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Abstract

We classify Veech groups of tame non-compact flat surfaces. In partic-
ular we prove that all countable subgroups of GL+(2, R) avoiding the
set of mappings of norm less than 1 appear as Veech groups of tame
non-compact flat surfaces which are Loch Ness monsters. Conversely,
a Veech group of any tame flat surface is either countable, or one of
three specific types.

1 Introduction

For a compact flat surface S, the Veech group of S is the subgroup of SL(2,R)
formed by the differentials of the orientation preserving affine homeomor-
phisms of S. Veech groups of compact flat surfaces are related to the dy-
namics of the geodesic flow [Vee89].
Our goal is to describe all possible Veech groups one can obtain for tame

non-compact flat surfaces (see Definition 2.2), introduced in [Val09b]. An
example par excellence of a tame non-compact flat surface is the surface
associated to the billiard game on an irrational angled polygonal table. This
surface is of infinite genus and has only one end [Val09a]. A surface with
those properties is called a Loch Ness monster (see [Ghy95]). We distinguish
the role of this ”monster” in our main result.
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To state it, we need the following notation. We denote by U ⊂ GL+(2,R)
the set of matrices M such that ||Mv|| < ||v|| for all v ∈ R2, where || · || is
the Euclidean norm on R

2. We denote

• by P ⊂ GL+(2,R) the group of matrices

(
1 t

0 s

)
,where t ∈ R, s ∈ R+,

• by P ′ ⊂ GL+(2,R) the group of matrices generated by P and −Id.

Note that P has index 2 in P ′.

We prove the following.

Theorem 1.1. Let G ⊂ GL+(2,R) be a Veech group of a tame flat surface.
Then one of the following holds.

(i) G is countable and disjoint from U .

(ii) G is conjugate to P .

(iii) G is conjugate to P ′.

(iv) G = GL+(2,R).

Conversely, we prove the following.

Theorem 1.2. Any subgroup G of GL+(2,R) satisfying assertion (i), (ii)
or (iii) of Theorem 1.1 can be realized as a Veech group of a tame flat surface
X which is a Loch Ness monster.

In particular, every cyclic subgroup of SL(2,R) or every Fuchsian group
can be realized as the Veech group of a tame flat surface which is a Loch
Ness monster. For compact flat surfaces, such questions are still open (see
[HMSZ06, Problems 5, 6]). Furthermore, observe that a cocompact Fuchsian
group cannot be the Veech group of a compact flat surface [Vee89], but occurs
as the Veech group of a tame flat surface, which is a Loch Ness monster.
We will see that the only tame flat surfaces with Veech group GL+(2,R),

as in (iv) of Theorem 1.1, are cyclic branched coverings of the flat plane (see
Lemmas 3.2 and 3.3). In particular GL+(2,R) cannot be realized as a Veech
group of a tame Loch Ness monster.

In our article we restrict in Definition 2.3 of the Veech group to affine
homeomorphisms which preserve the orientation. If we allow orientation
reversing ones, substitutingGL(2,R) in place ofGL+(2,R) in the statements

2



of our theorems, they remain valid, except that we need to add three more
“parabolic” subgroups to the pair P and P ′. No new ideas appear in the
proofs. Thus we restrict to the orientation preserving case to simplify the
formulation and the arguments.

The article is organized as follows. In Section 2 we recall the definition
of a tame non-compact flat surface and its Veech group.
We divide the proofs of Theorems 1.1 and 1.2 into two parts. In Section 3

we treat the case where the group G is uncountable. More precisely, we prove
that if in the hypothesis of Theorem 1.1 we assume that G is uncountable,
then it satisfies assertion (ii), (iii) or (iv) (Proposition 3.1). Conversely, we
prove that any group satisfying assertion (ii) or (iii) can be realized as a
Veech group of a tame flat surface which is a Loch Ness monster (Lemmas
3.7 and 3.8).
In Section 4 we study the remaining case, where G is countable. In other

words, we prove that any group satisfying assertion (i) of Theorem 1.1 can
be realized as a Veech group of a tame flat surface which is a Loch Ness
monster (Proposition 4.1). This construction is the main point of the article.
Conversely, we prove that if we assume in the hypothesis of Theorem 1.1 that
G is countable, then it satisfies assertion (i) (Lemma 4.15).

