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Abstract

We study holomorphic automorphisms on compact Kähler manifolds
having simple actions on the Hodge cohomology ring. We show for such
automorphisms that the main dynamical Green currents admit complex
laminar structures (woven currents) and the Green measure is the unique
invariant probability measure of maximal entropy.

Key-words: holomorphic automorphism, Green current, laminar current, Green
measure, entropy.

AMS Classification: 32U40, 32H50.

1 Introduction

Let (X,ω) be a compact Kähler manifold of dimension k where ω denotes a
Kähler form on X . Let f : X → X be a holomorphic automorphism on X .
The first part of this paper deals with some geometric property of dynamical
Green currents associated with f . These currents were constructed by Sibony
and the second author in [10]. We will show that they are woven. Roughly
speaking, woven currents admit a complex laminar structure in the sense that
they are averages of currents of integration on complex manifolds (see Section 2
for precise definition). The property is fundamental in the dynamical study of f
using a geometric method (see Bedford-Lyubich-Smillie [1]).

When X is a projective manifold, the problem was solved in [9] using that X
admits many submanifolds of any dimension, see also Cantat [2] for the case of
dimension k = 2. For a general Kähler manifold, the approach breaks down and
it is necessary to use another technique. Our approach here uses in particular a
recent result by the first author which gives a criterion for a current to be woven
[5]. The criterion is valid in the local setting and allows us to work with general
Kähler manifolds.
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The second part of the paper deals with the uniqueness of invariant measure of
maximal entropy. This property says that somehow the measure describes totally
the most chaotic part of the dynamical system. Our approach follows partially
the method developed in [1, 7]. One of our contribution here concerns some new
results on the equidistribution towards the Green currents of f . A priori, these
currents are not intersections of currents of bidegree (1, 1) and this is a source of
difficulties that we have to overcome in this work.

Recall that the dynamical degree dp of order p of f is the spectral radius of
the pull-back operator f ∗ acting on the Hodge cohomology group Hp,p(X,C) for
0 ≤ p ≤ k. We have d0 = dk = 1. An inequality due to Khovanskii, Teissier and
Gromov [15] implies that the function p 7→ log dp is concave on 0 ≤ p ≤ k. In
particular, there are integers s and s′ with 0 ≤ s ≤ s′ ≤ k such that

1 = d0 < · · · < ds = · · · = ds′ > · · · > dk = 1.

In what follows, we assume that the action of f ∗ on the Hodge cohomology
ring ⊕H∗(X,C) admits a unique eigenvalue of modulus ds which is moreover a
simple eigenvalue. We say that the action of f ∗ on Hodge cohomology group
is simple. This property is equivalent to the fact that the sequence of linear
operators d−n

s (fn)∗ on ⊕H∗(X,C) converges to a rank 1 operator. The eigenvalue
of maximal modulus is then equal to ds and we have s = s′, see [10, 11, 17] for
details.

An example of maps which do not satisfy the above property is the automor-
phism (y, z) 7→ (y, g(y)) on the product Y × Z of two compact Kähler manifolds
where g is an automorphism on Z. So, our hypothesis on f ∗ somehow insures the
lack of neutral direction in the dynamical system. Under this natural condition,
it was shown in [10] that the sequences d−n

s (fn)∗ωs and d−n
s (fn)∗ω

k−s converge
to positive closed currents T+ and T− respectively. We call them the main Green
currents associated with f . We will not consider in this work the Green currents
of other bidegree. Our first main result is the following.

Theorem 1.1. Let f be a holomorphic automorphism on a compact Kähler man-
ifold X. Assume that the action of the pull-back operator f ∗ on Hodge cohomology
is simple. Then the main Green currents T± of f are woven. If T+ (resp. T−)
is of bidegree (1, 1), then it is laminar.

The intersection µ := T+∧T− of T+ and T− is well-defined and is a non-zero
invariant positive measure. Multiplying ω with a constant allows us to assume
that µ is a measure of probability. We call it the Green measure of f . The well-
known variational principle says that the entropy of µ is bounded from above
by the topological entropy of f which is equal to log ds according to results by
Gromov and Yomdin [16, 22]. It was shown in [11] that µ is a measure of maximal
entropy, i.e. its entropy is equal to log ds. Here is our second main result.
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Theorem 1.2. Let f be as in Theorem 1.1. Then the Green measure of f is the
unique invariant probability measure of maximal entropy.

Acknowledgement. This paper was partially written during the visit of the sec-
ond author at the Max-Planck institute. He would like to thank this organization
for its support and its hospitality.

2 Laminar and woven currents

In this section, we introduce the notion of laminar/woven current and give some
criteria for currents to be laminar/woven.

Let X be a complex manifold of dimension k and consider a Hermitian metric
ω on X . Consider a connected complex manifold Z of dimension k − p with
1 ≤ p ≤ k − 1 and a holomorphic map g : Z → X . Assume that

∫

Z

g∗(ωk−p
|K ) < +∞

for any compact subset K of X . According to the Wirtinger’s theorem, this
condition means that the 2(k − p)-dimensional volume of g(Z) counted with
multiplicity is locally finite in X . So, g∗[Z] defines a positive (p, p)-current in X
which is not closed in general. Here, [Z] is the current of integration on Z.

