STABILITY OF VOLUME COMPARISON FOR COMPLEX CONVEX BODIES

ALEXANDER KOLDOBSKY

Abstract

We prove the stability of the affirmative part of the solution to the complex Busemann-Petty problem. Namely, if K and L are origin-symmetric convex bodies in $\mathbb{C}^{n}, n=2$ or $n=3$, $\varepsilon>0$ and $\operatorname{Vol}_{2 n-2}(K \cap H) \leq \operatorname{Vol}_{2 n-2}(L \cap H)+\varepsilon$ for any complex hyperplane H in \mathbb{C}^{n}, then $\left(\operatorname{Vol}_{2 n}(K)\right)^{\frac{n-1}{n}} \leq\left(\operatorname{Vol}_{2 n}(L)\right)^{\frac{n-1}{n}}+\varepsilon$, where $\mathrm{Vol}_{2 n}$ is the volume in \mathbb{C}^{n}, which is identified with $\mathbb{R}^{2 n}$ in the natural way.

1. Introduction

The Busemann-Petty problem, posed in 1956 (see [BP]), asks the following question. Suppose that K and L are origin symmetric convex bodies in \mathbb{R}^{n} such that

$$
\operatorname{Vol}_{n-1}(K \cap H) \leq \operatorname{Vol}_{n-1}(L \cap H)
$$

for every hyperplane H in \mathbb{R}^{n} containing the origin. Does it follow that

$$
\operatorname{Vol}_{n}(K) \leq \operatorname{Vol}_{n}(L) ?
$$

The answer is affirmative if $n \leq 4$ and negative if $n \geq 5$. The solution was completed in the end of the 90 's as the result of a sequence of papers [LR], [Ba], [Gi], [Bo], [L], [Pa], [G1], [G2], [Z1], [Z2], [K1], [K2], [Z3], [GKS] ; see [K3, p. 3] or [G3, p. 343] for the history of the solution.

The complex version of the Busemann-Petty problem was solved in [KKZ], the answer is affirmative for convex bodies in \mathbb{C}^{n} when $n \leq 3$, and it is negative for $n \geq 4$. To formulate the complex version, we need several definitions.

For $\xi \in \mathbb{C}^{n},|\xi|=1$, denote by

$$
H_{\xi}=\left\{z \in \mathbb{C}^{n}:(z, \xi)=\sum_{k=1}^{n} z_{k} \overline{\xi_{k}}=0\right\}
$$

the complex hyperplane through the origin perpendicular to ξ.

[^0]Origin symmetric convex bodies in \mathbb{C}^{n} are the unit balls of norms on \mathbb{C}^{n}. We denote by $\|\cdot\|_{K}$ the norm corresponding to the body K :

$$
K=\left\{z \in \mathbb{C}^{n}:\|z\|_{K} \leq 1\right\}
$$

In order to define volume, we identify \mathbb{C}^{n} with $\mathbb{R}^{2 n}$ using the mapping

$$
\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)=\left(\xi_{11}+i \xi_{12}, \ldots, \xi_{n 1}+i \xi_{n 2}\right) \mapsto\left(\xi_{11}, \xi_{12}, \ldots, \xi_{n 1}, \xi_{n 2}\right)
$$

Under this mapping the hyperplane H_{ξ} turns into a ($2 n-2$)-dimensional subspace of $\mathbb{R}^{2 n}$.

Since norms on \mathbb{C}^{n} satisfy the equality

$$
\|\lambda z\|=|\lambda|\|z\|, \quad \forall z \in \mathbb{C}^{n}, \quad \forall \lambda \in \mathbb{C}
$$

origin symmetric complex convex bodies correspond to those origin symmetric convex bodies K in $\mathbb{R}^{2 n}$ that are invariant with respect to any coordinate-wise two-dimensional rotation, namely for each $\theta \in$ $[0,2 \pi]$ and each $\xi=\left(\xi_{11}, \xi_{12}, \ldots, \xi_{n 1}, \xi_{n 2}\right) \in \mathbb{R}^{2 n}$

$$
\begin{equation*}
\|\xi\|_{K}=\left\|R_{\theta}\left(\xi_{11}, \xi_{12}\right), \ldots, R_{\theta}\left(\xi_{n 1}, \xi_{n 2}\right)\right\|_{K} \tag{1}
\end{equation*}
$$

where R_{θ} stands for the counterclockwise rotation of \mathbb{R}^{2} by the angle θ with respect to the origin. We shall simply say that K is invariant with respect to all R_{θ} if it satisfies (1).