Acknowledgments. We thank the faculty and staff of Max-Planck Insti-
tut in Bonn, where part of this work was carried out. We furthermore thank
the Landesstiftung Baden–Württemberg and the Department of Mathemat-
ics of the University of Karlsruhe that enabled the authors to meet and work
together.

2 Preliminaries

In this section we briefly recall the definition and features of non-compact
flat surfaces. For more details, we refer the reader to [Val09b].

Let (S, ω) be a pair formed by a connected Riemann surface S and a
non-zero holomorphic 1–form ω on S. Denote by Z(ω) ⊂ S the zero locus
of the form ω. Local integration of ω endows S \ Z(ω) with an atlas whose
transition functions are translations of C. The pullback of the standard
translation invariant flat metric on the complex plane defines a flat metric
on S \Z(ω). Let Ŝ be the metric completion of S \Z(ω). Each point in Z(ω)
has a neighborhood isometric to the neighborhood of 0 ∈ C with the metric
coming from the 1–form zkdz for some k > 1 (which is the metric induced
via a cyclic branched covering of C). The points in Z(ω) are called finite
angle singularities.
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Definition 2.1. A point p ∈ Ŝ is called an infinite angle singularity of
S, if there exists a neighborhood of p isometric to the neighborhood of the
branching point of the infinite cyclic branched covering of C. We denote the
set of infinite angle singularities of Ŝ by Y∞(ω).

Definition 2.2. The pair (S, ω) is called a tame flat surface, if Ŝ \ S equals
Y∞(ω).

Let Aff+(S) be the group of affine orientation preserving homeomor-
phisms of a tame flat surface S (we assume that S comes with a preferred
1–form ω). Consider the differential

Aff+(S)
D−→ GL+(2,R)

that associates to every φ ∈ Aff+(S) its (constant) Jacobian derivative Dφ.

Definition 2.3. Let S be a tame flat surface. We call G(S) = D(Aff+(S))
the Veech group of S.

We define saddle connections and holonomy vectors in the context of tame
non-compact flat surfaces exactly in the same way as for compact ones, see
[Val09b].

We refer the reader to [HS06, Vee89] for more details on Veech groups
of compact flat surfaces, and to [HW08, HS08, Val09b, Hoo08] for explicit
examples of Veech groups of tame flat surfaces which are Loch Ness monsters.

3 Uncountable Veech groups

In this section we prove Theorems 1.1 and 1.2 in the case where G is un-
countable. Under this assumption we restate Theorem 1.1 in the following
way.

Proposition 3.1. If the Veech group of a tame flat surface is uncountable,
then it is conjugate to P , conjugate to P ′ or equals the whole GL+(2,R).

We begin the proof with the following.

Lemma 3.2. If a tame flat surface S has no saddle connections and its Veech
group G is uncountable, then G equals P ′ or GL+(2,R). In the latter case
S is a cyclic branched covering of the flat plane.
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Proof. First assume that S has no singularities. Then the universal cover
of S is the flat plane and S is either (i) the plane itself, or (ii) a flat cylinder
which is a quotient of the plane by a cyclic group, or (iii) it is compact. Since
G is uncountable, S is not compact. In case (i) we have that G = GL+(2,R).
In case (ii) we have that G is conjugate to P ′ by a rotation.

Now assume that S has a singularity x0 (which might be of finite or
infinite angle). Since there are no saddle connections issuing from x0, we

have that Ŝ is isometric to a (possibly infinite) cyclic branched covering of
R2. Hence G = GL+(2,R). �

To complete the proof of Proposition 3.1 it remains to prove the following.

Lemma 3.3. If the Veech group G of a tame flat surface S carrying saddle
connections is uncountable, then G is conjugate to P or P ′.

Proof. Step 1. All saddle connections of S are parallel.

Since there are only countably many homotopy classes of arcs joining
singularities of Ŝ, the set of saddle connections of S, and thus the set V ⊂ R2

of holonomy vectors, is countable. If s1 and s2 are two non-parallel saddle
connections, then let v1, v2 be their holonomy vectors. For each g ∈ G we
define η(g) = (g(v1), g(v2)) ∈ V × V . Since {v1, v2} is a basis of R

2, we
have that η is an embedding. But V × V is countable. Contradiction. This
concludes Step 1.

