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DOUBLE POINT SURGERY AND CONFIGURATIONS OF

SURFACES

HEE JUNG KIM AND DANIEL RUBERMAN

Dedicated, with respect and admiration, to José Maria Montesinos-Amilibia on the occasion of his

65th birthday.

Abstract. We introduce a new operation, double point surgery, on immersed

surfaces in a 4–manifold, and use it to construct knotted configurations of surfaces

in many 4–manifolds. Taking branched covers, we produce smoothly exotic actions

of Zm ⊕ Zn on simply connected 4–manifolds with complicated fixed-point sets.

1. Introduction

A configuration of surfaces [11] is an immersion with isolated singularities, of a

possibly disconnected closed surface Σ in a 4–manifold X . In this paper we consider

configurations whose components are embedded, either in the smooth or topological

category. We introduce double point surgery, a variation of the Fintushel-Stern rim

surgery [5, 7], and use it to create configurations that are smoothly knotted, without

changing the topological type or the smooth embedding type of the individual com-

ponents of the configuration. Rim surgery is the same as a knot surgery [4] along a

torus lying in boundary of the tubular neighborhood of a circle embedded in a surface.

Double point surgery is a knot surgery (or more generally, a twisted knot surgery [16])

along a torus lying in a neighborhood of an intersection of the components.

Using twisted double point surgery, we will prove:

The first author was partially supported by the Max-Planck-Institut für Mathematik in Bonn,

Germany, and the second author was partially supported by NSF Grant 0804760.
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Theorem A. There is a family of smooth 2-component configurations (X,Σ
(n)
1 ∪Σ

(n)
2 )

such that

(1) (X,Σ
(m)
1 ∪ Σ

(m)
2 ) and (X,Σ

(n)
1 ∪ Σ

(n)
2 ) are smoothly inequivalent for m 6= n.

(2) (X,Σ
(m)
1 ) and (X,Σ

(n)
1 ) are smoothly equivalent for all m,n.

(3) (X,Σ
(m)
2 ) and (X,Σ

(n)
2 ) are smoothly equivalent for all m,n.

(4) (X,Σ
(m)
1 ∪ Σ

(m)
2 ) and (X,Σ

(n)
1 ∪Σ

(n)
2 ) are topologically equivalent for all m,n.

Remark 1.1. There are several equivalence relations that one might consider among

configurations: ambient diffeomorphism or homeomorphism, as well as the a pri-

ori stronger relations of smooth or topological ambient isotopy. The statements in

the preceding theorem refer to equivalence up to diffeomorphism or homeomorphism

preserving the orientation of the ambient manifold. One could also restrict to equiv-

alences preserving orientations on the components of the configuration; see Section 6

for a discussion. In the topological category, homeomorphisms can often be promoted

to isotopies using the work of Perron [28] and Quinn [29]. In the smooth category, we

are generally able to prove equivalence up to diffeomorphism; it seems reasonable to

expect that this could be strengthened to isotopy but we do not know how to provide

such an improvement.

In section 7, we apply the double point surgery to the construction of group actions,

in the fashion of a recent paper of Fintushel-Stern-Sunukjian [8].

Theorem B. Let m and n be relatively prime numbers. There is a simply–connected

4–manifold X̃ supporting infinitely many Zm ⊕ Zn-actions that are smoothly inequiv-

alent, but topologically equivalent.

Since (m,n) = 1, the group Zm ⊕ Zn is isomorphic to Zmn; writing the group as

Zm ⊕ Zn is convenient for keeping track of the isotropy subgroups of the action. In

particular, since the singular set consists of a configuration, rather than an embedded

surface, these examples are different from those presented in [8]. In the terminology
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of group actions [2], the actions constructed in [8] are semi-free, whereas ours are not.

Conventions: Let Σ be a surface that is the union of finitely many components

Σ1, . . . ,Σn, and let f : Σ → X be an immersion. Then Σ will also denote the image of

f , and the images of the Σi will be referred to as the components of the configuration.

ν(Σ) will denote a regular neighborhood of a configuration, or a tubular neighborhood

of a surface. We will refer to the fundamental group of the complement as the group of

the configuration. All surfaces will be oriented, and a meridian will mean an oriented

meridian. A torus in a 4–manifold on which a torus surgery is to be performed will

be written in bold T, and other tori will be written in a normal typeface T .

Acknowledgement. We thank Inanç Baykur for his help with the details of the

construction in Proposition 4.5, and Paul Melvin for some helpful correspondence.

2. Double point surgery

Let us first recall the Fintushel-Stern knot surgery [4] along a torus T embedded

with trivial normal bundle in a 4–manifold X . Given a knot K in S3, we perform

Fintushel-Stern knot surgery along T by removing a neighborhood of T and gluing

the exterior E(K) of K times with S1 via a diffeomorphism ϕ of T 3:

XK,ϕ = XK = X −T×D2 ∪ϕ E(K)× S1.

We will always assume that the gluing map ϕ has the following two properties:

(1) ϕ identifies a meridian ∂D2 of T with a longitude λK of K.

(2) ϕ is local in the sense that for T standardly embedded in B4, there is a

diffeomorphism of B4
K,ϕ with B4 that is the identity on the boundary.

As described below, work of Plotnick [33] gives many examples of local gluing maps.

As in [5], the image of a surface Σ embedded in X − T under a diffeomorphism

XK → X may well be different from Σ. We will denote a surface constructed in this

fashion by (X,ΣK,ϕ) or (X,ΣK) if ϕ is unspecified.
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A local model for a transverse intersection of surfaces in a 4–manifold is the inter-

section of the coordinate axes in C2. The double point torus T (linking torus, in the

terminology of [9]) is the set

{(z, w) | |z| = |w| = 1/2} ⊂ int(B4) ⊂ C2.

Let K be a knot in S3 and let ϕ be a local gluing map. Let B1, B2 be the unit disks

in the two coordinate axes; then we can write T = µ1 × µ2 where µi is a meridian of

Bi.

Definition 2.1. Let K be a knot in S3. A local double point surgery with local

gluing map ϕ replaces (B4, B1 ∪ B2) by (B4, (B1 ∪ B2)K,ϕ).

By assumption, the boundary (which is S3, containing a Hopf link) is unaffected

by this operation. Hence we can do a local double point surgery in a neighborhood of

a transverse intersection of surfaces; the result will be called a double point surgery

on a configuration.