The complex Busemann-Petty problem can be formulated as follows: suppose K and L are origin symmetric invariant with respect to all R_{θ} convex bodies in $\mathbb{R}^{2 n}$ such that

$$
\operatorname{Vol}_{2 n-2}\left(K \cap H_{\xi}\right) \leq \operatorname{Vol}_{2 n-2}\left(L \cap H_{\xi}\right)
$$

for each ξ from the unit sphere $S^{2 n-1}$ of $\mathbb{R}^{2 n}$. Does it follow that

$$
\operatorname{Vol}_{2 n}(K) \leq \operatorname{Vol}_{2 n}(L) ?
$$

As mentioned above, the answer is affirmative if and only if $n \leq 3$. In this article we prove the stability of the affirmative part of the solution:

Theorem 1. Suppose that $\varepsilon>0, K$ and L are origin-symmetric invariant with respect to all R_{θ} convex bodies bodies in $\mathbb{R}^{2 n}, n=2$ or $n=3$. If for every $\xi \in S^{2 n-1}$

$$
\begin{equation*}
\operatorname{Vol}_{2 n-2}\left(K \cap H_{\xi}\right) \leq \operatorname{Vol}_{2 n-2}\left(L \cap H_{\xi}\right)+\varepsilon \tag{2}
\end{equation*}
$$

then

$$
\operatorname{Vol}_{2 n}(K)^{\frac{n-1}{n}} \leq \operatorname{Vol}_{2 n}(L)^{\frac{n-1}{n}}+\varepsilon
$$

The result does not hold for $n>3$, simply because the answer to the complex Busemann-Petty problem in these dimensions is negative; see [KKZ].

It immediately follows from Theorem 1 that

Corollary 1. If $n=2$ or $n=3$, then for any origin-symmetric invariant with respect to all R_{θ} convex bodies K, L in $\mathbb{R}^{2 n}$,

$$
\leq\left|\operatorname{Vol}_{2 n}(K)^{\frac{n-1}{n}}-\operatorname{Vol}_{2 n}(L)^{\frac{n-1}{n}}\right| .
$$

Note that stability in comparison problems for volumes of convex bodies was studied in [K5], where it was proved for the original (real) Busemann-Petty problem.

For other results related to the complex Busemann-Petty problem see $[R],[Z y 1],[Z y 2]$.

2. Proofs

We use the techniques of the Fourier approach to sections of convex bodies; see [K3] and [KY] for details.

The Fourier transform of a distribution f is defined by $\langle\hat{f}, \phi\rangle=$ $\langle f, \hat{\phi}\rangle$ for every test function ϕ from the Schwartz space \mathcal{S} of rapidly decreasing infinitely differentiable functions on \mathbb{R}^{n}.

If K is a convex body and $0<p<n$, then $\|\cdot\|_{K}^{-p}$ is a locally integrable function on \mathbb{R}^{n} and represents a distribution. Suppose that K is infinitely smooth, i.e. $\|\cdot\|_{K} \in C^{\infty}\left(S^{n-1}\right)$ is an infinitely differentiable function on the sphere. Then by [K3, Lemma 3.16], the Fourier transform of $\|\cdot\|_{K}^{-p}$ is an extension of some function $g \in C^{\infty}\left(S^{n-1}\right)$ to a homogeneous function of degree $-n+p$ on \mathbb{R}^{n}. When we write $\left(\|\cdot\|_{K}^{-p}\right)^{\wedge}(\xi)$, we mean $g(\xi), \xi \in S^{n-1}$. If K, L are infinitely smooth star bodies, the following spherical version of Parseval's formula was proved in $[\mathrm{K} 4]$ (see [K3, Lemma 3.22]): for any $p \in(-n, 0)$

$$
\begin{equation*}
\int_{S^{n-1}}\left(\|\cdot\|_{K}^{-p}\right)^{\wedge}(\xi)\left(\|\cdot\|_{L}^{-n+p}\right)^{\wedge}(\xi)=(2 \pi)^{n} \int_{S^{n-1}}\|x\|_{K}^{-p}\|x\|_{L}^{-n+p} d x \tag{3}
\end{equation*}
$$

A distribution is called positive definite if its Fourier transform is a positive distribution in the sense that $\langle\hat{f}, \phi\rangle \geq 0$ for every non-negative test function ϕ.