Without loss of generality we may assume that all saddle connections are
horizontal. Let Spine(S) ⊂ Ŝ be the union of the set of singularities together
with all singular horizontal geodesics (this includes saddle connections). We
claim that Spine(S) is connected and complete w.r.t. its intrinsic path metric.

The latter follows from the completeness of Ŝ. The former follows from the
fact that any two singularities of Ŝ are connected by a concatenation of saddle
connections, which are horizontal by Step 1.

Step 2. We have that P ⊂ G.

Let C be the closure of a component of Ŝ \Spine(S). It is a complete Rie-
mann surface with nonvanishing holomorphic 1–form and horizontal bound-
ary. The boundary of C is connected, since otherwise there would be a
non-horizontal saddle connection joining singularities in different boundary
components. Hence C is either a half-plane or a half-cylinder with hori-
zontal boundary. In particular, for any g ∈ P we have that C admits an
orientation preserving affine homeomorphism with differential g, which fixes
its boundary. Hence for any g ∈ P , there is an orientation preserving affine
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homeomorphism g ∈ Aff+(S), with Dg = g, which fixes Spine(S) and is
prescribed independently on each component of the complement.

Step 3. We have that G ⊂ P ′.

Let ~e denote the unit horizontal vector in R2. We prove that for every
g ∈ G we have g(~e) = ±~e. Otherwise, assume that there is an orientation
preserving affine homeomorphism g ∈ Aff+(S) with differential g for which
g(~e) = λ~e, with |λ| 6= 1. Then g or its inverse acts as a contraction on
Sing(S). By the Banach fixed point theorem, the iterates of any singularity
under g or its inverse accumulate on the fixed point of g. Since the set of
singularities is invariant under the action of g, this implies that it has an
accumulation point. Contradiction.

We summarize. By Steps 2 and 3 we have that P ⊂ G ⊂ P ′. Since P is
of index 2 in P ′, we have that G = P or G = P ′. �

We now provide examples of Loch Ness monsters with Veech groups P
and P ′. First we introduce the following vocabulary, which will become
particularly useful in Section 4.

Definition 3.4. Let S be a tame flat surface. A mark on S is an oriented
finite length geodesic (with endpoints) on S which does not meet singularities.
If S is simply connected, a mark is determined by its endpoints. The slope
of a mark is its holonomy vector, which lies in R2.
If m,m′ are two disjoint marks on S with equal slopes, we can perform

the following operation. We cut S along m and m′, which turns S into a
surface with boundary consisting of four straight segments. Then we reglue
these segments to obtain a tame flat surface S ′ different from the one we
started from. We say that S ′ is obtained from S by regluing along m and m′.
Let S0 = S \ (m ∪m′). Then S ′ admits a natural embedding i of S0. If

A ⊂ S0, then we say that i(A) is inherited by S ′ from A.

Remark 3.5. If S ′ is obtained from S by regluing, then the number of
singularities of S ′ of a fixed angle equals the one of S, except for 4π–angle
singularities, whose number is greater by 2 in S ′ (we put ∞ + 2 = ∞). The
Euler characteristic of S is greater by 2 than the Euler characteristic of S ′.

We can extend the notion of regluing to families of marks.

Definition 3.6. Let S be a tame flat surface. Assume that M = (mn)∞n=1

and M′ = (m′
n)∞n=1 are ordered families of disjoint marks, which do not

accumulate in Ŝ, and such that the slope of mn equals the slope of m
′
n, for

each n. Let S0 = S and let Sn be obtained from Sn−1 by regluing along mn

and m′
n. Let S

′ be the Riemann surface equipped with a holomorphic 1–form
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which is the limit of Sn. The limit exists since the marks do not accumulate,
but might not be a tame flat surface. We say that S ′ is obtained from S by
regluing alongM andM′. If A ⊂ S \ (M∪M′), then we define the subset
of S ′ inherited from A as before.

We are ready to perform the following constructions.

Lemma 3.7. There is a tame Loch Ness monster with Veech group P .

