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STABILITY OF VOLUME COMPARISON FOR

COMPLEX CONVEX BODIES

ALEXANDER KOLDOBSKY

Abstract. We prove the stability of the affirmative part of the
solution to the complex Busemann-Petty problem. Namely, if K
and L are origin-symmetric convex bodies in Cn, n = 2 or n = 3,
ε > 0 and Vol2n−2(K ∩H) ≤ Vol2n−2(L ∩H) + ε for any complex

hyperplane H in Cn, then (Vol2n(K))
n−1

n ≤ (Vol2n(L))
n−1

n + ε,

where Vol2n is the volume in Cn, which is identified with R2n in
the natural way.

1. Introduction

The Busemann-Petty problem, posed in 1956 (see [BP]), asks the
following question. Suppose that K and L are origin symmetric convex
bodies in Rn such that

Voln−1(K ∩H) ≤ Voln−1(L ∩H)

for every hyperplane H in Rn containing the origin. Does it follow that

Voln(K) ≤ Voln(L)?

The answer is affirmative if n ≤ 4 and negative if n ≥ 5. The solution
was completed in the end of the 90’s as the result of a sequence of
papers [LR], [Ba], [Gi], [Bo], [L], [Pa], [G1], [G2], [Z1], [Z2], [K1], [K2],
[Z3], [GKS] ; see [K3, p. 3] or [G3, p. 343] for the history of the
solution.
The complex version of the Busemann-Petty problem was solved in

[KKZ], the answer is affirmative for convex bodies in Cn when n ≤ 3,
and it is negative for n ≥ 4. To formulate the complex version, we need
several definitions.
For ξ ∈ Cn, |ξ| = 1, denote by

Hξ = {z ∈ C
n : (z, ξ) =

n
∑

k=1

zkξk = 0}

the complex hyperplane through the origin perpendicular to ξ.
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Origin symmetric convex bodies in Cn are the unit balls of norms on
Cn. We denote by ‖ · ‖K the norm corresponding to the body K :

K = {z ∈ C
n : ‖z‖K ≤ 1}.

In order to define volume, we identify Cn with R2n using the mapping

ξ = (ξ1, ..., ξn) = (ξ11 + iξ12, ..., ξn1 + iξn2) 7→ (ξ11, ξ12, ..., ξn1, ξn2).

Under this mapping the hyperplaneHξ turns into a (2n−2)-dimensional
subspace of R2n.
Since norms on C

n satisfy the equality

‖λz‖ = |λ|‖z‖, ∀z ∈ C
n, ∀λ ∈ C,

origin symmetric complex convex bodies correspond to those origin
symmetric convex bodies K in R2n that are invariant with respect to
any coordinate-wise two-dimensional rotation, namely for each θ ∈
[0, 2π] and each ξ = (ξ11, ξ12, ..., ξn1, ξn2) ∈ R2n

‖ξ‖K = ‖Rθ(ξ11, ξ12), ..., Rθ(ξn1, ξn2)‖K , (1)

where Rθ stands for the counterclockwise rotation of R2 by the angle
θ with respect to the origin. We shall simply say that K is invariant

with respect to all Rθ if it satisfies (1).
The complex Busemann-Petty problem can be formulated as follows:

suppose K and L are origin symmetric invariant with respect to all Rθ

convex bodies in R2n such that

Vol2n−2(K ∩Hξ) ≤ Vol2n−2(L ∩Hξ)

for each ξ from the unit sphere S2n−1 of R2n. Does it follow that

Vol2n(K) ≤ Vol2n(L)?

As mentioned above, the answer is affirmative if and only if n ≤ 3. In
this article we prove the stability of the affirmative part of the solution:

Theorem 1. Suppose that ε > 0, K and L are origin-symmetric in-

variant with respect to all Rθ convex bodies bodies in R2n, n = 2 or

n = 3. If for every ξ ∈ S2n−1

Vol2n−2(K ∩Hξ) ≤ Vol2n−2(L ∩Hξ) + ε, (2)

then

Vol2n(K)
n−1

n ≤ Vol2n(L)
n−1

n + ε.

The result does not hold for n > 3, simply because the answer to the
complex Busemann-Petty problem in these dimensions is negative; see
[KKZ].
It immediately follows from Theorem 1 that
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Corollary 1. If n = 2 or n = 3, then for any origin-symmetric invari-

ant with respect to all Rθ convex bodies K,L in R2n,
∣

∣

∣
Vol2n(K)

n−1

n − Vol2n(L)
n−1

n

∣

∣

∣

≤ max
ξ∈S2n−1

|Vol2n−2(K ∩Hξ)− Vol2n−2(L ∩Hξ)| .