The Fourier transform formula for the volume of complex hyperplane sections was proved in [KKZ]:

Proposition 1. Let K be an infinitely smooth origin symmetric invariant with respect to R_{θ} convex body in $\mathbb{R}^{2 n}, n \geq 2$. For every $\xi \in S^{2 n-1}$, we have

$$
\begin{equation*}
\operatorname{Vol}_{2 n-2}\left(K \cap H_{\xi}\right)=\frac{1}{4 \pi(n-1)}\left(\|\cdot\|_{K}^{-2 n+2}\right)^{\wedge}(\xi) \tag{4}
\end{equation*}
$$

We also use the result of Theorem 3 from [KKZ]. It is formulated in [KKZ] in terms of embedding in L_{-p}, which is equivalent to our formulation below. However, the reader does not need to worry about embeddings in L_{-p}, because the proof of Theorem 3 in [KKZ] directly establishes the following:

Proposition 2. Let $n \geq 3$. For every origin symmetric invariant with respect to R_{θ} convex body K in $\mathbb{R}^{2 n}$, the function $\|\cdot\|_{K}^{-2 n+4}$ represents a positive definite distribution.

Let us formulate precisely what we are going to use later. The case $n=2$ follows from Proposition 1 (obviously, the volume is positive), the case $n=3$ is immediate from Proposition 2.

Corollary 2. If $n=2$ or $n=3$, then for every origin symmetric infinitely smooth invariant with respect to R_{θ} convex body K in $\mathbb{R}^{2 n}$, $\left(\|\cdot\|_{K}^{-2}\right)^{\wedge}$ is a non-negative infinitely smooth function on the sphere $S^{2 n-1}$.

We need the following simple fact:
Lemma 1. For every $n \in \mathbb{N}$,

$$
(\Gamma(n))^{\frac{1}{n}} \leq n^{\frac{n-1}{n}}
$$

Proof : By log-convexity of the Γ-function (see $[\mathrm{K} 3, \mathrm{p} .30]$),

$$
\frac{\log (\Gamma(n+1))-\log (\Gamma(1))}{n} \geq \frac{\log (\Gamma(n))-\log (\Gamma(1))}{n-1}
$$

SO

$$
(\Gamma(n+1))^{\frac{n-1}{n}} \geq \Gamma(n) .
$$

Now note that $\Gamma(n+1)=n \Gamma(n)$.
The polar formula for the volume of a convex body K in $\mathbb{R}^{2 n}$ reads as follows (see [K3, p.16]):

$$
\begin{equation*}
\operatorname{Vol}_{2 n}(K)=\frac{1}{2 n} \int_{S^{2 n-1}}\|x\|_{K}^{-2 n} d x \tag{5}
\end{equation*}
$$

We are now ready to prove Theorem 1.
Proof of Theorem 1. By the approximation argument of [S, Th. 3.3.1] (see also [GZ]), we may assume that the bodies K and L are infinitely smooth. Using [K3, Lemma 3.16] we get in this case that the Fourier transforms $\left(\|\cdot\|_{K}^{-2 n+2}\right)^{\wedge},\left(\|\cdot\|_{L}^{-2 n+2}\right)^{\wedge},\left(\|\cdot\|_{K}^{-2}\right)^{\wedge}$ are the extensions of infinitely differentiable functions on the sphere to homogeneous functions on $\mathbb{R}^{2 n}$.

