJ(V ) 6= 0 which is a contradiction. �

4.3. The Modified Dimension and Exact Sequences. Throughout this section we as-
sume C is an abelian category and dV : V ∗ ⊗ V → 1 is an epimorphism for all objects V .
Recall from Section 2.1 that in this setting the tensor functor is necessarily exact. We will
now show that when J is an ambidextrous object IJ and dJ have a meaning in terms of the
splitting of certain exact sequences in C. In the specific setting of modular representations
of finite groups similar results were first considered by Okuyama [45], Carlson and Peng [16],
and Benson and Carlson [11]. In particular, in that setting an object in P ∈ IV is called
V-projective by the authors of [45, 16]. The following results show that their techniques
apply in the general setting of ribbon Ab-categories.

Lemma 4.3.1. Let V,W ∈ Ob(C), P ∈ IV , and let h : P → W be a morphism. If

U
g
−→ W → 0 is an exact sequence such that U ⊗ V

g⊗IdV
−−−→ W ⊗ V → 0 is split then there

exists a morphism ĥ : P → U such that g ◦ ĥ = h.

Proof. To prove the lemma we will show that HomC(P, U)
g∗
−→ HomC(P,W ) is onto. The map

HomC(P,W ) → HomC(1,W ⊗ P ∗) given by f 7→ (f ⊗ IdP ∗) ◦ bP is invertible (the inverse
given by k 7→ (IdW ⊗dP ) ◦ (k⊗ IdP )). Using these maps we have the following commutative
diagram:

HomC(P, U)
g∗ //

��

HomC(P,W )

HomC(1, U ⊗ P ∗)
(g⊗IdP∗)∗ // HomC(1,W ⊗ P ∗).

OO

Therefore, it suffices to show (g ⊗ IdP ∗)∗ is onto.

With this in mind let us prove the following claim: the exact sequence U ⊗ P ∗ g⊗IdP∗

−−−−→
W ⊗ P ∗ → 0 is split. Since P ∈ IV , Lemma 3.1.2 implies that P ∗ ∈ IV . So there exists an
object X and morphisms α : P ∗ → V ⊗X and β : V ⊗X → P ∗ such that β ◦ α = IdP ∗ . We
have the following commutative diagram:

U ⊗ V ⊗X
g⊗IdV ⊗ IdX //

IdU ⊗β
��

W ⊗ V ⊗X //

IdW ⊗β
��

0

U ⊗ P ∗
g⊗IdP∗ // W ⊗ P ∗ // 0.

The hypothesis of the lemma imply that the top horizontal map splits, i.e. there exists a
morphism k : W ⊗ V ⊗ X → U ⊗ V ⊗ X such that (g ⊗ IdV ⊗ IdX)k = IdU⊗V⊗X . Let

k̂ = (IdU ⊗β)k(IdW ⊗α). Then

(g ⊗ IdP ∗)k̂ = (g ⊗ IdP ∗)(IdU ⊗β)k(IdW ⊗α)

= (IdW ⊗β)(g ⊗ IdV ⊗ IdX)k(IdW ⊗α) = IdW⊗P ∗

and the claim follows.
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The morphism k̂∗ : HomC(1,W⊗P ∗) → HomC(1, U⊗P ∗) is the right inverse to (g⊗IdP ∗)∗
and so (g ⊗ IdP ∗)∗ is onto. Thus, g∗ is onto and the result is proved. �

Theorem 4.3.2. Let V and W be any objects of C such that V ∈ IW . The canonical
epimorphism

V ∗ ⊗ V ⊗W
dV ⊗IdW−−−−−→ W → 0 (4.3.1)

is split if and only if IV = IW .

Proof. If the sequence in Equation (4.3.1) splits then W ∈ IV . Since V ∈ IW we have
IW = IV . On the other hand, suppose IV = IW . Then there exists an object X and
morphisms α :W → V ⊗X and β : V ⊗X →W such that β ◦ α = IdW . The sequence

V ⊗ V ∗ ⊗ V ⊗W
IdV ⊗dV ⊗IdW−−−−−−−−→ V ⊗W → 0

is split by the morphism bV ⊗ IdV ⊗ IdW . Therefore, we can apply Lemma 4.3.1 to h = β and
g = dV ⊗ IdW to obtain a morphism ĥ : V ⊗X → V ∗⊗V ⊗W such that (dV ⊗ IdW ) ◦ ĥ = β,

i.e. ĥ ◦ α provides a splitting for (4.3.1). �

Corollary 4.3.3. Assume J is an ambidextrous object and V is a absolutely simple object
in IJ then

V ∗ ⊗ V ⊗ J
dV ⊗IdJ−−−−→ J → 0

splits if and only if dJ(V ) 6= 0.

Proof. From Lemma 4.2.2 we know that dJ(V ) 6= 0 if and only if IJ = IV . Thus, the
corollary follows from Theorem 4.3.2.

�

We note that in the context of modular representations of a finite group, the above corollary
is proven in the case of J = 1 (i.e. the trivial module) but with the weaker assumption that
V is absolutely indecomposable by Benson and Carlson [11, Theorem 2.1].

Remark 4.3.4. When V is an arbitrary element of IJ , Theorem 4.2.1 implies that the if
direction of Corollary 4.3.3 still hold.

4.4. Projective Objects. We record a few elementary results on projective objects in C.
Set Proj to be the full subcategory of projective objects in C:

Proj = {projective objects in C} . (4.4.1)

It is straightforward to verify that Proj is an ideal in C.

Lemma 4.4.1. For any ideal I of C one has

Proj ⊆ I.

Furthermore, an object V of C is projective if and only if

IV = Proj.

Proof. Let U ∈ I. As in the previous result, one has an epimorphism

U∗ ⊗ U ⊗ P
dU⊗IdP−−−−→ P → 0

for any object P . When P is projective this epimorphism necessarily splits. Thus every
projective object is an object in I. This proves the first statement. For the second statement
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of the lemma, we observe that when IV = Proj then, since V ∈ IV , V is clearly projective.
On the other hand, since the tensor product is an exact functor it follows that if V is a
projective, then V ⊗M (and, hence, any direct summand) is projective for any object M of
C. Thus if V is projective, then necessarily IV consists of only projectives. �

The previous lemma implies that if J is ambidextrous and P is in Proj, then one can
always consider dJ(P ). Theorem 4.2.1 immediately implies the following result.

Corollary 4.4.2. Let J be an ambidextrous object in C which is not projective. Then

dJ(P ) = 0

for all P in Proj.

5. The ground ring K

As stated at the beginning, for convenience we assumed K = EndC(1) is a field. In general
K is only a commutative ring. For example, this occurs when C is the finite dimensional
representations of a Drinfeld-Jimbo quantum group defined over C[[h]]. However an exami-
nation of the proofs will confirm that the results presented so far hold for general K once one
makes suitable modifications. For example, in Lemma 3.3.4(2) the condition that dJ(V ) 6= 0
should be revised to the condition that dJ(V ) is not a zero divisor in K. In Section 4 the
condition that dJ(V ) 6= 0 should be replaced with the condition that dJ(V ) is invertible in
K. The interested reader should have no difficulty in obtaining the general results.

6. Representations of Lie superalgebras and the Generalized
Kac-Wakimoto Conjecture

In this section we consider the ribbon category C given by finite dimensional representa-
tions of a Lie superalgebra g which are semisimple over g0̄. As we explain, the tensor product
and duality are given by the usual coproduct and antipode on g. The braiding is given by the
graded flip map. See Section 6.1 for details on the ribbon category structure on C. In this
setting we will see that the modified dimension function generalizes superdimension and is
closely related to the combinatorially defined notions of defect and atypicality. In particular,
it provides a new point of view on a conjecture of Kac and Wakimoto.

6.1. Representations of Lie superalgebras and Atypicality. Recall that a Lie super-
algebra g = g0̄⊕ g1̄ is a Z2-graded complex vector space with a bilinear map [ , ] : g⊗ g → g

which satisfies graded versions of the conditions on a Lie algebra bracket. A g-supermodule
is a Z2-graded finite dimensional complex vector spaceM =M0̄⊕M1̄ which admits a graded
action by g and satisfies graded versions of the conditions on a Lie algebra module. The
finite dimensional representations of Lie superalgebras have been the object of intense study
for over thirty years. We refer the reader to [32, 33] for background on Lie superalgebras
and their representations.