We refer the reader to Demailly [4] and Federer [14] for basic theory on cur-
rents. The above integral on Z is the mass of g∗[Z] on K. Recall that the mass
on a Borel set B ⊂ X of a positive (p, p)-current S on X is defined by

‖S‖B :=
〈
S, ωk−p

|B

〉
.

Denote by Bp(X) the set of all the currents of the form g∗[Z] as above.
Consider a positive measure ν on Bp(X) such that for any compact subset K of
X , we have ∫

‖S‖Kdν(S) < ∞.

Under this condition, we can define a positive (p, p)-current T by

T :=

∫
Sdν(S),

that is,

〈T, α〉 =

∫
〈S, α〉dν(S)

for all test (k − p, k − p)-form α on X . The condition on ν insures that the last
integral is meaningful. Such a current T is called woven, see [9]. If moreover, for
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ν-almost all currents S = g∗[Z] and S ′ = g′∗[Z
′], the intersection g(Z) ∩ g′(Z ′) is

empty or of maximal dimension k − p, we say that T is laminar, see [1].
It is not difficult to see that g∗[Z] can be written as a sum of currents of

the same type with small support. Therefore, a current is woven if and only if
it is locally woven. We will now give an equivalent definition of woven current
which gives a simpler geometric structure and is closer to the notion of laminar
current introduced in [1]. For simplicity, we assume that X is an open set in
Ck. Otherwise, we can write X as a finite or countable union X i where Xi are
disjoint charts such that T has no mass on ∂Xi and Proposition 2.1 below will
give a description of T in each Xi.

Consider a coordinates system (z1, . . . , zk) of Ck and the associated real co-
ordinates systems (x1, . . . , x2k) of C

k ≃ R2k with zj = xj + ixj+k. Divide Ck into
cubes of size r using the real hyperplanes {xi = mr} with m ∈ Z and 1 ≤ i ≤ 2k.
Such an r-cube is called basic r-cube and their union is denoted by Qr. We call
this a division of Ck into r-cubes. We can choose the coordinates system so that
for all r ∈ Q, the current T has no mass on the complementary of Qr, i.e. in the
union of the hyperplanes {xi = mr}.

Consider an irreducible submanifold Γ of codimension p in a basic r-cube D.
We say that Γ is nice if it satisfies the following properties:

(1) There is an irreducible submanifold Γ′ of the basic 3r-cube D′ containing
D such that Γ is an open subset of Γ′;

(2) The manifold Γ′ is the graph of a holomorphic map over its tangent space
at each point.

It is not difficult to see that the volume of such a manifold Γ is bounded by a
universal constant times r2(k−p).

Denote by Bp(r) the set of all the nice manifolds Γ of codimension p. Let ν
be a positive measure on Bp(r) such that

∫
volume(Γ)dν(Γ) < ∞.

We say that the associated current S :=
∫
[Γ]dν(Γ) is a nice woven current, where

[Γ] denotes the current of integration on Γ.

Proposition 2.1. Let T be a woven (p, p)-current on an open subset X of Ck as
above. Then there are nice woven currents Ti on Q2−i which vanish outside X
and such that

T =

∞∑

i=0

Ti.

Proof. Consider first the case where T is equal to the current g∗[Z] as above. If
dim g(Z) < k − p, then g∗[Z] = 0 as (p, p)-currents. So, we can assume that
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the dimension of g(Z) is k − p. Denote by Σ the set of points in Z where the
differential of g is not of maximal rank. This is a proper analytic subset of Z.
Therefore, its 2(k−p)-dimensional volume vanishes. It follows that [Z \Σ] = [Z]
and g∗[Z \ Σ] = g∗[Z].

Define Gi := g−1(Ck\Q2−i). This is an increasing sequence of closed subsets in
Z. Their volumes are equal to 0 because g∗[Z] has no mass on the complementary
of Q2−i . Denote by W0 the union of connected components of Z \ G0 which are
sent injectively by g to nice manifolds in basic 1-cubes. Define also by induction
for i ≥ 1, Zi := Zi−1 \W i−1 and Wi the union of connected components of Zi \Gi

which are sent injectively by g to a nice manifolds in basic 2−i-cubes.
Observe that for any a ∈ Z \Σ, if r is small enough, there is a neighbourhood

U of a such that U is sent injectively to a nice submanifold of a basic r-cube.
Therefore, the union of Wi contains the complementary of ∪i≥0Gi ∪Σ. Since the
last set has zero volume, we obtain that T =

∑
Ti where Ti := g∗(Wi). The

currents Ti are nice woven in Q2−i. So, the proposition is true for g∗[Z].
In general, write T =

∫
Sdν(S) where ν is a positive measure on Bp(X).

Since T has no mass on the Ck \ Q2−i , the same property holds for ν-almost
every S. Consider the decomposition S =

∑
Si into nice currents obtained as

above and define Ti :=
∫
Sidν(S). It is clear that Ti are nice woven currents and

that T =
∑

Ti.

Woven currents appear naturally as certain limits of submanifolds. We give
now a criterium for a sequence of manifolds to be convergent towards a woven
current. It was obtained by the second author in the case of projective manifolds
[9] and generalized by the first author to the local setting [5].