We will now consider double point surgery in greater detail. Let X be an oriented

simply–connected 4–manifold and let Σ be a configuration in X . For convenience, we

may assume that the configuration Σ has two components Σ1 and Σ2, and the surgery

is being done at an intersection point of Σ1 and Σ2. Because the double point surgery

operation is local, it may be written as follows. Denoting by (X ′,Σ′) the complement

of the 4-ball neighborhood (B4, B1 ∪ B2) of a double point in (X,Σ), we have

(1) (X,ΣK) = (X ′,Σ′) ∪(S3,∂B1∪∂B2) (B
4, (B1 ∪B2)K).

A useful observation is that local double point surgery is closely related to surgery

on twins, introduced by Montesinos [26, 27] and Plotnick [33], described as follows.

Let P be a plumbing at two points (with opposite signs) of two copies of S2×D2. The

pair S1, S2 of cores of the copies of S
2×D2 is called a ‘twin’ by Montesinos [26, 27]. It

has a standard embedding in S4, with each component an unknotted 2-sphere. Note
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that ∂P is a 3-torus, and we choose a basis {e1, e2, e3} of H1(∂P ) as follows. Let e1 be

the homology class of the meridian µ1 of S1, e2 the homology class of the meridian µ2

of S2, and e3 the homology class of a canonical curve on ∂P which generates H1(P ).

We note that S4 = P ∪∂ T × D2 where T is a torus of the form µ1 × µ2. Plotnick

modified the pair (S4, P ) by gluing E(K) × S1 to P using an identification of ∂P

with ∂E(K)× S1, which is encoded by a matrix A with respect to the ordered basis

{e1, e2, e3} of H1(∂P ) and an ordered basis {µK , S
1, λK} of H1(∂E(K)× S1). So, we

have

(2) (S1 ∪ S2)K,A ⊂ P ∪A E(K)× S1

where the general form of A is

(3)




p k 0

−γ β 0

−αγ + bp αβ + bk 1


 pβ + kγ = 1.

For some choices of the parameters (see [33, Corollary 6.1]), the gluing map is local

and the construction produces (S4, (S1 ∪ S2)K,A). The torus T is exactly the double

point torus for S1 ∪ S2 near one of the double points of the twin. This implies:

Proposition 2.2. The double point surgered pair (B4, (B1 ∪ B2)K) is diffeomorphic

to the punctured pair (S4, (S1 ∪ S2)K,A).

The decomposition of (X,ΣK) in (1) and Proposition 2.2 thus allow us to write

(X,ΣK) as a connected sum;

(4) (X,ΣK) = (X,Σ)♯(S4, (S1 ∪ S2)K,A).

By analogy with ‘twist-rim surgery’ in [16], we are particularly interested in double

point surgery performed using the gluing map ϕk defined by

(5) ϕk∗(µ1) = µK , ϕk∗(µ2) = kµK + [S1], and ϕk∗[∂D
2] = λK .
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Locally, this corresponds to the knotted twin described by the matrix

(6) A(k) =




1 k 0

0 1 0

0 0 1




which is in fact a local gluing. In S4, the sphere S1 becomes Zeeman’s [36] k-twist

spin of K, denoted A(K, k), while the sphere S2 is unaffected by the surgery. We

refer to this surgery as a ‘k-twisted double point surgery’.

Let us denote by Σ1,K and Σ2,K the components of the new configuration ΣK .

According to proposition 2.2 and equation (4), the result of k-twisted double point

surgery on the configuration Σ is given as follows.

Corollary 2.3. Suppose that (X,ΣK) is the pair obtained by a k-twisted double point

surgery. Then the embedding of Σ1,K is diffeomorphic to Σ1♯A(K, k) whereas the

embedding of Σ2,K is equal to Σ2.

3. Fundamental Group

In this section, we study the effect of double point surgery on the group of a

configuration Σ in a simply–connected 4–manifold X . From the decomposition of (1),

the complement of the configuration in X can be written

(7) X − ΣK = (X ′ − Σ′) ∪T×I (B
4 − (B1 ∪ B2)K).

Here T ⊂ ∂(B4−(B1∪B2)K) is parallel to the double point torus T. Since π1(X
′−Σ′)

is isomorphic to π1(X − Σ), we need only compute the group of the nonstandard

component in this decomposition.

Lemma 3.1. For any gluing ϕ and any knot K, π1(B
4 − (B1 ∪B2)K) is isomorphic

to π1(E(K)× S1).

Proof. Since B4−ν(B1∪B2) is diffeomorphic to T×D2, it follows that B4−(B1∪B2)K

is actually diffeomorphic to E(K)× S1. �
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Note that the gluing map ϕ is encoded via the composition

π1(S
3 − ∂(B1 ∪ B2)) → π1(B

4 − (B1 ∪ B2)K)
∼=

−→ π1(E(K)× S1).

We shall study conditions under which the group of a configuration Σ in X is

preserved by a double point surgery. This is true, for instance, when the complement

of Σ is simply–connected. More generally, we show that for particular gluing maps,

some abelian fundamental groups are preserved.

The basic tool for this is the following diagram to be used in applying the Van

Kampen theorem to the decomposition of X − ΣK in (7):

(8) π1(B
4 − (B1 ∪B2)K)

j1

''OOOOOOOOOOO

π1(T × I)

i1
77ppppppppppp

i2

''NNNNNNNNNNN

π1(X − ΣK)

π1(X
′ − Σ′)

j2
77oooooooooooo

To make the diagram and subsequent calculations easier to read, we use the same

notation for a map and for the homomorphism that induces on the fundamental

group.

Proposition 3.2. Suppose that X is simply-connected and that π1(X−Σ) is abelian.

Then i2 in diagram (8) is surjective. Moreover, the group is preserved by k-twisted

double point surgery in the following cases:

(1) Suppose that π1(X − Σ) is an infinite cyclic group generated by the meridian

µ2 of Σ2. If k = 0 then π1(X − ΣK) ∼= Z.

(2) Suppose that π1(X−Σ) is a finite cyclic group Zq generated by the meridian µ1

of Σ1 with a relation µp
1µ2 = 1 for some p. If (p+k, q) = 1, then π1(X−ΣK) ∼=

Zq.
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(3) Suppose that π1(X−Σ) is Zm⊕Zn so that the meridian µ1 of Σ1 is a generator

of Zm and the other meridian µ2 of Σ2 is a generator of Zn. If (m, kn) = 1,

then π1(X − ΣK) is Zm ⊕ Zn.