The category C in this context will be the category of all finite dimensional g-supermodules
whose restriction to g0̄ is semisimple. If M and N are two objects of C, then a morphism
f : M → N is a linear map which preserves the Z2-grading in the sense that f(Mr) ⊆ Nr

for r ∈ Z2 and which satisfies f(xm) = xf(m) for all x ∈ g and m ∈ M . Let M∗ denote
the usual linear dual. That is, M∗ = HomC(M,C) where we declare C to be Z2-graded
by being concentrated in degree 0̄ and then an element of M∗ is of degree 0̄ if it preserves
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the Z2-grading and of degree 1̄ if it reverses the grading. The action on M∗ is given by

(xf)(m) = −(−1)x·ff(xm) where x ∈ g and f ∈ M∗ are assumed to be homogenous and
where here and elsewhere we write a ∈ Z2 for the degree of a homogeneous element a. We
also use the convention that a formula is given only on homogenous elements and the general
case is given by applying linearity. Given M and N in C, the tensor product is given by
M ⊗N =M ⊗CN as a vector space. The Z2-grading is given by the formula m⊗ n = m+n
for all homogeneous m ∈M and n ∈ N . The action of g is given by the formula

x.(m⊗ n) = (x.m)⊗ n + (−1)x mm⊗ (x.n)

for all homogenous x ∈ g, m ∈ M , and n ∈ N . The unit object is then the trivial super-
module C (which is concentrated in degree 0̄ in the Z2-grading).

The ribbon category structure on C is given as follows. Given an object V ∈ C the map
bV : C → V ⊗ V ∗ is given by 1 7→

∑

i vi ⊗ v∗i where {vi} is a homogeneous basis for V
and v∗i ∈ V ∗ is defined by v∗i (vj) = δi,j . The map dV : V ∗ ⊗ V → C is the evaluation map
f ⊗ v 7→ f(v). The braiding cV,W : V ⊗W → W ⊗ V is given by v ⊗ w 7→ (−1)v·ww ⊗ v.
Observe that cW,V ◦ cV,W = IdV⊗W for all objects V,W ∈ C and hence by definition C is
symmetric. The twist maps are the identity.

A Lie superalgebra g is said to be basic if it admits a nondegenerate even invariant bilinear
form. The simple basic Lie superalgebras were classified by Kac [32] and are, in the notation
of loc. cit., the Lie superalgebras of type A(m,n), B(m,n), C(n), D(m,n), D(2, 1;α), F (4),
and G(3). Note that these are also classical as g0̄ is a reductive Lie algebra. Throughout we
will assume that our Lie superalgebras are basic and classical.

Let g be a basic classical Lie superalgebra and fix t to be a maximal torus contained in
g0̄. Also fix a choice of Borel subalgebra b ⊂ g which contains t. Having done so, one can
assign to each simple g-supermodule in C a highest weight λ ∈ t∗ and we write L(λ) for the
simple supermodule labelled by λ ∈ t∗.

Let Φ be the set of roots with respect to t. We have that Φ = Φ0̄ ⊔ Φ1̄ where Φ0̄ (resp.
Φ1̄) is the set of even roots (resp. odd roots). The positive roots will be denoted by Φ+ and
the negative roots by Φ−. Set Φ±

0̄
= Φ0̄ ∩ Φ± and Φ±

1̄
= Φ1̄ ∩ Φ±. The bilinear form on g

induces a bilinear form on t∗ which we denote by ( , ). Following Kac and Wakimoto [34,
Section 2] we define the defect of g, denoted by def(g), to be the dimension of a maximal
isotropic subspace in the R-span of Φ.

Let λ ∈ t∗. The atypicality of λ, denoted atyp(λ), is the maximal number of linearily
independent, mutually orthogonal, positive isotropic roots α ∈ Φ+ such that (λ+ ρ, α) = 0,
where ρ = 1

2
(
∑

α∈Φ+
0̄
α−

∑

α∈Φ+
1̄
α). Note that by definition

atyp(λ) ≤ def(g).

Given a simple supermodule L(λ) we define the atypicality of L(λ) by atyp(L(λ)) = atyp(λ).
Note that this definition is known to be independent of the choice of t and b and, hence, an
invariant of the simple supermodule and not the choice of parameterization. In particular,
a simple g-supermodule L is called typical if L has atypicality zero. If L is a typical super-
module then L is a projective object in C by [33, Theorem 1] and so by Lemma 4.4.1 IL is
the ideal of projective g-supermodules Proj.

Given a finite dimensional g-supermodule, M , the superdimension of M is the integer

sdim(M) = dim(M0̄)− dim(M1̄).
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6.2. The trace on Proj for Lie superalgebras of Type A or C. Let g be gl(m|n) or a
simple Lie superalgebra of Type A or C. Lemma 2.8 of [27] states that we can fix a typical
simple g-supermodule J whose tensor product with itself is semisimple and multiplicity free.
By Remark 3.3.5 we have that J is ambidextrous and by Theorem 3.3.1 this induces an
ambidextrous trace on IJ = Proj. On the other hand, in [28] the first and third authors
defined a linear map tV : EndC(V ) → EndC(1) for each typical simple supermodules V using
quantum groups and low dimensional topology. In this subsection we show these two notions
coincide and use this result to give an explicit formula for the modified dimension defined
on this ideal.

We will now recall a trace which is defined in [28]. Let d : {typical supermodules} → C
be the function defined by

d(L(λ)) =
∏

α∈Φ+

0

(λ+ ρ, α)

(ρ, α)

/

∏

α∈Φ+

1

(λ+ ρ, α) (6.2.1)

for any typical supermodule L(λ). Note d(L(λ)) is non-zero for any typical supermodule
L(λ). Let V ∈ Proj and f ∈ EndC(V ). Choose a typical supermodule V0. Then since IV0 =
Proj there exists W ∈ C and morphisms α ∈ HomC(V0 ⊗W,V ) and β ∈ HomC(V, V0 ⊗W )
such that α ◦ β = IdV . Then by Theorem 1 of [28] we have that the map str′V : EndC(V ) →
EndC(1) given by

str′V (f) = d(V0)〈trR(β ◦ f ◦ α)〉

is a well defined linear function depending only on f ; that is, it does not depends on V0, W ,
α or β. Moreover, the family {str′V }V ∈Proj is a trace on Proj. In [28] the proof that {str′V }
is a trace uses quantum algebra and low-dimensional topology.

As we mentioned above, Remark 3.3.5 implies that the canonical linear map t = 〈 〉 is a
non-zero ambidextrous trace on J . Let {tV } be the unique trace on IJ determined by t = tJ

(see Theorem 3.3.2). By definition str′J = d(J) t (take V0 = J , W = C, α, β = α−1, where
α : J ⊗C → J is the right unit constraint of J). Then, from the uniqueness of the trace we
have 1

d(J)
str′V = tV for all V ∈ IJ = Proj (note that the factor 1

d(J)
is just a re-normalization

constant). Thus, we recover the trace given in [28].
Now if L typical then

dJ(L) = tL(IdL) =
1

d(J)
str′L(IdL) =

d(L)

d(J)
(6.2.2)

where the last equality follows from taking V0 = L, W = C and α = β−1 (here α is the right
unit constraint). Equation (6.2.1) now leads to an explicit formula for dJ(L). In particular,
dJ(L) 6= 0 whenever J and L are both typical. To summarize, the authors of [27] prove the
following result.

Theorem 6.2.1. Let g be gl(m|n) or a simple Lie superalgebra of Type A or C. Let J be a
typical simple supermodule. Then J is ambidextrous, IJ = Proj, and if L is another typical
simple supermodule, then

dJ(L) 6= 0.

Furthermore, dJ(L) can be computed by the explicit formula given by (6.2.2).

Similarly, we expect to be able to combine the techniques of this paper with the ideas
and results of [28, 29] to derive a formula for dJ(L) where J and L are simple supermodules
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of any basic classical Lie superalgebra. The formula would be expressed in terms of the
super characters of the supermodules J and L. Also, similar arguments show that the
representations of quantum sl2 at a root of unity considered in [29] also fit within our
framework.

6.3. The Generalized Kac-Wakimoto Conjecture. We now state an intriguing con-
jecture of Kac and Wakimoto which gives a representation theoretic interpretation of the
combinatorial notions of defect and atypicality.

Conjecture 6.3.1. [34, Conjecture 3.1] Let g be a simple basic classical Lie superalgebra
and L(λ) be a finite-dimensional simple g-supermodule. Then

atyp(L(λ)) = def(g)

if and only if sdim(L(λ)) 6= 0.

The authors of [34] give numerous examples where the conjecture holds, including what
they call tame representations (which include, for example, the polynomial representations of
gl(m|n)). In [19, Lemma 7.1] Duflo and Serganova prove for contragradiant Lie superalgebras
that if the atypicality is strictly less than the defect, then the superdimension must be zero.
This direction of the conjecture was also verified for gl(m|n) by the authors of [14] using the
support varieties they introduced in [13]. Recently Serganova has announced a proof for the
classical contragradiant Lie superalgebras using category equivalences, Zuckerman functors,
and a character formula of Penkov [51].