Note that stability in comparison problems for volumes of convex
bodies was studied in [K5], where it was proved for the original (real)
Busemann-Petty problem.
For other results related to the complex Busemann-Petty problem

see [R], [Zy1], [Zy2].

2. Proofs

We use the techniques of the Fourier approach to sections of convex
bodies; see [K3] and [KY] for details.

The Fourier transform of a distribution f is defined by 〈f̂ , φ〉 =

〈f, φ̂〉 for every test function φ from the Schwartz space S of rapidly
decreasing infinitely differentiable functions on Rn.
If K is a convex body and 0 < p < n, then ‖ · ‖−p

K is a locally inte-
grable function on Rn and represents a distribution. Suppose that K
is infinitely smooth, i.e. ‖ · ‖K ∈ C∞(Sn−1) is an infinitely differen-
tiable function on the sphere. Then by [K3, Lemma 3.16], the Fourier
transform of ‖ · ‖−p

K is an extension of some function g ∈ C∞(Sn−1)
to a homogeneous function of degree −n + p on Rn. When we write
(

‖ · ‖−p
K

)∧

(ξ), we mean g(ξ), ξ ∈ Sn−1. If K,L are infinitely smooth
star bodies, the following spherical version of Parseval’s formula was
proved in [K4] (see [K3, Lemma 3.22]): for any p ∈ (−n, 0)
∫

Sn−1

(

‖ · ‖−p
K

)∧

(ξ)
(

‖ · ‖−n+p
L

)∧

(ξ) = (2π)n
∫

Sn−1

‖x‖−p
K ‖x‖−n+p

L dx.
(3)

A distribution is called positive definite if its Fourier transform is a
positive distribution in the sense that 〈f̂ , φ〉 ≥ 0 for every non-negative
test function φ.
The Fourier transform formula for the volume of complex hyperplane

sections was proved in [KKZ]:

Proposition 1. Let K be an infinitely smooth origin symmetric invari-

ant with respect to Rθ convex body in R
2n, n ≥ 2. For every ξ ∈ S2n−1,

we have

Vol2n−2(K ∩Hξ) =
1

4π(n− 1)

(

‖ · ‖−2n+2

K

)∧

(ξ). (4)
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We also use the result of Theorem 3 from [KKZ]. It is formulated
in [KKZ] in terms of embedding in L−p, which is equivalent to our
formulation below. However, the reader does not need to worry about
embeddings in L−p, because the proof of Theorem 3 in [KKZ] directly
establishes the following:

Proposition 2. Let n ≥ 3. For every origin symmetric invariant with

respect to Rθ convex body K in R2n, the function ‖ · ‖−2n+4

K represents

a positive definite distribution.

Let us formulate precisely what we are going to use later. The case
n = 2 follows from Proposition 1 (obviously, the volume is positive),
the case n = 3 is immediate from Proposition 2.

Corollary 2. If n = 2 or n = 3, then for every origin symmetric

infinitely smooth invariant with respect to Rθ convex body K in R2n,
(

‖ · ‖−2

K

)∧

is a non-negative infinitely smooth function on the sphere

S2n−1.

We need the following simple fact:

Lemma 1. For every n ∈ N,

(Γ(n))
1

n ≤ n
n−1

n .

Proof : By log-convexity of the Γ-function (see [K3, p.30]),

log(Γ(n + 1))− log(Γ(1))

n
≥

log(Γ(n))− log(Γ(1))

n− 1
,

so
(Γ(n+ 1))

n−1

n ≥ Γ(n).

Now note that Γ(n+ 1) = nΓ(n).

2

The polar formula for the volume of a convex body K in R2n reads
as follows (see [K3, p.16]):

Vol2n(K) =
1

2n

∫

S2n−1

‖x‖−2n
K dx. (5)

We are now ready to prove Theorem 1.

Proof of Theorem 1. By the approximation argument of [S, Th.
3.3.1] (see also [GZ]), we may assume that the bodies K and L are
infinitely smooth. Using [K3, Lemma 3.16] we get in this case that

the Fourier transforms
(

‖ · ‖−2n+2

K

)

∧

,
(

‖ · ‖−2n+2

L

)

∧

,
(

‖ · ‖−2

K

)

∧

are the
extensions of infinitely differentiable functions on the sphere to homo-
geneous functions on R

2n.
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By (4), the condition (2) can be written as
(

‖ · ‖−2n+2

K

)

∧

(ξ) ≤
(

‖ · ‖−2n+2

L

)

∧

(ξ) + 4π(n− 1)ε

for every ξ ∈ S2n−1. Integrating both sides with respect to a non-
negative (by Corollary 2) density, we get

∫

S2n−1

(

‖ · ‖−2n+2

K

)∧

(ξ)
(

‖ · ‖−2

K

)∧

(ξ)dξ

≤

∫

S2n−1

(

‖ · ‖−2n+2

L

)∧

(ξ)
(

‖ · ‖−2

K

)∧

(ξ)dξ

+ 4π(n− 1)ε

∫

S2n−1

(

‖ · ‖−2

K

)∧

(ξ)dξ.