Proof. In the diagram (8) given by the Van Kampen Theorem, π1(T × I) is Z ⊕ Z

generated by µ1, µ2 and π1(X
′ − Σ′) ∼= π1(X − Σ), which is normally generated by

µ1, µ2. Hence if π1(X − Σ) is abelian, i2 is onto. This implies that in all three cases

of the proposition, π1(X − ΣK) is isomorphic to π1(B
4 − (B1 ∪B2)K)/〈i1(ker i2)〉.

Case 1. Since π1(X−Σ) ∼= Z, we must have a relation µ1µ
d
2 = 1 for some d ∈ Z. The

element µ1µ
d
2 generates ker i2 and its image under i1 is µK(µ

k
K [S

1])d. Using Lemma 3.1,

the group π1(B
4 − (B1 ∪ B2)K)/〈i1(ker i2)〉 has a presentation 〈π1(E(K) × S1) |

µK(µ
k
K [S

1])d = 1〉 which is the same as

〈π1(E(K)), [S1] | µ1+kd
K [S1]d = 1, [β, [S1]] = 1, ∀β ∈ π1(E(K))〉.

So, if k = 0, then [S1]d = µ−1
K . Since [S1] commutes with every element in π1(E(K)),

so does µK . This means that the group π1(X−ΣK) is abelian, and hence isomorphic

to Z.

Case 2. In this situation, ker i2 is generated by µq
1 and µp

1µ2, and so the group

π1(X − ΣK) has a presentation

〈π1(E(K)), [S1] | µq
K = 1, µp

K(µ
k
K [S

1]) = 1, [β, [S1]] = 1, ∀β ∈ π1(E(K))〉.

If (p + k, q) = 1 then (p + k)s + qt = 1 for some s, t. If we raise the relation

µp
K(µ

k
K [S

1]) = 1 to the sth power, we get (µp
K(µ

k
K [S

1]))s = µ
(p+k)s
K [S1]s = 1 (note that

µK and [S1] commute), and moreover µ
(p+k)s
K [S1]s = µ1−qt

K [S1]s = µK [S
1]s = 1. This

relation makes µK commute with every element in π1(E(K)) and so π1(X − ΣK) is

Zq.

Case 3. As above, ker i2 is generated by µm
1 , µ

n
2 and so the presentation of π1(X −

ΣK) is

〈π1(E(K)), [S1] | µm
K = 1, (µk

K[S
1])n = 1, [β, [S1]] = 1, ∀β ∈ π1(E(K))〉.
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If (m, kn) = 1 then ms + knt = 1 for some s, t. We note the relation 1 =

((µk
K [S

1])n)t = µknt
K [S1]nt = µ1−ms

K [S1]nt = µK [S
1]nt, which makes µK commute with

every element in π1(E(K)). Thus, the result follows. �

In the next section, we will use configurations corresponding to the first two cases

to construct examples that will prove Theorem A. The third case will be used in

proving Theorem B.

4. Examples

In the previous section we determined the effect of a double point surgery on the

group of a configuration. In this section we give some examples of configurations such

that the group is abelian. Combined with the calculations in the previous sections, we

find double point surgeries with appropriately chosen gluing ϕ, for which the group

is unchanged.

A first observation is the following lemma, which computes the homology of the

complement of a configuration.

Lemma 4.1. Suppose X is a 4–manifold with H1(X) = 0, and suppose that Σ is a

configuration of surfaces Σ1, . . . ,Σk. Choose a basis A1, . . . , An for H2(X ;Z). Then

H1(X −Σ) has a presentation with generators the meridians µi of the components of

Σ, and one relation

(9) Σk
j=1aijµj = 0

for each generator Ai, where aij = Ai · Σj.

Proof. By standard arguments, the meridians µj generateH1(X−Σ). Let A ∈ H2(X);

then if we intersect an embedded surface representing A with Σ and remove a regular

neighborhood of Σ we see a relation of the form (9) where aj = A · Σj . Conversely,

given such a relation, we build a surface A as the union of meridian discs to Σ, together

with a surface representing a null-homology for Σk
i=1aiµi. Note that if C = A + B,
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then the relation for C is the sum of the relations for A and B. Thus a basis for

H2(X) gives rise to the desired presentation. �

Configurations with trivial group are easy to come by. For any configuration C =

(C1, . . . , Ck) in a simply–connected manifold X , the fundamental group π1(X − C)

is generated by the meridians of the Ci. Note that if we blow up X along some Ci,

then the meridian of the new surface Ci becomes trivial, because Ci intersects the

exceptional curve in one point. Hence, given any configuration C, we can create a

new configuration C′ ⊂ X ′ = X♯kCP
2
with π1(X

′ −C′) trivial by blowing up k times,

once on each Ci.

More interesting examples of abelian fundamental groups come from the Zariski

conjecture, proved by Deligne [3] and Fulton [10], which states that the complement

of a nodal curve in CP2 has abelian fundamental group. This implies the following.

Example 4.2. Let Σ1,Σ2 be smooth complex curves in CP2 in general position,

having degrees d1, d2 respectively. Then π1(CP
2 − (Σ1 ∪ Σ2)) ∼= Z ⊕ Zd where d =

gcd(d1, d2). According to case 1 of Proposition 3.2, if d1 = 1, the operation of 0-

twisted double point surgery gives a new configuration whose group is Z.

A second example is provided by a generalization of the Zariski conjecture to other

algebraic surfaces, due to Nori [30].

Example 4.3. Let Σ1,Σ2 be smooth complex curves in general position in X =

P1 × P1 carrying the homology classes (p, q) and (1, 0) respectively. Assume that p

and q are both positive. Note thatX−ν(Σ2) is simply connected, being diffeomorphic

to S2 ×D2, and that Σ1 · Σ1 > 0. Hence theorem II of [30] applies to show that the

fundamental group ofX−(Σ1∪Σ2) is abelian. Lemma 4.1 yields the relations (written
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additively)

q µ1 = 0

p µ1 + µ2 = 0.

So the group π1(X− (Σ1∪Σ2)) = H1(X− (Σ1∪Σ2)) ∼= Zq, generated by µ1. Written

multiplicatively, the second relation between the meridians reads µp
1µ2 = 1. Thus

we may do a k-twisted double point surgery on the configuration Σ1 ∪ Σ2, using any

knot K, and k satisfying (p+ k, q) = 1. By case 2 of Proposition 3.2 this gives a new

configuration with group Zq.