The approach of the current paper allows us to recast and generalize the above conjecture.
Consider the trivial supermodule C. A direct computation verifies that atyp(C) = def(g).
By Example 3.3.6, C is ambidextrous, IC = C, and

dC(M) = sdim(M)

for any g-supermodule M . Thus, one can rephrase the above conjecture as follows: For any
M ∈ IC, atyp(M) = atyp(C) if and only if dC(M) 6= 0. Our new point of view naturally
suggests the following generalized Kac-Wakimoto conjecture.

Conjecture 6.3.2. Let g be a basic classical Lie superalgebra, let J be a simple ambidextrous
g-supermodule and let L ∈ IJ be a simple g-supermodule. Then

atyp(L) = atyp(J)

if and only if dJ(L) 6= 0.

The available evidence suggests if J is a simple g-supermodule, then J is ambidextrous
and IJ contains all simple supermodules whose atypicality is not more than the atypicality
of J (cf. Theorem 6.6.4). If so, the above conjecture can be rephrased in a less cumbersome
fashion.

Let us briefly discuss the extreme cases. When J = C then J has the maximal possible
atypicality, one is reduced to the ordinary Kac-Wakimoto conjecture, and the evidence for
it also, of course, supports the generalization. At the other extreme, assume g is gl(m|n) or
simple Lie superalgebra of Type A or C and J in C is a typical simple supermodule. Then
Theorem 6.2.1 confirms the conjecture here as well. We consider the intermediate cases in
the following sections.
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6.4. Support Varieties. In [13] cohomological support varieties for classical Lie superalge-
bras were introduced. As they will be needed in what follows, we now discuss how they relate
to the results of this paper and the generalized Kac-Wakimoto conjecture. Given a classical
Lie superalgebra, g, let e ⊆ g denote the detecting subalgebra as given in [13, Section 4].
Then, given a g-supermoduleM in C, one can functorially define varieties Vg(M) and Ve(M).
Let a denote g or e. By [14, Section 4.6], these varieties satisfy

Va(M ⊕N) = Va(M) ∪ Va(N), (6.4.1)

Va(M ⊗N) ⊆ Va(N) ∩ Va(N). (6.4.2)

The following result shows that these support varieties are compatible with the construc-
tions introduced here.

Proposition 6.4.1. Let g be a classical Lie superalgebra and let a denote g or the detecting
subalgebra e. Say L, J ∈ Ob(C) and L ∈ IJ .

(1) Then Va(L) ⊆ Va(J).
(2) If J is ambidextrous, then dJ(L) 6= 0 implies Va(L) = Va(J).

Proof. Since L being an element of IJ implies L is a direct summand of J ⊗ X for some
finite dimensional g-supermodule X , the first statement is an immediate consequence of
(6.4.1) and (6.4.2). To prove the second statement, since dJ(L) 6= 0 implies IL = IJ by
Theorem 4.2.1 we have J ∈ IL. The desired equality then follows by part (1). �

Boe, Kujawa, and Nakano conjectured in [13, Conjecture 7.2.1] that for a simple g-
supermodule L one has

atyp(L) = dim (Ve(L)) , (6.4.3)

where here dim denotes the dimension as an algebraic variety. We remark that (6.4.3) is
proven for gl(m|n) in [14, Theorem 4.8.1]. It is still open in general.

Observe that whenever (6.4.3) is valid, then Proposition 6.4.1 immediately implies one
direction of the generalized Kac-Wakimoto conjecture (cf. Theorem 6.5.1 for the gl(m|n)
case). Let us also remark that Duflo and Serganova [19] defined associated varieties for
representations of Lie superalgebras which are different from the support varieties considered
here. The interested reader can verify that the varieties introduced there have properties
analogous to (6.4.1) and (6.4.2) and are similarly compatible with the techniques of this
paper.

6.5. The Generalized Kac-Wakimoto Conjecture for gl(m|n). For the remainder of
Section 6 we assume g = gl(m|n) and, as gl(m|n) ∼= gl(n|m), that m ≤ n.

Let us set the notation we will use when considering gl(m|n). We take the matrix real-
ization of gl(m|n) as (m+ n)× (m+ n) matrices, the Z2-grading is given by setting the i, j
matrix unit to be degree 0̄ if 1 ≤ i, j ≤ m or m+1 ≤ i, j ≤ m+ n, and 1̄ otherwise, and the
bracket is given by the super commutator. We choose t to be the Cartan subalgebra given by
diagonal matrices and b to the Borel subalgebra given by upper triangular matrices. Recall
that if 1 ≤ i ≤ m + n and εi ∈ t∗ is the linear functional which picks off the ith diagonal
entry of an element of t, then ε1, . . . , εm+n provides a basis for t∗. With respect to this choice
the roots are

{εi − εj | 1 ≤ i, j ≤ m+ n, i 6= j},
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and the positive roots are

{εi − εj | 1 ≤ i < j ≤ m+ n, i 6= j}.

A root is even if 1 ≤ i, j ≤ m or m+ 1 ≤ i, j ≤ m+ n, and otherwise it is odd.
Given λ ∈ t∗ we often choose to instead write (λ1, . . . , λm+n) where λ =

∑

i λiεi. For
gl(m|n) it is convenient (and harmless) to choose

ρ = (m− 1, . . . , 1, 0, 0,−1, . . . ,−(n− 1)).

The bilinear form on t∗ is given by

(εi, εj) =

{

δi,j, 1 ≤ i ≤ m;

−δi,j , m+ 1 ≤ i ≤ m+ n.

For gl(m|n) the equality given in (6.4.3) is proven in [14, Theorem 4.8.1]. Therefore we
can prove one direction of the generalized Kac-Wakimoto conjecture for gl(m|n).

Theorem 6.5.1. Let g = gl(m|n), let L and J be simple g-supermodules with J ambidextrous
and L ∈ IJ . Then atyp(L) ≤ atyp(J). Furthermore, if dJ(L) 6= 0, then atyp(L) = atyp(J).

Proof. Since L ∈ IJ , combining part (1) of Proposition 6.4.1 and [14, Theorem 4.8.1], one
obtains atyp(L) ≤ atyp(J). By part (2) of Proposition 6.4.1, if dJ(L) 6= 0 then Ve(L) =
Ve(J). Again applying [14, Theorem 4.8.1] we have

atyp(L) = dim (Ve(L)) = dim (Ve(J)) = atyp(J),

as required. �

6.6. Polynomial Representations of gl(m|n). The main obstacle to using the theory
discussed in this paper on a given category is finding a sufficient number of ambidextrous
objects. In the case of gl(m|n), however, the polynomial representations give a ready source
of ambidextrous objects. Our main result of this section is Theorem 6.6.4 where we show that
all simple polynomial representations of gl(m|n) are ambidextrous and that the generalized
Kac-Wakimoto conjecture holds for these representations.

Let V denote natural representation of gl(m|n). A simple gl(m|n)-supermodule is said
to be a polynomial representation of degree d if it appears as a composition factor in V ⊗d.
More generally, a supermodule is said to be polynomial if all its composition factors are
polynomial. In the case of gl(m|n) this class of representations were first studied by Berele-
Regeev [12] and Sergeev [52]. A key result is that the full subcategory consisting of all
polynomial representations of gl(m|n) is known to be a semisimple category; in particular,
the tensor product of polynomial representations is always completely reducible.

Let us recall the classification of the simple polynomial gl(m|n)-supermodules. To do so
requires recalling certain basic notions regarding partitions. Recall that a partition of d is
a weakly decreasing sequence of nonnegative integers which sum to d. One can visually
represent a partition γ via its Young Diagram: the diagram obtained by having γi boxes
(or nodes) in the ith row with all rows left justified. We refer to a box in the ith row and
jth column of the Young diagram as the (i, j) node of the diagram. If γ is a partition, then
we write γT for the transpose partition (i.e. the partition obtained by reflecting the Young
diagram of γ across the line through the nodes along the (i, i) diagonal). Given two finite
sequences of integers γ1 and γ2, we write γ1#γ2 for the concatenation of the two sequences.
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A partition γ is said to be a (m,n) hook partition if the (m + 1, n + 1) node is not a node
of the Young diagram of γ.

The simple polynomial gl(m|n)-supermodules are parameterized by the set of (m,n) hook
partitions. We write Lγ for the simple supermodule labeled by the (m,n) hook partition γ.
On the other hand, as discussed in Section 6.1, the simple supermodules can be labelled by
highest weight with respect to our choice of Cartan and Borel subalgebras. We write L(λ)
for the simple supermodule labeled by λ ∈ t∗. The translation between the two labelings is
given as follows.