Consider a sequence Mn of (smooth) submanifolds of dimension k − p in an
open setX of Ck. Denote by G(k−p, k) the set of complex subspaces of dimension
k− p in Ck through the origin 0 ∈ Ck. This is a complex Grassmannian. Denote
by TxMn the tangent space of Mn at x and define

M̃n =
{
(x,H) ∈ Mn ×G(k − p, k), H parallel to TxMn

}
.

The volume of M̃n is called the curvature of Mn, see [9]. We have the following
result, see [5].

Theorem 2.2. Let Mn be a sequence of submanifolds of pure dimension k−p in
an open set X of Ck. Let vn be the volume of Mn and ṽn its curvature. Assume
that vn and ṽn are finite and that the sequence Tn = v−1

n [Mn] converge to a current
T (this property is always true for some subsequences). If ṽn = O(vn), then T is
woven.

Here is another criterium that we will use in the proof of the first main result.
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Proposition 2.3. Let X and Y be two complex manifolds of dimensions k, l
respectively. Let T be a positive (p, p)-current on X and S is a positive (q, q)-
current on Y . Assume that T ⊗ S is woven in X × Y . Then T and S are woven
in X and Y respectively.

Proof. We will show that T is woven. The same proof works for S. Since the
problem is local, we can assume that X and Y are bounded open domains in Ck

and Cl respectively. Denote by ΠX and ΠY the projections from X × Y to X
and Y . Choose a linear projection π : Cl → Cl−q and a positive smooth form
Ω of maximal degree with compact support in Y such that m := S ∧ π∗(Ω) is a
non-zero positive measure. Multiplying Ω with a constant allows us to assume
that m is a probability measure. We deduce that (ΠX)∗(T ⊗m) = T .

Define R := T ⊗ S and Π := π ◦ ΠY . Observe that

T ⊗m = (T ⊗ S) ∧ Π∗(Ω) = R ∧ Π∗(Ω).

We will show that R ∧ Π∗(Ω) is woven. By definition of woven current, this
property together with the identity (ΠX)∗(T ⊗m) = T will imply that T is also
woven.

Since R is woven, it is enough to consider the case where R is the current of
integration on a connected manifold Γ of dimension k−p+l−q. If dimΠ(Γ) < l−q,
then [Γ] ∧ Π∗(Ω) = 0. So, we can assume that dimΠ(Γ) = l − q. Let Σ denote
the set of critical values of Π|Γ. Then, for a 6∈ Σ, the intersection Γ ∩ Π−1(a)
is transversal and is either empty or a smooth manifold of dimension k − p. By
Bertini’s theorem, Π−1(Σ) ∩ Γ has zero volume in Γ. The Fubini’s theorem (see
[3] p.334) implies that:

[Γ] ∧Π∗(Ω) =

∫
[Γ ∩ Π−1(a)]dν(a),

where ν is the positive measure defined by Ω. Clearly, [Γ]∧Π∗(Ω) is woven. This
completes the proof.

We now give a criterion in order to prove that a woven (1, 1)-current is laminar.
The following proposition was independently obtained by Dujardin [13].

Proposition 2.4. Let T be a woven positive closed (1, 1)-current of a complex
manifold X. Assume that the local potentials of T are integrable with respect to
T (so, the wedge-product T ∧T is well-defined). If T ∧T = 0, then T is laminar.

Proof. The problem is local. So, we can assume that X is a domain in Ck. By
Proposition 2.1, we can write T =

∑+∞
i=0 Ti, where Ti are nice woven currents on

Q2−i which vanish outside X . Denote by νi the measure associated with Ti which
is defined on the space of nice hypersurfaces in the components of Q2−i .

Assume that T is not laminar. Then we can find Γ0 in the support of some
νi and Γ′

0 in the support of some νj such that Γ0 ∩ Γ′
0 is a non-empty subvariety
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of dimension k− 2. Denote by D (resp. D′) the 2−i-cube (resp. 2−j-cube) which
contains Γ0 (resp. Γ

′
0). Denote also by V ǫ

i (resp. V ǫ
j ) the set of nice hypersurfaces

of D (resp. D′) whose distance to Γ0 (resp. Γ
′
0) is less than ǫ. If ǫ is small enough

then for Γ ∈ V ǫ
i and Γ′ ∈ V ǫ

j the intersection Γ ∩ Γ′ is a non-empty variety of
dimension k − 2 (by Hurwitz’s theorem).

Since Γ0 is in the support of νi and Γ′
0 is in the support of νj , we have

νi(V
ǫ
i ) > 0 and νj(V

ǫ
j ) > 0. Define S :=

∫
V ǫ
i

[Γ]dνi(Γ) and S ′ =
∫
V ǫ
j

[Γ′]dνj(Γ
′).

Then the geometric intersection

S ∧g S
′ :=

∫

V ǫ
i

∫

V ǫ
j

[Γ ∩ Γ′]dνi(Γ)dνj(Γ
′)

is a positive closed (2, 2)-current on D ∩D′ with positive mass. Here, the inter-
section Γ ∩ Γ′ is counted with multiplicity, see e.g. [4, Ch. III, Prop. 4.12].