Example 4.4. We will construct connected surfaces Σm and Σn in X = S2 × S2

carrying the classes (m, 0) and (0, n) respectively, with π1(X −Σ) ∼= Zm ⊕ Zn. Start

with the configuration Sm ∪ Sn, where Sm consists of m parallel copies of S2 × {q}

and Sn consists of n parallel copies of {p} × S2. The complement is a product

(S2 − {p1, . . . , pn})× (S2 − {q1, . . . , qm}) and so has fundamental group

(10) 〈µ1, . . . µm, ν1, . . . νn | [µi, νj] = 1;
∏

µi = 1 =
∏

νj〉

The configuration (S2 × S2, Sm ∪ Sn) may be visualized as follows (compare [1]).

Take the standard handle decomposition of S2 × S2, with two 0-framed 2-handles

added to B4 along a Hopf link. Then Sm is m copies of the core of one of the 2-

handles, together with m disjoint disks in the 4-ball; Sn has a similar description. To

make the surface Σm, connect up the boundaries of the m copies of the 2-handle core

with m− 1 oriented 1-handles. The result is an unknotted circle, which may be filled

in by a disk in the 4-ball. Do a similar construction to make Σn. This operation is

depicted in Figure 4.4, for m = 3 and n = 2. The 1-handle addition that connects up

the jth and kth disks in Sm adds the relation µj = µk to the presentation (10), and

similarly all of the meridians of the components of Sn become equal when we pass to

Σn. It follows that π1(X−Σ) ∼= Zm⊕Zn, with the meridians of Σm and Σn generating
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µ1

µm

ν1

νn

=⇒

Figure 1. Spheres in S2 × S2

the two summands. If (m, kn) = 1, then applying case 3 of Proposition 3.2 gives a

new configuration whose group is Zm ⊕ Zn.

4.1. A symplectic configuration. In the next section, we will show that the con-

figurations constructed in examples 4.2 and 4.3 can be smoothly knotted by double

point surgery, for appropriate choices of the knot K. This will be done by showing

that the smooth surfaces gotten by smoothing all of the double points are knotted.

This strategy will succeed, for instance, if the configuration is symplectically em-

bedded with all intersections positively oriented and the Alexander polynomial of K

is non-trivial. Unfortunately, this technique will not work to show that example 4.4

yields smoothly knotted configurations, because of the observation of Tian-Jun Li [20,

Example 3.3] that the adjunction formula prevents the class (m, 0) in H2(S
2 × S2)

from being represented by a connected symplectic surface.

On the other hand, smoothly knotted configurations whose complements have π1 =

Zm ⊕ Zn are a key ingredient in the proof of Theorem 7.1. The next example gives

a symplectic configuration with this group, using a more complicated construction

than that in example 4.4.

Proposition 4.5. For any positive m and n, there is a simply–connected symplectic

4–manifold X, containing a symplectic configuration Tmn = Tm ∪ Tn with each Ti a
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torus, and

π1(X − T ) ∼= Zm ⊕ Zn

generated by the meridians of Tm and Tn.

Proof. Consider the 4-torus T 4 = S1 × S2 × S3 × S4, which contains the six stan-

dard 2-dimensional tori Tij = Si × Sj, each of which is either symplectic or La-

grangian. We start with the symplectic configuration T = T12 ∪ T34, and want to

do fiber sums [13, 22] with an elliptic surface E(1) along symplectic or Lagrangian

tori missing T to make its complement simply connected. (Sums along Lagrangian

tori require a preliminary deformation of the symplectic structure [13].) If we set

M = (T 4#T13=FE(1))#T14=FE(1), then π1(M) ∼= Z generated by the circle S2. The

other tori (T24 and T23) that miss T intersect either T13 or T14 and so cannot be used

to perform a final fiber sum to kill this generator.

However, recall that E(1) has a 2-sphere section, of square −1. When we do the

first fiber sum (along T13) then we remove a disk from this section, and also from the

torus T24. Thus, M contains a symplectically embedded torus T ′ of square −1, made

from the connected sum of T24 with the section in E(1). In CP2, there is a symplectic

torus of square 9, representing 3 times the generator, and hence CP2 blown up 8

times contains a torus T ′′ of square 1. So we can make one more fiber sum, to get

the manifold

X = M#T ′=T ′′

(
CP2#8CP

2
)
.

By construction, X is symplectic, and contains the symplectic configuration T . The

complement of T is simply–connected, because F ⊂ E(1) and T ′′ ⊂ CP2#8CP
2
both

have simply–connected complements.

To build the configuration Tmn, we need an observation of Fintushel-Stern [6] (com-

pare [25]) that in a neighborhood of a symplectic torus of square 0, there is a ‘braided’

symplectic torus representing m times the generator of H2, for any m > 0. In fact,

if the neighborhood is written as S1 × (S1 ×D2), the braided torus can be taken to
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Figure 2. Braid km in S1 ×D2

be S1 cross the (m, 1)-torus knot in S1 ×D2, representing m times the generator of

H1(S
1 ×D2), and denoted km in what follows.

Choose a disc D12 lying in T12, and a set P of n points in its interior, arranged

in cyclic order as in Figure 3; similarly choose m points Q in the interior of a disc

D34 ⊂ T34. We will use a superscript ∗ to indicate punctured objects, so that for

instance D∗

12 = D12 −P and T ∗

12 = T12 − int(D12). Let b be a point on ∂D12 that will

µ1

µ2

µ3

bb

ρ(µ1)

ρ(µ2)

ρ(µ3)
ρ

Figure 3. D∗

12 and rotation ρ3

be used as a base point for both D∗

12 and T ∗

12 and let c be a point on ∂D34 that will

be used as a base point for both D∗

34 and T ∗

34. The meridians of the points P , with
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base paths as indicated in Figure 3 will be named µi, and the meridians of Q will be

called νj . The base point for all of the calculations of the 4-dimensional complements

will be b× c.

Definition 4.6. (1) The configuration Tmn is Tm ∪ Tn where the first torus Tm is

S1 × km ⊂ S1 × (S2 ×D34) and Tn = kn × S4 ⊂ (D12 × S3)× S4.

(2) Let ρm be a diffeomorphism of D34 that permutes the punctures cyclically,

and is the identity on the boundary, and let ρn be the corresponding diffeo-

morphism of D12.

Note that Tm is S1 times the mapping torus S2 ×ρm Q ⊂ S2 ×ρm D34 = S2 ×D34 with

a similar description for Tn.

By construction, and Lemma 4.1, the homology group of the complement is Zm⊕Zn;

we now calculate its fundamental group. The strategy is to divide the complement

of Tmn into two pieces: the complement in X of a regular neighborhood N of T , and

N − Tmn. By construction, X −N is simply–connected, so the main work goes into

computing π1(N − Tmn).