In terms of the highest weight parameterization of the simple supermodules, L(λ) is a
polynomial representation if and only if the λ = (λ1, . . . , λm+n) is a sequence of integers such
that (λ1, . . . , λm) and (λm+1, . . . , λm+n) are partitions and the sequence

τ(λ) = (λ1, . . . , λm)#(λm+1, . . . , λm+n)
T (6.6.1)

is a partition. Equivalently, the representation L(λ) is polynomial if (λ1, . . . , λm) and
(λm+1, . . . , λm+n) are partitions and the number of nonzero parts of (λm+1, . . . , λm+n) does
not exceed λm. It is straightforward to verify that the partitions given by (6.6.1) are precisely
the (m,n) hook partitions.

One can easily use (6.6.1) to go between this parameterization and the one by highest
weight. Namely, we have

L(λ) = Lτ(λ).

Note that τ is an involution.
In the (m,n) hook partition parameterization the character of Lγ is given by the hook

Schur function HSγ. By definition, if γ is a partition which is not a (m,n) hook function,
then HSγ = 0. Recalling that the tensor product of representations corresponds to the
product of their characters, the following result of Remmel [48, (1.10)] will be essential.

Lemma 6.6.1. Let γ1 and γ2 be two (m,n) hook partitions. Let Sγ1 and Sγ2 be the ordinary
Schur functions labeled by the partitions γ1 and γ2, respectively. If

Sγ1Sγ2 =
∑

µ

gµγ1,γ2Sµ,

then
HSγ1HSγ2 =

∑

µ

gµγ1,γ2HSµ,

where the sum is over all partitions µ. That is, the product of hook Schur functions is given
by the ordinary Littlewood-Richardson rule for gl(m+ n).

We call a partition γ a rectangle if the nonzero parts of γ are all of equal size. Going
back to Kostant, it is known that the product SγSγ is multiplicity free (i.e. gµγ,γ ≤ 1 for all
partitions µ) for any rectangular partition γ (cf. [53, Theorem 3.1]). Combining this with
the above lemma yields the following key result.

Theorem 6.6.2. If γ is a (m,n) hook partition which is a rectangle then Lγ is ambidextrous.

Proof. Since Lγ is a polynomial representation, Lγ ⊗ Lγ is semisimple and its composition
factors can be determined by considering the product

HSγHSγ =
∑

µ

gµγ,γHSµ.
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However, by Lemma 6.6.1 the coefficients gµγ,γ are given by the ordinary Littlewood-Richardson
rule. Since γ is a rectangle this product is multiplicity free by [53, Theorem 3.1]. This implies
that EndC(Lγ⊗Lγ) is a commutative ring and so by part (1) of Lemma 3.3.4 any linear map
provides an ambidextrous trace on EndC(Lγ). �

We remark that an immediate consequence of the previous theorem is that there are simple
gl(m|n)-supermodules of every possible degree of atypicality which are ambidextrous (e.g.
the representations Lσ(k) defined just before Theorem 6.6.4).

Before proving the main result of this section, we first prove a preparatory lemma. In
the following proof we use results on translation functors for gl(m|n) which can be found
in [15, 41]. First used in this setting by Serganova, these translation functors are given by
tensoring with either the natural representation or its dual and then projecting onto a block.
Using these translation functors one can create a colored, directed graph as follows. The
nodes are labelled by the simple gl(m|n)-supermodules. A directed edge goes from L(λ) to
L(µ) if L(µ) appears in the socle of L(λ)⊗ V . The edge is colored by an integer determined
by the blocks which contain L(λ) and L(µ).

In [41, Theorem 2.5] it was shown that this directed graph is described by the combinatorics
of a crystal graph (in the sense of Kashiwara) associated to a certain representation of the
Kac-Moody algebra gl∞(C). We refer the reader to [15, Theorem 4.36, Section 3.d] for both
the statement of the necessary result and an explicit description of the crystal graph.

If λ and µ are two tuples of nonnegative integers, then we write λ ⊆ µ if λi ≤ µi for all
i > 0.

Proposition 6.6.3. Let Lλ and Lµ be polynomial representations of gl(m|n) and assume
that λ ⊆ µ and

∑

i(µi − λi) = 1; that is, that the diagram for µ can be obtained from the
diagram of λ by adding a single node. Then,

ILλ
⊆ ILµ

.

Furthermore, if Lλ and Lµ have the same degree of atypicality, then,

ILλ
= ILµ

.

Proof. Let V be the natural representation for gl(m|n) which by definition has character
equal to HS(1). Thus to compute the composition factors of Lλ ⊗ V it suffices to compute

HSλHS(1) =
∑

γ

gγλ,(1)HSγ.

By Lemma 6.6.1 the coefficents gγλ,(1) are given by the ordinary Littlewood-Richardson rule.

However it is well known in this case that gγλ,(1) is zero or one. It is one if and only if

λ ⊂ γ and γ is obtained from λ by the addition of a single node [43, I.3, Exercise 11].
By the assumptions on λ and µ, it follows that gµλ,(1) = 1. Since Lλ ⊗ V is a polynomial

representation, it is completely reducible. Taken together this implies Lµ is a direct summand
of Lλ ⊗ V and, hence, ILµ

⊆ ILλ
.

Furthermore, in the crystal graph language of [15, 41] there is a directed edge from Lλ to
Lµ colored with some integer a ∈ Z and Lµ = FaLλ. Since FaLλ is simple, by [15, Theorem
4.36(i)] Lµ is at the end of this directed string of color a. However, in this crystal graph the
a-strings are of length at most two. See [15, Section 3.d] for a case by case description of the
possible a-strings which can occur. The key observation is that there is only one a-string of
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length two, namely case (4*) in loc. cit. However, this case is excluded here as the second
to last and last nodes of this a-string have differing atypicality and, by assumption, Lλ and
Lµ have the same atypicality. Therefore, Lλ and Lµ form an a-string of length precisely one.
By [15, Theorem 4.36(ii)] one has that EaLµ

∼= Lλ. That is, that Lλ is a direct summand of
Lµ ⊗ V ∗. Hence, ILλ

⊆ ILµ
. This proves the desired equality.

�

Now for each k = 0, . . . , m let Lσ(k) denote the polynomial representation labelled by the
(m,n) hook partition

σ(k) = (n− k, . . . , n− k, 0, . . . , 0),

where there are precisely m− k entries equal to n− k. Since σ(k) is a rectangle, by Theo-
rem 6.6.2 Lσ(k) is an ambidextrous object for all k = 0, . . . , m. Also note that since σ(k)j = 0
for j = m+ 1, . . .m+ n, that one has

L(σ(k)) = Lσ(k).

By direct calculation, Lσ(k) has atypicality k. A simple inductive argument using Proposi-
tion 6.6.3 shows that

ILσ(l)
⊆ ILσ(k)

(6.6.2)

whenever l ≤ k.

Theorem 6.6.4. Let Lλ be the simple polynomial representation of gl(m|n) labelled by the
(m,n) hook partion λ. Assume that Lλ has atypicality k. Then the following statements hold
true.

(1) One has ILλ
= ILσ(k)

.

(2) One has dLσ(k)
(Lλ) 6= 0

(3) All polynomial representations of gl(m|n) are ambidextrous.
(4) If Lν is a polynomial representation of gl(m|n) of atypicality less than or equal to

the atypicality of Lλ, then Lν ∈ ILλ
and dLλ

(Lν) 6= 0 if and only if the atypicality of
Lλ equals the atypicality of Lν. That is, the Generalized Kac-Wakimoto Conjecture
holds for polynomial representations of gl(m|n).

Proof. Let λ = (λ1, λ2, . . . ) be a (m,n) hook partition, let µ = τ(λ) be the highest weight of
Lλ, and say µ has atypicality k. As we will be interested in keeping close track of atypicality
and as this is computed using the highest weight of a representation, we will mainly label
simple supermodules with their highest weight.

Before proving the theorem we first obtain some information about which entries of µ
contribute to its atypicality. Let

t = λm+1.

We first observe that if 1 ≤ i ≤ m, m + 1 ≤ j ≤ m + n, and (µ + ρ, εi − εj) = 0 then
necessarily j > m + t. For if not, then m + 1 ≤ j ≤ m + t and using that the entries of
(µ1, . . . , µm) are weakly decreasing and the fact that j ≤ m+ t where t = λm+1 ≤ λm = µm,
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we obtain the following contradiction:

0 = (µ+ ρ, εi − εj)

= µi +m− i+ µj +m+ 1− j

≥ µm +m− i+ µj +m+ 1− j

≥ µm + µj +m+ 1− j

≥ µj + 1

> 0. (6.6.3)

On the other hand, by (6.6.1) we have µj = 0 for j > m+ t. Therefore

(µ+ ρ, εm+t+l) = t+ l − 1 (6.6.4)

for all 1 ≤ l ≤ n − t. That is, as l runs between 1 and n − t every integer between t and
n− 1 appears exactly once. We also observe that for 1 ≤ i ≤ m we have

(µ+ ρ, εi) ≥ (µ+ ρ, εm) = µm = λm ≥ λm+1 = t.