Proof. Let A and A′ be two oriented flat planes, equipped with origins
that allow us to identify them with R2. Let C, C′ be families of marks with
endpoints (4n + 1)~e, (4n + 3)~e, for n ≥ 1, on A,A′, respectively, where ~e
denotes, as before, the horizontal unit vector in R2. Let Â be the tame flat
surface obtained from A ∪ A′ by regluing along C and C′.
The group P acts on A and A′ under identification with R2. This action

carries over to Â. Hence the Veech group G of Â contains P . By Lemma
3.3, we have that G = P or G = P ′. But in the latter case, the affine
homeomorphism with differential −Id must act on Sing(Â) (defined in the
proof of Lemma 3.3) by an orientation reversing isometry. Since there is no
such isometry, we conclude that G = P .
By Remark 3.5, we have that Â has infinite genus. It has one end (this

follows in particular from Lemma 4.3). Hence Â is a Loch Ness monster with
Veech group P . �

Lemma 3.8. There is a tame Loch Ness monster with Veech group P ′.

Proof. Similarly as in the proof of Lemma 3.7, let A and A′ be two oriented
flat planes, equipped with origins that allow us to identify them with R2.
Let C, C′ be families of marks with endpoints (4n + 1)~e, (4n+ 3)~e, on A,A′,
respectively, where this time we take n ∈ Z, and we order the marks into
sequences. Let Â be the tame flat surface obtained from A ∪ A′ by regluing
along C and C′.
This time the action of the whole group P ′ carries over to Â. Hence the

Veech group G of Â contains P ′. By Lemma 3.3 we have that G = P ′. The
surface Â is a Loch Ness monster by the same argument as in the proof of
Lemma 3.7. �

Lemmas 3.7 and 3.8 prove Theorem 1.2 in the case where G is uncount-
able.
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4 Countable Veech groups

The main part of this section is devoted to the proof of Theorem 1.2 in the
case where the group G ⊂ GL+(2,R) is countable. In other words, we prove
the following.

Proposition 4.1. For any countable subgroup G of GL+(2,R) disjoint from
U = {g ∈ GL+(2,R) : ||g|| < 1} there exists a tame flat surface S = S(G),
which is a Loch Ness monster, with Veech group G.

In fact the group Aff+(S) will map isomorphically onto G under the
differential map. This means that the group G will act on S via affine home-
omorphisms with appropriate differentials. Here we adopt the convention
that an action of a group G on a set X is a mapping (g, x) → g · x such that
(gh) · x = g · (h · x) and Id · x = x.

We begin with an outline of the proof of Proposition 4.1. We make use of
the fact that any groupG acts on its Cayley graph Γ. We turn Γ equivariantly
into a flat surface. With each vertex g of Γ we associate a flat surface Vg

which can be cut into a flat plane Ag and a decorated surface L̃′
g, whose role

is explained later.
To guarantee tameness, we do not want the singularities of different Vg to

accumulate. Let (g, g′) be an edge of Γ such that g−1g′ is the i’th generator
of G. We associate to this edge a buffer surface Êi

g which connects Vg to Vg′,
but separates them by a definite distance.
We keep track of the end in the following way. First we provide that each

Vg and Ê
i
g is one-ended. Then we provide that after gluing all Vg and Ê

i
g,

their ends actually merge into one end.
In this way we construct a one-ended flat surface with a faithful affine

action of G. The role of the decorated surface L̃′
g is to prevent the group

of orientation preserving affine homeomorphisms of the surface from being
richer than G. To achieve this, L̃′

g is decorated with special singularities.
This guarantees that every orientation preserving affine homeomorphism of
the surface permutes this set of singularities and with some more care we
establish that it actually acts as one of the elements of G.

We begin by explaining how to obtain a nice action of GL+(2,R) on a
disjoint union of affine copies of any flat surface.

Definition 4.2. Let SId be a tame flat surface. For each g ∈ GL+(2,R),
we denote by Sg the affine copy of SId, whose atlas differs from the one of
SId by post-composing each chart with g. In other words, Sg comes with a
canonical affine homeomorphism g : SId → Sg with differential g. Moreover,
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GL+(2,R) acts on the union of all Sg′ so that g maps each Sg′ onto Sgg′,
with differential g.

We provide the following criterion for 1–endedness. Let Γ be a connected
graph. Let A be the union, over v ∈ Γ(0), of 1–ended tame flat surfaces Av

without infinite angle singularities. Assume that each Av is equipped with
infinite families of marks Ce

v , for each edge e issuing from v, and additional,
possibly finite, two families of marks Cv, C′

v, of the same cardinality. Assume
that all these marks are disjoint and do not accumulate. In particular this
implies that Γ(0) is countable. Moreover, assume that for each edge e = (v, v′)
the slopes of the marks in Ce

v and Ce
v′ agree. Additionally, assume that the

slopes of the marks in Cv and C′
v agree.