To describe N , recall that T 4 has a handle decomposition with a 0-handle H , four

1–handles Hi and six 2–handles Hij , plus handles of index 3 and 4. (Our convention

is that the number of subscripts is the index of the handle.) Then N may be chosen

to be the union of the 0 and 1–handles, plus the 2–handles H12 and H34 with co-

cores D34 and D12. We may assume that Tmn is embedded in N so that H is exactly

D12 × D34, and Tmn ∩ H = D12 × Q ∪ P × D34. The complement of Tmn in T 4 is

obtained by adding the rest of the handles to N −Tmn, and then doing the fiber sums

described above.

For the fundamental group calculation, choose curves α1 and α2 in T ∗

12 that are

homotopic (in T 4) to S1 and S2, according to the following recipe; the symbols refer

to Figure 4. The loops α1 are given by the products of arcs

α1 = a1 ∗ γ3 ∗ γ4 and α2 = γ1 ∗ a2 ∗ γ4
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respectively. The boundary of D12, oriented as in the picture, is then given by γ =

γ1 ∗ γ2 ∗ γ3 ∗ γ4. The boundary of D34 will be denoted η.

a1 a1

a2

a2

γ1
γ2

γ3

γ4

b

h12

Figure 4. Curves on T ∗

12

We collect some basic observations in a lemma.

Lemma 4.7. N − Tmn = W ∪A ∪ B, where the pieces are described as follows.

(1) W = H −H ∩ Tmn = H − P ×D34 −D12 ×Q is the product D∗

12 ×D∗

34.

(2) The boundary of the configuration P × D34 ∪ D12 × Q in the 0–handle H is

the (n,m) cable of the Hopf link drawn in Figure 5 for m = 3, n = 2.

(3) (N − Tmn) − (H − H ∩ Tmn) is the union of two pieces A and B, where A

is the complement of the part of Tmn lying in the 1–handles H1, H2 and the

2–handle H12, and similarly for B.

(4) A is a flat D∗

34–bundle over T ∗

12, with trivial monodromy around the circle α1

and monodromy around the circle S2 given by ρm.
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Figure 5. (m,n) cable of Hopf link

(5) B has a similar description as a flat D∗

12–bundle over T ∗

34

The description in Lemma 4.7 4 gives a presentation

π1(A, b× c) = 〈α1, α2, ν1, . . . , νm, γ | γ = [α1, α2], [γ, νi], [α1, νi] (i = 1, . . . , m),

α2νiα
−1
2 = νi+1 (i = 1, . . . , m− 1), α2νmα

−1
2 = (νm · · · ν1) · ν1 · (νm · · · ν1)

−1〉

The first relation (which makes the generator γ redundant) comes from the addition

of the 2–handle h12.

There is a similar presentation for π1(B, ∗), with generators α3, α4, µ1, . . . µn. Fi-

nally, Lemma 4.7 1 implies that π1(W ) ∼= π1(D
∗

12 × D∗

34) = Fn × Fm, where Fm, Fn

are free groups generated by the µi and νj respectively. Note that these generators all

live in ∂H ∩ Tmn. Two successive applications of van Kampen’s theorem (adding A

and then B to W ) yield the following presentation of π1(N − Tmn). Unless specified

to the contrary, i runs from 1 to m in any appearance of νi and j runs from 1 to n in
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any appearance of µj.

π1(N − Tmn, b× c) = 〈α1, α2, α3, α4, ν1, . . . , νm, µ1, . . . , µnγ, η | [µj, νi],

γ = [α1, α2], γ = µn · · ·µ1, [γ, νi],

η = [α3, α4], η = νm · · · ν1, [η, µj],

[α1, νi] , α2νiα
−1
2 = νi+1 (i = 1, . . . , m− 1), α2νmα

−1
2 = (νm · · · ν1) · ν1 · (νm · · ·ν1)

−1,

[α4, µj] , α3µjα
−1
3 = µj+1 (j = 1, . . . , n−1), α3µnα

−1
3 = (µn · · ·µ1)·µ1 ·(µn · · ·µ1)

−1〉

When we add on X − N , all of the generators α1, . . . , α4 are killed by the fiber

sums. Moreover, since X − N is simply connected, the curves γ and η, which are

the meridians of the original configuration T , become trivial. The last two rows of

relations imply that ν1 = · · · = νm and µ1 = · · · = µn, and the triviality of γ and η

imply that µn
1 = 1 = νm

1 . Since µ1 and ν1 commute, we finally get π1(X − Tmn) =

Zm ⊕ Zn, generated by the meridians of the components. �

5. Topological classification

As described in Proposition 3.2, in certain circumstances, k-twisted double point

surgeries on configurations with group Z or Zm preserve the group of the configuration.

The main result of this section is that in fact the topological type of the configuration

is also unchanged by the surgery. As in Proposition 3.2, we consider a 2-component

configuration Σ1 ∪ Σ2, with meridians µ1, µ2.

Theorem 5.1. In the three cases discussed in Proposition 3.2, the configuration

ΣK,A(k) resulting from k-twisted double point surgery is topologically isotopic to Σ.

Proof. In cases 2 and 3, the group is finite cyclic, and the result follows directly from

the main results of our earlier paper [18, Theorems 1.2 and 1.3]. These results use

the fact [15, section 11] that the Wall L-groups Lh
5 and Ls

5 vanish for a finite cyclic
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fundamental group. In case 1, the L-groups Lh
5(Z) and Ls

5(Z) are isomorphic to Z, so

a little additional work is required. The outline of the proof is the same as in [18].

The first step is to construct a homotopy equivalence (rel boundary) from X −

ν(ΣK) → X − ν(Σ). This is done by choosing a degree-1 homology equivalence

between E(K)× S1 and ν(T), where T is the double point torus that is the identity

on the boundary, and gluing it to the identity on X− ν(Σ)− ν(T) to get a homology

equivalence that is an isomorphism on π1. To see that this gives the desired homotopy

equivalence X−ν(ΣK) → X−ν(Σ), pass to the universal cover of both manifolds. By

construction, there is a relation µ1µ
d
2 = 1 between the meridians of the configuration

Σ. From the proof of case 1 of Proposition 3.2, this yields a relation µK [S
1]d = 1,

where E(K)× S1 is considered as a subset of X − ν(ΣK).