Recall that k was the atypicality of L(µ). The previous paragraph implies that (µ+ρ, εi−
εj) = 0 for all i = m− k + 1, . . . , m and exactly k indices j ∈ {m+ t, . . .m+ n}.

We make one other combinatorial observation. Since the atypicality of L(µ) is k it follows
from (6.6.4) that (µ + ρ, εm−k) ≥ n. That is, µm−k ≥ n − k. Then for i = 1, . . . , m− k the
inequality µi ≥ µm−k implies µi ≥ n − k. In particular, since µi = λi for i = 1, . . . , m − k,
one has σ(k) ⊆ λ.

We are now prepared to prove statement (1). We continue to work with the labelling
of simple modules by highest weight. However, observe that if L(α) and L(β) are two
polynomial representations, then α ⊆ β and β is obtained from α by the addition of a single
node if and only if τ(α) ⊆ τ(β) and τ(β) is obtained from τ(α) by the addition of a single
node. Therefore Proposition 6.6.3 applies whenever the highest weights of two polynomial
representations differ by a single node.

We now show that one can construct a sequence of highest weights all of atypicality k,

σ(k) = γ(1) ⊆ γ(2) ⊆ · · · ⊆ γ(l) = µ,

so that γ(s) is obtained from γ(s − 1) by the addition of a single node and so that all are
the highest weights of polynomial representations. The existence of such a sequence - along
with the observation in the previous paragraph - immediately implies statement (1) of the
theorem via an inductive argument using Proposition 6.6.3.

We do this by proceeding in three stages. In the first stage, we note that by our earlier
observations on the location of atypicality one has that (σ(k)+ ρ, εi) ≥ n and (µ+ ρ, εi) ≥ n
for i = 1, . . . , m − k. Consequently we can successively add nodes to the first m − k rows
of σ(k) in such a way that adding each node yields a partition γ(s) with (γ(s) + ρ, εi) ≥ n
for all i = 1, ..., m − k. This implies that (γ(s) + ρ, εi − εj) 6= 0 for all i = 1, ..., m − k
and j = m + 1, . . . , n +m. Therefore, the rows 1, ..., m − k of γ(s) are not involved in the
calculation of atypicality. Then since γ(s)i = σ(k)i = 0 for all i > m− k it follows that γ(s)
has atypicality k. We continue adding nodes to the first m − k rows until we reach γ(s1)
where γ(s1)i = µi for i = 1, . . .m− k and γ(s1)i = 0 for i > m− k.

In the second stage we start with γ(s1). We first observe that if α is such that γ(s1) ⊆
α ⊆ µ and αj = 0 for j = m + 1, . . . , m + n, then (i) (α + ρ, εj) = 0,−1, . . . ,−(n − 1)
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for j = m + 1, . . . , m + n, and (ii) we have the inequality (α + ρ, εi) ≤ (µ + ρ, εi) ≤ n − 1
for i = m − k + 1, ..., m. Together these imply we can successively add nodes to rows
m− k+1, . . . , m of γ(s1) in such a way that adding each node yields another partition with
atypicality k. We continue adding nodes until we reach γ(s2) where now γ(s2)i = µi for
i = 1, . . . , m.

The key observation to make at this point is that if α is such that γ(s2) ⊆ α ⊆ µ with
αi = µi for i = 1, . . . , m and t = λm+1, then as was explained above using inequality
(6.6.3) (the argument applies equally well by replacing µ with α), (α+ ρ, εi − εj) > 0 for all
i = 1, . . . , m and j = m + 1, . . . , m + t. That is, rows m + 1, . . . , m + t of γ(s2) and µ are
not involved in the calculation of the atypicality of α. From this we see we can successively
add nodes to these rows γ(s2) in such a way that adding each node yields a new partition
with atypicality k. We continuing adding nodes until we reach µ. We now have the sequence
of weights as desired and, as mentioned above, this suffices to prove statement (1) of the
theorem.

Statement (1) implies statement (2) by Theorem 4.2.2. Since Lσ(k) admits a nonzero
ambidextrous trace and Lλ ∈ ILσ(k)

, by Theorems 3.3.1 and 3.3.2 Lλ admits an ambidextrous

trace tLλ
. By (2) one has that 0 6= dLσ(k)

(Lλ) = tLλ
(IdLλ

) which shows that this trace is

nontrivial, hence Lλ admits a nontrivial ambidextrous trace. This proves (3).
Finally, to prove (4) one observes that if l is the atypicality of Lν and l ≤ k, then by (1)

and (6.6.2) we have that Lν ∈ ILσ(l)
⊆ ILλ

. Now if l < k, then by Proposition 6.5.1 one has

that dLλ
(Lν) = 0. On the other hand, if l = k, then by part (1) one has that

ILν
= ILσ(k)

= ILλ

and by Lemma 4.2.2 it follows that dLλ
(Lν) 6= 0.

�

7. Finite Groups in Positive Characteristic

Fix an algebraically closed field k of characteristic p > 0. We will examine several examples
of the above theory applied to representations of finite groups over the field k. Throughout
we will consider the category C of finite dimensional representations over k with the usual
tensor product, dual, etc. In particular, the trivial module is the unit, 1 = k, and K =
EndC(1) ∼= k. We remark that as k is algebraically closed, an indecomposable module is
absolutly indecomposable and an irreducible module is absolutely irreducible.

7.1. Cylic group of order p. Let Cp denote the cylic group of order p and A = kCp its
group algebra.

7.1.1. Characteristic p = 2. We first consider the case p = 2. Then there are two indecom-
posable modules, the trivial module k and A under the left regular action. By Example 3.3.6
trivial module is automatically ambidextrous therefore we need only consider A. To be com-
pletely concrete, let g ∈ C2 be the cyclic generator, and fix a basis of {v1, v2} ⊂ A satisfying
gv1 = v1 and gv2 = v1 + v2. That is, A is nonsplit extension of the trivial module with itself
and the vector v1 spans the unique trivial submodule.

Since A is projective it follows that A⊗A is projective and so by dimensions A⊗A ∼= A⊕A.
In terms of our basis we can write the direct sum decomposition as

A⊗ A = A⊕A = 〈v1 ⊗ v2, v1 ⊗ v1〉 ⊕ 〈v1 ⊗ v2 + v2 ⊗ v2, v1 ⊗ v2 + v2 ⊗ v1〉,
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where v1⊗v1 and v1⊗v2+v2⊗v1 span the unique trivial submodule of each direct summand.
With respect to the above direct sum decomposition, let

f : A⊗ A→ A⊗ A

be given by zero on the first direct summand and the identity on the second direct summand.
As usual let 〈 〉 : EndC(A) → k denote the canonical map. Since v1 spans the socle of A it
follows that for any ϕ ∈ EndC(A) one has ϕ(v1) = 〈ϕ〉v1. Using this observation a direct
calculation verifies that

〈TrL(f)〉 = 1 while 〈TrR(f)〉 = 0.

Therefore A is not ambidextrous as the canonical trace is not an ambidextrous trace.
In terms of ideals we have

Proj ( Ik = C.

In this case k is the unique ambidextrous indecomposable object in C.

7.1.2. Characteristic p > 2. We now consider the case p > 2. The indecomposable represen-
tations can be listed as V1, . . . , Vp where dimk (Vr) = r for r = 1, . . . , p. In particular, V1 = k
and is the unique simple module and Vp = A is the projective cover of k (cf. [1, Chapter II]).

The modules V1, . . . , Vp−1 all have nonzero categorical dimension. By Theorem 3.3.1 it
then follows that

IVi
= Ik = C

for i = 1, . . . , p − 1. Furthermore by Lemma 3.3.4(2) these indecomposable modules are
ambidextrous.

We now consider Vp ∼= A := kCp, the indecomposable projective cover of the trivial
module. Since A⊗ A is projective we have

A⊗ A ∼= A⊕ · · · ⊕ A,

where there are p direct summands. We have an action of Z2 on A⊗A given by the generator
of Z2 acting by the morphism c = cA,A : A⊗A→ A⊗A. Since k has characteristic different
from two, we obtain a decomposition of A ⊗ A into the 1 and −1 eigenspaces under this
action. That is, the span of the symmetric and skew symmetric tensors, respectively:

A⊗ A = S2A⊕ Λ2A.

Since the braiding is a morphism, this is a decomposition as Cp-modules.
We can refine this decomposition as follows. For i = 0, . . . , p− 1, let vi = gi ∈ A, so that

v0, . . . , vp−1 forms a basis for A. For 0 ≤ i ≤ j ≤ p − 1 and k = 0, . . . , (p − 1)/2, let Ek

denote the k-span of the vectors in the set

{vi ⊗ vj + vj ⊗ vi | j − i = k} .