By (4), the condition (2) can be written as

$$
\left(\|\cdot\|_{K}^{-2 n+2}\right)^{\wedge}(\xi) \leq\left(\|\cdot\|_{L}^{-2 n+2}\right)^{\wedge}(\xi)+4 \pi(n-1) \varepsilon
$$

for every $\xi \in S^{2 n-1}$. Integrating both sides with respect to a nonnegative (by Corollary 2) density, we get

$$
\begin{aligned}
& \int_{S^{2 n-1}}\left(\|\cdot\|_{K}^{-2 n+2}\right)^{\wedge}(\xi)\left(\|\cdot\|_{K}^{-2}\right)^{\wedge}(\xi) d \xi \\
\leq & \int_{S^{2 n-1}}\left(\|\cdot\|_{L}^{-2 n+2}\right)^{\wedge}(\xi)\left(\|\cdot\|_{K}^{-2}\right)^{\wedge}(\xi) d \xi \\
& +4 \pi(n-1) \varepsilon \int_{S^{2 n-1}}\left(\|\cdot\|_{K}^{-2}\right)^{\wedge}(\xi) d \xi
\end{aligned}
$$

By the Parseval formula (3) applied twice,

$$
\begin{gathered}
(2 \pi)^{n} \int_{S^{2 n-1}}\|x\|_{K}^{-2 n} d x \leq(2 \pi)^{n} \int_{S^{2 n-1}}\|x\|_{L}^{-2 n+2}\|x\|_{K}^{-2} d x \\
+4 \pi(n-1) \varepsilon \int_{S^{2 n-1}}\left(\|\cdot\|_{K}^{-2}\right)^{\wedge}(\xi) d \xi
\end{gathered}
$$

Estimating the first summand in the right-hand side of the latter inequality by Hölder's inequality,

$$
\begin{gathered}
(2 \pi)^{n} \int_{S^{2 n-1}}\|x\|_{K}^{-2 n} d x \leq(2 \pi)^{n}\left(\int_{S^{2 n-1}}\|x\|_{L}^{-2 n} d x\right)^{\frac{n-1}{n}}\left(\int_{S^{2 n-1}}\|x\|_{K}^{-2 n} d x\right)^{\frac{1}{n}} \\
+4 \pi(n-1) \varepsilon \int_{S^{2 n-1}}\left(\|\cdot\|_{K}^{-2}\right)^{\wedge}(\xi) d \xi
\end{gathered}
$$

and using the polar formula for the volume (5),

$$
\begin{gather*}
(2 \pi)^{n}(2 n) \operatorname{Vol}_{2 n}(K) \leq(2 \pi)^{n}(2 n)\left(\operatorname{Vol}_{2 n}(L)\right)^{\frac{n-1}{n}}\left(\operatorname{Vol}_{2 n}(K)\right)^{\frac{1}{n}} \\
+4 \pi(n-1) \varepsilon \int_{S^{2 n-1}}\left(\|\cdot\|_{K}^{-2}\right)^{\wedge}(\xi) d \xi \tag{6}
\end{gather*}
$$

We now estimate the second summand in the right-hand side. First we use the formula for the Fourier transform (in the sense of distributions; see [GS, p.194])

$$
\left(|\cdot|_{2}^{-2 n+2}\right)^{\wedge}(\xi)=\frac{4 \pi^{n}}{\Gamma(n-1)},
$$

where $|\cdot|_{2}$ is the Euclidean norm in $\mathbb{R}^{2 n}$ and $\xi \in S^{2 n-1}$. We get

$$
\begin{gathered}
4 \pi(n-1) \varepsilon \int_{S^{2 n-1}}\left(\|\cdot\|_{K}^{-2}\right)^{\wedge}(\xi) d \xi \\
=\frac{4 \pi(n-1) \Gamma(n-1) \varepsilon}{4 \pi^{n}} \int_{S^{2 n-1}}\left(\|\cdot\|_{K}^{-2}\right)^{\wedge}(\xi)\left(|\cdot|_{2}^{-2 n+2}\right)^{\wedge}(\xi) d \xi
\end{gathered}
$$

and by Parseval's formula (3) and Hölder's inequality,

$$
\begin{gathered}
=\frac{(2 \pi)^{n} \varepsilon \Gamma(n)}{\pi^{n-1}} \int_{S^{2 n-1}}\|x\|_{K}^{-2} d x \\
\leq \frac{(2 \pi)^{n} \varepsilon \Gamma(n)}{\pi^{n-1}}\left(\int_{S^{2 n-1}}\|x\|_{K}^{-2 n} d x\right)^{\frac{1}{n}}\left|S^{2 n-1}\right|^{\frac{n-1}{n}},
\end{gathered}
$$