Let g1 : Ẽ(K) → Ẽ(K) generate the covering transformations of the infinite cyclic

cover Ẽ(K) → E(K), and let g2 : R → R be given by t → t + 1. Then the induced

infinite-cyclic covering ˜E(K)× S1 → E(K) × S1 is the quotient of the Z ⊕ Z cover

Ẽ(K)×R by the subgroup of the covering group generated by g1g
d
2. This is the same

as the mapping torus of g−1
1 , and hence (compare [17, Lemma 4.6]) is diffeomorphic

to E(K)×R which is homologically just a circle. By a Mayer-Vietoris argument, the

map on universal covers is a homology equivalence, and hence the original map is a

homotopy equivalence.

As in [18, §2], this map can be modified so that it is normally cobordant to the

identity map, yielding a normal map F : W 5 → (X − ν(Σ)) × I. From [34] and the

vanishing of Wh(Z), the obstruction in Ls
5(Z) to surgeringW to obtain an s-cobordism

may be computed as follows. Choose a submanifold M3 ⊂ X − ν(Σ) carrying a

generator of H3(X − ν(Σ), ∂(X − ν(Σ))), and assume that F is transverse to M × I.

Then V = F−1(M×I) is an oriented 4–manifold, and the surgery obstruction is given

by 1
8
sign(V ).

This obstruction may well be non-zero, but it can be killed by modifying the normal

map F . Choose an embedded S1×B4 in the interior of W , with S1×0⊤∩ V , carrying
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the 1-dimensional homology, with the additional property that F is a diffeomorphism

of S1 × B4 onto its image. There is a normal map

S1 × (#nE8)0 −→ S1 × B4

where n = 1
8
sign(V ), and E8 is a topological spin manifold with signature 8. The

subscript 0 denotes the punctured manifold, and if n < 0 the connected sum should

be interpreted as a sum of E8 manifolds with the opposite orientation. Replace F on

S1×B4 with this normal map, giving a normal map with trivial surgery obstruction.

Surgery on this normal map produces the desired s-cobordism, which is a product

by Freedman’s theorem [9]. As in [18], the resulting homeomorphism between the

complements of Σ and ΣK gives rise to a topological ambient isotopy between Σ and

ΣK . �

6. Smoothly knotted configurations

In this section we describe a technique to show that modification of a configuration

by double point surgery can change its smooth embedding type. Let us assume that

the self-intersection Σ · Σ = n is greater than or equal to 0. (The work of Mark [21]

would allow us to consider configurations with negative self-intersection, but we do

not need this extension for the purposes of the current paper.)

Our idea is to replace a configuration Σ by a smoothly embedded surface obtained

by smoothing Σ at its double points. There is a small technical point that we must

address, which is that the smoothing is not quite canonical; it depends on the relative

orientation of the components.

Definition 6.1. An orientation of a configuration Σ is an orientation of each of

its components. If Σ is oriented, then −Σ denotes the configuration in which the

orientation of each component has been reversed.
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The link of a given double point of Σ is a Hopf link with linking number ±1 with

the sign given by the local intersection number. A smoothing of that double point is

the replacement of the pair of transversally intersecting disks by an oriented annulus

A that spans the Hopf link and gives the same boundary orientation as that pair of

disks. Associated to an oriented configuration (X,Σ), there is a canonically associated

smooth surface, which is the embedded surface resulting from smoothing each double

point in an oriented fashion. Let (X ′, Σ̃) be the result of blowing up X at n points

on the resulting smooth surface; note that Σ̃ · Σ̃ = 0. We would like to show that any

smooth invariant of the pair (X ′, Σ̃) is a fortiori an invariant of (X,Σ) considered as a

configuration up to diffeomorphism. This is straightforward (and is stated as case (i)

of the next lemma) if we insist that such a diffeomorphism preserve the orientation of

the configuration, but requires a minor hypothesis and a little argument in the more

general setting of Theorem A, where we make no assumptions about the orientation

of the configuration. For simplicity, we give the hypotheses in the case that the

configuration Σ has two components.

Lemma 6.2. Let (X,Σ) and (X,Σ′) be oriented configurations, and suppose that

f : X → X is an orientation-preserving diffeomorphism taking Σ to Σ′.

(1) If f preserves the orientation of the configurations, then it extends to a dif-

feomorphism f ′ : (X ′, Σ̃) → (X ′, Σ̃′).

(2) Suppose that Σ = Σ1∪Σ2, and that Σ1·Σ2 6= 0. Then there is a diffeomorphism

(X ′, Σ̃) → (X ′, Σ̃′).

In particular, if the homology classes of Σ1 and Σ2 are nontrivial, then Σ̃ is canonically

associated to the equivalence class of (X,Σ) up to isotopy.

Proof. In both cases, a diffeomorphism between (X,Σ) and (X,Σ′) must take double

points to double points. If, as in case (i), the local orientation of each disk is preserved,

then the map Σ → Σ′ extends over the annulus A attached in the smoothing process.

The assumption in case (i) means that Σ′ · Σ′ = Σ · Σ, and we can assume that this
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diffeomorphism takes the n points on Σ where the blowup is done to the corresponding

points on Σ′. Thus the diffeomorphism extends (by the identity away from a ball)

over the n copies of CP
2
added in the blowup. This yields the diffeomorphism f ′.

In case (ii), we have that, as oriented surfaces, f(Σ1) = ±Σ′

1 and f(Σ2) = ±Σ′

2. By

invariance of intersection number, the signs must be the same for both components;

case (i) covers the situation where both are positive.

If both signs are negative, then again the map Σ → Σ′ extends over each annulus,

and Σ′ · Σ′ = Σ · Σ. Recall that there is an orientation-preserving diffeomorphism

(complex conjugation) on CP2 that reverses the orientation of CP1. Gluing such a

diffeomorphism to f at each point where we perform a blowup gives a diffeomorphism

X ′ → X ′ taking Σ̃ to Σ̃′.

For the last part of the lemma, note that a diffeomorphism that is isotopic to the

identity induces the identity map on homology. Therefore, if Σ1 and Σ2 represent

nontrivial homology classes, their orientations must be preserved by an isotopy, and

so case (i) of the lemma applies. �

We now consider how a double point surgery on a configuration (X,Σ) affects the

smoothed surface constructed above. From this point on, we assume that Σ has two

components, with nonzero intersection number. Hence, by Lemma 6.2, the smoothing

Σ̃ is canonically associated to Σ.