A direct calculation verifies that Ek is a Cp-submodule of S2A which is isomorphic to A.
Furthermore, we have

S2A = E0 ⊕E1 ⊕ · · · ⊕ E(p−1)/2.

Similarly, for k = 1, . . . , (p− 1)/2, let Ok denote the k-span of the vectors in the set

{vi ⊗ vj − vj ⊗ vi | j − i = k} .

A direct calculation verifies that Ok is a Cp-submodule of Λ2A which is isomorphic to A.
Furthermore, we have

Λ2A = O1 ⊕O2 ⊕ · · · ⊕ O(p−1)/2.
33



Define a morphism f : A ⊗ A → A ⊗ A with respect to this direct sum decomposition
as follows. Let f(Ok) = 0 for k = 1, . . . , p − 1 and f(Ek) = 0 for k = 0, 2, . . . , p − 1. The
submodule E1 is a free module generated by the vector v1 ⊗ v0 + v0 ⊗ v1. Thus on this
summand it suffices to define f by declaring

f(v1 ⊗ v0 + v0 ⊗ v1) = v2 ⊗ v1 − v1 ⊗ v2 ∈ O2.

A direct calculation verifies that

TrL(f)
t(v0) = (−1/2)tv2t

for t = 1, 2, . . . . In particular, since A is cyclically generated by v0, it follows that TrL(f)
p =

(−1/2)p IdA. That is, TrL(f) is an isomorphism and, hence,

〈TrL(f)〉 6= 0. (7.1.1)

However, f ∈ EndC(A⊗A) is in the −1 eigenspace of EndC(A⊗A) under the conjugation
action of c (cf. Remark 3.3.5). In particular, we have

TrR(f) = TrL(c ◦ f ◦ c−1) = −TrL(f).

Therefore, as explained in Remark 3.3.5, this shows that A is not ambidextrous.

7.2. The Klein Four Group. Let k be an algebraically closed field of characteristic two
and let V4 be the Klein four group. There is a single irreducible module, namely the trivial
module. The indecomposable modules were first classified by Bas̆ev [7], and Heller and
Reiner [30], but has its roots in work of Kronecker. It may also be found in [9, Theorem
4.3.3] and we use the parameterization therein. The indecomposable modules come in four
types:

(1) The unique projective module D of dimension 4.
(2) Ωn(k) for n ∈ Z. These are the Heller shifts of the trivial module and are of dimension

2|n|+ 1. In particular, Ω0(k) = k.
(3) Vn(α) for n ∈ Z>0 and α ∈ k. These are of dimension 2n.
(4) Vn(∞) for n ∈ Z>0. These are of dimension 2n.

We first describe the ideals generated by the indecomposable modules. By the Krull-
Schmidt theorem every object in C is a direct sum of indecomposables and hence it suffices
to compute the direct summands which appear in the tensor product of two indecomposable
modules. To do so, we recall that the representation ring (or Green ring) is defined as the
ring given by taking as elements the isomorphism classes of kV4-modules with addition and
multiplication given by direct sum and tensor product, respectively. Thus we can make use
of the calculation by Conlon [17] of the table of products in the representation ring of V4
(see also [3] for a summary of Conlon’s results). From this one easily reads off the following
result.

Proposition 7.2.1. Let the indecomposable modules of V4 be as above. Then we have the
following containments of ideals.

(1) Proj = ID is contained in all ideals.
(2) For any n ∈ Z, Ik = IΩn(k).
(3) For any n ∈ Z>0 and m = 1, . . . , n− 1, IVm(∞) ( IVn(∞).
(4) For any α ∈ k, n ∈ Z>0, and m = 1, . . . , n− 1, we have IVm(α) ( IVn(α).
(5) For α ∈ k, α 6= 0, 1, we have IV2(α) = IV1(α).
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There are no other nontrivial containments. In short: ∀α ∈ k\{0, 1}, ∀β ∈ {0, 1,∞}, ∀n ∈ Z,

Proj = ID (
IV1(α) = IV2(α) ( IV3(α) ( · · ·
IV1(β) ( IV2(β) ( IV3(β) ( · · ·

( IΩn(k) = Ik = C.

We now examine the last case of the previous result in greater detail. Let us fix α ∈ k
with α 6= 0, 1. Fix generators g, h ∈ V4 and set x = 1 + g and y = 1 + h in kV4. Then
kV4 ∼= k[x, y]/(x2, y2). It turns out that it is convenient to work with this presentation of
the group algebra. Then V1(α) is a two dimensional representation with ordered basis v1, v2
and the action of x and y are given by the matrices X1 and Y1 (with respect to the given
ordered basis), respectively, where

X1 =

(

0 1
0 0

)

and Y1 =

(

0 α
0 0

)

.

We now consider V1(α)⊗V1(α). For our purposes it is convenient to use the ordered basis
{v1 ⊗ v1, v1 ⊗ v2 + v2 ⊗ v1, v2 ⊗ v2, v1 ⊗ v2}. For brevity’s sake we write vij for the vector
vi⊗vj , where i, j ∈ {1, 2}. In this basis the action of x and y are given by the 4×4 matrices

X2 =

(

0 W1

0 0

)

and Y2 =

(

0 Wα

0 0

)

,

where 0 denotes the 2× 2 zero matrix, and where

W1 =

(

1 1
1 0

)

and Wα =

(

α2 α
α 0

)

.

A calculation shows that a 4× 4 matrix commutes with X2 and Y2 and, hence, defines an
element of f ∈ EndC(V1(α)⊗ V1(α)) if and only if it is of the form

f =

(

A B
0 AT

)

,

where A and B are 2× 2 matrices of the form

A =

(

a c
0 a

)

and B =

(

b1 b2
b3 b4

)

with a, c, b1, b2, b3, b4 arbitrary elements of k and AT denoting the transpose of A.
Given f as above we now compute 〈TrR(f)〉 and 〈TrL(f)〉. As we did in Section 7.1.1 we

make use of the following observation: since V1(α) has a simple socle spanned by v1, then
for any h ∈ EndC(V1(α)) we have h(v1) = 〈h〉v1. Thus it suffices to compute what happens
to the element v1. We first compute TrR(v1) using the definition:

v1 7→ v11 ⊗ v∗1 + v12 ⊗ v∗2

7→ (av11)⊗ v∗1 + (b2v11 + b4(v12 + v21) + av12)⊗ v∗2
7→ b4v1.

Hence we have

〈TrR(f)〉 = b4.
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On the other hand, we consider TrL(v1):

v1 7→ v∗1 ⊗ v11 + v∗2 ⊗ v21

= v∗1 ⊗ v11 + v∗2 ⊗ ((v12 + v21) + v12)

7→ v∗1 ⊗ (av11) + v∗2 (cv11 + a(v12 + v21) + b2v11 + b4(v12 + v21) + av12)

7→ b4v1.

Hence we have

〈TrL(f)〉 = b4.

Summarizing the above results, we have the following proposition.

Proposition 7.2.2. Let k be an algebraically closed field of characteristic 2, let V4 be the
Klein four group, and let V1(α) be the two dimensional indecomposable V4-module where
α ∈ k and α 6= 0, 1.

Then the canonical trace on V1(α) is ambidextrous and, hence, V1(α) is ambidextrous.
Furthermore, V2(α) ∈ IV1(α) and

dV1(α) (V2(α)) = 0.

Proof. The statement that V1(α) is ambidextrous follows immediately from the above calcu-
lations. It follows from the calculations of Conlon that V1(α)⊗ V1(α) ∼= V2(α). Taking f to
be the identity map in the above calculation, we immediately obtain the final statement. �

Remark 7.2.3. Computer calculations show that Vn(α) for n = 2, 3, 4 and α ∈ k, α 6= 1, 0,
and Vn(∞) for n = 1, 2, 3, 4 are not ambidextrous.

8. Representations of sl2(k) In Positive Characteristic

8.1. Fix an algebraically closed field of characteristic p > 2. Let g = sl2(k) and let C be the
category of all finite dimensional g-modules. The ribbon category structure on C is given by
the usual coproduct, braiding, etc. Our standard references for results on C is [24]. In this
section we will examine the simple objects in C.