where $\left|S^{2 n-1}\right|=\left(2 \pi^{n}\right) / \Gamma(n)$ is the surface area of the unit sphere in $\mathbb{R}^{2 n}$. By the polar formula for the volume, the latter is equal to

$$
(2 \pi)^{n}(2 n) \varepsilon\left(\operatorname{Vol}_{2 n}(K)\right)^{\frac{1}{n}} \frac{(\Gamma(n))^{\frac{1}{n}}}{n^{\frac{n-1}{n}}} \leq(2 \pi)^{n}(2 n) \varepsilon\left(\operatorname{Vol}_{2 n}(K)\right)^{\frac{1}{n}}
$$

by Lemma 1. Combining this with (6), we get the result.
We finish with the following "separation" property (see [K5] for more results of this kind). Note that for any $x \in S^{2 n-1},\|x\|_{K}^{-1}=\rho_{K}(x)$ is the radius of K in the direction x, and denote by

$$
r(K)=\frac{\min _{x \in S^{2 n-1}} \rho_{K}(x)}{\left(\operatorname{Vol}_{2 n}(K)\right)^{\frac{1}{2 n}}}
$$

the normalized inradius of K. Clearly, for every $x \in S^{2 n-1}$ we have

$$
\|x\|_{K}^{-1} \geq r(K)\left(\operatorname{Vol}_{2 n}(K)\right)^{\frac{1}{2 n}}
$$

Theorem 2. Suppose that $\varepsilon>0, K$ and L are origin-symmetric invariant with respect to all R_{θ} convex bodies bodies in $\mathbb{R}^{2 n}, n=2$ or $n=3$. If for every $\xi \in S^{2 n-1}$

$$
\operatorname{Vol}_{2 n-2}\left(K \cap H_{\xi}\right) \leq \operatorname{Vol}_{2 n-2}\left(L \cap H_{\xi}\right)-\varepsilon
$$

then

$$
\operatorname{Vol}_{2 n}(K)^{\frac{n-1}{n}} \leq \operatorname{Vol}_{2 n}(L)^{\frac{n-1}{n}}-\frac{\pi r^{2}(K)}{n} \varepsilon
$$

Proof : We follow the lines of the proof of Theorem 1 to get

$$
\begin{gather*}
(2 \pi)^{n}(2 n) \operatorname{Vol}_{2 n}(K) \leq(2 \pi)^{n}(2 n)\left(\operatorname{Vol}_{2 n}(L)\right)^{\frac{n-1}{n}}\left(\operatorname{Vol}_{2 n}(K)\right)^{\frac{1}{n}} \\
-4 \pi(n-1) \varepsilon \int_{S^{2 n-1}}\left(\|\cdot\|_{K}^{-2}\right)^{\wedge}(\xi) d \xi . \tag{7}
\end{gather*}
$$

We now need a lower estimate for

$$
4 \pi(n-1) \varepsilon \int_{S^{2 n-1}}\left(\|\cdot\|_{K}^{-2}\right)^{\wedge}(\xi) d \xi
$$

Similarly to how it was done in Theorem 1, we write the latter as

$$
\frac{(2 \pi)^{n} \varepsilon \Gamma(n)}{\pi^{n-1}} \int_{S^{2 n-1}}\|x\|_{K}^{-2} d x \geq \frac{(2 \pi)^{n} \varepsilon \Gamma(n) r^{2}(K)\left(\operatorname{Vol}_{2 n}(K)\right)^{\frac{1}{n}}}{\pi^{n-1}}\left|S^{2 n-1}\right|
$$

Acknowledgement. The author wishes to thank the US National Science Foundation for support through grants DMS-0652571 and DMS1001234.