Lemma 4.3. Let S be the surface obtained from A by regluing along Ce
v and

Ce
v′ , for all edges e = (v, v′) in Γ(1), and along Cv and C′

v, for all vertices v in
Γ(0). Then S is 1–ended. If Γ has an edge or if it has only one vertex v but
with infinite Cv (or if Av has infinite genus), then S has infinite genus.
Unless Γ has no edges (it has then only one vertex v) and additionally Cv

is finite and Av has finite genus, we have that S has infinite genus.

Proof. For each vertex v in Γ(0), choose a basepoint Ov in Av. Let Bv(r) be
the closure in S of the subset inherited from the ball of radius r around Ov

with appropriate marks removed.
We order all vertices of Γ into a sequence (vj)

∞
j=1. For l ≥ 1, let

Kl =
l⋃

j=1

Bvj
(l).

ThenKl is a family of compact sets which has the property that each compact
set in S is contained in Kl, for some l ≥ 1.
Now we prove that the complement of each Kl is connected. Since the Av

are complete non-positively curved and 1–ended, since balls and the marks
we consider are convex, and since those marks are disjoint, we have that all

A′
vj

= Avj
\ (Bvj

(l) ∪e Ce
vj
∪ Cvj

∪ C′
vj

)

are connected. Since Γ is connected, all Ce
v are infinite, and Kl intersects only

a finite number of marks, we have that all A′
vj
are in the same connected

component of S \Kl. Since the union of A
′
vj
is dense in S \Kl, this implies

that S \Kl is connected.
Thus S is 1–ended. If Γ has at least one edge or Cv is infinite, then S has

infinite genus by Remark 3.5. �
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We describe the construction of the buffer surfaces, which will corre-
spond to the edges of the Cayley graph Γ of G. We denote the base vectors
(1, 0), (0, 1) of R2 by ~e and ~f , respectively.

Construction 4.4. Let EId, E
′
Id be two oriented flat planes, equipped with

origins that allow us to identify them with R2. We define the following
families of slope ~e marks on EId ∪E ′

Id. Let S be the family of marks on EId

with endpoints 4n~e, (4n+1)~e, for n ≥ 1, and let Sglue be the family of marks
on EId with endpoints (4n + 2)~e, (4n + 3)~e, for n ≥ 1. Let S ′ be the family

of marks on E ′
Id with endpoints 2n~f , 2n~f + ~e, for n ≥ 1, and let S ′

glue be the

family of marks on E ′
Id with endpoints (2n + 1)~f , (2n + 1)~f + ~e, for n ≥ 1.

Let ÊId be the tame flat surface obtained from EId and E
′
Id by regluing along

Sglue and S ′
glue. We call ÊId the buffer surface. We record that ÊId comes

with distinguished families of marks inherited from S,S ′, for which we retain
the same notation.

Lemma 4.5. Let ÊId be the buffer surface and let g ∈ GL+(2,R) \ U . Then
the distance in Êg (see Definition 4.2) between gS and gS ′ is at least 1√

2
.

Proof. Denote by d̂ the distance in Êg between gS and gS ′. Let d be the
distance in Eg between gS and gSglue and let d

′ be the distance in E ′
g between

gS ′
glue and gS ′. Then we have that d̂ ≥ d+ d′. Moreover, d = |g(~e)| and

d′ = min
|s|≤1

|g(~f + s~e)|.

Let s ∈ [−1, 1] be such that the minimum is attained, that is d′ = |g(~f +s~e)|.
If d+ d′ < 1√

2
, then

|g(~f)| ≤ |g(~f + s~e)| + |s||g(~e)| < 1√
2
.

Hence for any v = x~e + y~f ∈ R2 we have that

|g(v)| ≤ |x||g(~e)| + |y||g(~f)| < 1√
2
(|x| + |y|) ≤

√
x2 + y2 = |v|.