Now S ∧ S ′ is well defined in D ∩D′ because S ≤ T and S ′ ≤ T and T ∧ T is
well defined. It is not difficult to show that S ∧g S

′ = S ∧ S ′, see [8, Prop. 2.6].
This is a contradiction because S ∧ S ′ ≤ T ∧ T = 0.

3 Woven structure of Green currents

Consider now a holomorphic automorphism on a compact Kähler manifold (X,ω)
of dimension k. Fix a norm on the Hodge cohomology ring ⊕H∗(X,C). We will
use the following result in order to obtain the first main theorem.

Proposition 3.1. Let λn be the norm of the operator (fn)∗ on ⊕H∗(X,C). Let
M be a submanifold of codimension p of X. Then all limit values of the sequence
λ−1
n (fn)∗[M ] are woven currents.

Proof. Since X is a compact Kähler manifold, the mass ‖T‖ := 〈T, ωk−p〉 of a
positive closed (p, p)-current depends only on its cohomology class in ⊕H∗(X,C).
Recall also that when T is given by integration on a manifold M , by Wirtinger’s
theorem, the mass of T is (k−p)! times the volume of M . By definition of λn, the
mass of λ−1

n (fn)∗[M ] is bounded uniformly on n. In particular, the limit values
of λ−1

n (fn)∗[M ] are positive closed (p, p)-currents.
Consider a limit T of a sequence λ−1

ni
(fni)∗[M ]. We have to show that T is

woven. For this purpose, we will apply Theorem 2.2 for the restriction of T to
charts of X . It is enough to consider the case where T 6= 0. This property is
equivalent to the fact that the volume of Mni

:= f−ni(M) increases like λni
when

i → ∞.
Denote by TX the complex tangent bundle ofX and define E :=

∧k−p TX the
bundle of holomorphic tangent (k−p)-vectors. Consider also the projectivization
P(E) of E. The canonical projection π : P(E) → X defines a holomorphic
fibration whose fibers are isomorphic to the projective space of dimension r − 1
where r := rank(E).
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If a is a point in M , the tangent space of M at a is defined by a non-zero
holomorphic tangent (k − p)-vector v which is unique up to a multiplicative
constant. So, we can associate to a a point ã = (a, [v]) in π−1(a). When a varies

in M , the point ã describes a submanifold M̃ of dimension k − p in P(E). On a
neighbourhood U of a, we can identify TX with the trivial vector bundle U ×Ck

and P(E) to the product U ×Pr−1. The Grassmannian G(k− p, k) is canonically

identified to a submanifold of Pr−1 and M̃ coincides with the submanifold of
U ×G(k − p, k) introduced in the definition of the curvature of M in Section 2.

The automorphism f lifts canonically to an automorphism on TX . Hence, it
also lifts canonically to an automorphism f̃ of P(E). This map f̃ preserves the

fibration π : P(E) → X , that is, π ◦ f̃ = f ◦ π. If M̃n is associated to Mn, we

have M̃n = f̃−n(M̃). In order to apply Theorem 2.2, it is enough to show that

volume(M̃n) = O(λn). According to Proposition 3.18 in Voisin [21], P(E) is a

compact Kähler manifold. So, it is enough to verify that ‖(f̃n)∗‖ = O(λn) on
⊕H∗(P(E),C) for a fixed norm on the last space.

Consider the canonical line bundle O(1) of P(E). It is invariant under the

action induced by f̃ . If h denotes the Chern class of O(1) inH2(P(E),C), we have

f̃ ∗(h) = h. Moreover, according to Lemma 7.32 in [21], the ring ⊕H∗(P(E),C)
is generated by h and by the sub-ring π∗(⊕H∗(X,C)). In other words, any class
in ⊕H∗(P(E),C) can be written as a linear combination of classes of the form
hm ⌣ π∗(c), where c is a class in ⊕H∗(X,C). Finally, we deduce from the above
discussion that

(f̃n)∗(hm ⌣ π∗(c)) = hm ⌣ π∗(fn)∗(c).

The norm of this class increases at most like λn when n → ∞. It follows that
‖(f̃n)∗‖ = O(λn) which completes the proof.

In the rest of this section, we give the proof of Theorem 1.1. We assume
that the action of f ∗ on Hodge cohomology is simple and we will use the same
notation given in Introduction. Consider the automorphism F on X×X defined
by F (x, y) = (f(x), f−1(y)). By Künneth formula [21], we have

H l,l(X ×X,C) ≃
⊕

p+p′=l

q+q′=l

Hp,q(X,C)⊗Hp′,q′(X,C).

Moreover, F ∗ = (f ∗, f∗) preserves this decomposition. It was shown in [9] that
the spectral radius of f ∗ on Hp,q(X,C) is bounded by

√
dpdq. It follows that the

action of F ∗ on Hodge cohomology is simple. The dynamical degree dk(F ) of
order k of F is the maximal one and is equal to d2s.