Recall that g is a restricted Lie algebra and so admits a p-power map x 7→ x[p] (x ∈ g) and
that in the enveloping algebra, U = U(g), the elements xp−x[p] are central. Let O denote the
central subalgebra of U generated by the set {xp − x[p] | x ∈ g}. If H,E, F are the standard
basis elements of g, then O is a polynomial ring in the elements Hp − H [p] = Hp − H ,
Ep − E[p] = Ep, and F p − F [p] = F p (recalling that H [p] = H , E[p] = F [p] = 0). Given a
simple g-module, S, then Schur’s lemma implies that S is absolutely simple. Thus every
element of O acts on S by a scalar and there is an algebra homomorphism χ : O → k
such that z.s = χ(z)s for all z ∈ O and s ∈ S. For each such χ, one can consider the full
subcategory of C, C[χ] consisting of all modules which are annihilated by (z − χ(z))N for all
z ∈ O and sufficently large N . One then has the following decomposition

C =
⊕

χ

C[χ],

where the direct sum is over all algebra homomorphisms χ : O → k. In particular an
indecomposable module lies entirely within one C[χ]. We call each full subcategory C[χ] a
block of C. Also note that if X ∈ C[χ1] and Y ∈ C[χ2] then X⊗Y ∈ C[χ1+χ2], and X∗ ∈ C[−χ1].
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The blocks C[χ] of C correspond bijectively to elements of g∗. Recall that G = GL2(k)
acts on g via the adjoint action and on g∗ by the dual adjoint action. Given a g-module
M and g ∈ G, we write Mg for the twist of M by g; that is, the g-module given by setting
Mg =M as a vector space with g-action given by x.m = (g.x)m for all x ∈ g and m ∈Mg.
If two elements of g∗ are conjugate under the dual adjoint action of GL2(k) on g∗, say by
g ∈ G, then the corresponding blocks are isomorphic via twisting by g−1. Since twisting by
an element of G is a tensor functor which defines an automorphism on the category C, we
can restrict our analysis to moduled which lie in C[χ] for a χ in each of the orbits of g∗; thus
we are reduced to the following cases. See [24, Section 2] for details.

I. The restricted type.
χ(Hp −H) = 0 χ(Ep) = 0 χ(F p) = 0. In this case χ = 0 and we write χ0.

II. The semisimple type. For any fixed α ∈ k, α 6= 0,
χ(Hp −H) = αp χ(Ep) = 0 χ(F p) = 0

III. The regular nilpotent type.
χ(Hp −H) = 0 χ(Ep) = 0 χ(F p) = 1.

8.2. The ideals of C. We first analyze the ideals generated by a simple module in each of
the cases.
Case I: Say χ = χ0 and J ∈ C[χ0] is simple. Then by [24, Proposition 2.4] one has the
following possibilities.

(1) If dk(J) = 0, then J has vector space dimension p and J is the Steinberg module.
But the Steinberg module is projective and then by Lemma 4.4.1 we have

IJ = Proj.

(2) One has dk(J) = dimC(J) 6= 0 and by Lemma 4.2.2 we have

IJ = Ik = C.

Case II: Say χ is of semisimple type and J is a simple object in C[χ]. Then by [24, Corol-
lary 2.2] C[χ] is a semisimple category and, hence, J is a projective module. Applying
Lemma 4.4.1 we have

IJ = Proj.

Case III: Say χ is of regular nilpotent type and J is a simple object in C[χ]. By [24,
Proposition 2.3] we have the following two possibilities.

(1) If J is the unique simple projective in C[χ], then again we have

IJ = Proj.

(2) If J is simple and not projective, then dimk(J) = p and so dk(J) = 0. By Lemma 4.4.1
and Lemma 4.2.2 one has

Proj ( IJ ( Ik. (8.2.1)

We now further analyze the objects which appear in IJ in this situation.
By [24, Proposition 2.3] the simple modules in C[χ] are parameterized non-uniquely

by elements λ ∈ k which satisfy λp−λ = 0; that is, the elements of the prime subfield
Fp ⊆ k. As we will need it later, let us give a brief sketch of the structure of these
modules (we follow the construction in the proof of [24, Proposition 2.3]). As a point
of terminology, given a g-module, M , we call a vector m ∈ M a primitive vector if
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E.m = 0. Given λ ∈ Fp ⊂ k. The simple module Vχ,λ is a “baby Verma module”
and is generated by a primitive vector of weight λ, say v0. Then

{vi := F ivλ | i = 0, . . . , p− 1}

is a basis for Vχ,λ. On this basis the action of sl2 is given by

Hvi = (λ− 2i)vi

Fvi = vi+1 (8.2.2)

Evi = i(λ− i+ 1)vi−1

where the subscripts are understood to be written modulo p. In particular, the
weights of Vχ,λ are precisely the elements of Fp ⊆ k and each has multiplicity one.
Moreover, as Vχ,λ is defined by induction from a one dimensional representation of
the Borel subalgebra, it is a universal highest weight representation within C[χ].
If λ = p− 1, then Vχ,λ has a unique primitive vector and is the unique projective

simple module in C[χ]. For all other λ, Vχ,λ contains a second primitive vector, namely
the vector F λ∗

v0, where λ
∗ := p−2−λ. However, Vχ,λ∗

∼= Vχ,λ. Thus if S is a simple
module, then the weight of a primitive vector identifies S up to isomorphism. There
are (p+ 1)/2 simple objects in C[χ] (labelled by 0, 1, . . . , (p− 3)/2, p− 1).
The ideals in this case can be handled as an exercise in the rank variety theory

introduced by Friedlander and Parshall [23]. This can also be viewed as the first
instance of a much more general result which shows that thick tensor ideals of C such
as these are classified by rank varieties [25]. Rather than give all the details, let us
summarize by saying that the ambiant space for these varieties is the two dimensional
variety

Vsl2(k) =
{

x ∈ sl2(k) | x
[p] = 0

}

,

and that if J is a nonprojective simple module which lies in C[χ] (where χ is as in
Case III), then the variety of J is the line through the origin in Vsl2(k) given by kE.

If S is a nonprojective simple module in a block isomorphic to C[χ] via twisting by
G, then the variety for S is a line in Vsl2(k). Furthermore, if S is a simple module in
C, then S ∈ IJ if and only if the variety of S lies in the variety of J .

Let us summarize the above calculations in the following theorem which also accounts for
twisting by G.

Theorem 8.2.1. Let J be a simple sl2(k)-module lying in C[ν]. Then the following statements
are true.

(1) If ν = 0 and J is not isomorphic to the Steinberg module, then dimk(J) 6= 0 and
IJ = Ik = C.

(2) If J is projective (i.e. ν = χ0 and J the Steinberg module, ν is conjugate to the
regular nilpotent and J the unique projective simple object in C[ν], or ν is conjugate
to a semisimple type), then IJ = Proj.

(3) If ν is conjugate to the nilpotent regular and J is not projective, then the simple
objects in IJ are precisely the simple objects in C whose rank variety is contained in
the rank variety of J .
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Remark 8.2.2. The complete collection of ideals generated by simple objects looks like

Proj ( IJ ( Ik,

where J ranges over a one parameter family of simple modules corresponding to lines through
the origin in Vsl2(k).

8.3. The restricted and projective modules. We note that a simple object S is am-
bidextrous if and only if its twist Sg is ambidextrous for any g ∈ G. Therefore the following
two theorems completely characterize the simple ambidextrous objects in C.

Theorem 8.3.1. Let L be a simple object in C[χ]. If χ = χ0 or if L is projective, then L is
ambidextrous.

Proof. If L is in C[χ0] and is not projective (i.e. not the Steinberg representation), then the
statement follows from Lemma 3.3.4 and the fact that dk(L) 6= 0.

Now assume L is projective. We first explicitly determine an ambidextrous projective
object. Fix α ∈ k, α 6= 0 and let χ be the semisimple character corresponding to α in Case
II. By [23, Proposition 2.1] the simple objects in C[χ] are described as follows. Let λ ∈ k be
an element which satisfies λp − λ = 0; that is, λ is an element of the prime subfield Fp ⊆ k.
Then there is a unique irreducible module in C[χ] which we will denote by Vχ,λ which is
commonly called the “baby Verma module” of highest weight λ. It is generated by a vector
vλ satisfying Hvλ = λvλ and Evλ = 0 and with basis {vi := F ivλ | i = 0, . . . , p − 1}. The
element λ uniquely determines Vχ,λ and the p elements of Fp give a complete irredundant
set of simple objects in C[χ]. Now we consider the module

T = Vχ,λ ⊗ Vχ,λ.

Then T is an object in C[2χ]. However 2χ is again semisimple (corresponding to the element
2α ∈ k), hence T is completely reducible into baby Verma modules of the form V2χ,µ. A
direct calculation verifies that in fact we have

T ∼= V2χ,2λ ⊕ V2χ,2λ−1 ⊕ V2χ,2λ−2 ⊕ · · · ⊕ V2χ,2λ−(p−1).

These simple modules have different highest weights and, hence, are pairwise non-isomorphic.
By Remark 3.3.5 it follows that Vχ,λ is ambidextrous. Now since Vχ,λ is projective, it follows
that IVχ,λ

= Proj and from Theorems 3.3.2 and 3.3.1 that we have a (possibly trivial)
ambidextrous trace on any simple L ∈ Proj. On the other hand, by Lemma 4.2.2 we have

0 6= dVχ,λ
(L) = tL(IdL),

so tL is nontrivial. Finally, since L is simple, tL is necessarily a scalar multiple of the
canonical trace and hence L is ambidextrous. Therefore every projective simple object in C
is ambidextrous. �

8.4. The nonprojective simples in the nilpotent regular block. We now consider the
nonprojective simple objects in C[χ] when χ is the nilpotent regular from Case III.