References

[Ba] K. Ball, Some remarks on the geometry of convex sets, Geometric aspects of functional analysis (1986/87), Lecture Notes in Math. 1317, Springer-Verlag, Berlin-Heidelberg-New York, 1988, 224-231.
[Bo] J. Bourgain, On the Busemann-Petty problem for perturbations of the ball, Geom. Funct. Anal. 1 (1991), 1-13.
[BP] H. Busemann and C. M. Petty, Problems on convex bodies, Math. Scand. 4 (1956), 88-94.
[G1] R. J. Gardner, Intersection bodies and the Busemann-Petty problem, Trans. Amer. Math. Soc. 342 (1994), 435-445.
[G2] R. J. Gardner, A positive answer to the Busemann-Petty problem in three dimensions, Annals of Math. 140 (1994), 435-447.
[G3] R. J. Gardner, Geometric tomography, Second edition, Cambridge University Press, Cambridge, 2006.
[GKS] R. J. Gardner, A. Koldobsky and Th. Schlumprecht, An analytic solution to the Busemann-Petty problem on sections of convex bodies, Annals of Math. 149 (1999), 691-703.
[GS] I. M. Gelfand and G. E. Shilov, Generalized functions, vol. 1. Properties and operations, Academic Press, New York, 1964.
[Gi] A. Giannopoulos, A note on a problem of H. Busemann and C. M. Petty concerning sections of symmetric convex bodies, Mathematika 37 (1990), 239244.
[GZ] E. Grinberg and Gaoyong Zhang, Convolutions, transforms, and convex bodies, Proc. London Math. Soc. (3) 78 (1999), 77-115.
[K1] A. Koldobsky, Intersection bodies, positive definite distributions and the Busemann-Petty problem, Amer. J. Math. 120 (1998), 827-840.
[K2] A. Koldobsky, Intersection bodies in \mathbb{R}^{4}, Adv. Math. 136 (1998), 1-14.
[K3] A. Koldobsky, Fourier analysis in convex geometry, Amer. Math. Soc., Providence RI, 2005.
[K4] A. Koldobsky, A generalization of the Busemann-Petty problem on sections of convex bodies, Israel J. Math. 110 (1999), 75-91.
[K5] A. Koldobsky, Stability in the Busemann-Petty and Shephard problems, preprint.
[KKZ] A. Koldobsky, H. König and M. Zymonopoulou, The complex BusemannPetty problem on sections of convex bodies, Adv. Math. 218 (2008), 352-367.
[KY] A. Koldobsky and V. Yaskin, The interface between convex geometry and harmonic analysis, CBMS Regional Conference Series in Mathematics, 108, American Mathematical Society, Providence, RI, 2008.
[LR] D. G. Larman and C. A. Rogers, The existence of a centrally symmetric convex body with central sections that are unexpectedly small, Mathematika 22 (1975), 164-175.
[L] E. Lutwak, Intersection bodies and dual mixed volumes, Adv. Math. 71 (1988), 232-261.
[Pa] M. Papadimitrakis, On the Busemann-Petty problem about convex, centrally symmetric bodies in \mathbb{R}^{n}, Mathematika 39 (1992), 258-266.
[R] B. Rubin, Comparison of volumes of convex bodies in real, complex, and quaternionic spaces, Adv. Math. 225 (2010), 1461-1498.
[S] R. Schneider, Convex bodies: the Brunn-Minkowski theory, Cambridge University Press, Cambridge, 1993.
[Z1] Gaoyong Zhang, Centered bodies and dual mixed volumes, Trans. Amer. Math. Soc. 345 (1994), 777-801.
[Z2] Gaoyong Zhang, Intersection bodies and Busemann-Petty inequalities in \mathbb{R}^{4}, Annals of Math. 140 (1994), 331-346.
[Z3] Gaoyong Zhang, A positive answer to the Busemann-Petty problem in four dimensions, Annals of Math. 149 (1999), 535-543.
[Zy1] M. Zymonopoulou, The modified complex Busemann-Petty problem on sections of convex bodies, Positivity 13 (2009), no. 4, 717-733.
[Zy2] M. Zymonopoulou, The complex Busemann-Petty problem for arbitrary measures, Arch. Math. (Basel) 91 (2008), no. 5, 436-449.

Department of Mathematics, University of Missouri, Columbia, MO 65211

E-mail address: koldobskiya@missouri.edu

[^0]: 1991 Mathematics Subject Classification. Primary 52A20.
 Key words and phrases. Convex bodies, volume, sections.