The following result together with Propositions 2.3 and 2.4 imply Theorem
1.1. Note that when T+ is of bidegree (1, 1), we have f ∗(T+ ∧ T+) = d21T

+ ∧ T+

and we deduce that T+ ∧ T+ = 0 since in this case d21 > d1 > d2. The same
property holds for T−.
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Proposition 3.2. Let ∆ denote the diagonal of X ×X. Then

d−2n
s (F n)∗[∆] → cT+ ⊗ T−,

where c > 0 is a constant. Moreover, T+ ⊗ T− is woven.

Proof. We only have to prove the first assertion. The second one is then a con-
sequence of Proposition 3.1 applied to F instead of f .

Since the action of F ∗ on ⊕H∗(X×X,C) is simple and d2s is its spectral radius,
the sequence d−2n

s (F n)∗ converges to a rank 1 linear operator on ⊕H∗(X×X,C).
The image of the limit operator is a complex line. It is generated by the class
{T+} ⊗ {T−} since we have F ∗(T+ ⊗ T−) = d2sT

+ ⊗ T−. In particular, if {∆}
denotes the class of the current [∆] in Hk,k(X ×X,C), d−2n

s (F n)∗{∆} converge
in Hk,k(X × X,C) to c{T+} ⊗ {T−} for some constant c. We have c ≥ 0 since
[∆] and T± are positive closed currents. We first show that c 6= 0.

Denote by Π1 and Π2 the projections from X × X on its factors. On one
hand, the integral 〈

d−2n
s (F n)∗[∆],Π∗

1ω
k−s ∧ Π∗

2ω
s
〉

(which can be computed cohomologically) converges to

c〈T+ ⊗ T−,Π∗
1ω

k−s ∧ Π∗
2ω

s〉.

On the other hand, the same integral is equal to

d−2n
s

〈
[∆], (F n)∗(Π

∗
1ω

k−s ∧Π∗
2ω

s)
〉
= d−2n

s

〈
[∆],Π∗

1(f
n)∗ω

k−s ∧ Π∗
2(f

n)∗ωs
〉

= d−2n
s

〈
(fn)∗ω

k−s, (fn)∗ωs
〉
.

The last equality is obtained using that Π1 and Π2 are equal on ∆. Finally, the
last expression is equal to

d−2n
s

〈
ωk−s, (f 2n)∗ωs

〉

which converges to 〈ωk−s, T+〉 = ‖T+‖ 6= 0. It follows that c 6= 0.
Now, according to Corollary 4.3.4 in [11], d−2n

s (F n)∗[∆] converges to a Green
(k, k)-current in the cohomology class c{T+}⊗{T−}. It is follows from Theorem
4.3.1 in [11], that this Green current is the unique positive closed current in
its cohomology class. Therefore, it is equal to cT+ ⊗ T−. We conclude that
d−2n
s (F n)∗[∆] converges to cT+ ⊗ T−.

4 Equidistribution towards Green currents

In this section, we will give some results on the convergence towards the main
Green currents of f which will allow us to prove our second main result.
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Let f : X → X be a holomorphic automorphism with simple action on Hodge
cohomology as above. Let λp,n denote the norm of (fn)∗ on Hp,p(X,C). Choose
a basis on Hp,p(X,C) such that f ∗ has the Jordan form. We see that λp,n is
equivalent to nmpdnp for some positive integer mp depending on p (mp + 1 is the
size of a Jordan block). Recall that ds is the maximal dynamical degree and since
the action of f ∗ on the Hodge cohomology is simple, we have ms = 1. We also
have λ0,n = λk,n = d0 = dk = 1, dp−1 < dp for p ≤ s and dp > dp+1 for p ≥ s. In
particular, we have λp−1,n . λp,n for p ≤ s.

Proposition 4.1. Let S be a positive closed current of bidegree (k − p, k − p)
on an open subset U of X with p ≤ s. Let χ be a positive smooth function with
compact support on U . Then there is a constant c > 0 such that for all r ≤ p
and n,m ∈ N we have

‖(fn)∗(χS) ∧ (fm)∗(ωr)‖ ≤ cλp,nλr,m.

Proof. We first prove the proposition for r = 0 by induction on p. The property
holds for p = 0 because in this case χS and Sn = (fn)∗(χS) are positive measures
of the same mass. Assume now the property for p− 1. We show it for p. Denote
for simplicity S ′ := χS. If Ω is a smooth closed form of bidegree (p, p), we show
that

|〈(fn)∗(S
′),Ω〉| . λp,n.

We then obtain the result by taking Ω := ωp.
Fix smooth closed (p, p)-forms α1, . . . , αh of bidegree (p, p) such that the

classes {αi} form a basis of Hp,p(X,C) on which f ∗ has the Jordan form. Observe
that i∂∂χ is a closed smooth real (1, 1)-form. So, it can be written as the differ-
ence of two positive closed (1, 1)-forms on X . Therefore, we can write i∂∂S ′ =
S1−S2 where S1, S2 are two positive closed currents of bidegree (k−p+1, k−p+1)
on U . If χ′ is a smooth positive function with compact support on U and
equal to 1 on supp(χ), then χ′ = 1 on supp(i∂∂S ′). So, we can also write
i∂∂S ′ = χ′S1 − χ′S2 and apply the induction hypothesis. We have

‖i∂∂(fn)∗(S
′)‖ = ‖(fn)∗(i∂∂S

′)‖ . λp−1,n . λp,n.