We first study the decomposition of Vχ,0 ⊗ Vχ,0. Similar formulas were obtained in [8, 46].
We note that if χ is regular nilpotent, then 2χ is GL2(k)-conjugate to χ and hence our
discussion of the category C[χ] applies equally well to C[2χ].
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Lemma 8.4.1. Let χ be the regular nilpotent in Case III and let V = Vχ,0 be the simple
g-supermodule with primitive vector of weight 0. Then

V ⊗ V = W0 ⊕W1 ⊕ · · · ⊕W(p−3)/2 ⊕ V2χ,p−1. (8.4.1)

where V2χ,p−1 is the unique projective simple object of C[2χ]. For k = 1, . . . , (p − 3)/2 each
Wk is isomorphic to the projective cover of V2χ,k. Furthermore W0 is the direct sum of two
simple modules, both of whom are isomorphic to V2χ,0.

Proof. We begin by observing that if λ ∈ Fp and λ 6= 0, p − 2 then the space of primitive
vectors of weight λ in V ⊗V is one dimensional; if λ = 0 or p−2, then it is two dimensional.
Namely, since H acts semisimply on the space of primitive vectors, we can assume without
loss that a primitive vector is a weight vector. Thus for a fixed n = 0, . . . , p − 1 we can
consider the equation

0 = E

(

p−1
∑

i=0

αivn−i ⊗ vi

)

.

By direct calculation we see that up to a nonzero scalar there is a unique solution for
α0, . . . , αp−1 if n 6= 0, 1. On the other hand, if n = 0 or 1, then we see that the equation has
two linearly independent solutions.

Now, given a primitive vector of weight λ, the universal property of V2χ,λ implies that it
appears as a simple module in the socle of V ⊗ V . Conversely, any simple module in the
socle gives rise to a pair of primitive vectors, λ and λ∗ = p−2−λ. Hence by our calculation
we have

socle (V ⊗ V ) ∼= V2χ,0 ⊕ V2χ,0 ⊕ V2χ,1 ⊕ · · · ⊕ V2χ,(p−3)/2 ⊕ V2χ,p−1.

We now show that W0 is 2p dimensional. Once we do so, dimension considerations show
that the decomposition of V ⊗ V must be as given. Namely, W0

∼= V2χ,0 ⊕ V2χ,0 and each
W1, . . . ,W(p−3)/2 can either be isomorphic to V2χ,k or its projective cover (which is a nonsplit
self extension of the simple module) and by dimensions they are necessarily the projective
cover in every case.

Let Ω = EF + FE +H2/2 ∈ U(sl2(k)) be the Casimir element of sl2(k). We note that if
for a ∈ Fp we set

ca = a+
a2

2
,

then Ω acts on the simple module V2χ,a in C[2χ] by the scalar ca. Furthermore, ca = cb if and
only if a = b or a = b∗. That is, Ω acts on each simple by a unique scalar.

Define
Ω1,2 = E ⊗ F + F ⊗ E + (H ⊗H)/2.

We then have that
2Ω1,2 = ∆(Ω)− Ω⊗ 1− 1⊗ Ω (8.4.2)

as a linear map on V ⊗ V , where ∆ : U(sl2(k)) → U(sl2(k)) is the coproduct on the
enveloping algebra of sl2(k). Since the Casimir element is central, from (8.4.2) we see that
Ω1,2 is in fact a sl2(k)-module endomorphism. Furthermore, if V2χ,a is a simple submodule
of V2χ,b ⊗ V2χ,c, then Ω1,2 acts on V2χ,a by the scalar (ca − cb − cc)/2. In particular, since in
this case V2χ,b = V2χ,c = Vχ,0, we have that Ω1,2 acts on Vχ,a by the scalar ca/2. From this
it follows that each of the direct summands in (8.4.1) is precisely a generalized eigenspace
of Ω1,2 acting on V ⊗ V . Therefore to show W0 is 2p dimensional we simply need to show
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that the generalized c0 = 0-eigenspace has dimension 2p. Furthermore, since Ω1,2 preserves
the weight spaces of V ⊗ V and the simple modules in C[χ] have each weight appearing with
multiplicity one, this is equivalent to showing that the p− 2 weight space of the generalized
0-eigenspace of Ω1,2 is two dimensional.

Let zi = vi ⊗ v1−i for i = 0, . . . , p− 1 (where the subscripts are understood to be written
modulo p). Then z0, . . . , zp−1 is a basis for the p− 2 weight space of V ⊗ V . In this ordered
basis we can use (8.2.2) to write the matrix X for the action of Ω1,2 and doing so we obtain
the p× p matrix

X =













0 0 0 0 · · · 0 −2
0 0 −2 0 · · · 0 0
0 0
...

... M
0 0













, N =





















2 1
1 2 1

1 2 1
1 2

. . .
. . .

1
1 2





















,

where M and N are (p− 2)× (p− 2) matricies, M = ND, and D is the invertible diagional
matrix D = diag((i(1 − i))i=2,...,p−1). The result then follows from the fact that for any
n ∈ N, rank(Xn) = rank(Mn) = p − 2. Indeed M is invertible. This follows from the
fact that D is invertible and an easy inductive argument which shows that det(N) = p− 1
(alternatively, this determinant is given by Up−2(1) = p − 1, where Un(x) is the degree n
Chebyshev polynomial of the second kind). �

Using this lemma we now consider the special case of Vχ,0.

Proposition 8.4.2. Let χ ∈ g∗ be regular nilpotent and let Vχ,0 be the simple module in C[χ]

labelled by 0 ∈ Fp. Then Vχ,0 is not ambidextrous.

Proof. Let V = Vχ,0. Since the square of the braiding is the identity and the characteristic
of k is not equal to two, by Remark 3.3.5 it suffices to prove that there always exists a
morphism f : V ⊗ V → V ⊗ V which is between S2V and Λ2V and for which TrR(f) 6= 0.

We first observe that since v0, v1 ∈ V are the primitive vectors of weight 0 and p − 2,
respectively, the vectors v0 ⊗ v1 + v1 ⊗ v0 and v0 ⊗ v1 − v1 ⊗ v0 are both primitive vectors in
V ⊗ V of weight p− 2. Therefore, from (8.4.1) we see that S2V and Λ2V each have a direct
summand which is isomorphic to V2χ,0. Let us call W ′ (resp. W ′′) the summand which lies
in S2V (resp. Λ2V ). We then have a morphism f : V ⊗V → V ⊗V which is identically zero
on all direct summands of (8.4.1) except on W ′ which is mapped isomorphically to W ′′; in
particular, it is determined by setting

f(v0 ⊗ v1) = f(v1 ⊗ v0) = v0 ⊗ v1 − v1 ⊗ v0.

We use the notation of the proof of Lemma 8.4.1. The operator Ω1,2 is zero on W ′′ because
it is zero on v0 ⊗ v1 − v1 ⊗ v0. Thus Ω1,2 ◦ f = f ◦Ω1,2 = 0. This and the form of X implies
that f(zi) = −(−1)i(v0 ⊗ v1 − v1 ⊗ v0) for i = 2, . . . , p− 1.

Furthermore f ◦ Ω1,2(v0 ⊗ vi) = i(1 − i)f(v1 ⊗ vi−1) = 0 and we get that f(v1 ⊗ vi) = 0
except for i ∈ {−1, 0}.

41



As TrR(f) = x IdV for some x ∈ k, we can now compute x as follows

TrR(f)(v1) =
∑

i

(Id⊗v∗i )
(

f(v1 ⊗ vi)
)

= (Id⊗v∗0)
(

f(v1 ⊗ v0)
)

+ (Id⊗v∗−1)
(

f(v1 ⊗ v−1)
)

.

Now, (Id⊗v∗0)
(

f(v1 ⊗ v0)
)

= −v1, and as F p acts by 2 on V ⊗ V , we have

2f(v1 ⊗ v−1) = F p−1f(F (v1 ⊗ v−1)) = F p−1f(z2 + z1) = 0.

Hence TrR(f) = − IdV 6= 0 so Vχ,0 is not ambidextrous. �

The general case now follows easily.

Theorem 8.4.3. If L is a nonprojective simple object in C[χ] and χ is nilpotent regular, then
L is not ambidextrous.

Proof. The key observation is that if some nonprojective simple object in C[χ] is ambidextrous,
then using Theorems 3.3.2 and 3.3.1 and Lemma 4.2.2, we would have that all nonprojective
simple objects in C[χ] are ambidextrous. However, by the previous proposition this is not the
case. �
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