By the Parseval formula (3) applied twice,

(2π)n
∫

S2n−1

‖x‖−2n
K dx ≤ (2π)n

∫

S2n−1

‖x‖−2n+2

L ‖x‖−2

K dx

+ 4π(n− 1)ε

∫

S2n−1

(

‖ · ‖−2

K

)∧

(ξ)dξ.

Estimating the first summand in the right-hand side of the latter in-
equality by Hölder’s inequality,

(2π)n
∫

S2n−1

‖x‖−2n
K dx ≤ (2π)n

(
∫

S2n−1

‖x‖−2n
L dx

)
n−1

n

(
∫

S2n−1

‖x‖−2n
K dx

)
1

n

+ 4π(n− 1)ε

∫

S2n−1

(

‖ · ‖−2

K

)∧

(ξ)dξ.

and using the polar formula for the volume (5),

(2π)n(2n)Vol2n(K) ≤ (2π)n(2n) (Vol2n(L))
n−1

n (Vol2n(K))
1

n

+ 4π(n− 1)ε

∫

S2n−1

(

‖ · ‖−2

K

)∧

(ξ)dξ. (6)

We now estimate the second summand in the right-hand side. First we
use the formula for the Fourier transform (in the sense of distributions;
see [GS, p.194])

(

| · |−2n+2

2

)∧

(ξ) =
4πn

Γ(n− 1)
,

where | · |2 is the Euclidean norm in R2n and ξ ∈ S2n−1. We get

4π(n− 1)ε

∫

S2n−1

(

‖ · ‖−2

K

)∧

(ξ)dξ

=
4π(n− 1)Γ(n− 1)ε

4πn

∫

S2n−1

(

‖ · ‖−2

K

)∧

(ξ)
(

| · |−2n+2

2

)∧

(ξ)dξ,
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and by Parseval’s formula (3) and Hölder’s inequality,

=
(2π)nεΓ(n)

πn−1

∫

S2n−1

‖x‖−2

K dx

≤
(2π)nεΓ(n)

πn−1

(
∫

S2n−1

‖x‖−2n
K dx

)
1

n
∣

∣S2n−1
∣

∣

n−1

n ,

where |S2n−1| = (2πn)/Γ(n) is the surface area of the unit sphere in
R2n. By the polar formula for the volume, the latter is equal to

(2π)n(2n)ε (Vol2n(K))
1

n

(Γ(n))
1

n

n
n−1

n

≤ (2π)n(2n)ε (Vol2n(K))
1

n

by Lemma 1. Combining this with (6), we get the result. �

We finish with the following “separation” property (see [K5] for more
results of this kind). Note that for any x ∈ S2n−1, ‖x‖−1

K = ρK(x) is
the radius of K in the direction x, and denote by

r(K) =
minx∈S2n−1 ρK(x)

(Vol2n(K))
1

2n

the normalized inradius of K. Clearly, for every x ∈ S2n−1 we have

‖x‖−1

K ≥ r(K) (Vol2n(K))
1

2n .

Theorem 2. Suppose that ε > 0, K and L are origin-symmetric in-

variant with respect to all Rθ convex bodies bodies in R2n, n = 2 or

n = 3. If for every ξ ∈ S2n−1

Vol2n−2(K ∩Hξ) ≤ Vol2n−2(L ∩Hξ)− ε,

then

Vol2n(K)
n−1

n ≤ Vol2n(L)
n−1

n −
πr2(K)

n
ε.

Proof : We follow the lines of the proof of Theorem 1 to get

(2π)n(2n)Vol2n(K) ≤ (2π)n(2n) (Vol2n(L))
n−1

n (Vol2n(K))
1

n

− 4π(n− 1)ε

∫

S2n−1

(

‖ · ‖−2

K

)∧

(ξ)dξ. (7)

We now need a lower estimate for

4π(n− 1)ε

∫

S2n−1

(

‖ · ‖−2

K

)

∧

(ξ)dξ.

Similarly to how it was done in Theorem 1, we write the latter as

(2π)nεΓ(n)

πn−1

∫

S2n−1

‖x‖−2

K dx ≥
(2π)nεΓ(n)r2(K) (Vol2n(K))

1

n

πn−1

∣

∣S2n−1
∣

∣ . �



STABILITY OF VOLUME COMPARISON 7

Acknowledgement. The author wishes to thank the US National
Science Foundation for support through grants DMS-0652571 and DMS-
1001234.