When Ω is exact, by ∂∂-lemma [21], we can write Ω = i∂∂Θ with Θ smooth.
Since Θ can be bounded by positive closed forms, it follows that

|〈(fn)∗(S
′),Ω〉| = |〈i∂∂(fn)∗(S

′),Θ〉| . λp,n.

So, the desired estimate holds when Ω is exact. Subtracting from Ω an exact
form allows us to assume that Ω is a linear combination of αi. Therefore, it is
enough to consider the case where Ω = αi.

A priori there are several Jordan blocks but we can work with each of them
separately. So, without loss of generality, assume that {α1, . . . , αl} corresponds to
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a Jordan block with eigenvalue θ. In particular, we have f ∗{αi} = θ{αi}+{αi−1}.
We can choose αi so that f ∗(αi) = θαi + αi−1 for 2 ≤ i ≤ l. Indeed, we can first
fix αl and then define the other αi by induction. By definition of dp and mp, we
also have |θ| ≤ dp and when |θ| = dp we should have l ≤ mp + 1. It suffices to
consider the case where Ω = αi for 1 ≤ i ≤ l. We show by induction on 1 ≤ i ≤ l
that

|〈(fn)∗(S
′), αi〉| . ni−1dnp .

Define
In := 〈(fn)∗(S

′), αi〉 = 〈S ′, (fn)∗(αi)〉.

Consider the case i = 1. Since the form β := f ∗(α1)− θα1 is exact, we obtain as
above that

|Ij+1 − θIj| = |〈S ′, (f j)∗(β)〉| = |〈(f j)∗(S
′), β〉| . λp−1,j.

On the other hand, we have

In =
n−1∑

j=0

θn−1−j(Ij+1 − θIj) + θnI0.

It is easy to deduce that |In| . dnp . So, the desired inequality is true for α1.
Assume that the inequality is true for αi−1 for some 2 ≤ i ≤ l. We show it

for αi. Using that f ∗(αi) = θαi + αi−1, we obtain that

〈S ′, (fn)∗(αi)〉 =

n−1∑

j=0

θn−1−j〈S ′, (f j)∗(αi−1)〉+ θn〈S ′, αi〉.

Therefore,

|〈S ′, (fn)∗(αi)〉| .

n−1∑

j=0

|θ|n−1−jji−2djp + |θ|n . ni−1dnp .

This completes the proof of the proposition for r = 0.
The general case is also proved by induction on p. When p = 0, we have

r = 0 and the estimate is clearly true. Assume the proposition for S of bidegree
(k − p+ 1, k − p+ 1). We prove that it is also true for bidegree (k − p, k− p). If
r = p, we have

‖(fn)∗(χS) ∧ (fm)∗(ωp)‖ = 〈(fn)∗(χS), (f
m)∗(ωp)〉 = 〈(fn+m)∗(χS), ω

p〉.

Using the case r = 0 above, we can bounded the last integral by a constant times
λp,n+m which is . λp,nλp,m. So, the proposition is true for r = p.

11



Assume now that r ≤ p− 1. Define for simplicity S ′′ := (fn)∗(χS). We show
for any smooth closed (r, r)-form Ω that

|〈S ′′, (fm)∗(Ω) ∧ ωp−r〉| . λp,nλr,m.

We obtain the result by taking Ω = ωr. The proof uses the same idea as above.
First, we can reduce the problem to the case where Ω is a form corresponding to
a Jordan basis of Hr,r(X,C). Then, we follow closely the arguments given in the
case r = 0. The details are left to the reader. Note that our proof is valid for
non-invertible maps and we only need to assume that dp−1 < dp.

Corollary 4.2. Let S and χ be as in Proposition 4.1. If T is a limit value of the
sequence Sn := λ−1

p,n(f
n)∗(χS), then T is a positive closed current. If p = s then

Sn := d−n
s (fn)∗(χS) converge to cT− where c ≥ 0 is a constant.

Proof. We prove the first assertion. The case p = 0 is clear since Sn is a positive
measure and its mass is independent of n. So, assume that p ≥ 1. We have seen
that i∂∂S ′ is the difference of two positive closed currents of bidegree (k − p +
1, k − p + 1) on U . Applying Proposition 4.1 to p− 1 instead of p and to r = 0,
we obtain

‖i∂∂Sn‖ = λ−1
p,n‖(f

n)∗(i∂∂S
′)‖ . λ−1

p,nλp−1,n.

Since dp−1 < dp, the last expression tends to 0. It follows that T is ∂∂-closed.
Applying the same idea to the map (f, f) on X×X and to the current S⊗S,

we obtain that T ⊗ T is ∂∂-closed (one can easily check that the degree of order
2s of (f, f) is strictly larger than the other dynamical degrees). Now, we have

0 = ∂∂(T ⊗ T ) = −∂T ⊗ ∂T + ∂T ⊗ ∂T.

By considering the degrees corresponding to each factor of X × X , we see that
both terms in the last sum vanish. Hence, ∂T = 0, ∂T = 0 and T is closed.