Lemma 6.3. Consider a double point of the configuration (X,Σ). There is a smooth-

ing (X,Σ′) at this point such that the double point torus T is disjoint from the annulus

A. If α ⊂ A is an essential curve, then T is the rim torus associated to α ⊂ Σ′.

Proof. Consider a 4-ball neighborhood of the double point, and recall that the double

point torus may be chosen to live in the boundary 3-sphere, where it appears as the

peripheral torus of either component of the Hopf link. Make an initial choice of the

annulus as the standard Seifert surface for the Hopf link in this 3-sphere. These

surfaces are labeled T0 and A0 in Figure 6 below. Note that their intersection is
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the curve α0 that is the core of the annulus. Furthermore, note that each meridian

µ1 for the first component of the Hopf link intersects A0 in a point, and that the

corresponding meridian disk hits A0 in an arc (drawn in blue).

A0

T0

D1

µ1

α0

Figure 6. Double point torus and annulus in S3

Consider a function f : A0 → [1/2, 1] that is 1 on ∂A0 and 1/2 on α0, having no

other critical points. Let A be the result of pushing A0 into the interior of the 4-ball,

leaving its boundary in the 3-sphere, so that a level set f−1(r) ends up at radius r (in

polar coordinates) in the 4-ball. Let T be a copy of the double point torus at radius

3/4. Each copy of the meridian µ1 on T bounds a disk that intersects A transversally

in a single point; the union of those points forms a curve α (at radius 3/4) parallel to

α0. In this way, T is identified with the boundary of normal bundle of A, restricted

to α. By definition, this is the rim torus.

The positions of T and A are illustrated schematically below; the figure on the left

shows the positions in S3, and the figure on the right shows the result of pushing A0

and T0 into the 4-ball.
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A

A0

D1

D1

µ1 ⊂ T0

µ1 ⊂ Tα0

α

=⇒

1 S3S3

3
4

r = 1
2

Figure 7. Double point torus and rim torus in B4

�

Following [7], consider the set T of Spinc structures τ on X ′ − (Σ̃ × D2) whose

restriction to Σ̃ × S1 is the pull-back of a Spinc structure on Σ̃ and which satisfies

〈c1(τ), Σ̃〉 = ±(2g(Σ̃) − 2). For any such Spinc structure, Kronheimer–Mrowka [19,

Definition 3.6.4] define a relative Seiberg–Witten invariant SWτ

X′,Σ̃
∈ ĤM(Σ̃×S1, τ).

This group is the monopole Floer homology, and for τ with the properties described

above it is isomorphic to Z. Define SWT
X,Σ to be the Laurent polynomial (cf. [4])

version of this relative Seiberg–Witten invariant of (X ′, Σ̃).

Parallel to the main theorem of [5], as amended in [7], we have:

Theorem 6.4. Suppose that (X,Σ) is a configuration with Σ1 · Σ2 6= 0 and at

least two intersections between Σ1 and Σ2, and let τ be a Spinc structure such that

SWT
X,Σ 6= 0. If K1 and K2 are two knots in S3 and if there is a diffeomorphism of

pairs f : (X,ΣK1
) → (X,ΣK2

), then the set of coefficients (with multiplicities) of ∆K1

must be equal to that of ∆K2
.

Proof. The effect of k-twisted rim surgery on the relative invariant of an embedded

surface is described in [5, 7]; the result is based on the formula [4, Theorem 1.5] that

describes the change in Seiberg-Witten invariants under knot surgery. As remarked

in [16], this proof of this formula extends without change to the setting of k-twisted
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knot surgery. This can be seen in various ways; the simplest is to use the skein-

theoretic proof of [4, Theorem 1.5], and note that for the trivial knot, there is no

difference between ordinary knot surgery and k-twisted knot surgery.

From Lemma 6.3, double point surgery (X,Σ) (X,ΣK,ϕ) becomes a rim surgery

(X ′, Σ̃) (X ′, Σ̃K,ϕ) along the curve α ⊂ Σ̃ created by smoothing the double point.

If there is more than one intersection point, then α is non-separating on Σ̃, and hence

(quoting [7])

SWT
X,ΣK,ϕ

= SWT

X′,Σ̃K,ϕ
= SWT

X′,Σ̃
·∆K(r

2) = SWT
X,Σ ·∆K(r

2)

where r is the homology class of the rim torus in H2(X − Σ̃). The theorem follows

as in [7]. �

Suppose that Σ is a configuration in a symplectic manifold X . We say that Σ is

symplectic if all of its components are symplectically immersed surfaces, and all of

the double points are positive. Assuming that there are some intersection points,

Lemma 6.2 implies that the smoothing Σ̃ is canonically associated to Σ. Then by [13,

23] the smoothing of a symplectic configuration (X,Σ) is a symplectic surface, and

we may apply Theorem 6.4. It is important to remark that if (X,Σ) is a symplectic

configuration with only positive double points, then there is a Spinc structure τ with

SWτ
X,Σ 6= 0. As in [5, 7] this follows from [35] by taking a fiber sum with an appropriate

Kähler manifold and then applying the gluing theory of [19].

6.1. Infinitely many distinct configurations. We now have assembled the ingre-

dients to prove the first of our main theorems.

of Theorem A. Let (X,Σ) be one of the configurations constructed in examples 4.2, 4.3,

or Proposition 4.5. These are all symplectic configurations, and each of them can be

used to prove the theorem, with slightly different arguments. Let Kr, r ∈ N, be a

sequence of knots for which the Alexander polynomials have sets of coefficients that

are pairwise distinct.
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For each r, define (X,Σ(r)) to be the k-twisted double point surgery (X,Σ(Kr ,A(k)))

on (X,K), where k and the other parameters are chosen in the three cases as follows.

(i) For Σ as in Example 4.2, choose d1 = 1, and k = 0.

(ii) For Σ as in Example 4.3, choose k = ±1, and p, q so that q ≥ 2 and (p±1, q) =

1.

(iii) For Σ as in Proposition 4.5, again choose k = ±1, and m,n relatively prime.

In each case Proposition 3.2 implies that the double point surgery preserves the

fundamental group.