Thus ||g|| < 1. Contradiction. �

Now we construct the decorated surface which will force rigidity of the
affine homeomorphism group.
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Construction 4.6. Let LId be an oriented flat plane, equipped with an
origin. Let L̃Id be the threefold cyclic branched covering of LId, which is
branched over the origin. Denote the projection map from L̃Id onto LId by
π. Denote by R the closure in L̃Id of one connected component of the pre-
image under π of the open right half-plane in LId. On R consider coordinates
induced from LId via π. Denote by C′ the family of marks in R with endpoints
(2n − 1)~e, 2n~e, for n ≥ 1, and denote by t and b the two marks in L̃Id with

endpoints in R with coordinates ~f , 2~f and −~f ,−2~f , respectively. Let L̃′
Id be

the tame flat surface obtained from L̃Id by regluing along t and b. We call
L̃′

Id the decorated surface.

Remark 4.7. We keep the notation C′ for the family of marks inherited
by L̃′

Id. We denote the point inherited from the origin by O. Then O is a
6π–angle singularity outside C′.

Remark 4.8. Let S be a tame flat surface with a non-accumulating (in Ŝ)

family C of marks with slopes ~e. Assume that S ′ is obtained from L̃′
Id ∪S by

regluing along C′ and C. Then there are only three saddle connections issuing
from the point inherited from O by S ′. Their interiors are all contained in
the subset inherited from R \ (t ∪ b ∪ C′) and their holonomy vectors equal

−~f ,~e, and ~f . Hence the angles between these saddle connections are π
2
, π

2
and

5π.

We are now ready for our main construction. Recall that U denotes the
set of linear mappings of norm less than one.

Construction 4.9. Let G be a nontrivial countable subgroup ofGL+(2,R)\
U . Denote the generators of G by ai, where i ≥ 1. If G is trivial, we consider
a single generator a1 = Id. Let AId be an oriented flat plane, equipped with
an origin. Let A be the union of Ag over g ∈ G (see Definition 4.2).

For i ≥ 0 let Ci be the family of marks on AId with endpoints i~f +
(2n − 1)~e, i~f + 2n~e, for n ≥ 1. All these marks are pairwise disjoint. Now,
given x1, y1 ∈ R, consider the family C−1 of marks on AId with endpoints
(nx1, y1), (nx1, y1) + a−1

1 (~e), for n ≥ 1. Choose x1 > 0 sufficiently large and
y1 < 0 sufficiently small (i.e. −y1 > 0 sufficiently large) so that all these
marks are pairwise disjoint and disjoint from the ones in Ci for i ≥ 0.
Observe that a translate of the lower half-plane in AId is avoided by

all already constructed marks. In this way we can inductively, for all i ≥
2, choose xi,−yi ∈ R sufficiently large so that the marks with endpoints
(nxi, yi), (nxi, yi) + a−1

i (~e), for n ≥ 1, are pairwise disjoint and disjoint with
the previously constructed marks. We denote these families by C−i. None of
the described marks accumulate.
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Let L̃′
Id be the decorated surface from Construction 4.6 and let L̃

′ be the

union of L̃′
g over g ∈ G (see Definition 4.2). For each g ∈ G let Vg be the flat

surface obtained from Ag ∪ L̃′
g by regluing along the families of marks gC0

and gC′. The regluing is allowed, since all the slopes equal g(~e). The surface
Vg is complete, in particular it is tame. Let V be the union of the Vg over

g ∈ G. The action of G on A and on L̃′ carries over to an action on V , and
we retain the same notation for this action. It still has the property that the
differential of g equals g, for each g ∈ G. We keep the notation Ci, for i 6= 0,
for the families of marks that are inherited from the families of marks on AId

by VId.

For each i ≥ 1 we consider a copy Êi
Id of the buffer surface ÊId defined

in Construction 4.4. We denote the copies of S,S ′ in Êi
Id by Si,S ′i. Let

E be the union of all Êi
g, over g ∈ G and all i ≥ 1. Let S = S(G) be

the Riemann surface equipped with the holomorphic 1–form obtained from
V ∪ E by regluing along the following pairs of families of marks. For each
i ≥ 1 and g ∈ G, we reglue the family gCi with gSi and the family gS ′i with
gaiC−i. Note that this is allowed since all slopes of these marks equal g(~e).
Moreover, the action of G carries over to S, and we retain the same notation
for this action.

Remark 4.10. By Remarks 3.5 and 4.7 the set of singularities of S with
angle 6π is the set of the G–translates of the point inherited by S from O

(for which we retain the same notation). By Remark 4.7 the translates gO
of O in S are pairwise different, for different g ∈ G.