We now prove the second assertion for p = s and Sn := d−n
s (fn)∗(χS). By

Proposition 4.1, the family of limit values of the sequence Sn is a compact set
K . Let Sni

be a subsequence which converges to a current T . We can extract a
subsequence of Sni−1 which converges to a current T1. Then, we have d

−1
s f∗(T1) =

T . By induction, we construct a sequence Ti in K with d−i
s f i

∗(Ti) = T .
Recall that the action of f ∗ on the Hodge cohomology is simple. Since the

Ti’s belong to a compact set and d−i
s f i

∗(Ti) = T , any limit value of d−i
s f i

∗{Ti}
belongs to the line generated by the class {T−}. It follows that {T} = c{T−}
for some c ∈ C. We have c ≥ 0 because T and T− are positive closed currents.
By uniqueness of Green currents [10, Th.4.3.1]), T− is the unique positive closed
current in its cohomology class. Therefore, we have T = cT−. It remains to show
that the mass c does not depend on the choice of T .
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Let α be a smooth (s, s)-form in the class {T+}. We first show that 〈Sn, α〉
converge. For this purpose, it is enough to verify that 〈Sn, α〉−〈Sn+1, α〉 decreases
exponentially fast. The last expression is equal to

〈Sn, α− d−1
s f ∗(α)〉.

Since f ∗(T+) = dsT
+, the form α − d−1

s f ∗(α) is exact. So, we can write it as
i∂∂β with β a smooth form. Therefore,

〈Sn, α〉 − 〈Sn+1, α〉 = 〈i∂∂Sn, β〉.

Proposition 4.1 implies that the last integral decreases exponentially fast. So,
〈Sn, α〉 converge to some constant c0.

We deduce from this convergence that 〈T, α〉 = c0. It follows that c〈T
−, α〉 =

c0. Since α is cohomologous to T+ and T+ ∧ T− is a probability measure, we
obtain that c = c0. So, c is independent of the choice of T and this completes
the proof.

Remark 4.3. Assume that mp = 0 and that Sn → 0. Since, λ−1
p,nλp−1,n decreases

to 0 exponentially fast, we deduce from the estimates in the above proofs that
the mass of Sn on a compact set of U decreases to 0 exponentially fast.

Corollary 4.2 allows us to define the intersection S ∧T+ of T+ with a positive
closed (k− s, k− s)-current S on U . The intersection is a positive measure given
by

〈S ∧ T+, χ〉 := lim
n→+∞

〈χS, d−n
s (fn)∗(ωs)〉 = lim

n→+∞
〈d−n

s (fn)∗(χS), ω
s〉

for χ smooth with compact support in U . We have the following result.

Proposition 4.4. Let S be a current of bidegree (k − s, k − s) and χ a function
as above. Then d−n

s (fn)∗(χS) ∧ T+ converge to cµ = cT+ ∧ T−, where c ≥ 0 is
the constant such that d−n

s (fn)∗(χS) → cT−.

Proof. Fix a smooth function ϕ on X and consider

Sn := d−n
s (fn)∗(χS) = d−n

s (χ ◦ f−n)(fn)∗(S) and an := 〈Sn ∧ T+, ϕ〉.

We have Sn → cT− and

an = lim
N→∞

〈
ϕSn, d

−N
s (fN)∗(ωs)

〉
= lim

N→∞

〈
ϕSn, L

N(ωs)
〉
,

where we denote for simplicity L := d−1
s f ∗. We want to show that an → c〈µ, ϕ〉.

We have T+ = limLN (ωs). Fix a smooth closed (s, s)-form α in the class
{T+}. We can complete {α} in order to obtain a Jordan basis for Hs,s(X,C).
The class {α} corresponds to the eigenvalue of maximal modulus ds of f

∗ which
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is a simple eigenvalue. Arguing as in Proposition 4.1, we obtain that LN(ωs) −
LN (α) → 0 and hence LN (α) → T+. So, we can write

T+ = α +

+∞∑

N=0

LN(Lα − α).

We also obtain in the same way that

an = lim
N→∞

〈
ϕSn, L

N(α)
〉
.

This allows us to write

an = lim
N→∞

〈
ϕSn, α+

N−1∑

m=0

Lm(Lα− α)
〉

= 〈ϕSn, α〉+

+∞∑

m=0

〈
ϕSn, L

m(Lα− α)
〉
.

We claim that
|〈ϕSn, L

m(Lα− α)〉| . γm

for some constant γ < 1 independent of n and m. Assume the claim. We first
complete the proof. The estimate allows us to take the limit term by term when
n → ∞ in the last identity for an. It follows that an converges to

〈
ϕcT−, α

〉
+

+∞∑

m=0

〈
ϕcT−, Lm(Lα − α)

〉
= c

〈
ϕT−, lim

m→+∞
Lm+1(α)

〉
= c〈µ, ϕ〉.

For the convergence T− ∧ Lm+1(α) → T− ∧ T+ = µ see [11].
It remains to prove the claim. Since L(T+) = T+, L(α) is cohomologous to

α. So, we can write Lα−α = i∂∂β with β a smooth (s− 1, s− 1)-form. Adding
to β a large constant times ωs−1 allows us to assume that β is positive. We have

|〈ϕSn, L
m(Lα− α)〉| = |〈i∂∂(ϕSn), L

m(β)〉|.