According to Theorem 6.4, the configurations (X,Σ(r)) are smoothly pairwise dis-

tinct, verifying 1 of the theorem. To verify 2, recall from Corollary 2.3 that component

1 of Σ(Kr ,A(k)) is embedded in X as Σ1♯A(Kr, k). In case (i) above, Σ1 is a copy of

CP1 ⊂ CP2. According to the thesis of P. Melvin [24], for J a knotted 2-sphere,

(CP2,CP1♯J) is equivalent to (CP2,CP1) if and only if the Gluck twist [12] on J

yields S4. On the other hand, Gluck has shown [12] that this is the case for any 0-

twist spun knot. It follows that Σ1♯A(Kr, 0) is smoothly equivalent to Σ1, verifying 2

of the theorem in the first case. The other two cases are easier, since by Zeeman’s

theorem [36], the knot A(Kr,±1) is the unknot in S4. Item 3 holds by construction;

the individual components (X,Σ
(r)
2 ) are simply equal to (X,Σ2). Finally, Theorem 5.1

implies that (X,Σ(r)) is topologically equivalent to (X,Σ) for all r, so that the last

clause 4 of the theorem holds as well. �

7. Group Actions

As shown by Fintushel-Stern-Sunukjian [8], twisted rim surgery, applied to the

branch set of a cyclic branched cover, can give rise to smoothly exotic group actions

on simply–connected 4–manifolds. The action (on the total space of the branched

cover) is by definition semi-free. In this section, we show that double point surgery

gives rise to interesting group actions with somewhat more complicated singular sets

consisting of a configuration of surfaces. The covering group will be of the form
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Zm ⊕ Zn, with the fixed points of the Zm subgroup being one component of the

configuration, and those of the Zn subgroup being another component.

The local picture at an intersection point in the configuration may be described as

follows; compare [26]. Let ζk denote a primitive kth root of unity. Then Zm⊕Zn acts

on C2 with Zm acting on the first C factor by ζm, and Zn acting on the second factor

by ζn. The action restricts to an action on the unit ball in C2, with singular set the

unit discs in the two factors, and with fixed point set the origin. The quotient is also

a 4-ball, with the image of the singular set again a pair of standardly embedded discs

meeting at the origin. We will refer to the image of the singular set in the quotient

as the branch set, and refer to any Zm ⊕ Zn action with this local structure at fixed

points as having standard type.

Conversely, suppose that we have a configuration of surfaces Σ in X and an epi-

morphism ϕ : π1(X − Σ) → Zm ⊕ Zn with the property that each intersection point,

ϕ takes the meridian of one of the discs to a generator of Zm and the other meridian

to a generator of Zn. Then we can form a regular branched covering X̃ → X with

covering group Zm ⊕ Zn. The branch set is Σ, written as a union Σ(m) ∪Σ(n) (note

that these may themselves be unions of components), and the local model near each

intersection point of Σ(m) and Σ(n) will be as described in the previous paragraph.

Applying a double point surgery to an appropriately chosen configuration, we will

show the following.

Theorem 7.1. Let m and n be relatively prime. There is a simply–connected 4–

manifold X̃ supporting infinitely many Zm ⊕ Zn-actions of standard type that are

smoothly inequivalent, but topologically equivalent.

Proof. We have seen in Proposition 4.5 that there is a two-component configuration

Σ of surfaces in a simply–connected manifold X such that π1(X−Σ) is isomorphic to

Zm⊕Zn in such a way that the meridian of Σ1 is a generator of Zm and the meridian

of Σ2 is a generator of Zn. Consider the regular branched Zm ⊕ Zn-cover X̃ of X
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over Σ with the properties that the branch set equals Σ1 ∪ Σ2, the branching index

along Σ1 is m and the branching index along Σ2 is n. Observe that the map X̃ → X

may be constructed in two stages, as a composition of branched coverings pn ◦ qm as

indicated below.

(11) X̃
qm
−→ X̃n pn

−→ X

The Zn-cover pn : X̃n → X branched over Σ2 corresponds to the epimorphism π1(X−

Σ2) → Zn that maps the meridian µ2 to 1. The Zm-cover qm : X̃ → X̃n is branched

over the preimage p−1
n (Σ1) in X̃n, and corresponds to the epimorphism π1(X̃

n −

p−1
n (Σ1)) → π1(X − Σ1) → Zm.

Now, we perform a k-twisted double point surgery on the configuration Σ, giving

a new configuration (X,ΣK). Let X̃K be the Zm ⊕Zn-cover of X branched over ΣK ;

it is also constructed as a composition of branched covers as in (11). Choosing, as in

case (iii) of Theorem A, an infinite collection of knots K so that the configurations

ΣK are smoothly distinct, we have that the Zm⊕Zn actions on the manifolds X̃K will

be smoothly distinct. So the proof of Theorem 7.1 will be completed by the following:

Claim: If k and m are relatively prime, then X̃K is diffeomorphic to X̃ .

Proof of claim. Following the construction above, X̃K is the m-fold branched cover

of X̃n
K , branched along p−1

n (Σ1,K). So our main task is to understand that preimage.

Recall that the k-twisted double point surgery is given by

(X,ΣK) = (X,Σ)−T×D2 ∪ϕ E(K)× S1,

where the gluing map ϕ is given by Equation (5).

Viewing E(K)×S1 as a subset of ofX−ΣK , note that the map π1(E(K)×S1) → Zn

corresponding to the covering X̃n
K → X takes [S1] to a generator of Zn and µK to

the trivial element. Thus, we obtain (X̃n
K , p

−1
n (ΣK)) from (X̃n, p−1

n (Σ)) by a double
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point surgery along the lifted double point torus T̃ = µ̃1 × µ̃2 in X̃n:

X̃n
K = X̃n − T̃×D2 ∪ϕ̃ E(K)× S1,

where

ϕ̃(µ̃1) = µK , ϕ̃(µ̃2) = [S]1 + kµK , and ϕ̃(∂D2) = λK .

This operation is exactly the k-twisted double point surgery on the configuration

(X̃n, p−1
n (Σ)). The local nature of double point surgery (cf. (1) and Proposition 2.2)

allow us to write X̃n
K as follows. Given the matrix A(k) in (6),

(12) (X̃n
K , Σ̃K) = (X̃n, p−1

n (Σ1) ∪ p−1
n (Σ2))♯(S

4, (S1 ∪ S2)K,A(k)).

Recall that cutting and regluing using the matrix A(k) changes the twin S1 ∪ S2

into the k-twist twin (S1∪S2)K,A(k). Hence by Corollary 2.3, one component of p−1
n (Σ)

is p−1
n (Σ1)♯A(K, k) and the other one remains p−1

n (Σ2).

From this discussion, the Zm ⊕ Zn-cover X̃K is the Zm-cover of X̃
n
K branched over

p−1
n (Σ1)♯A(K, k). The branched cover decomposes as the connected sum of the m-

fold branched cover of X̃n along p−1
n (Σ1) and the m-fold branched cover of S4 over

the k-twist spun knot A(K, k), denoted by (S4, A(K, k))m. By Corollary 6.1 in [33],

if m and k are relatively prime, then (S4, A(K, k))m is smoothly S4. Hence, X̃K is

diffeomorphic to X̃. �
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