References

[Ba] K. Ball, Some remarks on the geometry of convex sets, Geometric aspects of
functional analysis (1986/87), Lecture Notes in Math. 1317, Springer-Verlag,
Berlin-Heidelberg-New York, 1988, 224–231.

[Bo] J. Bourgain, On the Busemann-Petty problem for perturbations of the ball,
Geom. Funct. Anal. 1 (1991), 1–13.

[BP] H. Busemann and C. M. Petty, Problems on convex bodies, Math. Scand. 4
(1956), 88–94.

[G1] R. J. Gardner, Intersection bodies and the Busemann-Petty problem, Trans.
Amer. Math. Soc. 342 (1994), 435–445.

[G2] R. J. Gardner, A positive answer to the Busemann-Petty problem in three

dimensions, Annals of Math. 140 (1994), 435–447.
[G3] R. J. Gardner, Geometric tomography, Second edition, Cambridge University

Press, Cambridge, 2006.
[GKS] R. J. Gardner, A. Koldobsky and Th. Schlumprecht, An analytic solution

to the Busemann-Petty problem on sections of convex bodies, Annals of Math.
149 (1999), 691–703.

[GS] I. M. Gelfand and G. E. Shilov, Generalized functions, vol. 1. Properties and

operations, Academic Press, New York, 1964.
[Gi] A. Giannopoulos, A note on a problem of H. Busemann and C. M. Petty

concerning sections of symmetric convex bodies, Mathematika 37 (1990), 239–
244.

[GZ] E. Grinberg and Gaoyong Zhang, Convolutions, transforms, and convex bod-

ies, Proc. London Math. Soc. (3) 78 (1999), 77–115.
[K1] A. Koldobsky, Intersection bodies, positive definite distributions and the

Busemann-Petty problem, Amer. J. Math. 120 (1998), 827–840.
[K2] A. Koldobsky, Intersection bodies in R

4, Adv. Math. 136 (1998), 1–14.
[K3] A. Koldobsky, Fourier analysis in convex geometry, Amer. Math. Soc., Prov-

idence RI, 2005.
[K4] A. Koldobsky, A generalization of the Busemann-Petty problem on sections

of convex bodies, Israel J. Math. 110 (1999), 75–91.
[K5] A. Koldobsky, Stability in the Busemann-Petty and Shephard problems,

preprint.
[KKZ] A. Koldobsky, H. König and M. Zymonopoulou, The complex Busemann-

Petty problem on sections of convex bodies, Adv. Math. 218 (2008), 352–367.
[KY] A. Koldobsky and V. Yaskin, The interface between convex geometry and

harmonic analysis, CBMS Regional Conference Series in Mathematics, 108,
American Mathematical Society, Providence, RI, 2008.

[LR] D. G. Larman and C. A. Rogers, The existence of a centrally symmetric convex

body with central sections that are unexpectedly small, Mathematika 22 (1975),
164–175.

[L] E. Lutwak, Intersection bodies and dual mixed volumes, Adv. Math. 71 (1988),
232–261.



8 ALEXANDER KOLDOBSKY

[Pa] M. Papadimitrakis, On the Busemann-Petty problem about convex, centrally

symmetric bodies in Rn, Mathematika 39 (1992), 258–266.
[R] B. Rubin, Comparison of volumes of convex bodies in real, complex, and quater-

nionic spaces, Adv. Math. 225 (2010), 1461–1498.
[S] R. Schneider, Convex bodies: the Brunn-Minkowski theory, Cambridge Univer-

sity Press, Cambridge, 1993.
[Z1] Gaoyong Zhang, Centered bodies and dual mixed volumes, Trans. Amer. Math.

Soc. 345 (1994), 777–801.
[Z2] Gaoyong Zhang, Intersection bodies and Busemann-Petty inequalities in R4,

Annals of Math. 140 (1994), 331–346.
[Z3] Gaoyong Zhang, A positive answer to the Busemann-Petty problem in four

dimensions, Annals of Math. 149 (1999), 535–543.
[Zy1] M. Zymonopoulou, The modified complex Busemann-Petty problem on sec-

tions of convex bodies, Positivity 13 (2009), no. 4, 717–733.
[Zy2] M. Zymonopoulou, The complex Busemann-Petty problem for arbitrary mea-

sures, Arch. Math. (Basel) 91 (2008), no. 5, 436–449.

Department of Mathematics, University of Missouri, Columbia, MO

65211

E-mail address : koldobskiya@missouri.edu