We expand the current with ∂∂ and use Cauchy-Schwarz’s inequality in order to
bound the last expresion. It is bounded by the sum of the following 4 integrals

|〈i∂∂ϕ ∧ Sn, L
m(β)〉|, |〈ϕi∂∂Sn, L

m(β)〉|

and
|〈i∂ϕ ∧ ∂Sn, L

m(β)〉|, |〈i∂ϕ ∧ ∂Sn, L
m(β)〉|.

According to Proposition 4.1, the first two integrals are. d−m
s λs−1,m. So, they

are . λm for some λ < 1. Choose a smooth positive function χ̃ with compact
support in U such that i∂χ∧∂χ ≤ χ̃ω. Define S̃ := ω∧S and S̃n := d−n

s (fn)∗(χ̃S̃).
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Since Sn = d−n
s (fn)∗(χS), using Cauchy-Schwarz’s inequality, we can bounded

the two other integrals by

|〈i∂ϕ ∧ ∂ϕ ∧ Sn, L
m(β)〉|1/2|〈S̃n, L

m(β)〉|1/2.

Proposition 4.1 implies that the last expression is also . d−m
s λs−1,m. The result

follows.

5 Uniqueness of measure of maximal entropy

In this section, we prove Theorem 1.2. Consider an invariant probability measure
ν of maximal entropy hν = log ds. We want to show that ν = µ. Recall that
entropy is an affine function on the convex compact set of invariant probability
measures. The measure ν can be decomposed as an average of ergodic measures.
So, we only have to consider the case where ν is ergodic.

Denote by χ1 ≥ χ2 ≥ · · · ≥ χk the Lyapounov exponents of ν. According to
[6, Cor. 3], we have

χ1 ≥ · · · ≥ χs ≥
1

2
log

ds
ds−1

> 0

and

0 >
1

2
log

ds+1

ds
≥ χs+1 ≥ · · · ≥ χk.

This property allows us to use Pesin’s theory (see [20] and [18]). There is a
measurable f−1-invariant partition ξu whose fibers are open subsets of the local
unstable manifolds associated with ν such that

hν = hν(f, ξ
u).

Here, the last expression denotes the entropy of ν relatively to the partition ξu.
These unstable manifolds are of dimension s. We now follow the approach of
Bedford-Lyubich-Smillie, see [1, Prop. 3.2].

For ν almost every point x, denote by ξu(x) the atom of the partition ξu

which contains x. By construction, ξu(x) is an open set of a unstable manifold.
So, we can choose an open set Ux such that ξu(x) is a submanifold of Ux. We
can assume that ξu(x) admits a holomorphic extension to a neighbourhood of
Ux. So, as we have seen above, T+ ∧ [ξu(x)] is a well-defined positive measure in
Ux. Since, ξu(x) admits an extension, this measure is of finite mass and we can
considered it as a measure on X . Moreover, the obtained measures verify

(f i)∗(T
+ ∧ [ξu(x)]) = T+ ∧

[f i(ξu(x))]

dis
.

Here, is a crucial point of the proof.
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Proposition 5.1. We have

‖[ξu(x)] ∧ T+‖ > 0

for ν almost every point x.

We need the following result due to Newhouse [19] which is valid in a more
general setting, see also [12, Lemma 5.2]. Choose relatively compact open subsets
ηu(x) of ξu(x) which contains x.

Proposition 5.2. For ν-almost every x, we have

lim inf
n→∞

1

n
log volume(fn(ηu(x))) ≥ hν .

Proof of Proposition 5.1. Let χ be a smooth positive function with compact
support in Ux and equal to 1 on ηu(x) for x generic with respect to ν. We deduce
from the last proposition that

lim inf
n→∞

1

n
log ‖(fn)∗(χ[ξ

u(x)])‖ ≥ log ds.

It follows from Corollary 4.2 and Remark 4.3 that Sn = d−n
s (fn)∗(χ[ξ

u(x)])
converges to cT− with c > 0. Therefore,

∫
χ[ξu(x)] ∧ T+ = lim

n→∞
〈χ[ξu(x)], d−n

s (fn)∗(ωs)〉 = lim
n→∞

〈Sn, ω
s〉 > 0.

The proposition follows. �

End of the proof of Theorem 1.2. We obtain exactly as in [1, Prop. 3.2] the
following lemma.

Lemma 5.3. For ν almost every point x, the measure

ηx = T+ ∧ [ξu(x)]/ρ(x), where ρ(x) := ‖T+ ∧ [ξu(x)]‖

is equal to the conditional measure νx := ν(·|ξu(x)).

Now, also following the same lines in [1, Th. 3.1], we obtain

1

n

n−1∑

i=0

f i
∗(νx) → ν

for ν almost every point x. Since νx is equal to ηx, it remains to show that

1

n

n−1∑

i=0

f i
∗(ηx) → µ.

But

(f i)∗ηx =
T+ ∧ [f i(ξu(x))]

ρ(x)dis
·

Now, it is enough to apply Proposition 4.4 in order to obtain the result. �
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