Lemma 4.11. S is a Loch Ness Monster.

Proof. This follows from Lemma 4.3 applied to the graph Γ′ obtained from
the Cayley graph Γ of G = 〈ai〉i≥1. We get Γ′ from Γ by subdividing each
edge of Γ into three parts and by adding for each original vertex v of Γ an
additional vertex v′ and an edge joining v′ to v. �

Lemma 4.12. S is a tame flat surface.

Proof. Let V̄g, respectively Ē
i
g, denote the closures in S of the subsets

inherited from Vg \ g(∪i6=0Ci), respectively Êi
g \ g(Si ∪ S ′i).

It is enough to prove that S is complete. Let (xk) be a Cauchy sequence
on S. By Lemma 4.5 we may assume that there is some g ∈ G such that
all xk lie in the union of V̄g and the adjacent affine buffer surfaces Ē

i
g and

Ēi

ga−1

i

. Since the components of V̄g∩
(⋃

i(Ē
i
g ∪ Ēi

ga−1

i

)
)
form a discrete subset
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in V̄g, we may assume that all xk lie in V̄g and in a single adjacent buffer
surface. Since both V̄g and the buffer surface are complete, (xk) converges,
as required. �

Lemma 4.13. Any orientation preserving affine homeomorphism of S is
equal to g for some g ∈ G.

Proof. Let ψ be an orientation preserving affine homeomorphism of S.
By Remark 4.10, ψ must permute the set of the G–translates of O. Hence
ψ(O) = g(O), for some g ∈ G. We are going to prove that ψ = g, which
means that ϕ = g−1 ◦ψ equals the identity. For the time being we know only
that ϕ(O) = O.
By Remark 4.7, there are only three saddle connections issuing from O.

Exactly one angle formed by them at O exceeds π. Hence ϕ, which is an
orientation preserving affine homeomorphism fixing O, must fix all these
saddle connections. Therefore ϕ is equal to the identity in the neighborhood
of O, which implies that ϕ is the identity. �

We summarize with the following.

Proof of Proposition 4.1. If G ⊂ GL+(2,R) \ U is countable, and non-
trivial, then Construction 4.9 provides a Riemann surface S = S(G) with
a holomorphic 1–form. Moreover, G acts on S by affine homeomorphisms
with appropriate differentials. By Lemma 4.12 the flat surface S is tame. By
Lemma 4.11 it is a Loch Ness monster. By Lemma 4.13 the Veech group of
S does not exceed G. �

This establishes Theorem 1.2 in the case where the group G is countable.

Remark 4.14.

(i) If we do not require in Proposition 4.1 that our flat surface is a Loch Ness
monster, then it suffices to take only one mark from each infinite family of
marks, instead of the whole family, in Construction 4.9.

(ii) If in Construction 4.9 we take, for positive odd i, the marks in Ci to have

endpoints i~f + (2n − 1 − 1
2i )~e, i~f + (2n − 1

2i )~e, then there are Euclidean
triangles of arbitrarily small area, with vertices in singularities, embedded in
S. This is unlike in the case of compact flat surfaces, where small triangles
appear only if the Veech group is not a lattice [SW08].

Conversely, we have the following.

Lemma 4.15. If the Veech group G of a flat surface S is countable, then G
is disjoint from U .

13



Proof. First consider the case, where S has a singularity x. Recall that
Ŝ denotes the metric completion of S and that the action of the group of
orientation preserving affine homeomorphisms of S extends to an action on
Ŝ. Suppose that there is an orientation preserving affine homeomorphism φ

of S with Dφ ∈ U . Then φ extends to a contraction on Ŝ. By the Banach
fixed point theorem, the sequence φk(x) converges in Ŝ. If x is not the fixed
point of φ, then this contradicts tameness.
Assume now that x is the fixed point of φ and the only singularity of

S. Then S is simply connected. Otherwise by pushing a homotopically
nontrivial loop going through x by the iterates of φ we obtain arbitrarily
short homotopically nontrivial loops through x, which contradicts tameness.
Hence S is a cyclic branched covering of C and thus G = GL+(2,R) which
is not countable, contradiction.
If S does not have singularities, its universal cover is the flat plane. Since

G is countable, S must be a flat torus and we have that G ⊂ SL(2,R) which
is disjoint from U . �

This proves Theorem 1.1 in the case where G is countable.
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